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TORIC MODULAR FORMS AND NONVANISHING OF L-FUNCTIONS

LEV A. BORISOV AND PAUL E. GUNNELLS

ABSTRACT. In a previous paper ], we defined the space of toric forms .7 (1), and showed that
it is a finitely generated subring of the holomorphic modular forms of integral weight on the
congruence group I'1(I). In this article we prove the following theorem: modulo Eisenstein series,
the weight two toric forms coincide exactly with the vector space generated by all cusp eigenforms
f such that L(f,1) # 0. The proof uses work of Merel, and involves an explicit computation of
the intersection pairing on Manin symbols.

1. INTRODUCTION

1.1. Let ! > 1 be an integer, let .# (I) be the space of weight two modular forms on the congruence
group I'1 (1) C SL2(Z), and let .7(I) be the subspace of cusp forms. Let f € .#(I) be an eigenform
for the Hecke operators T}, where p is coprime to [, and let L(f,s) be the associated L-function.
Then the order of vanishing of L(f,s) at s = 1 is called the analytic rank of f. This terminology
comes from the Birch and Swinnerton-Dyer conjecture, which asserts that the analytic rank times
dim Ay is the same as rank of the group A(Q), where Ay is the abelian variety associated to f by
the Eichler-Shimura construction [ﬂ, ]

1.2. In this paper we present an elementary construction of the subspace of .7 (1) spanned by forms
of analytic rank zero. Our main result (Theorem ) is that, modulo Eisenstein series, this space is
isomorphic as a Hecke module to the space Z5(1) of weight two toric modular forms of level I. These
modular forms were constructed and studied in [[l], where we presented explicit generators of 7 (1)
and described their g-expansions at infinity. The construction of 7 (I) and its relevant properties
are summarized in Theorem @ For the remainder of this introduction, we describe the proof of

Theorem .

1.3. First, in §E we recall results about the Manin symbols. We discuss various homology groups
associated to the modular curve in terms of modular symbols, and describe the intersection pairing.
We define the space of plus (respectively minus) symbols My (resp. M_), and their cuspidal sub-
spaces S; and S_, and we describe the intersection pairing in terms of Manin symbols (Proposition
). We finish this section by recalling Merel’s description of the Hecke action on Manin symbols
(Theorem ).

Next, in §p we recall results about toric modular forms from [EI], specialized to the case of weight
two. Using the toric forms, we define a map u: M_ — #(1)/& (1), where &(1) C #(l) is the
subspace of Eisenstein series. The main result (Theorem B.16) is that u is Hecke-equivariant. We
also describe the composition of y with the Fricke involution W;.
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Finally, in §f we define a map p: .#(I) — .#(l) whose image is spanned by Hecke eigenforms of
analytic rank zero. Then we put all these maps together to get a sequence

I

FU)— Mt "ot R (1) )81~ (1),

where the final map is the Hecke-equivariant isomorphism between .# (1)/& (1) and .#(I). Then in
Theorem @ we show that this sequence equals p, from which we obtain Theorem .

The Eisenstein series s,,; have appeared in the literature before. They were originally studied by
Hecke [E, ﬂ] and have recently appeared in the work of Kato on Euler systems @, @] Moreover, it
might be possible to derive Theorem using the formulas of [IE, §4], which were obtained using
the Rankin-Selberg method.

1.4. Acknowledgments. We thank Dorian Goldfeld for encouraging this work, and Siman Wong
for some interesting discussions. We thank Kazuya Kato and Anthony Scholl for helpful correspon-
dence. Last, but not least, we thank the referee for suggesting a possible connection of our work to
[E, @], for providing revisions that substantially improved the exposition, and for the statement and
proof of Proposition @ After this paper was submitted, Loic Merel informed us that [@] contains
an intersection formula for T'g(l) analogous to our formula of Proposition R.11.

2. MANIN SYMBOLS

2.1. Let! > 1be an integer, and let I'1 (1) C SL2(Z) be the subgroup of matrices congruent to (§ 1)
mod [. Let $) be the upper halfplane, and let $* = $§ UP*(Q) be the usual partial compactification
obtained by adjoining cusps. Let X;(I) = I'1(I)\$* be the modular curve with cusps 9X;(l), and
let Yl (l) = Xl(l) AN 6X1 (l)

Let M be the relative homology Hy (X7 (1), 0X1(1); C), and let S C M be the subspace H1 (X1 (1), C).
The intersection product induces a perfect pairing of complex vector spaces

Hl(Xl(l),Z)Xl(l),(C) X Hl(}/l(l),(j) e C,
which allows us to identify M* = Homc (M, C) with Hy(Y1(1),C).

2.2. Manin’s theory [§] gives a concrete description of M as follows. For any a, 3 in P1(Q), let
{a, B} € M be the class of the image of a continuous path in $* from « to 5. Then the C-linear
map

ClHET1(D\SLo(Z)] — M
+I'1(1)g — {90, goo}

is well defined and surjective. If we denote the basis element corresponding to the coset x by [],
then the kernel of this map is generated by elements of the form [x]+ [zo] and [x]+ [27]+ [272]. Here
@ runs through £T'1 (1)\SL2(Z), and o, 7 are elements of SLy(Z) (of order 4 and 3) that stabilize i
and p = e>™/3 respectively, and satisfy 60 = 0o and 700 = 0.

By duality one can describe M* as the subspace of C[£I'1(I)\SL2(Z)] generated by elements
Yo Azlx] satisfying A; + Azo = 0 and Ay + Aar + Ayr2 = 0. One can realize this description
geometrically as follows. Consider the geodesic path in the upper half-plane from i to p. For
g € SL2(Z), the image in Y7(l) of its translates by g depends only on the coset £T'1(l)g. Denote
by cr,(1)g the arc in Y;(l) associated to this image. One can show easily that ) Ac, is a closed
cycle if and only if Ay + Ao = 0 and Ay + A\yr + Ayr2 = 0. In that case, ) Ayc, belongs
to M* = H;(Y1(1),C). Using easy considerations on fundamental domains, one shows that the
intersection pairing of the image in M of [y] and of ) A,c, is equal to A,. For details, we refer to

[9).
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2.3.  We will now calculate explicitly the natural map 7: M* — M, which is the composition of
canonical topological maps

Proposition 2.4. Let x — g, be a section of the surjective map SLa(Z) — £ (1)\SL2(Z). Let
Y w AxCe € M*. The map w is given by the following formulas:

1 1
W(Z )\mcm) = 6 Z()\m‘r - Azfz){gmoagmoo} = E Z()‘mara - )\172){91079100}7

x x

where the sums are taken over x € £I'1(1)\SL2(Z).

Proof. This is a simple computation. One has

W(Z /\zcz) = Z Az {gmi; gzp} = Z Az {gziv ngO} - Z Az {gzpv ngO}.

Here we are abusing the notation {«, 4}, which now also denotes the arc in X;(I) that is the image
of an arc in H*.

We use the fact that g,, and g,o lie in the same coset of £T';(I) (and similarly for ) to rewrite
the right hand side of the above expression as

1 . .
3 Z(/\z {921, 9200 }H+-Apo {9201, gro00}) Z(/\z {92P, 9200} + X0 {92 TP, guTOO}+ A r2 {ngzpa 917'200})-

x

1
3
Using the relations gi =1, 7p = p, Az + oo =0 and Ay + A\zr + Apr2 = 0, we have

1 1
5 Z()\m {gwooa gwoo}+)‘wa{gwooa gmaoo})_g Z()‘w {gwooa gmoo}+)\wr{gmoou ngOO}+)\zTZ {gwooa ng2OO})'
Using the relations 7oo = 0 and {g,00, g,00} = 0 and reindexing the last set of terms of the sum,

we obtain

1 1 1

Using again the relations 7oo = 0, {g,00, .0} = —{9.0, gz00}, and Ay + Azr + Apr2 = 0, we arrive
at the first equality of the statement. To get the second equality, one changes the index to xo and
uses the relation A\, + Azs = 0. O

Remark 2.5. Proposition @ remains valid if T'y(l) is replaced by any finite-index subgroup of
SLy(Z).

2.6. The elements of I';(I)\SL2(Z) can be represented by pairs (u,v), where u,v € Z/IZ and
g.c.d.(u,v,1) = 1. The discussion above shows that M can be described as the C-vector space
generated by the symbols (u,v) modulo the relations

1. (u,v) + (—v,u) = 0.

2. (u,v) + (v,—u—v) + (—u—v,v) =0.
Pairs (u,v) are called Manin symbols. Two subspaces of M will play an important role in what
follows. Let ¢: M — M be the involution that takes (u,v) — (—u,v).

Definition 2.7. The space of plus symbols My C M is the subspace consisting of symbols x
satisfying ¢(x) = x. Similarly, the space of minus symbols M_ C M is the subspace consisting of
symbols x satisfying ¢(z) = —z.
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We have symmetrization maps ( , )x: M — My given by (u,v)+ = ((u,v) £ (—u,v))/2. We
also introduce the corresponding spaces of cuspidal symbols S1+ C M. The spaces S+ can each be
seen as the dual of the space of cusp forms as follows. Let .#(l) be the C-vector space of weight
two holomorphic modular forms on I'; (1), and let .#(I) C .# (1) be the subspace of cusp forms. Let
(u,v) € M, and let the cusps corresponding to u,v be a, 3 respectively. The pair «, 8 induces a
geodesic on X1(1); hence given any f € #(1), we can form the integral

/ f(z)dz € C,

which converges since f is a cusp form. In this way we identify Manin symbols with functionals on
cusp forms, and likewise cusp forms with elements of the dual space M*. We obtain a pairing

M x Z(l) — C,
((u,0), f) — {f; (u, ).

In general this pairing is degenerate, although we have the following result:
Proposition 2.8. [E, Proposition 8] The pairings
Sy x (1) —C

are nondegenerate.

Remark 2.9. The involution (u,v) — (—u,v) on Manin symbols is induced from the action of the
map 7 — —7,T € §) on geodesics.

2.10. Let (u,v) be a Manin symbol. For any ¢ € M*, we define ¢ on “degenerate” symbols (u,v)
with Zu + Zv # Z/IZ by setting ¢(u,v) = 0. This convention is somewhat artificial but turns out
to be quite useful.

We now rewrite the map 7 of Proposition R.4 on (M, )* in a form that will be useful later.

Proposition 2.11. The image of M under m is S_. For any element of ¢ € (M)*, we have
=

wg) = 75 O wllaa—b)y — (@,a+b):)(ab)-.

a,b=0
In addition, ©(M}) = S_.

Proof. Because ¢ comes from the orientation-reversing automorphism of X;(l), it anticommutes
with 7. The surjectivity of the map M* = Hy(Y1(l),C) — H1(X1(l),C) then implies 7(M7}) = S_.
The second part of the statement follows from the second equality 1n Proposition @ and the
definitions of the symmetrization maps. The coefficient is changed to 35 because the sum is now
over T'1(1)\SL2(Z) instead of +T'1(1)\SL2(Z). O

2.12.  To conclude this section, we present Merel’s description of the Hecke action on the Manin
symbols. Let n > 1 be an integer, and let T}, be the associated Hecke operator (cf. [[{]). We denote
the action of T}, on a modular form f by f | T,.

Theorem 2.13. [H, Theorem 2 and Proposition 10] The operator T,, acts on any Manin symbol

(u,v) via

(1) T (u,v) = Z (au + cv, bu + dv).
a>b>0
d>c>0

ad—bc=n
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If n is not coprime to l, then we omit the terms for which g.c.d.(l,au+ cv,bu+dv) > 1. This action
18 compatible with the pairing between cusp forms and Manin symbols

(F| T, (u,0)) = (f, Tu(u,0)).
It is also easy to show that this Hecke action is compatible with the symmetrization maps:

Proposition 2.14.

Tn((u,v)x) = (Tn(u, v)) £
Proof. This follows from switching a with d and b with ¢ in (f]). O

3. TORIC FORMS OF WEIGHT TWO

3.1. Let us briefly review the contents of ] For every integer [ > 1, we defined a certain Hecke-
stable subring of the ring of modular forms for I';(I), called the subring of toric forms 7 (I). In
the present paper we are only concerned with weight two toric forms, which greatly simplifies the
combinatorial data needed to encode toric varieties.

Let N = Z? be a lattice of rank two, where lattice simply means a free abelian group. A (compact)
toric variety of dimension two is defined uniquely by a collection of k rational rays from the origin,
such that the angle between any two consecutive rays is less than m. We denote the minimum
nonzero lattice points on these rays by d;, « = 0,...,k, where ¢ increases counterclockwise, and
where dy = dj.

To every such collection one associates a fan ¥, which is a collection of 2k + 1 cones in Ng. This
fan contains k two-dimensional cones

{Qs0di + Qx0diy1 |1 =0,...,k—1},

k one-dimensional cones
{@sods [i=0,....k 1},

and one zero-dimensional cone {0}. The corresponding toric variety is smooth if and only if (d;, d;11)
is a basis of Z? for every i.

To define a toric form we need an additional piece of data, namely a degree function with respect
to X. This is a piecewise-linear function deg: N — Q that is linear on the cones of ¥. Every such
function is uniquely determined by the values «o; = deg(d;).

Definition 3.2. [m] Suppose deg: N — Q is a degree function with respect to the fan ¥, and that
a; € Z for all i. Then the toric form associated to (N, deg) is the function fn deg: $ — C defined

by
I deg(q) = Z (Z (—l)COdimCa.c.(Z qm'”e%idcg(n))).
neC

meM Cex

Here M = Hom(M, Z) is the dual of N, ¢ = e*™'7 where 7 € §, and a.c. means analytic continuation
of a sum from its region of convergence to all ¢ and m.

It turns out that fy geg does not change if ¥ is subdivided, and thus does not depend on X. This
is why X is omitted from the notation. A toric form is, by definition, any linear combination of
fn.deg- We will now state in one theorem most of the results of [EI], specialized to the case of weight
two.
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Theorem 3.3. ] Suppose that deg(N) C %Z, and that oy € Z for all i. Then fn deg i a holo-
morphic modular form of weight two with respect to T'1(l). If 1 > 5 then it is a linear combination
of pairwise products of the forms s,;, a=1,...,1 =1, where

1 a
Sa/l(T) - %82(10g19)(777-)

Here ¥(z,7) is the standard theta function [Jl, Chapter 5]. If I < 5, then the span F5(l) of all toric
forms of level | and weight two coincides with the space of all modular forms of weight two; in
particular, it consists only of Eisenstein series. The space F(l) is stable under the action of Hecke
operators and the Fricke involution. The space of all weight two toric forms of all levels is stable

under Atkin-Lehner liftings f(7) — f(n7).

Let p be a prime not dividing {. We will need an explicit formula for the action of the Hecke
operator T, on fn deg. This follows immediately from a formula in [, Theorem 5.3] specialized to
the case of weight two.

Proposition 3.4. Let fn deg be a toric form of weight two. Then
fN,dcg ’ Tp = Z fS.,pdcgv
s

where the sum is taken over all superlattices S O N with [S : N] = p.
3.5. It is not hard to write down the explicit g-expansions of s, ;.
Proposition 3.6. Denote w = exp(2ni/l). Then

Sa/1(q) = % - quZ(wk“ —wke),

d k|d

Proof. 1t is easy to compute the logarithmic derivative of 9 using the Jacobi triple product formula
[, Chapter 5, Theorem 6]. Details are left to the reader. O

gz/)l given by

0= - (5) s (S

These are also toric forms, and the following relations allow one to express them as linear combina-
tions of products s,/;s5, for I > 5.

In [lj we introduced weight two modular forms s

Proposition 3.7. Ifa+b+c=0mod ! and a,b,c# 0 mod | then

1
Sa/1Sb/1 + Sb/1Se/t F Sc/1Sapt = —5 ((Sa/z)2 + (sp1) + (sep)® + sf/)l + Sz(jz + sf/%) ,
Proof. This is a consequence of a more general formula of [fl]. O

Proposition 3.8. The modular forms (Sa/l)2 and 5512/)1 are Fisenstein series for all a.
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Proof. As in Proposition @, we get
271'1z 1
-1 + 27r1kz —27wikz
(27i) 70, log¥(z,T) = N 1) E E —e ).
d>0  k|d

Differentiating it again with respect to z and plugging in z = a/l, we get
27r1a/l

N\ — 62 Tika 77ria
(27i) 2(8 2>log19( ):7(627”&” Zq Zk 2mika/l | o—2mik /l).

d>0  k|d

Notice now that

sp(7) = (2m) 72 (5—) log (7. 7) — (2m)”* (;_) o8 (% )

o [ 07 a 1
= (27T1) 2 (@) 10g'l9(7,7_) — E + 2qu2k
>0 k|d
27ria/l

_ . 2771ka/l —2mika/l _
- (6271'1a/l_1 Zq Zk +e )

d>0  k|d
which is an Eisenstein series. Indeed, in the notation of @, Chapter VII], it is
l2
— (@ ~Gpa0))-
177 (Ga(9) ~Crag)
To obtain a nice formula for si yE recall that ¢ satisfies the heat equation
V. = (Ami)d,,
which implies

(27i) 2 (§;Z>z = (mi)~* <19—Z> = —47TIqudZ 2rikz _ o =2nikz)

d>0 kld

We can integrate it with respect to z while keeping in mind that

V22(2,7) 0U222(0,7)
(27i) 72 lim =22 = (2mi)~ 7:——6 -
=—0 V(z,7) 9,(0,7) C;) %
to obtain
(2) 9 Vz2(a/l,T) 19zzz(0 (e2riak/l | o=2miak/1
.+ sa 2mi — =-—-2 E E +e ,
p = 2mi) a/l,7)  30.(0,7 =k )

which is again an Eisenstein series. In the notation of [IE, Chapter VII] it is equal to

-1

27iaay /1

(§ G ay .
Z 1,2,(gs)

a17a2:0

Proposition 3.9. For every even function x: Z/IZ — C the series

Sk and Yt T

d>0  k|d d>0  kl|d

lie in the linear span of 1, toric Fisenstein series and the standard Eisenstein series Es.



8 LEV A. BORISOV AND PAUL E. GUNNELLS

Proof. Notice that the functions y, defined by k +— e2™*¢ span the space of all functions from Z/I7Z
to C, so the functions X, + x—q span the space of all even functions from Z/IZ to C. Then use
explicit formulas for 322/)1 and 51(12/)1 + si I from the proof of the above proposition. O
3.10. Recall that .#(1) is the space of all holomorphic modular forms for I'; (1) of weight two, and
denote by &(1) the subspace of Eisenstein series. Proposition @ allows us to define a map from the
space of Manin symbols to toric modular forms modulo Eisenstein series.

Definition 3.11. Let M_ be the space of minus Manin symbols (Definition B.7). We define a map
p: M_ — #(1)/E1) b

1((a,b)-) = 8471551 mod &(1)
if a,b # 0 mod [, and by 0 otherwise.

Remark 3.12. The map p is well-defined. Indeed, it is clear that (a,b)_ 4+ (—a,b)_ and (a,b)_ —
(b,a)— map to zero, even before we mod out by &(I). It remains to show that u((a,b)_ + (b, ¢)—
(¢,a)—) =0 for a+b+c =0 mod [. This follows from Propositions @ and @ if a, b, ¢ are non-zero,
and from Proposition @ if one of them is zero.

3.13.  We will now show that map y commutes with the action of the Hecke operators T}, for primes
p not dividing . To do this, we recall the description of toric forms in terms of cohomology rings of
smooth toric varieties [I].

Let deg be a degree function with respect to ¥ in N. Let S be a subdivision of ¥ such that the
corresponding toric variety X is smooth. Denote by d; the minimum nonzero lattice points of the
one-dimensional cones of . Since 3 is a subdivision of ¥, it is possible that some o; = deg(d;)
are now integral. To circumvent this difficulty, in [El] we introduced a generic degree function deg;,
linear on all cones of the original fan ¥ and such that the values 3; = deg,(d;) are non-zero.

Proposition 3.14. ([[l]) In the above notation, we have

D/27r1 (D; /271 — deg(d;) — e deg,(d;), 7)¥ (0, 7)
(2) Fi.deg(q) = lim / H 9(D; /271, 7)9(— deg(di)—adelgl(dz), 7)

where D; is the cohomology class of the toric divisor corresponding to the one-dimensional cone

Qso0d; (c¢f. [B]) and the integral means pairing with the fundamental class of X.

If we work modulo Eisenstein series, the above formula greatly simplifies.

Proposition 3.15. Letds,...,d; be generators of one-dimensional cones ofi. We denote dy = dy,.
Then
SN deg = Z SaiSaqy, mod &(1).
0<i<k—1
o1 7

Proof. Let us first explain what happens in the case where all «;; are non-integral. We are integrating
over X the product of cohomology elements

(1 - SoziDi + T‘iDZ-2),

where r; is easily seen to be an Eisenstein series due to Proposition @ The intersection number
S 5 DiDj for i # j equals 1 if d; and d; come from adjacent cones and equals 0 otherwise. This
finishes the argument.

When some of the «; are zero the argument is a bit more complicated and involves the expansion
of the right hand side of (E) in powers of €. Then up to Eisenstein series one ends up with the
integral of the product of (1 — sq4,D;) over ¢ for which «; ¢ Z. Details are left to the reader. O
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Theorem 3.16. The map p: M_ — #(1)/& (1) defined above is invariant under the action of the
Hecke operators T), for primes p coprime to [.

Proof. We will identify N with the lattice of integer row vectors with two components. Consider
the fan 3 that has dy = (1,0), da = (0,1), d3 = (—1,0), and dy = (0,—1) as generators of its
one-dimensional faces, and a degree function on ¥ defined by deg(1,0) = deg(—1,0) = m/l and
deg(0,1) = deg(0,—1) = n/l. Proposition shows that

[N, deg = 4811801 mod &(1).
Let us calculate the action of the Hecke operator T}, on this form modulo &(1). By Proposition E
we have

fN,dcg|T = Z fS,pdcg-

NCSCLN

Let us investigate the contribution of each S. To get into the setup of Proposition , we need
a subdivision f]g of the fan ¥ so that the consecutive d; form a basis. There is a standard way
of doing so. For each quadrant (i.e. for each two-dimensional cone of ), consider the set A of
all non-zero points of S in that quadrant. The boundary of the convex hull of A consists of two
half-lines and some segments (Figure ) We ignore the half lines and add to the list of d; all points
in S that lie on the rest of the boundary. It is easy to show that this choice of d; guarantees that
the new toric variety is smooth. Indeed, if d; and d;y; did not form a basis of S then there would
exist a point in S lying in the convex hull of 0, d; and d;41 by Pick’s Theorem [ﬂ, page 113].

FIGURE 1.

Because of the symmetry, it is enough to consider the first quadrant. Notice that if d; = (%, ﬁ)

and d;y1 = (%, %), then ad — bc = p, with a > b > 0 and d > ¢ > 0. Conversely, every pair

of {(%, %), (%, %)} with (a, b, c,d) as above generates some superlattice S of coindex p. Moreover,
this pair will form a segment of the boundary of the convex hull of all non-zero points of S in the

first quadrant. Indeed, if any other non-zero point (z,y) € S with 2,y > 0 did lie below the line
through these two points, then the area of the triangle with vertices (z,y), (%, +) and (%, %) would
be positive but less than %.

The values of pdeg on the points (%, I—Cj) and (%, %) are “m;”m and bmfd” respectively, hence by
Proposition we have

fN,deg } Tp =4 Z S(am+-cn) /1S (bm+dn)/l mod éa(l)
ad—bc=p,a>b>0,d>c>0,
(am+cn)/1¢Z,(bm—+dn) /I¢Z
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Therefore, from the definition of y, Theorem and Proposition we conclude that
u(Tp(m,n)-) = p((m,n)-) [ T.

Proposition 3.17. The image of M_ under p coincides with the image of S_ under u.

Proof. This follows from Theorem and the fact that M is isomorphic as a Hecke-module to
S_ @S, @ &) M, Section 4.2]. O

3.18.  Finally, we explicitly describe the composition of y and the Fricke involution.

Proposition 3.19. The composition of u and the Fricke involution Wi is given by

Wio p((m,n)-) = 5m1(q)sni(q) mod &(1)
where 59, = 0 and

Sanla) = (7

) _ Z qd Z(ézmodl _ 5kfamodl)

d>1  k|d

N | =

fora=1,...,1-1.

Proof. All we need to do is calculate the Fricke involute of s,/;. This was accomplished in ], up
to the constant term. To compute the constant term, we remark that these forms have already
appeared in the literature as the Hecke-FEisenstein forms [E, Chapter 15]. o

4. FORMS OF ANALYTIC RANK ZERO

4.1. In this subsection we define a linear map p: .(1) — .#(I) whose image is spanned by Hecke
eigenforms of analytic rank zero.

Definition 4.2. Let f € #(l) be a cusp form. We define a linear map p by

o) =3 < /O m(f!Tn)(s)ds> .

n=1

Proposition 4.3. The form p(f) is a cusp form with nebentypus equal to that of f.

Proof. This follows from [E, Theorem 6], since p(f) is associated to the linear map on the Hecke
algebra that maps T" to Om(f |T)(s) ds. O

Remark 4.4. Tt is easy to see that for a Hecke eigenform f that is a newform

p(f) = L(f,1)f.
In particular, the image of the space of newforms is the span of the new Hecke eigenforms that have

analytic rank zero.

Proposition 4.5. The image of p is contained in the span of all lifts of all new Hecke eigenforms
of analytic rank zero for all levels k, k|l.
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Proof. Tt is clear that if f is a lift of an eigenform ¢ of analytic rank one or more, then p(f) = 0.
Indeed, for every n the form f ’Tn is a linear combination of various lifts of g, which implies
L(f } T, 1) = 0. It remains to show that if f is a lift of g then p(f) is a linear combination of lifts
of g. This follows from the commutation relation p(f) }Tp = po(f ’ T,) for all prime p coprime to I.
Indeed, from the definition of T}, [E],

p(F)| Ty =" L(f| Tonps g™ + pep(p(£)) > L(f | Tomy 1)g™

m>0 m>0

= Z L(f | Tonp, g™ + Z L(f } (Tmp + pep(f)Tm/p)a g™
m>0,(m,p)=1 m>0,(m,p)=p

= > L(f|T,Tn)d™ = p(f | ).
m>0

O

Remark 4.6. Even though we suspect that the image of p coincides with the above span, we only
need the inclusion proved in the above proposition.

4.7. We will now prove a key result that relates the map p to the map W; o u constructed in the
previous section.

Theorem 4.8. The composition

J

(3) S ()M~ M (1) 6 (1) "= (1),

of the map induced by integration between cusps, the map w from §@, the map Wi o, and the
Hecke-equivariant isomorphism between .4 (1)/& (1) and L (1), equals p.

Proof. Let f be a cusp form, and let ¢: M, — C be the corresponding element of M7. Then by

Theorem and Proposition R.14,
p(N(@) =D a"(f|Tn, (1,00) = > ¢"(f, Tu(1,0))

n>0 n>0
== T (0, 1)) ==Y " > #llc.d)y).
n>0 n>0 ad—bc=n,
a>b>0,d>c>0

Notice that we are using our convention that ¢(c,d) = 0 for g.c.d.(¢c,d,l) > 1. On the other hand,
by Theorem the composition of all the maps in (E) except for the last one yields an element of
A (1)/&(1) given by

-1

where we again apply our convention. Also, we can formally use the same expression for 5/, as for
the rest of 5,/ because the coefficient at 54,5, is zero.

In what follows, it will be convenient for us to ignore the constant terms in all our expressions.
Indeed, all our functions are modular forms, so any constant term can always be restored. We will
denote all these constant terms by C. Using

~ g n 1 a m —0mo
Sa/15p1 = C + Zq ( Z (5 - 7)(52 odt — g bmodly
n>0  kln,k>0
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1 —amo amo —amo mo: —Oomo
Z (5 )(5amodl 5k dl)+ Z (5 dl 5 dl)(é‘b dli 5k2b dl))

k|n,k>0 miki+maoka=n,
m1,k1,mo,k2>0

NIO‘

and symmetry properties of ¢((a,a —b)4) — ¢(a,a + b)), we get

@)=+ (Y 25—% (0, — a)1) — p((a,k +a)y))

n>0 kln,k>0 a=0

Y (el k= Re)s) = @k R+ R2) ).

miki+moka=n,
mi,k1,m2,k2>0

Let us now simplify the second part of this expression to make it look more like p(f). We split it
into four sums

oo wllkiki—ka) )+ > (kR —ka)y)

miki+moka=n, miki+moka=n,
ma1,k1,ma2,k2>0 ma1,k1,m2,k2>0
]i}l Zkg kl <k2
(4)
- > (k1 k1 + k2)4) — ) ((k1, k1 + k2)4)
miki+moka=n, miki+moka=n,
mi,k1,mz2,ka>0 mi,k1,mz2,k2>0
mi>mo mi1<ma

and deal with each sum separately. We will give a detailed calculation for one of the sums and will
indicate how to manipulate the other three.

Lemma 4.9.

o ekt ke)y) = oo ellkk))+ Y elled)y)

miki+moka=n, miki+moka=n, ad—bc=n,
m1,k1,ma2,ka>0 m1,k1,m2,ka>0 a>b>0,d>c>0
mi>ma mi>ma

Proof of the lemma. We first of all rewrite ¢((k1, k1+k2)+) as p((k1, k2)+)+@((k2, k1+k2)4). Then
for the second term we make the change of variables (a,b,c,d) = (mi,m1 — ma, ko, k1 + k2). O

We perform similar but easier manipulations for the remaining three sums in ([f). For the first
sum we make the change of variables (a,b,c,d) = (m1 + mo, ma, k1 — ka,k1). For the second
sum we make the change of variables (mf,mb, ki, k) = (m1 + ma,ma, ki, ke — k1), so that it
cancels the first sum in Lemma @ For the fourth sum in (E) we make the change of variables
(a,b,c,d) = (ma,ma —ma, k1, k1 + ko). After some straightforward calculations we get

Do (kb — ko)) — (b ki + k) ) ==3 D> o((e,d)y)

miki+maka=n, ad—bc=n,
mi,k1,mz2,k2>0 a>b>0,d>c>0
- —+1 B0 -2 P((k1, k1 — k2)4).
0<k\n k1|n,k1>k2>0
As a result,

-1
nN@ oD@ =C+3 30" 3 (X~ Diellka k) —ltka+ k)

n>0 k|n,k>0 a=0

(k0 -2 Y elthm))).

0<m<k
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It is possible to further simplify this equation to obtain
-1

p1(f)(q) = p(f)(g) = C — g Sgt > %s@((kaom - % gt > k(z so((k,b)+)),

n>0 k|n,k>0 n>0 k|n,k>0 b=0

which is an Eisenstein series. Indeed, it can be easily written (up to a constant) as a linear combina-
tion of 5512/)17 s2 s, and the (non-modular) SL(Z)-Eisenstein series E» by Proposition B.9. It remains

to observe that the coefficient of Fs must be zero, because of the transformation properties of Fs
under T'; (7). O

4.10. We are now ready to prove our main result.

Theorem 4.11. For each integer | the space spanned by pairwise products of sq; fora =1,...,1—1
1s the direct sum of the span of all Hecke eigenforms of analytic rank zero and some subspace of the
space of Eisenstein series.

Proof. We will prove this theorem by induction on [. For small levels there is nothing to prove,
because there are simply no cusp forms.

Fix [ and assume that the statement of the theorem is true for all smaller levels. In particular,
this implies that lifts of all forms of smaller levels are contained in the span of toric forms, because
the space of toric forms is stable under liftings, see Theorem [3.3. Every new Hecke eigenform f of
analytic rank zero is contained in the image of p, see Remark §.4. By Theorem @7 f is contained
in the image of W; o u, and so is a toric form up to Eisenstein series. Because the space of toric
forms is Hecke stable, this implies that f is toric. This proves that the space of toric forms contains
the span of all Hecke eigenforms of analytic rank zero.

To prove the opposite inclusion, notice that by the induction assumption it is enough to consider
Sq/15p/1 With g.c.d.(a,b,1) = 1. By Proposition , there is an element z € S_ such that u(z) =
84,151~ We use here that g.c.d.(a,b,l) = 1, because otherwise the symbol (a,b)_ is not defined.
By the definition of 7 in § there is an element ¢ € S} such that 7(yp) = x. Moreover, we can
find a cusp form f which induces the linear map ¢ on S;. Then Theorem @ shows that s, /8, is
proportional to W o p(f) up to an Eisenstein series. By Proposition @ Sq/18p) lies in the span of
Hecke eigenforms of rank zero and Eisenstein series, which finishes the proof. O

Remark 4.12. Tt is easy to see that as a corollary we get similar results for any given nebentypus.
In particular, modulo Eisenstein series, the span of the forms

Z SkaSkb, a,b=1,...,l—1
ke(z/lz)*

is the span of all Hecke eigenforms of analytic rank zero for I'g(l).

Remark 4.13. In general it is not clear which Eisenstein series are toric forms. In particular at level
[ = 25 the space of toric Eisenstein series has codimension one.
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