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Toric Geometry of Cuts and Splits

Bernd Sturmfels & Seth Sullivant

1. Introduction

With any finite graph G = (V,E) we associate a projective toric variety XG over
a field K as follows. The coordinates qA|B of the ambient projective space are in-
dexed by unordered partitions A|B of the vertex set V. The dense torus has two
coordinates (sij , tij ) for each edge {i, j} ∈ E. The polynomial rings in these two
sets of unknowns are

K[q] := K[qA|B | A ∪ B = V, A ∩ B = ∅],

K[s, t] := K[sij , tij | {i, j} ∈E ].

Each partition A|B of the vertex set V defines a subset Cut(A|B) of the edge set
E. Namely, Cut(A|B) is the set of edges {i, j} such that i ∈ A, j ∈ B or i ∈ B,
j ∈A. The variety we wish to study is specified by the following homomorphism
of polynomial rings:

φG : K[q] → K[s, t], qA|B 
→
∏

{i,j}∈Cut(A|B)
sij ·

∏
{i,j}∈E\Cut(A|B)

tij . (1.1)

One may wish to think of s and t as abbreviations for “separated” and “together”.
The kernel of φG is a homogeneous toric ideal IG, which we call the cut ideal of
the graphG. We are interested in the projective toric varietyXG that is defined by
the cut ideal IG.

Example 1.1. Let G = K4 be the complete graph on four nodes, so V =
{1, 2, 3, 4} and E = {12,13,14, 23, 24, 34}. The ring map φK4 is specified by

q|1234 
→ t12 t13 t14 t23 t24 t34, q1|234 
→ s12 s13s14 t23 t24 t34,

q12|34 
→ t12 s13s14 s23s24 t34, q2|134 
→ s12 t13 t14 s23s24 t34,

q13|24 
→ s12 t13s14 s23 t24 s34, q3|124 
→ t12 s13 t14 s23 t24 s34,

q14|23 
→ s12 s13 t14 t23s24 s34, q4|123 
→ t12 t13s14 t23s24 s34.

The cut ideal for the complete graph on four nodes is the principal ideal

IK4 = 〈q|1234q12|34q13|24q14|23 − q1|234q2|134q3|124q123|4〉.
Thus the toric variety XK4 defined by IK4 is a quartic hypersurface in P

7.
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Example 1.2. Let G = C4 be the 4-cycle with edges E = {12, 23, 34,14}. The
ring map φC4 is derived from φK4 in Example 1.1 by setting s13 = t13 = s24 =
t24 = 1, and we find

IC4 = 〈q|1234q13|24 − q1|234q124|3,

q|1234q13|24 − q123|4q134|2, q|1234q13|24 − q12|34q14|23〉.
Thus the toric variety XC4 is a complete intersection of three quadrics in P

7.

We usually take the vertex set V of our graph G to be [n] := {1, 2, . . . , n}, so that
K[q] is a polynomial ring in 2n−1 unknowns and K[s, t] is a polynomial ring in
2|E| ≤ n(n− 1) unknowns. Each edge {i, j} ∈E corresponds to a projective line
P

1 with homogeneous coordinates (sij : tij ), and the ring map φG represents a ra-
tional map from the product of projective lines (P1)|E| into the high-dimensional
projective space P

2n−1−1. The image of this map is our toric varietyXG, which has
dimension |E| ≤ n(n− 1)/2 in P

2n−1−1.

The geometry of XG and the algebraic properties of its ideal IG are determined
by the cut polytope Cut�(G), which is the convex hull in R

|E| of the cut semimetrics
δA|B. Here A|B runs over all unordered partitions of V, and δA|B ∈ {0,1}|E| is de-
fined as

δA|B({i, j}) =
{

1 if |A ∩ {i, j}| = 1,

0 otherwise.

Indeed, the convex hull of the exponent vectors in φG is affinely isomorphic to
Cut�(G). In Example 1.1 and 1.2, respectively, we find that Cut�(K4) is the cyclic
6-polytope with eight vertices and that Cut�(C4) is the 4-dimensional crosspoly-
tope (which is the dual to the 4-cube).

The cut polytope Cut�(G) is well studied in combinatorial optimization and
is a central player in the book Geometry of Cuts and Metrics by Déza and Lau-
rent [7]. The title of this paper is a reference to their book, and it reflects our
desire to import this body of work into commutative algebra and algebraic statis-
tics. In particular, we explore the extent to which the known polyhedral structure
of Cut�(G) can be used to determine algebraic results about the cut ideals IG. For
instance, the known fact that Cut�(G) is full-dimensional implies that dimXG =
|E|. A more significant example of such an algebraic result is derived from recent
work of the second author [20], as follows.

Theorem 1.3. The cut ideal IG has a squarefree reverse lexicographic initial
ideal if and only if the graph G is free of K5 minors and every induced cycle in G
has length 3 or 4. In this case, every reverse lexicographic initial ideal of IG is
squarefree.

Proof. The initial ideal of a toric ideal is squarefree if and only if the correspond-
ing regular triangulation of the associated polytope is unimodular [18, Sec. 8].
Because the symmetry group of Cut�(G) is transitive on its vertices, the cut poly-
tope Cut�(G) has a unimodular revlex (pulling) triangulation if and only if every
revlex triangulation is unimodular [20, Cor. 2.5]. A polytope all of whose revlex
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triangulations are unimodular is called compressed. Now simply apply the classi-
fication of compressed cut polytopes given in [20, Thm. 3.2].

In Section 2 we describe how generating sets (Markov bases) and Gröbner bases
of the cut ideal IG can be computed when the graphG admits a certain clique-sum
decomposition. The key tool here is the toric fiber product introduced in [21]. In
Section 3, we summarize the results of our computational experiments and outline
some conjectures that were suggested by our computations.

In the last two sections we present applications to algebraic statistics. In Sec-
tion 4 we relate cut ideals to the binary graph models of [6] and to Markov random
fields. In Section 5 we relate cut ideals to phylogenetic models on split systems,
after Bryant [2]. These generalize the binary Jukes–Cantor models studied in [4]
and [19].

2. Clique Sums and Toric Fiber Products

Our goal in this section is to relate the graph-theoretic operation of taking clique
sums to the ideal-theoretic operation of taking the toric fiber product, as explained
in [21]. This operation will serve as a tool for reducing the computation of the
cut ideals IG to cut ideals of smaller graphs (and that, hence, involve fewer
indeterminates).

LetG1 = (V1,E1) andG2 = (V2,E2) be graphs such thatV1 ∩V2 is a clique of
both graphs. The new graph G = G1 # G2 with vertex set V = V1 ∪ V2 and edge
set E = E1 ∪ E2 is called the clique sum of G1 and G2 along V1 ∩V2. If the car-
dinality of V1 ∩V2 is k+1, this operation is also called a k-sum of the graphs. We
suppose throughout that k ≤ 2.

We now explain how binomials in the cut ideal IG can be constructed from bi-
nomials in the smaller ideals IG1 and IG2. Consider an arbitrary binomial of degree
d in the first smaller cut ideal IG1, say

f =
d∏
i=1

qAi |Bi −
d∏
i=1

qCi |Di .

Since V1 ∩V2 is a clique in G1 of cardinality ≤ 3, we can permute the unknowns
and partitions so that Ai ∩V1 ∩V2 = Ci ∩V1 ∩V2 for all i. This is a consequence
of the fact that IKk+1 is the zero ideal for k ≤ 2. For any ordered list EF of d par-
titions of V2\V1,

EF = (E1|F1,E2 |F2, . . . ,Ed |Fd),
we define a new binomial that is easily seen to be in the cut ideal IG of the big
graph:

fEF :=
d∏
i=1

qAi∪Ei |Bi∪Fi −
d∏
i=1

qCi∪Ei |Di∪Fi .

This construction works verbatim if we switch the componentsG1 andG2, so that,
for any binomial f in IG2 and any ordered list EF of deg(f ) partitions of V1\V2,
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we get a binomial fEF in IG. Moreover, if F is any set of binomials in IG1 or in
IG2 then we define

Lift(F) := {fEF | f ∈ F, EF = {Ei |Fi}deg f
i=1 } (2.1)

as the union of all binomials of the form fEF described previously.
We also define an additional set Quad(G1,G2) of quadratic binomials in IG as

follows. Let A|B be any unordered partition of V1 ∩V2, let C1|D1 and E1|F1 be
any ordered partitions of V1\V2, and let C2 |D2 and E2 |F2 be any ordered parti-
tions of V2\V1. Then

qA∪C1∪C2 |B∪D1∪D2 · qA∪E1∪E2 |B∪F1∪F2

− qA∪E1∪C2 |B∪F1∪D2 · qA∪C1∪E2 |B∪D1∪F2 (2.2)

is in Quad(G1,G2), and these are all the binomials in Quad(G1,G2). For each
fixedA|B, we can express the quadrics (2.2) as the 2×2 minors of a certain matrix
(q•|•) of format 2|V2\V1| × 2|V1\V2|. The following theorem will be our main result
in Section 2.

Theorem 2.1. LetG = G1 #G2 be a 0-, 1-, or 2-sum ofG1 andG2 and suppose
that F1 and F2 are binomial generating sets for the smaller cut ideals IG1 and IG2.

Then
M = Lift(F1) ∪ Lift(F2) ∪ Quad(G1,G2)

is a generating set for the big cut ideal IG. Furthermore, if F1 and F2 are Gröb-
ner bases for IG1 and IG2 then there exists a term order such that M is a Gröbner
basis for IG.

Remark 2.2. If the intersection graph G1 ∩ G2 is not a clique of cardinality ≤
3, then it is generally not possible to lift every binomial in IG1 and IG2 to the cut
ideal IG.

Before presenting the proof of Theorem 2.1 we discuss several examples and
corollaries.

Example 2.3. IfG = G1 #G2 is a 0-sum, then its cut ideal IG is the usual Segre
product of IG1 and IG2. Indeed, in this case the singletonV1 ∩V2 has only one or-
dered partition and Quad(G1,G2) is the ideal of 2×2 minors of the corresponding
matrix (q•|•). For instance, if G1 is the graph with one edge {1, 2} and G2 is the
graph with one edge {2, 3}, so that V1 ∩ V2 = {2}, then IG = 〈Quad(G1,G2)〉 is
generated by the determinant of

(q•|•) =
(
q|123 q1|23

q12|3 q2|13

)
.

Now suppose thatG is any tree withn leaves. Iterating the 0-sum construction from
n = 3 to n > 3, we see that XG is the Segre embedding of (P1)n−1 into P

2n−1−1.
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Further generalization of Example 2.3 leads to the following result.

Corollary 2.4. The toric variety XG is smooth if and only if G is free of C4

minors.

Proof. We first prove the “if” direction. If G is free of C4 minors, so that all its
simple cycles have length 3, then G can be built from K2 and K3 by taking re-
peated 0-sums. Both the ideals IK2 and IK3 are zero and live in polynomial rings
with two and four unknowns, respectively. Thus XK2 is P

1 and XK3 is P
3. The

0-sum construction amounts to taking Segre products, hence

XG = P
1 × P

1 × · · · × P
1 × P

3 × P
3 × · · · × P

3.

This Segre variety is smooth. The “only if” direction states that any smooth XG
has this special form. To prove this, suppose thatG hasC4 as a minor. Then either
G has an induced cycle of length n ≥ 4 or G has, as an induced subgraph, the
complete graph K4 or the graph obtained from K4 by removing one edge. Let
H denote this induced subgraph. Using a forward reference to Lemma 3.2, we
note that Cut�(H ) is a face of Cut�(G). Therefore, it suffices to prove that XH
is not smooth. We saw in the Introduction that Cut�(K4) and Cut�(C4) are not
simple. Using the familiar characterization of toric singularities [9, Sec. 2.1], this
implies that the corresponding toric varieties XH are not smooth. The same can
be checked for cycles of length n ≥ 5.

In the remaining case,H = K4\{14} is the 1-sum of the triangle on {1, 2, 3} and
the triangle on {2, 3, 4}. Its varietyXH is the complete intersection of two quadrics
in P

7:

IH =
〈
det

(
q|1234 q1|234

q4|123 q14|23

)
, det

(
q2|134 q12|34

q13|24 q3|124

)〉
.

The singular locus of XH consists of the two 3-planes in P
7 where these matrices

are zero. The cut polytope Cut�(H ) is the free join of two squares, a nonsimple
5-polytope.

The following example naturally generalizes the graph H = K4\{14} discussed
previously.

Example 2.5. Let G = K5\{15} be the graph on five vertices obtained from the
complete graph by deleting an edge. Thus G is the 2-sum of the complete graph
G1 on V1 = {1, 2, 3, 4} and the complete graph G2 on V2 = {2, 3, 4, 5}. Since IK4

is generated by a quartic, we deduce that IG is generated by quadrics and quartics.
There are four quadrics:

Quad(G1,G2) = {q15|234q|12345 − q1|2345q5|1234, q34|125q2|1345 − q12|345q25|134,

q24|135q3|1245 − q13|245q35|124, q23|145q4|1235 − q14|235q45|123}.
The ideals IG1 and IG2 are each generated by a single quartic, as in Example 1.1,
and F1 and F2 are the singletons consisting of these quartics. Now, the setV2\V1 =
{5} has two ordered partitions, namely 5| and |5, so there are 24 = 16 ordered lists
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of ordered partitions E |F. Each defines a quartic in IG, so Lift(F1) consists of
sixteen quartics, such as

f1 = q|12345q34|125q24|135q23|145 − q1|2345q25|134q35|124q45|123,

f2 = q5|1234q12|345q13|245q14|235 − q15|234q2|1345q3|1245q4|1235.

Likewise, Lift(F2) consists of sixteen quartics, and these include

f3 = q1|2345q25|134q35|124q45|123 − q15|234q2|1345q3|1245q4|1235,

f4 = q|12345q34|125q24|135q23|145 − q5|1234q12|345q13|245q14|235.

We conclude that the set M in Theorem 2.1 consists of 36 binomials and that these
binomials generate IG. However, they are not a minimal generating set, because

f1 − f2 + f3 − f4 = 0.

The set of 35 binomials obtained by removing any of the fi is a minimal generat-
ing set for IG. We also find that the minimal free resolution of IG has the following
Betti diagram:

total: 1 35 134 200 134 35 1
0: 1 . . . . . .
1: . 4 . . . . .
2: . . 6 . . . .
3: . 31 128 200 128 31 .
4: . . . . 6 . .
5: . . . . . 4 .
6: . . . . . . 1

(Macaulay 2 output). Thus the toric 9-fold XG ⊂ P
15 is arithmetically Goren-

stein. The degree of XG is 80.

We shall derive Theorem 2.1 from the results in [21]. Specifically, we shall iden-
tify the cut ideal of G = G1 # G2 as a toric fiber product. We begin by reviewing
the setup of [21]. Let r > 0 be a positive integer and let s, t ∈ N

r be two vectors
of positive integers. Let

K[x] = K[xij | i ∈ [r], j ∈ [si]] and K[y] = K[yik | i ∈ [r], k ∈ [ti]]

be two polynomial rings with a compatible d-dimensional multigrading

deg(x ij ) = deg(y ik) = ai ∈ Z
d for i = 1, 2, . . . , r.

We abbreviate the collection of degree vectors by A = {a1, a2, . . . , ar} ⊂ Z
d.

If I and J are the respective homogeneous ideals of K[x] and K[y], then the
quotient ringsR = K[x]/I and S = K[y]/J are also multigraded by A. Consider
the polynomial ring

K[z] = K[zijk | i ∈ [r], j ∈ [si], k ∈ [ti]],

and consider the K-algebra homomorphism

φI,J : K[z] → R ⊗K S, zijk 
→ xij ⊗ yik.
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The kernel of φI,J is called the toric fiber product of I and J and is denoted

I ×A J = ker(φI,J).

The following statement combines Theorem 2.8 and Corollary 2.10 in [21].

Theorem 2.6. Suppose that the set A of degree vectors is linearly independent.
Let F1 be a homogeneous generating set for I and let F2 be a homogeneous gen-
erating set for J. Then

M = Lift(F1) ∪ Lift(F2) ∪ QuadA

is a homogeneous generating set for I ×A J. Furthermore, if F1 and F2 are Gröb-
ner bases for I and J, then there exists a term order such that M is a Gröbner
basis for I ×A J.

Here QuadA is the collection of quadrics zijk z
i
lm−zijmzilk that generates 〈0〉×A 〈0〉.

The sets Lift(Fi ) have a nice description in terms of tableaux, given in [21, Sec. 2].

Proof of Theorem 2.1. Suppose G = G1 # G2 with vertex set V = V1 ∪ V2 and
edge set E = E1 ∪ E2, where V1 ∩ V2 is a clique of size k + 1 in both graphs.
We set d = (

k+1
2

) + 1 and r = 2k−1, and we define A as the vector configuration
corresponding to the vertices of the cut polytope Cut�(Kk+1) of the clique. The
A-grading on K[q] is defined by restricting the product in (1.1) to those edges {i, j}
that lie in E1 ∩E2. In other words, the degree of qA|B is the vertex of Cut�(Kk+1)

indexed by the partition A ∩V1 ∩V2 |B ∩V1 ∩V2.

The configuration A of degree vectors is linearly independent if and only if the
cut polytope Cut�(Kk+1) is a simplex if and only if k ≤ 2. Theorem 2.6 requires
the set A to be linear independent. This explains the crucial hypothesis k ≤ 2 in
Theorem 2.1.

All three cut ideals IG, IG1, and IG2 are homogeneous with respect to the indi-
cated grading. We will show that IG is the toric fiber product of IG1 and IG2; in
symbols,

IG = IG1 ×A IG2. (2.3)

LetA1|B1 andA2 |B2 be partitions ofV1 andV2 such that deg(qA1|B1)= deg(qA2 |B2).

Since V1 ∩V2 is connected, this implies (possibly after relabeling) that

A1 ∩V1 ∩V2 = A2 ∩V1 ∩V2.

This means that A|B (with A = A1 ∪ A2 and B = B1 ∪ B2) is a partition of V,
and we have

φG1(qA1|B1) · φG2(qA2 |B2) = φG(qA|B) · φG1∩G2(qA1∩V1∩V2 |B1∩V1∩V2). (2.4)

This is an identity of monomials in the polynomial ring K[s, t] associated with the
big graph G, and it is verified by plugging in the definition of the monomial map
φ• in (1.1).

The ring map that defines the toric fiber product IG1 ×A IG2 can be written as

φIG1,IG2
: K[q] → K[s, t], qA|B 
→ φG1(qA1|B1) · φG2(qA2 |B2).



696 Bernd Sturmfels & Seth Sullivant

Since (2.4) holds and since φG1∩G2(qA1∩V1∩V2 |B1∩V1∩V2) divides φG(qA|B), it fol-
lows that the unknowns sij or tij with {i, j} ∈E1 ∩ E2 can appear in φG1(qA1|B1) ·
φG2(qA2 |B2) only with exponent 2. If we replace these unknowns sij , tij by their
square roots in the monomial map φIG1,IG2

then the kernel remains unchanged and
we obtain the monomial map φG : K[q] → K[s, t]. We conclude that ker(φG) =
ker(φIG1,IG2

), which is our claim (2.3). Since the configuration A is linearly inde-
pendent, we have thus derived Theorem 2.1 from Theorem 2.6.

The proof of Theorem 2.6 given in [21] reveals the possible choices of term orders
that create a Gröbner basis for IG from given Gröbner bases F1 of IG1 and F2

of IG2. First of all, the passage from a binomial f in Fi to the corresponding bi-
nomials fFE in Lift(Fi ) is compatible with the choice of leading terms; in other
words, we declare the leading term of fFE to be the one coming from the leading
term of f . In this manner we specify a family of partial term orders on K[q]. We
then choose any tie-breaking term order on K[q] that makes the set Quad(G1,G2)

into a Gröbner basis. Since these quadrics are the 2 × 2 minors of matrices (q•|•)

whose entries are disjoint sets of unknowns, there are many such choices of term
orders. Now, the term order on K[q] obtained by refining the partial term order
by the tie-breaker has the desired property that M is a Gröbner basis for IG.

3. Computations and Conjectures

Upon encountering a new family of ideals, our first instinct is to use computer al-
gebra to gain a better “feel” for the way the structure of the ideals depends on the
parameters defining the ideals. The parameter for the cut ideal IG is the graph G,
and we are interested in how the combinatorial structure ofG determines the alge-
braic structure of IG. Toward this end, we undertook an exploration of the cut ideals
by computing generating sets, Gröbner bases, free resolutions, and normalizations
using the programs 4ti2 [11], CoCoA [5], Macaulay 2 [10], and Normaliz [1]. In
this section, we summarize the results of our computations and offer a number of
conjectures that arise from looking at the resulting data.

3.1. Computations

The results are summarized in Table 1, whose first column lists the graphs that we
analyzed. These were all graphs on six or fewer vertices that are not clique-sum
decomposable with a clique of size ≤ 3. The notation of the formGk comes from
the Atlas of Graphs [16]. However, if a graph has a more standard shorthand,
we preferred to use the more easily identifiable abbreviations. The notations we
used are:
Kl complete graph;
Kl1,...,lm complete m-partite graph;
Cl cycle of length l;
Ĝ suspension of G over a point;
G×H Cartesian product graph.
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Table 1 Algebraic properties of cut ideals IG for graphs G with up to six vertices

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Graph 2 4 6 8 10 µ codim pdim deg nor CM Gor

K3 0 0 0 0 0 0 0 0 1 Y Y Y

C4 3 0 0 0 0 2 3 3 8 Y Y Y
K4 0 1 0 0 0 4 1 1 4 Y Y Y

C5 30 0 0 0 0 2 10 10 52 Y Y N
K2,3 19 0 0 0 0 2 9 9 72 Y Y Y
G48 14 4 0 0 0 4 8 8 60 Y Y N
Ĉ4 8 8 0 0 0 4 7 7 64 Y Y N
K5 0 20 40 0 0 6 5 15 128 N N N

C6 195 0 0 0 0 2 25 25 344 Y Y N
G129 146 0 0 0 0 2 24 24 712 Y Y N
K2,4 111 0 0 0 0 2 23 23 1152 Y Y Y
G151 118 16 0 0 0 4 23 23 912 Y Y N
G153 132 12 0 0 0 4 23 23 608 Y Y N
G154 111 16 0 0 0 4 23 23 1280 Y Y Y
G170 94 64 0 0 0 4 22 22 1344 Y Y N
G171 100 28 0 0 0 4 22 22 976 Y Y N
G173 90 52 0 0 0 4 22 22 1440 Y Y N
K2 ×K3 90 52 0 0 0 4 22 22 1440 Y Y N
K3,3 63 72 0 0 0 4 22 22 3168 Y Y Y
G186 72 196 0 0 0 4 21 21 1984 Y Y N
Ĉ5 80 40 0 0 0 4 21 21 1232 Y Y N
G188 64 114 0 0 0 4 21 21 1856 Y Y N
G189 54 246 0 0 0 4 21 21 2976 Y Y N
G190 76 128 0 0 0 4 21 21 1600 Y Y N
G194 60 207 160 0 0 6 20 3184 N N N
K̂2,3 44 420 0 0 0 4 20 20 3360 Y Y N
G198 48 336 0 0 0 4 20 20 3040 Y Y N
G199 44 337 80 0 0 6 20 3760 N N N
G203 32 473 160 0 0 6 19 5696 N N N
K2,2,2 24 1096 0 0 0 4 19 19 6144 Y Y N
G206 16 671 320 0 0 6 18 11520 N N N
G207 8 436 2872 0 0 6 17 23104 N N N
K6 0 260 3952 846 480 10 16 52448 N N N

The columns in the table list the following features of the cut ideal IG.

(2)–(6) number of minimal generators of IG in degrees 2, 4, 6, 8, and 10
(7) µ(IG) = largest degree of a minimal generator of IG
(8) codimension (height) of IG
(9) projective dimension of IG

(10) degree (multiplicity) of IG
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(11) whether the semigroup algebra K[q]/IG is normal
(12) whether the semigroup algebra K[q]/IG is Cohen–Macaulay
(13) whether the semigroup algebra K[q]/IG is Gorenstein

Blank spots in the table are entries that we were unable to compute.
IfG is a small clique-sum decomposable graph then we can break it into pieces

that are listed in Table 1. This tells us the degrees of the minimal generators of cut
ideal IG, but it does not list all the invariants of IG. To be precise: Theorem 2.1
shows that

M = Lift(F1) ∪ Lift(F2) ∪ Quad(G1,G2)

generates the cut ideal IG, but the set M need not generate minimally when F1

and F2 are minimal generating sets of IG1 and IG2. This happens in Example 2.5.
Furthermore, we do not know how taking toric fiber products affects the Cohen–
Macaulay type. For instance, the usual Segre product of two Gorenstein ideals
need not be Gorenstein.

3.2. Conjectures

We now present some conjectures inspired by our computations. Our main obser-
vation is that many of the coarse invariants of the cut ideals seem to be preserved
under taking minors of the underlying graph. Recall that a graph H is a minor
of G if H can be obtained from G by deleting and contracting edges. By the
Robertson–Seymour theorem on graph minors [17], we may hope to characterize
the class of graphs whose cut ideals satisfy some algebraic property by a finite list
of excluded minors.

The protypical example of such a conjecture concerns the maximal degree of a
binomial appearing in a minimal generating set of the cut ideal IG. This number
is µ(IG).

Conjecture 3.1. The set of graphs G such that µ(IG) ≤ k is minor-closed for
any k.

As evidence for Conjecture 3.1, note that two operations related to taking graph
minors amount to taking faces of the corresponding cut polytopes.

Lemma 3.2. (1) If H is an induced subgraph of G, then Cut�(H ) is a face of
Cut�(G).

(2) If H is obtained from G by contracting an edge, then Cut�(H ) is a face of
Cut�(G).

Proof. For part (2), intersect Cut�(G) with the hyperplane xij = 0, where ij is
the contracted edge. For part (1), intersect Cut�(G) with the hyperplanes xij = 0
for all edges ij in G not incident to H, together with one extra condition xij = 0
for each connected component ofG \H, where ij is an edge incident to said con-
nected component and H.

This implies that generating degrees can only go down when passing to an induced
subgraph or when contracting an edge.
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Corollary 3.3. (1) If H is an induced subgraph of G, then µ(IH ) ≤ µ(IG).

(2) If H is obtained from G by contracting an edge, then µ(IH ) ≤ µ(IG).

Proof. For any two toric ideals, we always have µ(IB) ≤ µ(IA) whenever B is a
face of A. Thus, the desired inequalities are a direct consequence of Lemma 3.2.

Therefore, to prove Conjecture 3.1, it would suffice to show that generating de-
grees are nonincreasing after deletion of edges. Observe that the face property
does not hold when deleting an edge, as seen by comparing Examples 1.1 and 1.2.

Conjecture 3.4. LetH be obtained fromG by deleting an edge. Thenµ(IH ) ≤
µ(IG).

The smallest instance of Conjecture 3.1 (namely, k = 2) concerns those graphs
G whose cut ideal IG is generated by quadrics. We propose the following simple
characterization.

Conjecture 3.5. The cut ideal IG is generated by quadrics if and only if G is
free of K4 minors (i.e., if and only if G is series-parallel).

If a graph G has Kn as a minor, then that minor can be realized by a sequence
of edge contractions only. By Corollary 3.3(2), the cut ideal of every graph with
a K4 minor has a minimal generator of degree 4. Thus, to prove Conjecture 3.5
we must show that graphs without K4 minors have quadratically generated cut
ideals. Graphs free of K4 minors are known as series-parallel graphs. Every
series-parallel graph can be built from K2 by successive series and parallel exten-
sions. The series extensions are just 0-sums. Hence, to prove Conjecture 3.5, it
would suffice to show that µ(IG) does not increase when performing a parallel
extension.

Another conjecture, along the same lines as Conjecture 3.5, concerns quartic
generators.

Conjecture 3.6. The cut ideal IG is generated in degree ≤ 4 if and only ifG is
free of K5 minors.

In algebraic statistics, minimal generators of toric ideals are called Markov bases
[6; 8; 22]. Therefore Conjectures 3.1, 3.4, 3.5, and 3.6 concern the complexity
of Markov bases for moves among the N-valued functions on the cuts of a graph
G. As we shall see in Sections 4 and 5, the underlying toric models [15, Sec. 1.2]
are important in statistics, which gives added relevance to our computations and
conjectures in this section.

From the more theoretical perspective of commutative algebra, it appears
that Conjecture 3.6 also captures the class of graphs having normal and Cohen–
Macaulay cut ideals.

Conjecture 3.7. The semigroup algebra K[q]/IG is normal if and only if K[q]/
IG is Cohen–Macaulay if and only if G is free of K5 minors.
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That K[q]/IK5 is not normal and not Cohen–Macaulay can be seen in Table 1. The
gap between the codimension (5) and the projective dimension (15) is remarkably
large in this case (we note that the associated semigroup Q and its saturation Qsat

differ by only one point). The property of being normal is preserved when pass-
ing from a semigroup algebra to a facial subalgebra. Hence we can deduce from
Lemma 3.2 that every graph with a K5 minor has a nonnormal cut ring K[q]/IG.
Thus, to prove a large part of Conjecture 3.7 it would be sufficient to prove that
graphs G that are free of K5 minors have normal semigroup algebras K[q]/IG.
Here we are using Hochster’s theorem, which states that normal implies Cohen–
Macaulay among semigroup algebras [12].

One question that remains is to characterize those K5-free graphs G whose cut
ideal IG is Gorenstein. Being Gorenstein seems to depend in a complicated way
on the structure of the graph G. In general, the Gorenstein property is not pre-
served under taking toric fiber products and, in particular, is not preserved under
taking clique sums of graphs. We do not have a firm conjecture on the structure of
those graphs whose cut ideal is Gorenstein.

4. From Cut Ideals to Binary Graph Models

We now explain the correspondence between certain cut ideals and the toric ideals
of binary graph models. These are statistical models for 2 × 2 × · · · × 2 contin-
gency tables, whose algebraic properties were studied by Develin and Sullivant in
[6]. Our main result in this section (Theorem 4.1) states that binary graph models
on n nodes coincide with cut ideals of those graphs on n+1 nodes where one node
is connected to all others.

Let G be a graph with vertex set V = [n] = {1, 2, . . . , n} and edge set E, and
suppose that G has no isolated vertices. We introduce a polynomial ring with 2n

unknowns,
K[p] = K[pi1i2··· in | i1, i2, . . . , in ∈ {0,1}],

and a polynomial ring with 4 · |E| unknowns,

K[b] = K[beij | i, j ∈ {0,1}, e ∈E ].

The binary graph model is defined by the following homomorphism of polynomial
rings:

ψG : K[p] → K[b], pi1··· in 
→
∏

{k,l}∈E
bklik il .

The kernel of ψG is a toric ideal that we denote by JG. The binary graph model
of G is the 0-set of JG in P

2n−1. In statistics, this toric variety corresponds to the
hierarchical model for 2 × 2 × · · · × 2 contingency tables, where the 2 × 2 mar-
gins on the edges of G are fixed. The Markov basis for this model consists of the
minimal generators of JG.

The suspension of the graph G = (V,E) is the new graph Ĝ whose vertex set
equals [n+ 1] = V ∪ {n+ 1} and whose edge set equals E ∪ {{i, n+ 1} | i ∈V }.
Given any binary string i = i1i2 · · · in ∈ {0,1}n, we define the associated partition
A(i)|B(i) of [n + 1] by the condition k ∈ B(i) if and only if ik = 1. Similarly,
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if A|B is a partition of [n+ 1] with n+ 1 ∈A, we obtain a binary string i(A|B)
by reversing the procedure. This specifies a natural bijection between the 2n un-
knowns pi in K[p] and the 2n unknowns qA|B in K[q].

Theorem 4.1. Let γ be the ring isomorphism K[p] → K[q] defined by pi 
→
qA(i)|B(i). Then

γ (JG) = IĜ.

We remark that Theorem 4.1 is already known at the level of the underlying con-
vex polytopes; this is the content of [7, Chap. 5]. The polytope underlying the
toric ideal JG is the marginal polytope or covariance polytope of the graph G. It
is isomorphic to the cut polytope of the suspension Ĝ under the covariance map-
ping, as explained in [7, Sec. 5.2]. The identification of JG with IĜ in Theorem 4.1
lifts the covariance mapping to the setting of toric algebra. Before presenting the
proof, we discuss a few examples.

Example 4.2. LetG = K3 be the complete graph on three nodes. The homomor-
phism ψG takes the polynomial ring K[p000,p001,p010,p011,p100,p101,p110,p111]
to the polynomial ring K[b12

00, b12
01, b12

10 , b12
11 , b13

00, b13
01, b13

10 , b13
11 , b23

00, b23
01 , b23

10 , b23
11 ]

by sending pijk to b12
ij b

13
ik b

23
kl . The kernel JG is the principal ideal generated by

p000p011p101p110 − p001p010p100p111. The isomorphism γ sends p000 
→ q1234|,
p001 
→ q124|3, p010 
→ q134|2, p011 
→ q14|23, p100 
→ q1|234, p101 
→ q13|24, p110 
→
q12|34, and p111 
→ q123|4. The image of JK3 under γ is the principal ideal IK4 dis-
cussed in Example 1.1. Note that K4 is the suspension of K3.

Example 4.3. Theorem 4.1 explains some of the coincidences between rows in
our Table 1 and the table in [6, p. 447]. For instance, the ideal JK4

∼= IK5 is mini-
mally generated by 20 quartics and 40 sextics. And if G is the edge graph of the
bipyramid (denoted BP in [6]), then its suspension Ĝ is the graph G207 in our
Table 1 and the ideal JBP ∼= IG207 is minimally generated by eight quadrics, 436
quartics, and 2872 sextics.

The results in [6, Sec. 3] imply the following corollary for cut ideals. Note that it
is consistent with Conjecture 3.6 because the relevant suspensions Ĝ have no K5

minors.

Corollary 4.4. Let G be a cycle Cn or a complete bipartite graph K2,n. Then
the cut ideal IĜ of the suspension Ĝ is generated by binomials of degrees 2 and 4.

The results in [6, Sec. 4] provide counterexamples to a conjecture that seems to
be implied by Table 1—namely, there exist graphs whose cut ideals have minimal
generators of odd degree. The smallest such example for a binary graph model
involves the graph G = K2 × K3, the edge graph of the triangular prism, whose
graph ideal JG has a minimal generator of degree 3. The suspension of this graph,
which has seven vertices, has a cut ideal with an odd-degree minimal generator.

Proof of Theorem 4.1. It suffices to show that there exist a pair of homomorphisms
α : K[b] → K[s, t] and β : K[s, t] → K[b] such that φĜ � γ = α � ψG and
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ψG � γ−1 = β � φĜ. The maps α and β (restricted to K[p]/JG and K[q]/IĜ, re-
spectively) will then lift to the isomorphism γ. In order to do this correctly, we
extend K[s, t] and K[b] to allow fractional powers of the unknowns. Which frac-
tional powers are needed will be clear from the context.

We define the map α : K[b] → K[s, t] as follows:

bkl00 
→ tkl t
1/deg(k)
k,n+1 t

1/deg(l )
l,n+1 , bkl01 
→ skl t

1/deg(k)
k,n+1 s

1/deg(l )
l,n+1 ,

bkl10 
→ skl s
1/deg(k)
k,n+1 t

1/deg(l )
l,n+1 , bkl11 
→ tkl s

1/deg(k)
k,n+1 s

1/deg(l )
l,n+1 .

Here deg(k) denotes the degree of the node k in the graphG, and similarly for the
node l.

We wish to show that α satisfies φĜ � γ = α �ψG. Toward that end, we look at
which unknowns skl , tkl appear to what powers in the monomials α(ψG(pi)) and
φĜ(γ (pi)). An unknown skl appears in α(ψG(pi)) with multiplicity 1 if and only
if ik il ∈ {01,10} if and only if {k, l} ∈ Cut(A(i)|B(i)) if and only if skl appears
in φĜ(γ (pi)) with multiplicity 1. A similar argument shows that tkl appears with
the same multiplicity in both α(ψG(pi)) and φĜ(γ (pi)). To check the multiplic-
ity of sk,n+1 (and similarly for tk,n+1), note that the fractional powers guarantee
that sk,n+1 appears in α(ψG(pi)) if and only if it has multiplicity 1 in α(ψG(pi)).

This happens if and only if ik = 1 if and only if (k, n+1)∈ Cut(A(i)|B(i)) if and
only if skl appears in φĜ(γ (pi)) with multiplicity 1.

We now define our second ring homomorphism β : K[s, t] → K[b] as follows:

sk,n+1 
→
∏

l :{k,l}∈E
(bkl00b

kl
01)

−1/2 · B, tk,n+1 
→
∏

l :{k,l}∈E
(bkl10 b

kl
11 )

−1/2 · B

skl 
→ (bkl01b
kl
10 )

1/2, tkl 
→ (bkl00b
kl
11 )

1/2.

Here B denotes the product of all unknowns in K[b] raised to the power 1/2n,

B =
∏

{k,l}∈E

∏
i,j∈{0,1}

(bklij )
1/2n.

To prove that β satisfies ψG � γ−1 = β � φĜ we compare the multiplicity of bklij
in ψG(γ−1(qA|B)) and β(φĜ(qA|B)). By symmetry, it suffices to analyze the case
ij = 00. For fixed k, l, the unknown bkl00 has multiplicity 1 in ψG(γ−1(qA|B)) if
and only if {k, l} /∈ Cut(A|B) and k, l ∈ A. Here, bkl01, bkl10 , bkl11 all occur with
multiplicity 0.

Now we analyze the multiplicity of bklij in β(φĜ(qA|B)). Suppose {k, l} /∈
Cut(A|B) and k, l ∈ A. This means that tkl tk,n+1tl,n+1 is a factor of φĜ(qA|B).
Looking at the expansion of β(φĜ(qA|B)) shows that, aside from the factor of Bn,
the only multiplicands that could possibly contain bkl00 are tkl , tk,n+1, and tl,n+1.

The first contributes (bkl00)
1/2, the second and third contribute nothing, and the fac-

tor of Bn contributes (bkl00)
1/2 for a grand total of bkl00. On the other hand, bkl01

appears with multiplicity 0 because tkl and tk,n+1 contribute nothing, tl,n+1 con-
tributes (bkl01)

−1/2, and Bn contributes (bkl00)
1/2. A similar argument shows that bkl10

and bkl11 also appear with multiplicity 0. This agrees with the multiplicity of bklij in
ψG(γ

−1(qA|B)) and so completes the proof of Theorem 4.1.
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5. From Jukes–Cantor Phylogenetic Models to Cut Ideals

In this section we apply cut ideals to phylogenetics. Our main result (Theorem 5.5)
states that cut ideals of graphs with n nodes are precisely the binary Jukes–Cantor
models on cyclic split systems on n taxa. This class includes the Jukes–Cantor
models on phylogenetic trees whose algebraic properties were studied in [4] and
[19]. We re-derive the quadratic Gröbner basis for these ideals by relating Theo-
rem 2.1 to [19, Thm. 21].

The extension of statistical models of evolution from phylogenetic trees to split
systems is due to David Bryant, who described these models in [2]. This extension
has the double advantage of being useful for biological applications and leading
to a richer mathematical theory. We next give an algebraic introduction to Jukes–
Cantor models for arbitrary split systems. Later on, we specialize to split systems
that are cyclic and hence most relevant for the NeighborNet method [3]. This will
take us back to cut ideals.

5.1. The One-Parameter Model Associated with a Single Split

We consider a set of n taxa labeled by [n] = {1, 2, . . . , n}. Each Jukes–Cantor
model is a subvariety of the (2n − 1)-dimensional projective space P

2n−1 whose
coordinates we denote by pi1··· in . The coordinate pi1··· in represents the probabil-
ity of observing the states i1, . . . , in ∈ {0,1} at the taxa. We shall employ a linear
change of coordinates known as the Fourier transform or Hadamard conjugation;
see [15, Sec. 4.4] and [19, Sec. 2]. The Fourier coordinates are here denoted fj1···jn ,
and they are related to the probability coordinates as follows:

fj1···jn =
∑

(−1)i1j1+··· +injn · pi1··· in , (5.1)

where the sum is over all elements (i1, . . . , in) of the abelian group (Z/2Z)n. It is
easy to invert this linear transformation:

pi1··· in = 1

2n
∑

(−1)j1i1+··· +jnin · fj1···jn , (5.2)

where the sum is over (j1, . . . , jn)∈ (Z/2Z)n.

A split {C,D} is a partition C ∪ D = {1, . . . , n} of the set of taxa such that
n∈D. We fix a split {C,D} and introduce one free parameter u. In statistical ap-
plications, this parameter u would range over real numbers between 0 and 1

2 . In
algebraic geometry we allow any point (u0 : u1) on the complex projective line
P

1, where u0 = 1 and u1 = u.

We map the u-line P
1 into the probability space P

2n−1 by setting

fj1···jn =




0 if j1 + · · · + jn is odd,

u0 if
∑

k∈C jk and
∑

k∈D jk are both even,

u1 if
∑

k∈C jk and
∑

k∈D jk are both odd.

This line in P
2n−1 is the Jukes–Cantor model associated with the split {C,D}.

Using the transformation (5.1), we can express the parameterization in probability
coordinates:
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pi1··· in =




(u0 + u1)/4 if i1 = · · · = in,

(u0 − u1)/4 if ik = 1 for all k ∈C and il = 0 for all l ∈D,

(u0 − u1)/4 if ik = 0 for all k ∈C and il = 1 for all l ∈D,

0 otherwise.

In sum, the Jukes–Cantor model for a single split is a straight line in P
2n−1. Given

two points in this model, we can multiply their Fourier coordinates, one coordinate
at a time, and so derive a new point in the model. Thus the model is a semigroup
with respect to multiplication of Fourier coordinates. The model is a line that is
also a toric curve.

5.2. The Jukes–Cantor Model Defined by an Arbitrary Split System

A split system is simply a collection of r distinct splits of [n] = {1, . . . , n} for some
positive integer r:

1 = {{C1,D1}, {C2,D2}, . . . , {Cr ,Dr}}.
Each split {Ci,Di} specifies a one-parameter Jukes–Cantor model, which is a semi-
group under multiplication of Fourier coordinates. We define the Jukes–Cantor
model of 1 to be the semigroup generated by the r one-parameter models of the
splits {Ci,Di} ∈1.

Explicitly, the parameterization of this Jukes–Cantor model is given as follows.
The parameter space is the direct product of r copies of the projective line P

1.

The homogeneous coordinates of the ith projective line P
1 are denoted (ui0 : ui1).

There are precisely 2n−1 nonzero Fourier coordinates fj1···jn , which are indexed by
the group

(Z/2Z)neven = {(j1, . . . , jn)∈ (Z/2Z)n : j1 + · · · + jn is even}.
Each nonzero Fourier coordinate is expressed as a monomial of degree r in the
parameters

fj1···jn =
∏

{Ci,Di}∈1
ui∑

k∈Ci jk
. (5.3)

Because this parameterization is given by monomials, the ideal of algebraic in-
variants of the Jukes–Cantor model is a toric ideal in the Fourier coordinates. This
toric ideal is the kernel of the ring map (5.3), and we denote it by JC1. It lives
in the polynomial ring K[f ] whose generators are the 2n−1 Fourier coordinates
fj1···jn indexed by (Z/2Z)neven.

It is important to understand that Jukes–Cantor models are toric varieties (since
JC1 is a toric ideal in the Fourier coordinates) but are not toric models (i.e., log-
linear models or discrete exponential families) in the sense of [15, Sec.1.2] because
JC1 is not a toric ideal when rewritten in the probability coordinates pi1··· in via
the Fourier transform (5.1).

Proposition 5.1. If 1 consists of r splits, then the Jukes–Cantor model is r-
dimensional.
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Proof. We can write the 2n−1 nonzero monomials in the parameterization (5.3) as
the columns of a 0–1matrixAwith 2r rows—one for each unknown ui0 and ui1—as
in [18] or in [15, Sec. 1.2]. The rows of this matrix span an (r + 1)-dimensional
linear space. This implies that the semigroup algebra K[f ]/JC1 has Krull dimen-
sion r +1, and hence the associated projective variety (which is our Jukes–Cantor
model) has dimension r.

Jukes–Cantor models for split systems do indeed generalize the familiar models
associated with trees. Let T be a tree with leaves labeled by [n]. Every edge of T
defines a split {C,D} of [n]. We write 1(T ) for the set of splits coming from all
the edges of T.

Proposition 5.2. JC1(T ) equals the usual Jukes–Cantor model associated with
the tree T.

Proof. This is seen by comparing the parameterization for split systems in (5.3)
with that given in [19, Sec. 3] for group based models on trees. The condition that∑

k∈Ci jk be even in the split system representation is replaced with the condi-
tion that

∑
k∈3(e) jk be even, where 3(e) is the set of leaves below the edge e.

The concept of being a “leaf below an edge” is equivalent to being on one side of
a split.

5.3. Cyclic Split Systems

We now turn our attention to the family of cyclic split systems. These split sys-
tems are particularly useful for representing and analyzing metric spaces in biol-
ogy, since they can be drawn in the plane using NeighborNet [3].

Formally, we define cyclic split systems as follows. We draw a convex n-gon
in the plane and label the vertices by 1, . . . , n in clockwise order. Every line in
the plane that does not pass through any of the vertices defines a split {C,D}. The
complete cyclic split system 1(n) is the collection of all splits of [n] = {1, . . . , n}
that arise in this manner.

Remark 5.3. The number of nontrivial cyclic splits in 1(n) equals n(n− 1)/2.

A cyclic split system is any subset of 1(n). In other words, a split system 1 is
cyclic if, for each split {C,D} ∈1, the setC is an interval of integersC = [k, l] =
{k, k + 1, . . . , l}.

Now we will show that every cyclic split ideal JC1 is a cut ideal. We asso-
ciate to each cyclic split system 1 a graph G1 with vertex set [n] as follows. For
each cyclic split {C,D} ∈1, where n ∈D and C = [k, l], we introduce the edge
{k − 1, l} inG1 (here 0 := n). HenceG1 is a graph with one edge for each split in
1. The representation of a cyclic split system 1 by its graph G1 is quite natural,
as the following proposition shows.

Proposition 5.4. Let T be a planar tree with leaves labeled cyclically 1, . . . , n,
and let 1(T ) be the associated cyclic split system. Then the graphG1(T ) consists
of the edges in the subdivision of the convex n-gon that is dual to the tree T.
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1
2

3

4
5

6

7

Figure 1 Tree with seven leaves and corresponding subdivision of the 7-gon

Proof. The proof of this result is straightforward. The idea is illustrated in
Figure 1.

We now come to the main result of this section. We define a bijection between the
set of all 2n−1 cuts of [n] and the set (Z/2Z)neven of binary strings that sum to zero.
If A|B is any cut, then the corresponding binary string j1j2 · · · jn is defined as

jk =
{

1 if {k − 1, k} ∈ Cut(A|B),
0 otherwise.

It is easy to see that j1 +· · ·+ jn is even and that the cutA|B is uniquely encoded
in the string j1j2 · · · jn. This bijection defines an isomorphism of polynomial rings
τ : K[q] → K[f ] by sending the unknown qA|B to fj1···jn .

Theorem 5.5. Let 1 be a cyclic split system and letG1 be the associated graph.
Then the Jukes–Cantor model JC1 equals the image of the cut ideal IG1 under
the isomorphism τ.

Proof. To see that the preceding bijection between cut coordinates and Fourier
coordinates gives an isomorphism between the cut model for G1 and the Jukes–
Cantor model JC1 , we must define an appropriate bijection between the parame-
ters. This bijection between parameters is induced by the map that sends a cyclic
split in1 to an edge of the graphG1. Namely, we identify the P

1 parameter space
associated to the split {Ci,Di}, where Ci = [k+1, l], with the P

1 parameter space
associated to the edge {k, l} in G1 via

(ui0 : ui1) = (tkl : skl). (5.4)

Now, the unknown skl appears in the squarefree monomial φG1(qA|B) if and only
if {k, l} ∈ Cut(A|B) if and only if jk+1 + · · · + jl is odd if and only if

∑
ν∈Ci jν

is odd if and only if the unknown ui1 appears in the squarefree monomial on the
right-hand side of (5.3). Likewise, tkl appears in φG1(qA|B) if and only if ui0 ap-
pears in the right-hand side of (5.3). This shows, modulo the identification (5.4),
that the image of the cut coordinate qA|B under the map φG1 equals the image of
the Fourier coordinate fj1···jn under the map (5.3). Therefore, both maps have the
same kernel, and we conclude that JC1 = τ(IG1 ).

Example 5.6. Let 1 = 1(4) be the complete cyclic split system on four taxa:

1 = {{12, 34}, {23,14}, {1, 234}, {2,134}, {3,124}, {123, 4}}. (5.5)
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The associated graph G1 is the complete graph on {1, 2, 3, 4}. With the ordering
of the splits as in (5.5), the map τ and the Jukes–Cantor parameterization (5.3) are
given by

q|1234 
→ f0000 
→ u4
0 · u2

0 · u3
0 · u5

0 · u1
0 · u6

0,

q4|123 
→ f1001 
→ u4
0 · u2

0 · u3
1 · u5

0 · u1
1 · u6

1,

q3|124 
→ f0011 
→ u4
0 · u2

1 · u3
0 · u5

1 · u1
0 · u6

1,

q2|134 
→ f0110 
→ u4
1 · u2

0 · u3
0 · u5

1 · u1
1 · u6

0,

q1|234 
→ f1100 
→ u4
1 · u2

1 · u3
1 · u5

0 · u1
0 · u6

0,

q12|34 
→ f1010 
→ u4
0 · u2

1 · u3
1 · u5

1 · u1
1 · u6

0,

q13|24 
→ f1111 
→ u4
1 · u2

0 · u3
1 · u5

1 · u1
0 · u6

1,

q14|23 
→ f0101 
→ u4
1 · u2

1 · u3
0 · u5

0 · u1
1 · u6

1.

Under the identification (5.4), this coincides with the parameterization in Exam-
ple 1.1. The Jukes–Cantor ideal for the complete split system on four taxa equals

J1 = 〈f0000f0101f1010f1111 − f0011f0110f1001f1100〉.
The ordering of the factors uij in the preceding monomials coincides with the lex-
icographic ordering of the edges of K4. If we set u1

0 = u1
1 = u2

0 = u2
1 = 1 in the

parameterization then we get the 4-cycle in Example 1.2, which represents the
Jukes–Cantor model for the star tree. This model is the same as the rooted claw
tree K1,3 in [13, Ex. 14].

5.4. Algebraic Invariants for Jukes–Cantor Models
on Cyclic Split Systems

The polynomials in the ideal J1 are known as algebraic invariants in phylogenet-
ics. When expressed in terms of the coordinates pi1··· in via (5.1), these polynomials
are the algebraic relationships that hold among the joint probabilities for all dis-
tributions in the model. Using Theorem 5.5, we can now translate our results and
conjectures about cut ideals to the setting of Jukes–Cantor models. We begin by
giving a new proof of a known result.

Corollary 5.7 [19, Thm. 2(a)]. Consider the Jukes–Cantor model for any tri-
valent tree T with taxa [n]. Then the ideal JC1(T ) has a Gröbner basis consisting
of quadrics.

Proof. By Proposition 5.4 and Theorem 5.5, we have JC1(T ) = IG, where G is
the edge graph of a triangulation of the n-gon. Such a planar graph can be decom-
posed into triangles using 2-sums. The result then follows from Theorem 2.1.

We now discuss the Jukes–Cantor ideals JC1 for some other cyclic split systems.
Each of the graphs G in Table 1 corresponds to such a split system. Namely, for
each edge {k, l} of G we introduce the cyclic split {C,D}, where C = {k + 1,
k + 2, . . . , l} and D = [n]\C.

The complete graph Kn corresponds to the complete split system 1(n). Table 1
reveals that the algebraic invariants for 1(5) are generated in degree ≤ 6 and that
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the algebraic invariants for1(6) are generated in degree ≤ 10. Conjectures 3.5 and
3.6 translate into conjectures about which Jukes–Cantor ideals JC1 are generated
by quadrics and which are generated by quartics. Whether the generating degree
µ(JC1) for a cyclic split system can only decrease upon removal of a split is still
unknown (cf. Conjecture 3.4).

Huson and Bryant [14] have shown that cyclic split systems, even if they do
not arise from trees, always have useful representations by phylogenetic networks.
However, this representation is generally not unique [14, Fig. 5]. These split net-
works on n taxa are thus in many-to-one correspondence—via Theorem 5.5, to
graphs with n vertices—and our results here shed light on the algebraic invariants
of the associated statistical model [2]. One concrete application of this corre-
spondence to phylogenetics will be the exact computation of maximum likelihood
parameters for models of splits as described in [13, Sec. 6].

Example 5.8. Let n = 6 and consider the bipartite graph K3,3, where the bi-
partition separates {1, 3, 5} from {2, 4, 6}. The corresponding split system 1 con-
sists of the six trivial splits {{i}, [6]\{i}} and the three nontrivial splits {123, 456},
{234,156}, and {345,126}. This is the smallest split system whose split network
is not unique (and is depicted in [14, Fig. 5]). Using our Table 1, we see that
the corresponding Jukes–Cantor ideal JC1 is minimally generated by 63 quadrics
and 72 quartics. The semigroup algebra K[f ]/JC1 is also normal and hence, by
Hochster’s theorem [12], Cohen–Macaulay.
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