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TORIC KÄHLER METRICS SEEN FROM INFINITY,

QUANTIZATION AND COMPACT TROPICAL
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P. Nunes

Abstract

We consider the metric space of all toric Kähler metrics on a
compact toric manifold; when “looking at it from infinity” (fol-
lowing Gromov), we obtain the tangent cone at infinity, which
is parametrized by equivalence classes of complete geodesics. In
the present paper, we study the associated limit for the family of
metrics on the toric variety, its quantization, and degeneration of
generic divisors.

The limits of the corresponding Kähler polarizations become
degenerate along the Lagrangian fibration defined by the moment
map. This allows us to interpolate continuously between geomet-
ric quantizations in the holomorphic and real polarizations and
show that the monomial holomorphic sections of the prequantum
bundle converge to Dirac delta distributions supported on Bohr-
Sommerfeld fibers.

In the second part, we use these families of toric metric degen-
erations to study the limit of compact hypersurface amoebas and
show that in Legendre transformed variables they are described
by tropical amoebas. We believe that our approach gives a differ-
ent, complementary, perspective on the relation between complex
algebraic geometry and tropical geometry.
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2. Preliminaries and notation 417

2.1. Symplectic potentials for toric Kähler structures 418

2.2. The prequantum line bundle 419

2.3. The space of toric Kähler metrics 422

3. Quantization 424

3.1. Quantization in a real polarization 424

3.2. The degenerate limit of Kähler polarizations 428

3.3. Degeneration of holomorphic sections and BS fibers 430

4. Compact tropical amoebas 433

4.1. Limit versus tropical amoebas 434

4.2. Compact amoebas and enumerative information 443

4.3. Implosion of polytopes versus explosion of fans 443

4.4. Amoebas associated to geometric quantization 444

4.5. Relation to other aspects of degeneration of Kähler
structures 449

References 451

1. Introduction and main results

Studying families of toric Kähler metrics on a smooth toric variety,
we investigate limits corresponding to holomorphic Lagrangian distri-
butions degenerating to the real Lagrangian torus fibration defined by
the moment map. We use methods of Kähler geometry and geometric
quantization, which permits us to consider degenerations even though
the algebraic-geometric moduli space of complex structures associated
to toric varieties consists of a point only. More precisely (see Section
2.3), we consider the space of all toric Kähler metrics on a fixed very
ample toric line bundle, and the limits we take along complete geodesics
are parametrized in a natural way by the tangent cone at infinity of this
space. Below, we study the associated limit for the corresponding fam-
ily of metrics on the toric variety, its quantization, and degeneration of
generic divisors. While the metric limits are distinct across the tangent
cone at infinity, the limit lagrangian foliation is the same for all points.

This approach permits us to obtain the following main results. Let
P be a Delzant polytope and let XP be the associated compact toric
variety [De]. Let ψ ∈ C∞(P ) be a smooth function with positive definite
Hessian on P . Such a ψ defines a complete geodesic in the space of toric
Kähler metrics (see Section 2.3). Then,

1. In Theorem 1.1, we determine the weakly covariantly constant
sections of the natural line bundle on XP with respect to the
(singular) real polarization defined by the Lagrangian fibration
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given by the moment map µP . In particular, we see that they are
naturally indexed by the integer points in the polytope P .

2. We show in Theorem 1.2 that the family of Kähler polarizations
corresponding to the mentioned geodesic converges to the real po-
larization, independently of the direction ψ of deformation.

3. Theorem 1.3 states that the holomorphic monomial sections of the
natural line bundle converge to the Dirac delta distributions sup-
ported on the corresponding Bohr-Sommerfeld orbit of Theorem
1.1.

For the class of symplectic toric manifolds, this solves the im-
portant question, in the context of geometric quantization, on the
explicit link between Kähler polarized Hilbert spaces and real po-
larized ones, in particular in a situation where the real polarization
is singular. For a different, but related, recent result in this direc-
tion see [BGU].

4. We show that the compact amoebas [GKZ, FPT, Mi] of complex
hypersurface varieties in XP converge in the Hausdorff metric to
tropical amoebas in the (ψ-dependent) variables defined from the
symplectic ones via the Legendre transform

Lψ : P → LψP ⊂ R
n

u = Lψ(x) =
∂ψ

∂x
(x).(1)

This framework gives a new way of obtaining tropical geometry
from complex algebraic geometry by degenerating the ambient
toric metric rather than taking a limit of deformations of the com-
plex field [Mi, EKL].

Another significative difference is that the limit amoebas de-
scribed above live inside the compact image LψP and are tropical
in the interior of LψP .

Let us describe these results in more detail.

1.1. Geometric quantization of toric varieties. Let P be a Delzant
polytope with vertices in Z

n defining, via the Delzant construction [De],
a compact symplectic toric manifold (XP , ω,T

n, µP ), with moment map
µP . Let PR ⊂ (TXP )C be the (singular) real polarization, in the sense of
geometric quantization [Wo], corresponding to the orbits of the Hamil-
tonian T

n action. The Delzant construction also defines a complex
structure JP on XP such that the pair (ω, JP ), is Kähler, with Kähler
polarization PC. In addition, the polytope P defines, canonically, an
equivariant JP -holomorphic line bundle, L → XP with curvature −iω
[Od].

A result, usually attributed to Danilov and Atiyah [Da,GGK], states
that the number of integer points in P , which are equal to the images
under µP of the Bohr-Sommerfeld (BS) fibers of the real polarization
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PR, is equal to the number of holomorphic sections of L, i.e. to the
dimensionality of H0(XP , L).

An important general problem in geometric quantization is under-
standing the relation between quantizations associated to different po-
larizations and, in particular, between real and holomorphic quantiza-
tions. Hitchin [Hi] has shown that, in some general situations, the
bundle of quantum Hilbert spaces over the space of deformations of
the complex structure, is equipped with a (projectively) flat connection
that provides the identification between holomorphic quantizations cor-
responding to different complex structures. These results do not, how-
ever, directly apply in the present situation as the complex structure
on a toric variety is rigid. Concerning real polarizations, Śniatycki [Sn]
has shown that for non-singular real polarizations of arbitrary (quan-
tizable) symplectic manifolds, the set of BS fibers is in bijective cor-
respondence with a generating set for the space of cohomological wave
functions which define the quantum Hilbert space in the real polar-
ization. Explicit geometro-analytic relations between real polarization
wave functions and holomorphic ones via degenerating families of com-
plex structures have been found for theta functions on abelian varieties
(see [FMN, BMN] and references therein). Similar studies have been
performed for cotangent bundles of Lie groups [Hal, FMMN]. Some
of the results in this paper, in fact, are related to these results for the
case (T ∗S1)n = (C∗)n, where in the present setting (C∗)n becomes the
open dense orbit in the toric variety XP .

As opposed to all these cases, however, the real polarization of a
compact toric variety always contains singular fibers. As was shown by
Hamilton [Ham], the sheaf cohomology used by Śniatycki only detects
the non-singular BS leaves. Also, a possible model for the real quanti-
zation that includes the singular fibers has recently been described in
[BGU].

If, on one hand, it is natural to expect that by finding a family of
(Kähler) complex structures degenerating to the real polarization, the
holomorphic sections will converge to delta distributions supported at
the BS fibers, on the other hand, it was unclear how to achieve such be-
havior from the simple monomial sections characteristic of holomorphic
line bundles on toric manifolds (where the series characteristic of theta
functions on Abelian varieties are absent).

The detailed study of the degenerating Kähler structures and their
quantization is made possible by Abreu’s description of toric complex
structures [Ab1, Ab2], following Guillemin’s characterization of a ca-
nonical toric Kähler metric on (XP , ω) determined by a symplectic po-
tential gP : P → R [Gui]. In particular, for any pair of smooth func-
tions ϕ,ψ satisfying certain convexity conditions (see Section 2.1), the
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functions gs

(2) s 7→ gs = gP + ϕ+ sψ,

are admissible as symplectic potentials, i.e. define toric Kähler metrics
for all positive s.

The quantization of a compact symplectic manifold in the real po-
larization is given by distributional sections. In this case, conditions of
covariant constancy of the wave functions have to be understood as local
rather than pointwise (see, for instance, [Ki]) and the relevant piece of
data is the sheaf of smooth local sections of a polarization P, C∞(P).

Applying this approach just outlined, in Section 3.1 we obtain a de-
scription of the quantum space of the real polarization QR. The main
technical difference as compared with the techniques of [Sn] (applied
to the present situation in [Ham]) consists in the fact that we do not
only use the sheaf of sections in the kernel of covariant differentiation,
but also the cokernel. It is therefore not surprising that our result dif-
fers from that of [Ham], where the dimension is given by the number
of non-degenerate Bohr-Sommerfeld fibers only. In contrast to this, we
find

Theorem 1.1. For the singular real polarization PR defined by the
moment map, the space of covariantly constant distributional sections of
the prequantum line bundle Lω is spanned by one section δm per Bohr-
Sommerfeld fiber µ−1

P (m),m ∈ P ∩ Z
n, with

supp δm = µ−1
P (m).

But not only does the result of the quantization in the real polariza-
tion change; actually, the weak equations of covariant constancy allow
for a continuous passage from quantization in complex to real polariza-
tions. The first step in this direction is to verify that the conditions
imposed on distributional sections by the set of equations of covariant
constancy converge in a suitable sense: if we denote by Ps

C
the holomor-

phic polarization corresponding to the complex structure defined by (2),
our second main finding is

Theorem 1.2. For any ψ ∈ C∞
Hess>0(P ), we have

C∞( lim
s→∞

Ps
C) = C∞(PR),

where the limit is taken in the positive Lagrangian Grassmannian of the
complexified tangent space at each point in XP .

Identifying holomorphic sections with distributional sections in the
usual way (as in [Gun], but making use of the Liouville measure on
the base) we may actually keep track of the monomial basis of holomor-
phic sections as s changes and show that they converge in the space of
distributional sections.
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Consider the prequantum bundle Lω equipped with the holomorphic
structure defined by the prequantum connection ∇, defined in (12),
and by the complex structure Js corresponding to gs in (2). Let ι :
C∞(Lω) → (C∞

c (L−1
ω ))′ be the natural injection of the space of smooth

into distributional sections defined in (13). For any lattice point m ∈
P ∩ Z

n, let σms ∈ C∞(Lω) be the associated Js−holomorphic section of
Lω and δm the delta distribution from the previous Theorem. Our third
main result is the following:

Theorem 1.3. For any ψ strictly convex in a neighborhood of P
and m ∈ P ∩Z

n, consider the family of L1−normalized Js-holomorphic
sections

R
+ ∋ s 7→ ξms := σms

‖σms ‖1
∈ C∞(Lω) ⊂

ι
(C∞

c (L−1
ω ))′ .

Then, as s→ ∞, ι(ξms ) converges to δm in (C∞
c (L−1

ω ))′.

Remark 1.4. Note that the sections σms , σ
m′

s are L2−orthogonal for
m 6= m′.

Remark 1.5. We note that the set up above can be easily generalized
to a larger family of deformations given by symplectic potentials of the
form gs = gP + ϕ + ψs, where ψs is a family of smooth strictly convex
functions on P , such that 1

sψs has a strictly convex limit in the C2-norm
in C∞(P ).

Remark 1.6. For non-compact symplectic toric manifolds XP , the
symplectic potentials in (2) still define compatible complex structures
on XP ; however, Abreu’s theorem no longer holds. Theorems 1.2 and
1.3 remain valid in the non-compact case, if one assumes uniform strict
convexity of ψ for the latter.

As mentioned above, these results provide a setup for relating quan-
tizations in different polarizations. In particular, Theorem 1.3 gives an
explicit analytic relation between holomorphic and real wave functions
by considering families of complex structures converging to a degenerate
point.

1.2. Compact tropical amoebas. Let now Ys denote the one-parame-
ter family of hypersurfaces in (XP , Js) given by

(3) Ys =

{
p ∈ XP :

∑

m∈P∩Zn

ame
−sv(m)σms (p) = 0

}
,

where am ∈ C
∗, v(m) ∈ R,∀m ∈ P ∩ Z

n. The image of Ys in P under
the moment map µP is naturally called the compact amoeba of Ys.
Note that Ys is a complex submanifold of XP equipped with the Kähler
structure (Js, γs = ω(., Js.)). This is in contrast with the compact
amoeba of [GKZ, FPT, Mi] where the Kähler structure is held fixed.
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Using the family of Legendre transforms in (1) associated to the po-

tentials gs on the open orbit, we relate the intersection µP (Ys)∩ P̆ with
the Logt-amoeba of [FPT, Mi] for finite t = es. For s→ ∞, the Haus-
dorff limit of the compact amoeba is then characterized by the tropical
amoeba Atrop defined as the support of non-differentiability, or corner
locus, of the piecewise smooth continuous function R

n → R,

u 7→ max
m∈P∩Zn

{
tm · u− v(m)

}
.

In Section 4, we show that, as s→ ∞, the amoebas µP (Ys) converge
in the Hausdorff metric to a limit amoeba Alim. The relation between
Atrop and Alim is given by a projection π : R

n → LψP (defined in
Lemma 4.7, see Figure 3) determined by ψ and the combinatorics of the
fan of P . The fourth main result is, then:

Theorem 1.7. The limit amoeba is given by

LψAlim = πAtrop.

Remark 1.8. There is a set with non-empty interior of valuations
v(m) in (3), the convex projection πAtrop coincides with the intersection
of Atrop with the image of the moment polytope LψP . In particular, if

ψ(x) = x2

2 , then Lψ = IdP and Alim is a (compact part) of a tropical
amoeba, see Figure 5.

Remark 1.9. Note that for quadratic ψ(x) =
txGx
2 + tbx, where

tG = G > 0, the limit amoeba Alim ⊂ P itself is piecewise linear.

Under certain conditions concerning ψ, this construction produces
naturally a singular affine manifold LψAlim, with a metric structure
(induced from the inverse of the Hessian of ψ). In the last Section we
comment on the possible relation of this result to the study of mirror
symmetry from the SYZ viewpoint.

Acknowledgements. We wish to thank Miguel Abreu for many useful
conversations and for suggesting possible applications to tropical geom-
etry. We would also like to thank the referees for thoughtful suggestions
that led to substantial improvements in content and exposition.

2. Preliminaries and notation

Let us briefly review a few facts concerning compatible complex struc-
tures on toric symplectic manifolds and also fix some notation. For re-
views on toric varieties, see [Co, Da, dS]. Consider a Delzant lattice
polytope P ⊂ R

n given by

(4) P = {x ∈ R
n : ℓr(x) ≥ 0, r = 1, . . . , d} ,
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where

ℓr : R
n → R

ℓr(x) = tνrx− λr,(5)

λr ∈ Z and νr are primitive vectors of the lattice Z
n ⊂ R

n, inward-
pointing and normal to the r-th facet, i.e. codimension-1 face of P . We
denote the interior of P by P̆ , and the convex hull of k points v1, . . . , vk
by 〈v1, . . . , vk〉.

Let XP be the associated smooth toric variety, with moment map
µP : XP → P . On the open dense orbit X̆P = µ−1

P (P̆ ) ∼= P̆ × T
n, one

considers symplectic, or action-angle, coordinates (x, θ) ∈ P̆ × T
n for

which the symplectic form is the standard one, ω =
∑n

i=1 dxi ∧ dθi and
µP (x, θ) = x.

2.1. Symplectic potentials for toric Kähler structures. Recall
([Ab1, Ab2]) that any compatible complex structure on XP can be

written via a symplectic potential g = gP + ϕ, where gP ∈ C∞(P̆ ) is
given by [Gui]

(6) gP (x) =
1

2

d∑

r=1

ℓr(x) log ℓr(x),

and ϕ belongs to the convex set, C∞
gP
(P ) ⊂ C∞(P ), of functions ϕ such

that Hessx(gP + ϕ) is positive definite on P̆ and satisfies the regularity
conditions

(7) det(Hessx(gP + ϕ)) =
[
α(x)Πdr=1ℓr(x)

]−1
,

for α smooth and strictly positive on P , as described in [Ab1, Ab2].
The complex structure J associated to a potential g = gP + ϕ and

the Kähler metric γ = ω(·, J ·) are given by

(8) J =

(
0 −G−1

G 0

)
; γ =

(
G 0
0 G−1

)
,

where G = Hess xg > 0 is the Hessian of g. For recent applications of
this result see e.g. [Do, MSY, SeD].

The complex coordinates are related with the symplectic ones by a
bijective Legendre transform

P̆ ∋ x 7→ y =
∂g

∂x
∈ R

n,

that is, g fixes an equivariant biholomorphism P̆ × T
n ∼= (C∗)n,

P̆ × T
n ∋ (x, θ) 7→ w = ey+iθ ∈ (C∗)n.

The inverse transformation is given by x = ∂h
∂y , where

(9) h(y) = tx(y)y − g(x(y)).
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Let us describe coordinate charts covering the rest of XP , that is,
the loci of compactification. Using the Legendre transform associated
to the symplectic potential g, one can describe, in particular, holomor-
phic charts around the fixed points of the torus action. Consider, for
any vertex v of P , any ordering of the n facets that contain v; upon
reordering the indices, one may suppose that

ℓ1(v) = · · · = ℓn(v) = 0.

Consider the affine change of variables on P

li = ℓi(x) =
tνix− λi, ∀i = 1, . . . , n, i.e. l = Ax− λ,

where A = (Aij = (νi)j) ∈ Gl(n,Z) and λ ∈ Z
n. This induces a change

of variables on the open orbit X̆P ,

P̆×T
n ∋ (x, θ) 7→ (l = Ax−λ, ϑ = tA−1θ) ∈ (AP−λ)×T

n ⊂ (R+
0 )

n×T
n

such that ω =
∑

dxi ∧ dθi =
∑

dli ∧ dϑi.
Consider now the union

P̆v := {v} ∪
⋃

F face

v ∈ F

F̆

of the interior of all faces adjacent to v and set Vv := µ−1
P (P̆v) ⊂ XP .

This is an open neighborhood of the fixed point µ−1
P (v), and it carries

a smooth chart Vv → C
n that glues to the chart on the open orbit as

(10) (AP̆ − λ)× T
n ∋ (l, ϑ) 7→ wv = (wlj = e

ylj+iϑj)nj=1 ∈ C
n,

where ylj =
∂g
∂lj

. We will call this “the chart at v” for short, dropping

any reference to the choice of ordering of the facets at v to disburden
the notation; usually we will then write simply wj for the components
of wv. It is easy to see that a change of coordinates between two such
charts, at two vertices v and ṽ, is holomorphic. The complex manifold,
WP , obtained by taking the vertex complex charts and the transition
functions between them, does not depend on the symplectic potential.
It will be convenient for us to distinguish between XP and WP , noting
that the g-dependent map χg : XP → WP described locally by (10),
introduces the g-dependent complex structure (8) on XP , making χg a
biholomorphism.

2.2. The prequantum line bundle. In the same way, the holomor-
phic line bundle LP on WP determined canonically by the polytope P
[Od], induces, via the pull-back by χg, an holomorphic structure on the
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(smooth) prequantum line bundle Lω on XP , as will be described below:

Lω //

��

LP

��
XP

χg // WP

.

Using the charts Vv at the fixed points, one can describe LP by

LP =

(
∐

v

Vv × C

)
/ ∼,

where the equivalence relation ∼ is given by the transition functions for
the local trivializing holomorphic sections 1v(wv) = (wv, 1) for p ∈ Vv,1v = w

(ÃA−1λ−λ̃)
ṽ 1ṽ,

on intersections of the domains. Here, we use the data of the affine
changes of coordinates

l = ℓ(x) = Ax− λ, l̃ = ℓ̃(x) = Ãx− λ̃,

associated to the vertices v and ṽ (and the order of the facets there).
Note that one also has a trivializing section on the open orbit, such

that for a vertex v ∈ P , 1v = wv1̆ on W̆P . However, note that the
sections 1v extend to global holomorphic sections on WP while the ex-
tension of 1̆ will, in general, be meromorphic and will be holomorphic iff
0 ∈ P ∩Z

n. Sections in the standard basis {σm}m∈P∩Zn ⊂ H0(WP , LP )
read σm = σm

P̆
1̆ = σmv 1v, with

σm
P̆
(w) = wm, σmv (wv) = wℓ(m)

v ,

in the respective domains.
The prequantum line bundle Lω on the symplectic manifold XP is,

analogously, defined by unitary local trivializing sections 1U(1)
v and tran-

sition functions

(11) 1U(1)
v = ei

t(ÃA−1λ−λ̃)ϑ̃1U(1)
ṽ .

Lω is equipped with the compatible prequantum connection ∇, of cur-
vature −iω, defined by

(12) ∇1U(1)
v = −it(x− v)dθ 1U(1)

v = −itl dϑ1U(1)
v ,

where we use ℓ(v) = 0.
The bundle isomorphism relating Lω and LP is determined by1U(1)

v = ehv◦µP χ∗
g1v, 1̆U(1) = eh◦µP χ∗

g1̆,
where, for m ∈ Z

n, hm(x) = (x−m) ∂g∂x − g(x) and h is the function in
(9) defining the inverse Legendre transform.
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In these unitary local trivializations, the sections χ∗
gσ

m read

χ∗
gσ

m = e−hm◦µP ei
tmθ1̆U(1) = e−hm◦µP ei

tℓ(m)ϑ1U(1)
v ,

where, after an affine change of coordinates x 7→ ℓ(x) on the moment

polytope, as above, we get hm(l) =
t(l − ℓ(m))∂g∂l − g(l). Then, for all

σ ∈ H0(WP , LP ), χ
∗
gσ ∈ C∞(Lω) is holomorphic, that is

∇ξχ
∗
gσ = 0,

for any holomorphic vector field ξ. That is, such sections are polarized
with respect to the distribution of holomorphic vector fields on XP (see,
for instance, [Wo]).

To treat the real polarization defined by the moment map, we will
find it necessary to extend the operator of covariant differentiation from
smooth to distributional sections: we consider the injection of smooth
in distributional sections determined by Liouville measure,

(13)
ι : C∞(Lω|U ) −→ C−∞(Lω|U ) =

(
C∞
c (L−1

ω |U )
)′

s 7→ ιs(φ) =
∫
U

sφω
n

n!
,

where U ⊂ XP is any open set. To extend the operator ∇ξ on smooth
sections to an operator we denote ∇′′

ξ on distributional sections we de-
mand commutativity of the diagram

C∞(Lω|U ) �
� ι //

∇ξ
��

C−∞(Lω|U )
∇′′

ξ

��
C∞(Lω|U ) �

� ι // C−∞(Lω|U )

.

To determine ∇′′
ξσ for a general distributional section σ not of the form

ιs, we establish what its transpose is by integrating the operator ∇ξ by
parts. This gives, for any smooth section s ∈ C∞(Lω|U ) and smooth
test section φ ∈ C∞

c (L−1
ω |U ) ,

(
∇′′
ξ ιs
)
(φ) =

∫

U

(∇ξs)φ
ωn

n!
= −

∫

U

s
(
divξφ+∇−1

ξ φ
) ωn
n!
.

Here we use the fact that given a connection ∇ on Lω, the inverse line
bundle L−1

ω (defined by the inverse cocycle in a trivialization) comes
naturally equipped with a connection (defined by the negative of the
connection one-forms); we will denote this connection by ∇−1. There-
fore, ∇′′

ξ is characterized by its transpose,

∇′′
ξσ(φ) = σ(t∇ξφ), ∀φ ∈ C∞

c (L−1
ω |U ),

where
t∇ξφ = −

(
divξφ+∇−1

ξ φ
)
.
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Remark 2.1. The formulae for the definition of weak covariant con-
stancy would become more involved if we wrote them using the Hilbert
space structure on sections of L given by the Hermitean structure. For
example, we can extend the operator of covariant differentiation by use
of the (restriction of the) adjoint of∇ξ as operator on the dense subspace
C∞
c (Lω|U ) ⊂ L2(Lω|U ). Note that

〈s, s′〉L2 = (ιs)(s′h), ∀s, s′ ∈ C∞
c (Lω|U ),

where h ∈ C∞
(
(Lω ⊗ Lω)

−1
)
is the Hermitean structure on the line

bundle Lω. This gives

〈∇ξs, s
′〉L2 = 〈s,∇∗

ξs
′〉L2 ⇐⇒ (ιs)t∇ξ(s′h) = (ιs)

((
∇∗
ξs

′
)
h
)
,

or
∇∗
ξs =

t∇ξ (sh) h−1.

2.3. The space of toric Kähler metrics. If we denote the set of toric
Kähler metrics on (XP , ω) by MP , it is parametrized by the convex set
of functions C∞

gP (P ). The space MP carries a Riemannian metric γMP

introduced by Mabuchi, Semmes and Donaldson (see [SZ] and references
therein), whose geodesic segments are linear in terms of the symplectic
potential ϕ,

s 7→ gP + ϕ0 + s (ϕ1 − ϕ0) .

From this, it is clear that the tangent cone at infinity (introduced by
Gromov, and which we think of as “the space seen from infinity”, cf.
[Gr, JM])

(14) T∞MP := lim
t→∞

(
MP ,

1

t
γMP

)

consists of all functions ψ ∈ C∞
gP
(P ) with non-negative definite Hessian

on the whole interior of P , which is the necessary and sufficient condition
for the geodesic ray

(15) s 7→ gP + ϕ+ sψ

to be defined for all s ≥ 0. Denoting this set by C∞
Hess≥0(P ), we have

therefore a natural identification

(16) T∞MP
∼= C∞

Hess≥0(P ).

Actually, for technical reasons we will restrict mostly to the subset

T+
∞MP :∼= C∞

Hess>0(P )

of strictly convex directions in MP , for the following reason: if we
consider the family of Riemannian metrics on XP over MP ,

XP ∼= MP ×XP

��
MP

, where (XP )ϕ := (XP , γϕ) ,
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Figure 1. The family of toric Kähler metrics, schematically.

we can “lift the limit” (14) to the geodesic families. Indeed, substituting
the potential gP + ϕ + sψ in (8) and restricting to the diagonal s = t,
we see that

(17)
1

s
γϕ+sψ =

(
1
sHessx (gP + ϕ) + Hessxψ 0

0 1
s (Hessx (gP + ϕ) + sHessxψ)

−1

)
,

that is,

lim
s→∞

(
XP ,

1

s
γϕ+sψ

)
= (P,Hessxψ) .

It is in this sense that the family of toric Kähler metrics on XP , when
seen from infinity, collapses to a family of Hessian metrics on P over
T∞MP that we denote (with a slight abuse of notation) by T∞XP ,

T∞XP ∼= P × T∞MP

��
T∞MP

, where (T∞XP )ϕ := (P,Hessxψ) .

It is natural to turn the attention primarily to the limits which have a
non-degenerate metric, that is, to T+

∞MP .
In Section 4 we will study the geometry (and how much of it can be

recovered from the limit) of generic divisors in XP along these lines.
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Figure 2. The family of Hessian metrics on a polytope
with limit amoebas, schematically.

3. Quantization

In this Section, we study the geometric quantization of toric sym-
plectic manifolds for the family MP of toric Kähler metrics, and their
degeneration.

3.1. Quantization in a real polarization. We begin by describing
the quantization obtained using the definition outlined above for the
singular real polarization PR defined by the moment map

PR = ker dµP .

This means that we consider the space of weakly covariant constant
distributional sections, QR ⊂ (C∞(L−1

ω ))′,

QR :=
{
σ ∈ (C∞(L−1

ω ))′ |
∀W ⊂ XP open, ∀ ξ ∈ C∞(PR|W ), ∇′′

ξ (σ|W ) = 0
}
.

In the present Section, “covariantly constant” is always understood to
mean “covariantly constant with respect to the polarization PR”. We
first give a result describing the local covariantly constant sections. Note
that it only depends on the local structure of the polarization, and thus
applies also in cases where globally one is not dealing with toric varieties.

Proposition 3.1. (i) Any covariantly constant section on a T
n-

invariant open set W ⊂ XP is supported on the Bohr-Sommerfeld
fibers in W .
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(ii) The distribution

δm(τ) =

∫

µ−1
P (m)

ei
tℓ(m)ϑτv, ∀τ ∈ C∞

c (L−1
ω |W ),

is covariantly constant.
(iii) The sections δm, m ∈ µP (W ) ∩ Z

n span the space of covariantly
constant sections on W .

Proof. Note that all the statements are local in nature. Using the
action of Sl(n,Z) on polytopes, we can reduce without loss of generality
an arbitrary Bohr-Sommerfeld fiber µ−1

P (m) with m ∈ P ∩ Z
n being

contained in a codimension k (and no codimension k + 1) face of P to
the form

m = (0, . . . , 0︸ ︷︷ ︸
k

, m̃) with m̃j > 0 ∀j = k + 1, . . . , n.

Furthermore, we can cover all of XP by charts W̃ of special neighbor-
hoods of µ−1

P (m) of the form

W̃ := Bε(0) ×
(
m̃+]− ε, ε[n−k

)
× T

n−k

with 0 < ε < 1 and Bε(0) ⊂ R
2k being the ball of radius ε in R

2k. This
chart is glued onto the open orbit via the map,

P̆ × T
n ∋ (x1, . . . , xn, ϑ1, . . . , ϑn) 7→(

u1 =
√
x1 cos ϑ1, v1 =

√
x1 sinϑ1, . . . , uk =

√
xk cos ϑk, vk =

√
xk sinϑk,

xk+1, . . . , xn, ϑk+1, . . . , ϑn
)
∈ W̃

and therefore induces the standard symplectic form in the coordinates
u, v, x, ϑ

ω =

k∑

j=1

duj ∧ dvj +

n∑

j=k+1

dxj ∧ dϑj.

We then trivialize the line bundle with connection Lω over W̃ by setting

∇ = d− i

(
1

2
(tudv − tvdu) + txdϑ

)
.

Therefore, we are reduced to studying the equations of covariant con-

stancy on the space of (usual) distributions C−∞(W̃ ) on W̃ , using arbi-

trary test functions in C∞
c (W̃ ) and vector fields ξ ∈ C∞(PR|W̃ ). These

can be written as

(18) ξ(u,v,x,ϑ) =

k∑

j=1

αj

(
uj

∂

∂vj
− vj

∂

∂uj

)
+

n∑

j=k+1

βj
∂

∂ϑj
,

where αj , βj are smooth functions on W̃ .
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(i) First, note that if a distribution σ is covariantly constant, it is
unchanged by parallel transport around a loop in T

n, while on the other
hand this parallel transport results in multiplication of all test sections
by the holonomies of the respective leaves. Explicitly, for a loop specified

by a vector a ∈ Z
n, any test function τ ∈ C∞

c (W̃ ) is multiplied by the

smooth function e2πi
ta µP (u,v,x,ϑ). Therefore,

σ = e2πi
taµP σ, ∀a ∈ Z

n,

and σ must be supported in the set where all the exponentials equal 1,
i.e. on the Bohr-Sommerfeld fibers, where µP takes integer values.

(ii) In the chart on W̃ , any test function τ can be written as a Fourier
series

(19) τ(u, v, x, ϑ) =
∑

b∈Zn−k

τ̂(u, v, x, b)ei
tb ϑ,

with coefficients that are smooth and compactly supported in the other
variables,

∀b ∈ Z
n−k : τ̂(., b) ∈ C∞

c

(
Bε(0)×

(
m̃+]− ε, ε[n−k

))
.

The local representative of the distributional section δm is calculated as

δm(τ) =

∫

µ−1
P

(m)

ei
tm̃ϑτ

=

∫

Tn−k

ei
tm̃ϑτ(u = 0, v = 0, x = m̃, ϑ)dϑ

= τ̂(u = 0, v = 0, x = m̃, b = −m̃).

Differentiating an arbitrary test function τ along any vector field

ξ(u,v,x,ϑ) =

k∑

j=1

αj

(
uj

∂

∂vj
− vj

∂

∂uj

)
+

n∑

j=k+1

βj
∂

∂ϑj
,

with constant coefficients αj , βj in the polarization P (which is gener-
ated by such vector fields over C∞(W )) gives

t∇ξτ = dτξ + i

(
1

2
(tudv − tvdu) + txdϑ

)
ξτ

=
∑

b∈Zn−k




k∑

j=1

αj

(
uj
∂τ̂

∂vj
− vj

∂τ̂

∂uj
+

i

2
(u2j + v2j )τ̂

)

+i
n∑

j=k+1

βj(xj + bj)τ̂


 ei

tb ϑ,(20)
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whence for arbitrary τ and any such ξ

δm(t∇ξτ) =




k∑

j=1

αj

(
uj
∂τ̂

∂vj
− vj

∂τ̂

∂uj
+

i

2
(u2j + v2j )τ̂

)

+i

n∑

j=k+1

βj(xj + bj)τ̂




(u=0,v=0,x=m̃,b=−m̃)

= 0,

so that δm is covariantly constant.

(iii) Consider an arbitrary distribution σ ∈ C−∞(W̃ ). Using Fourier
expansion of test functions along the non-degenerating directions of the

polarization on W̃ , as in item (ii), to σ we associate a family of distri-
butions σ̂b on Bε(0) ×

(
m̃+]− ε, ε[n−k

)
by setting

σ̂b(ψ) := σ
(
ψ(u, v, x)ei

tbϑ
)
, ∀ψ ∈ C∞

c

(
Bε(0)×

(
m̃+]− ε, ε[n−k

))
,

so that

σ(τ) =
∑

b∈Zn−k

σ̂b(τ̂(., b)).

It is clear that the map σ 7→ (σ̂b)b∈Zn−k is injective, so we need to show
that the condition of covariant constancy

σ(t∇ξτ) = 0, ∀τ ∈ C∞
c (W̃ ), ξ ∈ C∞(PR|W̃ )

implies that

σ̂b =

{
0 if b 6= −m̃,
λδ(u, v, x − m̃) if b = −m̃, where λ ∈ C.

From (i) we know that σ̂b has support at the point (u, v, x) = (0, 0, m̃)
for each b, therefore it must be of the form (see, for instance, [Tr]
Chapter 24; here j, k, l are multi-indices)

σ̂b =
∑

finite

γbjkl
∂|j|+|k|+|l|

∂uj∂vk∂xl
δ(u, v, x − m̃).

Using for example a vector field ξ with αj = βj ≡ 1 and explicit test
functions τ that are polynomial near the point (u, v, x) = (0, 0, m̃), it is
easy to give examples that show that if γbjkl 6= 0 and either b 6= −m̃ or

|j|+ |k|+ |l| > 0, then there exist ξ and τ such that

σ(t∇ξτ) 6= 0,

thus producing a contradiction. q.e.d.

Immediately from this proposition follows the

Proof of Theorem 1.1. Since the open neighborhoods considered in the
Proposition are T

n-invariant and the covariantly constant sections are
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supported on closed subsets, each of them can evidently be extended by
0 to give a global covariantly constant section. q.e.d.

3.2. The degenerate limit of Kähler polarizations. As mentioned
above, we will turn our attention to a family of compatible complex
structures determined by the symplectic potentials gs = gP + ϕ + sψ,
being interested in the limit of holomorphic polarizations, in the sense of
geometric quantization, and subsequently in the convergence of mono-
mial sections to the delta distributions just described.

In the vertex coordinate charts Vv described above, the holomorphic
polarizations are given by

Ps
C = spanC

{
∂

∂wsj
: j = 1, . . . , n

}
.

Let PR stand for the vertical polarization, that is

PR := ker dµP ,

which is real and singular above the boundary ∂P . Let now P∞ :=
lims→∞Ps

C
where the limit is taken in the positive Lagrangian Grass-

mannian of the complexified tangent space at each point in XP .

Lemma 3.2. On the open orbit X̆P , P∞ = PR.

Proof. By direct calculation,

∂

∂yslj
=
∑

k

(G−1
s )jk

∂

∂lk

where

(Gs)jk = Hess gs

is the Hessian of gs. Since Gs > sHessψ > 0, (G−1
s )jk → 0 and

spanC

{
∂

∂wsj

}
= spanC

{
∂

∂yslj
− i

∂

∂ϑj

}
→ spanC

{
∂

∂ϑj

}
.

q.e.d.

At the points of XP that do not lie in the open orbit, the holomorphic
polarization “in the degenerate angular directions” is independent of gs,
in the following sense:

Lemma 3.3. Consider two charts around a fixed point v ∈ P , wv, w̃v :
Vv → C

n, specified by symplectic potentials g 6= g̃.
Whenever wj = 0, also w̃j = 0, and at these points

C · ∂

∂wj
= C · ∂

∂w̃j
, j = 1, . . . , n.
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Proof. According to the description of the charts,

wj = w̃jf,

where f is a real-valued function, smooth in P , that factorizes through
µP , that is through |w̃1|, . . . , |w̃n|. Therefore,

dwj =
∑

k

[(
δj,kf + w̃j

∂f

∂w̃k

)
dw̃k + w̃j

∂f

∂w̃k
dw̃k

]

and at point with w̃j = 0 one finds, in fact,

C · ∂

∂wj
= C · ∂

∂w̃j
.

q.e.d.

The two lemmata together give

Theorem 3.4. In any of the charts wv, the limit polarization P∞ is

P∞ = PR ⊕ spanC

{
∂

∂wj
: wj = 0

}

Proof. It suffices to show the convergence

spanC

{
∂

∂wsk

}
→ spanC

{
∂

∂θk

}

whenever wk 6= 0, which really is a small modification of Lemma 3.2.
For any face F in the coordinate neighborhood, we write abusively j ∈ F
if wj = 0 along F . For any such affine subspace we have then

Ps
C = spanC

{
∂

∂wsj
: j ∈ F

}
⊕ spanC

{
∂

∂yslk
− i

∂

∂ϑk
: k /∈ F

}

= spanC

{
∂

∂wsj
: j ∈ F

}
⊕spanC

{
∑

k′ /∈F

((Gs)F )
−1
kk′

∂

∂lk′
− i

∂

∂ϑk
: k /∈ F

}

where (Gs)F is the minor of Gs specified by the variables that are un-
restricted along F , which is well-defined and equals the Hessian of the
restriction of gs there. Since this tends to infinity, its inverse goes to
zero and the statement follows. q.e.d.

This results in

Proof of Theorem 1.2. Given Theorem 3.4, we are reduced to proving
that

C∞

(
PR ⊕ spanC

{
∂

∂wj
: wj = 0

})
= C∞(PR).

This is clear since any smooth complexified vector field ξ ∈ C∞(TCX)
that restricts to a section of PR on an open dense subset must satisfy
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ξ = ξ throughout. Such a vector field cannot have components along
the directions of spanC { ∂

∂wj
: wj = 0}. q.e.d.

Remark 3.5. Note that the Cauchy-Riemann conditions hold for
distributions (see e.g. [Gun] for the case n = 1, or Lemma 2 in [KY]),
that is, for any complex polarization PC, considering the intersection of
the kernels of ∇′′

∂
∂zj

gives exactly the space

⋂

∂
∂zj

∈PC

ker∇′′
∂
∂zj

= ιH0(XP (PC), Lω(PC)) ⊂ (C∞(L−1
ω ))′

of holomorphic sections (viewed as distributions). Thus one can view
the 1-parameter family of quantizations associated to gs and the real
quantization on equal footing, embedded in the space of distributional
sections, Qs ⊂ (C∞(L−1

ω ))′,

Qs :=
{
σ ∈ (C∞(L−1

ω ))′ |
∀W ⊂ XP open, ∀ ξ ∈ C∞(Ps|W ),∇′′

ξ (σ|W ) = 0
}
,

for s ∈ [0,∞], where P∞ := PR, and Q∞ = QR in the previous notation.
In the next Section, we will see that the convergence of polarizations
proved here translates eventually into a continuous variation of the sub-
space Qs in the space of distributional sections as s→ ∞.

Remark 3.6. Notice that Theorem 1.2 in this and Proposition 3.1
in the previous Section are also valid for non-compact P , with some
obvious changes such as taking test sections with compact support.

3.3. Degeneration of holomorphic sections and BS fibers. Here,
we use convexity to show that, as s → ∞, the holomorphic sections
converge, when normalized properly, to the distributional sections δm,
described in Proposition 3.1, and that are supported along the Bohr-
Sommerfeld fibers of µP and covariantly constant along the real polar-
ization.

First, we show an elementary lemma on certain Dirac sequences asso-
ciated with the convex function ψ that will permit us to prove Theorem
1.3.

Lemma 3.7. For any ψ strictly convex in a neighborhood of the mo-
ment polytope P and any m ∈ P ∩ Z

n, the function

P ∋ x 7→ fm(x) :=
t(x−m)

∂ψ

∂x
− ψ(x) ∈ R

has a unique minimum at x = m and

lim
s→∞

e−sfm

‖e−sfm‖1
→ δ(x −m),

in the sense of distributions.
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Proof. For x in a convex neighborhood of P , using fm(m) = −ψ(m)
and ∇fm(x) = t(x−m)Hess xψ, we have

fm(x) = fm(m) +

∫ 1

0

d

dt
fm(m+ t(x−m))dt

= −ψ(m) +

∫ 1

0
t t(x−m)

(
Hessm+t(x−m)ψ

)
(x−m) dt.

Since ψ is strictly convex, with

Hess xψ > 2cI,

for some positive c and all x in a neighborhood of P , it follows that

fm(x) ≥ −ψ(m) + c‖x−m‖2.
Obviously, m is the unique absolute minimum of fm in P . For the last
assertion, we show that the functions

ζs :=
e−sfm

‖e−sfm‖1
form a Dirac sequence. (We actually show convergence as measures on
P .) It is clear from the definition that ζs > 0 and ‖ζs‖1 = 1, so it
remains to show that the norms concentrate around the minimum, that
is, given any ε, ε′ > 0 we have to find a s0 such that

∀s ≥ s0 :

∫

Bε(m)

ζs(x)dx ≥ 1− ε′.

Let r0 > 0 be sufficiently small and let 2α be the maximum of Hess xψ
in Br0(m). Observe that

‖e−sfm‖1 =
∫

P
e−sfm(x)dx ≥

∫

Br(m)
e−sfm(x)dx ≥ dnr

nesψ(m)−sαr2 ,

for any r > 0 such that r0 > r, and where dnr
n = Vol(Br(m)). On the

other hand,
(21)∫

P\Bε(m)

e−sfm(x)dx ≤
∫

P\Bε(m)

esψ(m)−sc‖x−m‖2dx ≤ Vol(P )esψ(m)e−scε
2
.

Therefore,
∫

P\Bε(m)

ζs(x)dx ≤ Vol(P )e−scε
2+sαr2

dnrn
.

Choosing r sufficiently small, the right hand side goes to zero as s→ ∞
and the result follows. q.e.d.
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Let now {σms }m∈P∩Zn be the basis of holomorphic sections of Lω,
with respect to the holomorphic structure induced from the map χgs in
Section 2, that is σms = χ∗

gs(σ
m), for σm ∈ H0(WP , LP ). We then have

Proof of Theorem 1.3. Using a partition of unity {ρv} subordinated to

the covering by the vertex coordinate charts {P̆v}, the result can be
checked chart by chart. Let τ ∈ C∞(L−1

ω ) be a test section and let

hsm(x) =
t(x−m)y − gs =

[
t(x−m)

(
∂gP
∂x

+
∂ϕ

∂x

)
− gP − ϕ

]

+s

[
t(x−m)

∂ψ

∂x
− ψ

]

= h0m(x) + sfm(x),

with fm as in Lemma 3.7. Then

(ι(ξms ))(τ) =
1

‖σms ‖1
∑

v

∫

Vv

ρv ◦ µP (wv)e−h
s
m◦µP (wv)eiℓ(m)ϑτv(wv)ω

n

=
1

‖σms ‖1
∑

v

∫

P̆v

ρv(x)e
−hsm(x)

·
( ∫

µ−1
P (x)

e2πiℓ(m)uτv
(
e
∂gs
∂l

(ℓ(x))+2πiu
)
du

)
dx

=
1

‖σms ‖1

∫

P

e−h
s
m(x)τ̂(x,−m)dx,

where τ̂ is the fiberwise Fourier transform from equation (19).
Now the L1-norm in question calculates as

‖σms ‖L1 =

∫

XP

e−h
s
m◦µP ωn = (2π)n

∫

P

e−h
s
mdx.

According to Lemma 3.7,

‖e−h0m−sfm‖1
‖e−sfm‖1

=

∫

P

e−sfm

‖e−sfm‖1
e−h

0
mdx→ e−h

0
m(m) as s→ ∞,

and therefore

ι(ξms )(τ) =

∫

P

e−h
0
m+sfm

‖e−h0m+sfm‖1
τ̂(.,−m)dx→ τ̂(m,−m) = δm(τ)

which finishes the proof. q.e.d.
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Corollary 3.8. The results of Lemma 3.7 and Theorem 1.3 are valid
for non-compact toric manifolds if one assumes uniform strict convexity
of ψ.

Proof. In Lemma 3.7, the estimate for fm(x) remains valid for any
x ∈ P , so that the function e−sfm will be integrable even if P is not
compact. As for the second part of the proof of Lemma 3.7, instead of
(21) one can use

∫

P\Bε(m)
e−sfmdx

≤ dn

∫ +∞

ε
esψ(m)e−scr

2
rn−1dr ≤Mdn

∫ +∞

ε
esψ(m)e−s

c
2
r2dr

≤ Mdne
sψ(m)e−s

c
2
ε2
∫ +∞

0
e−s

c
2
u2du ≤M ′esψ(m)e−s

c
2
ε2 ,

for appropriate constants M,M ′ > 0, whereM,M ′ depend on s but are
bounded from above as s→ ∞, so that the assertion follows. q.e.d.

4. Compact tropical amoebas

In this section, we undertake a detailed study of the behavior of the
compact amoebas in P associated to the family of symplectic potentials
in (2)

gs = gP + ϕ+ sψ,

which define the complex structure Js on XP , and of their relation to
the Logt amoebas in R

n [GKZ, Mi, FPT, R].

Let Z̆s ⊂ (C∗)n be the complex hypersurface defined by the Laurent
polynomial

Z̆s =

{
w ∈ (C∗)n :

∑

m∈P∩Zn

ame
−sv(m)wm = 0

}
,

where am ∈ C
∗, v(m) ∈ R. One natural thing to do in order to obtain

the large Kähler structure limit, consists in introducing the complex
structure on (C∗)n defined by the complex coordinates w = ezs where
zs = sy + iθ, and taking the s → +∞ limit. Then, the map w 7→ y
coincides with the Logt map for s = log t. However, this deformation
of the complex structure, which is well defined for the open dense orbit
(C∗)n ⊂ XP never extends to any (even partial) toric compactification
of (C∗)n. Indeed, that would correspond to rescaling the original sym-
plectic potential by s, which is incompatible with the correct behavior
at the boundary of the polytope found by Guillemin and Abreu.

As we will describe below, for deformations in the direction of qua-
dratic ψ in (2), in the limit we obtain the Logt map amoeba intersected
with the polytope P . The significative difference is that our limiting
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tropical amoebas are now compact and live inside P . For more gen-
eral ψ, they live in the compact image of P by the Legendre transform
Lψ in (1) and are determined by the locus of non-differentiability of a
piecewise linear function, namely as the tropical amoeba of [GKZ, Mi],

Atrop := C0− loc

(
u 7→ max

m∈P∩Zn
{tmu− v(m)}

)
.

4.1. Limit versus tropical amoebas. We are interested in the µP -
image of the family of (complex) hypersurfaces

Ys :=

{
p ∈ XP :

∑

m∈P∩Zn

ame
−sv(m)σms (p) = 0

}
⊂ (XP , Js)

where am ∈ C
∗ and v(m) ∈ R are parameters and σms ∈ H0

(
(XP , Js),

χ∗
gsLP

)
is the canonical basis of holomorphic sections of the line bundle

χ∗
gsLP associated with the polytope P and the symplectic potential (2),

introduced in Section 2. We call the image µP (Ys) ⊂ P the compact
amoeba of Ys in P .

Definition 4.1. The limit amoeba Alim is the subset

Alim := lim
s→∞

µP (Ys)

of the moment polytope P , where the limit is to be understood as the
Hausdorff limit of closed subsets of P .

The existence of this limit is shown in the proof of Theorem 1.7 below.
We will relate this amoeba to the tropical amoeba of [GKZ, Mi] using
a Legendre transform χ̆s that is the restriction of the map χgs described

in Section 2 to the open orbit X̆P :

Ys
⋂

Y̆s
∼= //? _oo

⋂
Z̆s
⋂

� � // Zs
⋂

(XP , ω, Js, Gs)

µP

��

X̆P
χ̆s

∼= //oo

µP
��

? _oo (C∗)n

Logt

��

� � // (WP , J)

P P̆ κs

∼= //? _oo R
n

where κs is the family of rescaled Legendre transforms

P̆ ∋ x 7→ κs(x) :=
1

s
L(gP+ϕ)+sψ =

∂ψ

∂x
+

1

s

∂(gP + ϕ)

∂x
∈ R

n.

For any s > 0, this is a diffeomorphism P̆ → R
n.

Let As := Logt(Z̆s) be the amoeba of [GKZ, Mi]. Recall that As →
Atrop in the Hausdorff topology [Mi, R].
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Proposition 4.2. The family of rescaled Legendre transforms κs sat-
isfies

κs ◦ µP (Y̆s) = As

Proof. Under the trivialization of LP determined by gs on the open
orbit X̆P , the sections σms (x, θ) correspond to polynomial sections wm,
where

w = e
∂(gP+ϕ)

∂x
+s ∂ψ

∂x
+iθ.

Combining this with the Logt-map for t = es gives precisely

Logtw =
∂ψ

∂x
+

1

s

∂(gP + ϕ)

∂x
= κs(x).

q.e.d.

Remark 4.3. Note that since Ys is defined as the zero locus of a

global section, one has Ys = Y̆s and, in particular, µP (Ys) = κ−1
s As.

On each face F of the moment polytope P , this will consist exactly of
the amoeba defined by the sum of monomials corresponding to integer
points in F , cf. [Mi].

The family of inverse maps κ−1
s will permit us to capture information

not only concerning the open orbit but also the loci of compactification
of XP .

Lemma 4.4. For any compact subset C ⊂ P̆ and any ψ strictly
convex on a neighborhood of P ,

κs → Lψ pointwise on P̆ and uniformly on C

and
κ−1
s → L−1

ψ uniformly on LψC.

Proof. Since ∂(gP+ϕ)
∂x is a smooth function on P̆ , κs → Lψ pointwise

on P̆ and uniformly on compact subsets C ⊂ P̆ . Furthermore,

(22) ‖κs(x)− κs(x
′)‖ ≥ c‖x− x′‖, ∀x, x′ ∈ P̆ ,

with a constant c > 0 uniform in s, since the derivative

∂κs
∂x

= Hess xψ +
1

s
Hess x(gP + ϕ) > Hess xψ > 0

is (uniformly) positive definite. Therefore, the family of inverse map-
pings κ−1

s is uniformly Lipschitz (on R
n). Thus the pointwise conver-

gence κ−1
s → L−1

ψ on LψP̆ is uniform on any compact LψC. q.e.d.

Before proving the main theorem, we recall some facts about convex
sets in R

n and also show two auxiliary lemmata on the behavior of
the gradient of any toric symplectic potential near the boundary of the
moment polytope. Consider any constant metric G = tG > 0 on R

n.
For an arbitrary closed convex polyhedral set P ⊂ R

n and any point
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p ∈ ∂P , denote by CGp the closed cone of directions that are “outward
pointing at p” in the following sense,

CGp (P ) := {c ∈ R
n : tcG(p − p′) ≥ 0, ∀p′ ∈ P}.

Notice that for the Euclidean metric G = I, the cone of p is precisely
the negative of the cone of the fan of P , corresponding to the face p lies
in; in this case we will write Cp := CIp .

Lemma 4.5. For any sequence xk ∈ P̆ that converges to a point in
the boundary, xk → p ∈ ∂P , we have

∂(gP + ϕ)

∂x
|xk → Cp(P ),

in the sense that for any c /∈ Cp(P ) there is an open neighborhood U ∋ p
such that

R
+
0

∂(gP + ϕ)

∂x
|x 6= R

+
0 c ∀x ∈ U ∩ P̆ .

Proof. Suppose (using an affine change of coordinates l(x) = Ax−λ)
that p lies in the codimension k face, k > 0, where l1 = · · · = lk = 0
and lj > 0 for j = k + 1, . . . , n. We have

Cp = {c ∈ R
n : tcA−1(l(p)− l(p′)) ≥ 0,∀p′ ∈ P},

and li(p− p′) ≤ 0 for i = 1, . . . , k, whereas there is no restriction on the
sign of lj(p− p′) for j = k + 1, . . . , n. Therefore,

c ∈ Cp ⇐⇒ c = tAc̃ with c̃ ∈ (R−
0 )

k × {0} ⊂ R
n.

Since
∂(gP + ϕ)

∂x
= tA

∂(gP + ϕ)

∂l

it is therefore sufficient to prove that ∂(gP+ϕ)
∂l approaches (R−

0 )
k×{0} ⊂

R
n as we get near p. Indeed, we find that

∂gP
∂l

=
1

2

∂

∂l

d∑

a=1

ℓa log ℓa

=
1

2

∂

∂l

( k∑

i=1

li log li +

n∑

j=k+1

lj log lj +

d∑

m=n+1

ℓm log ℓm

)

and hence

(23)
∂gP
∂lr

=
1

2

(
1 + log lr +

d∑

m=n+1

∂ℓm
∂lr

(1 + log ℓm)

)
.

For m > n (actually, for m > k), the sum is bounded in a neighborhood

of p since ∂ℓm
∂lr

is constant and ℓm > 0 at p. Since ∂ϕ
∂lr

is also bounded for

any r, ∂(gP+ϕ)
∂lj

is bounded in a neighborhood of p for j = k + 1, . . . , n



LARGE TORIC KÄHLER METRICS, QUANTIZATION AND AMOEBAS 437

and clearly ∂(gP+ϕ)
∂li

→ −∞ for i = 1, . . . , k as we approach p, which
proves the lemma. q.e.d.

In the following lemma, we relate the Legendre transforms κs and Lψ
at large s, more precisely:

Lemma 4.6. For any two points p 6= p′ ∈ P , there exist ε > 0 and
s0 ≥ 0 that depend only on p′ and the distance d(p, p′), such that for all
s ≥ s0

κs(Bε(p′) ∩ P̆ ) ∩
(
Lψ(p) + Cp(P )

)
= ∅.

Proof. We will show that there is a hyperplane separating κs(Bε(p
′)∩

P̆ ) and Lψ(p) + Cp(P ); we continue to use a chart as in Lemma 4.5.
For any two points p 6= p′,

t(l(p)− l(p′))

(
∂ψ

∂l
|p −

∂ψ

∂l
|p′
)

= t(l(p)− l(p′))

∫ 1

0
(Hess p′+τ(p−p′)ψ)dτ(l(p)− l(p′))

≥ cψ‖l(p)− l(p′)‖2 > 0

where cψ > 0 is a constant depending only ψ. This implies that there
is at least one index j such that lj(p) 6= lj(p

′),

sign

(
∂ψ

∂lj
|p −

∂ψ

∂lj
|p′
)

= sign(lj(p)− lj(p
′)),

and also ∣∣∣∣
∂ψ

∂lj
|p −

∂ψ

∂lj
|p′
∣∣∣∣ ≥

cψ
n
|lj(p)− lj(p

′)|.

Choose ε > 0 small enough (this choice depends on ψ only) so that

∂ψ

∂lj
|p /∈

∂ψ

∂lj
(Bε(p

′) ∩ P̆ )

and consider first the case that 0 ≤ lj(p) < lj(p
′). For all x ∈ Bε(p

′)∩P̆ ,
from equation (23),

∂gP
∂lj

|x ≥ c1 log
−(lj(p

′)− ε) + c2 = C,

where log− denotes the negative part of the logarithm, and c1, c2, C are
constants depending only on p′ and ε. Then, for any δ > 0 such that

∂ψ

∂lj
|p + δ /∈ ∂ψ

∂lj
(Bε(p

′) ∩ P̆ ),

we find s0 =
2|C|
δ so that

∂ψ

∂lj
|x +

1

s

∂gP
∂lj

|x ≥ ∂ψ

∂lj
(p) +

δ

2
, ∀x ∈ Bε(p

′) ∩ P̆ .
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Hence, also

∂(ψ + 1
sϕ)

∂lj
|x +

1

s

∂gP
∂lj

|x ≥ ∂ψ

∂lj
(p) +

δ

4
, ∀x ∈ Bε(p

′) ∩ P̆ ,

for s big enough (the additional condition depending only on ϕ, which
is globally controlled on the whole polytope P ), which proves our asser-
tion.

If, on the other hand, 0 ≤ lj(p
′) < lj(p), we see again from equation

(23) that

∂gP
∂lj

≤ c′1 log
+ lj + c′2

on Bε(p
′)∩ P̆ , where log+ stands for the positive part of the logarithm.

Again,

∂gP
∂lj

|x ≤ c′1 log
+(lj(p

′) + ε) + c′2 = C ′, ∀x ∈ Bε(p
′) ∩ P̆

and the same argument applies. q.e.d.

We will now characterize the limit amoeba in terms of the tropical
amoeba via a projection π that can be described as follows.

Lemma 4.7. For any strictly convex ψ as above, there exists a par-
tition of Rn indexed by P of the form

(24) R
n =

∐

p∈P

Lψ(p) + Cp(P ).

In particular, there is a well-defined continuous projection π : Rn →
LψP given by

π(Lψ(p) + Cp(P )) = Lψ(p).

Proof. It suffices to show that for p 6= p′,
(
Lψ(p) + Cp(P )

)
∩
(
Lψ(p′) + Cp′(P )

)
= ∅.

To see this, assume that

Lψ(p) + c = Lψ(p′) + c′, with c ∈ Cp(P ), c′ ∈ Cp′(P ).
Then t(c− c′)(p− p′) ≥ 0, from the definition of the cones; on the other
hand,

t(p− p′)(c − c′) = t(p− p′)(Lψ(p′)− Lψ(p))

= t(p− p′)

∫ 1

0
(Hess p+τ(p′−p)ψ)dτ(p

′ − p) < 0,

which is a contradiction. q.e.d.
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Figure 3. The map π.

Remark 4.8. For quadratic ψ with tG = G > 0 symmetric and
positive definite there is a more intrinsic description of the map π: it
is given by the projection of Rn on the closed convex subset P under
which each point projects onto its best approximation in the polytope
LψP with respect to the metric G−1 (see, for instance, chapter v of
[Bou], and also Figure 3),

p = π(y) ⇐⇒ p ∈ LψP ∧ ∀p′ ∈ LψP \ {p} : ‖y − p‖G−1 < ‖y − p′‖G−1 .

Note also that

∀y ∈ R
n : y − π(y) ∈ CG−1

π(y) (LψP )
and that, in fact, π(y) is characterised by this property, i.e.

∀p ∈ LψP : y − p ∈ CG−1

p (LψP ) ⇐⇒ π(y) = p.

In this sense, CG−1

p (LψP ) is a kind of “convex kernel at p” of the convex

projection π. Note, by the way, that in this case Cx(P ) = CG−1

Lψ(x)
(LψP ).

Finally, we have

Proof of Theorem 1.7. We first show that Lψ ◦ κ−1
s → π pointwise on

R
n. For points in the interior of LψP , where π|P̆ = idP̆ , this is clear

from Lemma 4.4.
Consider, therefore, any point y /∈ LψP̆ , its family of inverse images

xs = κ−1
s (y) ∈ P̆ , and any convergent subsequence xsk → p. Then the

limit lies in the boundary, p ∈ ∂P . We need to show that Lψ(p) = π(y),
or, what is the same, that y − Lψ(p) ∈ Cp(P ). This is guaranteed by
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Lemma 4.5,

1

s

∂(gP + ϕ)

∂x
|xsk = (κs − Lψ)(xsk) = y − Lψ(xsk) → y − Lψ(p) ∈ Cp(P ),

and proves pointwise convergence.
Now we can use compactness of P (and hence of the space of closed

non-empty subsets of P with the Hausdorff metric) to show the result.
Throughout the proof we will not distinguish between sets and their
closures since the Hausdorff topology does not separate them.

Let us first show that

κ−1
s Atrop

H // L−1
ψ ◦ πAtrop .

Take any convergent subsequence κ−1
sk

Atrop
H // K ⊂ P ; since κ−1

s →
L−1
ψ ◦ π pointwise, it follows that

K ⊃ L−1
ψ ◦ πAtrop.

For the other inclusion, consider any point p′ /∈ L−1
ψ ◦ πAtrop; since

the distance of p′ to L−1
ψ ◦ πAtrop is strictly positive, by Lemma 4.6

there is a neighborhood U of p′ in P̆ and a s0 such that for all p ∈
L−1
ψ ◦ πAtrop and s ≥ s0, the sets κs(U) and Lψ(p) + Cp(P ) not only

have empty intersection but are actually separated by a hyperplane.
But this implies, in particular, that for s large enough

U ∩ κ−1
s Atrop = ∅

and p′ /∈ K, as we wished to show.

In the last step, we prove that κ−1
s As

H // L−1
ψ ◦ πAtrop . Again,

using compactness, it is sufficient to consider any convergent subse-

quence κ−1
sk

Ask
H // K ′ .

To show that L−1
ψ ◦ πAtrop ⊂ K ′, it is sufficient to observe that

Atrop ⊂ Ask (see [GKZ, Mi]) and hence κ−1
sk

Atrop ⊂ κ−1
sk

Ask .

For the converse inclusion K ′ ⊂ L−1
ψ ◦ πAtrop, consider the constant

c from inequality (22) above, and set

εk :=
1

c
dist(Ask ,Atrop).

This sequence converges to zero, and therefore the closed εk-neighbor-
hoods (κ−1

sk
Atrop)εk ⊃ κ−1

sk
Atrop still converge to L−1

ψ ◦ πAtrop. But as

κsk satisfies the uniform bound in (22),

κsk((κ
−1
sk

Atrop)εk) ⊃ (Atrop)cεk ⊃ Ask

and hence

(κ−1
sk

Atrop)εk ⊃ κ−1
sk

Ask
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Figure 4. The situation of the main theorem (for ψ not
quadratic): P ⊃ Alim (top left), LψP with the cones
of projection Cp (dotted) and the tropical amoeba Atrop

(top right) and LψP ⊃ πAtrop = LψAlim (bottom).

which proves the second inclusion. q.e.d.

Low-dimensional examples of the relation between tropical and limit
amoebas are illustrated in Figures 4 to 9 below. In the following re-
marks, we collect basic facts about limit amoebas and their relation to
their tropical counterparts.

Remark 4.9. (i) The first fact to catch the eye about the limit
amoebas is that they depend on more parameters than the trop-
ical amoebas: while the latter are determined by the valuation
v(m), the former vary heavily, depending on the direction ψ of
the geodesic ray gP +ϕ+ sψ we follow. This reflects the fact that
we look at the family of hypersurfaces in different categories: while
the complex biholomorphism class of the hypersurface Ys ⊂ XP

is independent of the Kähler metric we put on XP , the Hausdorff
limit of µP (Ys) ⊂ P does vary substantially. This is illustrated
for the simplest possible example, P2, with moment polytope the
standard simplex in R

2 and valuation v(0, 0) = 0, v(1, 0) = 1
2 ,

v(0, 1) = 1
4 , in Figure 5.

(ii) It is clear from this example already that it is not, in general,
possible to recover the tropical amoeba from the limit amoeba,
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Figure 5. Limit amoebas (Alim ⊂ P , top row), their
image under Lψ, and tropical amoebas (Atrop, bottom
row) for different quadratic ψ and fixed valuation v.

although we have (from the proof of the theorem) that always

Lψ
(
Alim ∩ P̆

)
= Atrop ∩ LψP̆ .

(For example, if ψ is quadratic (thus Lψ linear), the limit amoeba
itself will be piecewise linear).

(iii) There is, however, an open set of valuations v and directions ψ
such that the projection πAtrop will coincide with LψP ∩ Atrop;
this happens whenever the “nucleus” (i.e. the complement of all
unbounded hyperplane pieces) of the tropical amoeba Atrop lies
inside LψP , since the infinite legs run off to infinity along direc-
tions in the cone of the relevant faces. This situation is depicted
in Figure 4 for a limit of elliptic curves in a del Pezzo surface,

P = 〈(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1)〉

ψ(x) =
x2

2
+

‖x‖4
4

v(m) =
m2

2
.
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At this point, naturally the question arises how much of the informa-
tion encoded by tropical amoebas can be recovered from the compact
limit amoebas, which we turn to now.

4.2. Compact amoebas and enumerative information.Even with-
out establishing a precise criterion for when the limit amoeba permits
the recovery of the tropical amoeba, we can address these questions
qualitatively.

Proposition 4.10. (i) For a fixed potential ψ, there is a set (with
non-empty interior) of valuations such that the tropical amoeba
can be recovered from the limit amoeba.

(ii) Conversely, for a fixed valuation v, there is a set (with non-empty
interior) of potentials ψ such that the tropical amoeba can be re-
covered from the limit amoeba.

Proof. Both assertions follow from the fact that scaling ψ and v (sep-
arately), the image of the polytope LψP can be made arbitrarily big in
relation to the tropical amoeba, since the tropical amoeba furthermore
is determined once we reach its “tentacles” (the unbounded parts of
hyperplanes).

In particular, the set of valuations in (i) contains all valuations such
that LψAlim = Atrop ∩ P . q.e.d.

It is evident that for a fixed potential, only a bounded set of valua-
tions will permit recovery of the tropical amoeba; for a fixed valuation
or, actually, any bounded set of valuations, any potential that is “large
enough” will do. Applying this, for example, to the enumerative prob-
lem studied in [Mi2, GM], we immediately obtain:

Corollary 4.11. Let P = 〈
[
0, 0
]
,
[
d, 0
]
,
[
0, d
]
〉. For a fixed set S of

3d − 1 + g points in the plane in tropically generic position, there is a
set (with non-empty interior) of potentials ψ on P such that the set of
tropical curves of genus g through S is in bijective correspondence with
the set of limit amoebas of genus g through L−1

ψ S in P .

4.3. Implosion of polytopes versus explosion of fans. For simplic-
ity, in the present subsection, we restrict ourselves to the case ψ(x) =
1
2x

2. We remark that while the map π projects onto P , the map id−π is
injective in the interior of the cones v+Cv for all vertices v ∈ P (regions
1 − 4 in figure 6). For a face F of dimension k > 0 of P , the region

F̆ + Cp, for any p ∈ F̆ , implodes to the cone Cp of codimension k. In
particular, the polytope P implodes to the origin.

Dually, the map id − π explodes the fan along positive codimension
cones. In particular, the origin is exploded to P . In Figure 6, we
consider the non-generic Laurent polynomial

a1 + a2t
−0.6x+ a3t

−0.4x2 + a4t
1.8 y

2

x
,
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Figure 6. Explosion of the fan and implosion of the
polytope. The marked points correspond to non-zero
coefficients am.

its tropical amoeba for P2 blown-up at one point and the corresponding
images under the maps π and id − π. Note that, for this non generic
polynomial, part of the compact amoeba πAtrop lies in the boundary of

P . Only in P̆ does πAtrop coincide with the tropical non-Archimedean
amoeba.

4.4. Amoebas associated to geometric quantization. As we could
observe in Remark 4.9, the behavior of the limit amoeba defined via a
fixed valuation is rather unstable. Actually, it does not only depend
on the choice of ψ, but also behaves badly under integer translations
of the moment polytope P . These shortcomings are somehow overcome
by a specific choice of valuation that is associated with a toric variety
and a large Kähler structure limit with quadratic ψ. This construc-
tion provides the natural link between the convergence of sections to
delta distributions considered in Section 3.3 that comes out of geomet-
ric quantization, and the consideration of the image of hypersurfaces
defined by the zero locus of generic sections.

Geometric quantization motivates considering the hypersurfaces de-
fined by

Y̆ GQ
s =

{
p ∈ XP :

∑

m∈P∩Zn

amξ
m
s (p) = 0

}
,
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where am ∈ C
∗, and ξms are the L1-normalized holomorphic sections

converging to delta distributions, as in Section 3.3. A simple estimate
of the order of decay of ‖σms ‖1 as s→ ∞ gives, in the notation of Lemma
3.7,

‖σms ‖−1
1

d

ds
‖σms ‖1 = ‖σms ‖−1

1

d

ds

∫

P

e−h
s
m(x)dx

= ‖e−hsm‖−1
1

d

ds

∫

P

e−h
0
m(x)−sfm(x)dx

= −
∫

P

fm(x)
e−h

s
m(x)

‖e−hsm‖1
dx→ −fm(m) = ψ(m).

Therefore, we call the limit of the family of amoebas µP (Ys), where

Y̆s =

{
w ∈ (C∗)n :

∑

m∈P∩Zn

ame
−sψ(m)wm = 0

}
,

the GQ limit amoeba, AGQ
lim . The fact that for this choice of valua-

tions, inspired by geometric quantization, the limit amoeba keeps away
from integral points in P is consistent with the convergence of the
holomorphic sections ξms to delta distributions supported on the Bohr-
Sommerfeld fibers corresponding to those integral points.

The behavior of this “natural” (from the point of view of geometric
quantization) choice of valuation is illustrated in Figure 7 for different
quadratic ψ. Note, in particular, that in the case G2 there are parts
of the tropical amoeba Atrop that lie outside LψP and get projected
onto subsets of faces (with non-empty interior in the relative topology).
Below, we will give a complete characterization of the GQ limit amoeba
in this situation.

b b b b

b b b

b b

b b b b

b b b

b b

b b b b

b b b

b b

G0 =

[
1 0
0 1

]
G1 =

1
4

[
6 3
3 6

]
G2 = G−1

1

Figure 7. GQ amoebas associated to different quadratic ψ’s.
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We start by observing that from the point of view of equivalence of
toric varietes described by different Delzant polytopes, the GQ limit
amoeba is well behaved:

Proposition 4.12. Let ψ ∈ C∞
Hess>0(P ).

a. For any integer vector k ∈ Z
n, setting P̃ = P + k and ψ̃(x̃) =

ψ(x̃− k), we have

ÃGQ
lim = AGQ

lim + k,

b. For any base change A ∈ Sl(n,Z) of the lattice Zn, setting P̃ = AP

and ψ̃(x̃) = ψ(A−1x̃), we have

ÃGQ
lim = AAGQ

lim .

Proof. a.: since ψ̃(m̃ = m + k) = ψ(m), Ãtrop = Atrop; on the other
hand,

∂ψ̃

∂x
|x̃=x+k =

∂ψ

∂x
|x

thus LψP = L
ψ̃
P̃ and

LψP ∩ Atrop = L
ψ̃
P̃ ∩ Ãtrop.

b.: similarly, since ψ̃(m̃ = Am) = ψ(m) and the tropical amoeba

Ãtrop is defined via the functions

ũ 7→ tm̃ũ− ψ̃(m̃) = tmtAũ− ψ(m)

it follows that Ãtrop = tA−1Atrop; for the Legendre transforms one finds

∂ψ̃

∂x
|x̃=Ax = tA−1∂ψ

∂x
|x

which proves the second claim. q.e.d.

Actually, as is to be expected from the convergence of the sections

defining AGQ
lim to delta distributions, these amoebas never intersect lat-

tice points:

Proposition 4.13. For any strictly convex ψ ∈ C∞
Hess>0(P ), the GQ

amoeba AGQ
lim stays away from lattice points in the interior of P , that is,

AGQ
lim ∩ P̆ ∩ Z

n = ∅.
Proof. We consider the functions that were used to define the tropical

amoeba,
ηm(u) =

tmu− ψ(m), ∀m ∈ P ∩ Z
n

and observe that for u = um = Lψm = ∂ψ
∂x |m this is the value of the

Legendre transform h at um,

ηm(um) = h(um)
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where h(u) = tx(u)u− ψ(x(u). To show that

ηm(um) > ηm̃(um) ∀m̃ ∈ P ∩ Z
n, m̃ 6= m

we use convexity of the Legendre transform u 7→ h(u), namely

ηm(um) = h(um) > h(um̃) +
t(um − um̃)

∂h

∂u
|um̃

= tm̃um̃ − ψ(m̃) + t(um − um̃)m̃ = ηm̃(um)

where we used the fact that

∂h

∂u
|um̃ =

∂h

∂u
|∂ψ
∂x

|m̃
= m̃.

q.e.d.

When ψ is quadratic it is possible to characterize the GQ limit
amoeba completely in terms of the limit metric on P only. Let Fp
denote the minimal face containing any given point p ∈ ∂P . Note that
for any point x ∈ P ,

x ∈ Fp ⇐⇒ (x− p) ⊥G CGp

and, more generally, for any x ∈ P and c ∈ CGp

(25) ‖x+ c− p‖2G = ‖x− p‖2G + ‖c‖2G − 2‖x− p‖G‖c‖G cosα

where α = ∠G(x−p, c) ≥ π
2 since tcG(p−x) ≥ 0 by definition of CGp (P ).

Proposition 4.14. Let ψ(x) =
txGx
2 + tbx with tG = G > 0; then a

point p ∈ P belongs to AGQ
lim if and only if one of the following conditions

holds:

a. There are (at least) two lattice points m1 6= m2 ∈ P ∩Z
n such that

‖p −m1‖G = ‖p−m2‖G = min
m∈P∩Zn

{‖p −m‖G}.

b. p ∈ ∂P and the unique closest lattice point does not lie in the face
Fp.

Remark 4.15. The two conditions are, evidently, mutually exclusive:
from the description of the map π it is evident that the inverse image
of the intersection of the tropical amoeba Atrop with LψP is always a
subset of Alim. This is taken care of by a., while b. describes the parts of
the GQ limit amoeba that arise from parts of Atrop that are “smashed
on the boundary” by the convex projection. In particular, for points in
the interior condition b. is irrelevant.
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Proof. a.: For quadratic ψ and u = Lψx = Gx+ b, take

ηm(u) = tmu− ψ(m) = tmu−
(
tmGm

2
+ tbm

)

=
(
t(Lψm)G−1u− tbG−1u

)
− 1

2

(
‖Lψm‖2G−1 − ‖b‖2G−1

)

=
1

2

(
‖u− b‖2G−1 − ‖u− Lψm‖2G−1

)
.

Since the first term is independent of m, it is irrelevant for the locus of
non-differentiability that defines the tropical amoeba,

Atrop = C0− loc

(
u 7→ max

m∈P∩Zn
{ηm(u)}

)

= C0− loc

(
u 7→ 1

2
‖u− b‖2G−1 − min

m∈P∩Zn

{
1

2
‖u− Lψm‖2G−1

})
.

Therefore, u lies in the tropical amoeba if and only if there are two
distinct lattice points m1 6= m2 in P such that

‖u− Lψm1‖G−1 = ‖u− Lψm2‖G−1 ⇐⇒ ‖p−m1‖G = ‖p −m2‖G
for u = Lψp ∈ LψP . Taking into account that LψAlim ⊃ Atrop ∩ LψP ,
this proves that condition a. is necessary and sufficient for u to belong
to this intersection. Thus, either p satisfies a. or if it belongs to Alim

then it belongs to Alim \ Atrop.
b.: Fix p ∈ ∂P . First we show that if there is a unique nearest lattice

point, say mp, that lies in the face of p, Fp, then p /∈ Alim. By the
definition of Alim, we have to show that

∀c ∈ CGp (P ) : Lψp+ c /∈ Atrop,

which follows in particular if ηmp(Lψp+c) > ηm(Lψp+c) for any lattice
point m 6= mp. By the reasoning above, this is equivalent to

‖Lψp+ c− Lψmp‖2G−1 < ‖Lψp+ c− Lψm‖2G−1 ,

which follows straight from equation (25) (with cosα = 0).
For the other implication, assume mp /∈ Fp. Then,

ηmp(Lψp) > ηm(Lψp), ∀m ∈ P ∩ Z
n,m 6= mp

and it suffices to show that for any m ∈ Fp ∩ Z
n and c ∈ CGp (P ) \ {0}

(26) ‖Lψp+ τc− Lψm‖2G−1 < ‖Lψp+ τc− Lψmp‖2G−1

for some τ > 0 large enough. The left hand side equals

‖Lψp+ τc− Lψm‖2G−1 = ‖p −m‖2G + τ2‖c‖2G−1

whereas the right hand side gives

‖Lψp+τc−Lψmp‖2G−1 = ‖p−mp‖2G+τ2‖c‖2G−1−2τ‖p−mp‖G‖c‖G−1 cosα
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where cosα < 0. Subtracting therefore the left hand side of inequality
(26) from the right hand side, we are left with the expression

‖Lψp+ τc− Lψmp‖2G−1 − ‖Lψp+ τc− Lψm‖2G−1

= −2τ‖p−mp‖G‖c‖G−1 cosα→ +∞,

as τ → ∞, which finishes the proof. q.e.d.

4.5. Relation to other aspects of degeneration of Kähler struc-

tures. Degenerating families of Kähler structures have been studied
from a variety of viewpoints. In this section we would like to briefly
address aspects of the relation of the present work to some of those.

The first link is to the occurence of torus fibrations in mirror sym-
metry, following [SYZ] (see also [Au]). As described in Section 2.3,
the Kähler metrics along a geodesic ray gP + ϕ + sψ collapse, when
rescaled appropriately, to a Hessian metric on the moment polytope P .
The metric and/or affine structure the limit amoeba Alim inherits for
certain combinations of valuation v(m) and direction ψ could be of in-
terest to the SYZ approach to mirror symmetry [GW, KS], in the case
when P is reflexive. Even though the induced metric on the complex
hypersurfaces Ys ⊂ XP will not in general be Ricci flat, it is not incon-
ceivable that by carefully choosing the available parameters one might
obtain the desired asymptotic behaviour.

Example 4.16. Consider the tropical version of a quartic surface in
P
3, with moment polytope given by the tetrahedron

P = 〈
[
−1,−1,−1

]
,
[
3,−1,−1

]
,
[
−1, 3,−1

]
,
[
−1,−1, 3

]
〉.

If we set the valuation to be 1 on these vertices, 0 on the origin, and
sufficiently negative on the other lattice points in P , we obtain a tropical
amoeba Atrop whose “nucleus” is a tetrahedron Q with vertices

Q := 〈
[
1, 1, 1

]
,
[
−1, 0, 0

]
,
[
0,−1, 0

]
,
[
0, 0,−1

]
〉.

Choosing ψ quadratic corresponding to the matrix

ψ ∼ 1

4




2 1 1
1 2 1
1 1 2




we obtain a transformed polyhedron LψP = −Q, and the image of the
projection πAtrop ⊂ LψP is the octahedron O with vertices

O := 〈±
[
1
2 ,

1
2 , 0
]
,±
[
1
2 , 0,

1
2

]
,±
[
0, 12 ,

1
2

]
〉.

The situation is depicted in Figure 8. Note that from the construction
and the drawing it is clear that the compact amoeba πAtrop inherits an
affine structure (from the Legendre transformed coordinates on the mo-
ment polyhedron). It is, however, nonsingular even around the vertices.
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1

Figure 8. Example of the projection of a tropical
amoeba for a quartic surface in P

3, with Atrop dotted,
LψP solid, and πAtrop dashed.

There exists an entirely analogous example for the quintic in P
4,

which however is more difficult to draw; the tropical amoeba’s “nucleus”
is

Q = 〈
[
1, 1, 1, 1

]
,
[
−1, 0, 0, 0

]
,
[
0,−1, 0, 0

]
,
[
0, 0,−1, 0

] [
0, 0, 0,−1

]
〉

= −LψP,

which again is symmetric to the Legendre transformed moment polyhe-
dron. The (projection to the first three dimensions of the) intersection of
πAtrop with a facet F of LψP is shown in Figure 9. The affine structure
apparently has singularities along the line segments (twenty, overall)
where πAtrop meets the edges of LψP .

In a different context, in [Pa1, Pa2] Parker considers degenerating
families of almost complex structures in an extension of the smooth
category constructed using symplectic field theory, to study holomorphic
curve invariants. The typical behaviour of his families of almost complex
structures, depicted for the moment polytope in the case of P2 in the
introduction of [Pa1], is, in the case of toric manifolds, remarkably
reproduced in our approach. In fact, in the notation of sections 2 and
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1

Figure 9. The interior of the dashed polyhedron cor-
responds to the intersection of πAtrop with a facet F of
LψP for a quintic in P

4.

3.2,

n∑

l,k=1

(G0)jk(G0 + sHessψ)−1
kl

∂

∂yl
=

∂

∂ysj
,

where Js(
∂
∂θj

) = ∂
∂ysj

. Therefore, in interior regions of P , where as

s → ∞ the term with Hessψ dominates, we have that the coordinates
ys appear stretched relative to the coordinates y by an y-dependent
transformation that scales with s. On the other hand, as we approach
a face F of P where some coordinates lj vanish, the derivatives of gP
with respect to these lj ’s will dominate, so that the corresponding yslj ’s

do not scale with respect to the ylj ’s. In the directions parallel to F ,
however, we still have the term with Hessψ dominating and for these
directions the scaling with s will occur. This is exactly the qualitative
behaviour described in [Pa1]. We note, however, that in our approach
this behaviour is implemented by deforming integrable toric complex
structures.
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