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TORIC PARTIAL ORDERS

MIKE DEVELIN, MATTHEW MACAULEY, AND VICTOR REINER

ABSTRACT. We define toric partial orders, corresponding to regiorgraphic toric hyperplane arrangements,
just as ordinary partial orders correspond to regions gilgcahyperplane arrangements. Combinatorially, toric
posets correspond to finite posets under the equivalenatorelgenerated by converting minimal elements
into maximal elements, or sources into sinks. We derive amalogues for several features of ordinary partial
orders, such as chains, antichains, transitivity, Hassgrains, linear extensions, and total orders.

1. INTRODUCTION

We define finitetoric partial ordersor toric posets which are cyclic analogues of partial orders, but
differ from an established notion gfartial cyclic ordersalready in the literature; see Remérk1.11 below.
Toric posets can be defined in combinatorial geometric wiagfsare analogous to partial orders or posets:

e Posets on a finite séf correspond to open polyhedral cones that arise as chambgraphic
hyperplane arrangements R"'; toric posets correspond to chambers occurring withraphic
toric hyperplane arrangemenis the quotient spacg" /ZV .

e Posets correspond tmansitive closure®f acyclic orientations of graphs; toric posets correspond

to a notion oftoric transitive closure®f acyclic orientations.
e Both transitive closure and toric transitive closure wilit out to beconvex closuresso that there
is a notion oftoric Hasse diagranfor a toric poset, like the Hasse diagram of a poset.

We next make this more precise, indicating where the maintewill be proven.

1.1. Posets geometrically.We first recall (e.g. from Stanley [24], Greene and Zasla\dRy §7], Post-
nikov, Reiner and Williams| [20553.3-3.4]) geometric features of posets, specifically thelations to
graphic hyperplane arrangements and acyclic orientagt@mphasizing notions with toric counterparts.

Let V' be a finite set of cardinalitj’| = n; often we will chooséd” = [n] := {1,2,...,n}. One can
think of apatrtially ordered sebr posetP onV as a binary relation < p j which is

m jrreflexive i £p 1,
m antisymmetrici <p j impliesj £p ¢, and
m transitive i <p j andj <p kimplies: <p k.
However, one can also identify with a certainopen polyhedral coni RV

(1) c=c(P):={reRY 1o <zjifi<pj}

Note that the cone determines the posét = P(c) as follows:: <p j if and onlyz; < z; forall z in c.
Each such cone also arises as a connected component in the complement easit dnegraphic

hyperplane arrangemeffior a graphG, and often arises in several such arrangements, as exglaéhawv.
Given a simple grapli’ = (V, E), thegraphic arrangementd(G) is the union of all hyperplanes iR"
of the formz; = x; where{i, j} is in E. Each pointr = (z1,...,,) in the complemenRY —A(G)
determines aacyclic orientationu(x) of the edge sekE: for an edge(s, j} in E, sincex; # z;, either

m x; < x; andw(z) directsi — j, or

® z; < x; andw(zx) directsj — .
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It is easily seen that the fibers of this map : « — w(x) are the connected components of the comple-
mentRY —A(G), which are open polyhedral cones call#tambers Thus the maj induces a bijection
between the setcyc(G) of all acyclic orientations) of G and the se€ham A(G) of chambers of A(G):

2) RY —A(G) s Acyc(G)

Cham A(G)
These two sets are well-known [12, Theorem 7/1], [24] to feardinality
| Acyc(G@)| = | Cham A(G)| = T(2,0)

whereT¢(z,y) is theTutte polynomiabf G [25].
Posets are also determined by their extensionsttd ordersw; < --- < w,, which are indexed by
permutationsy = (wy, ..., w,) of V. The total orders index the chambers

Co ={T ERY 12y, < Ty <+ < Ty, }

in the complement of theomplete graphic arrangemeut( Ky ), also known as theeflection arrangement
of typeA,,_; or braid arrangementGiven a poseP, its setL(P) of all linear extensionsr extensions to
a total orderhas the property that

c(P)= |J e
weL(P)

where(-) denotes topological closure. Thus when dixesthe graphG, chambers: (or posetsP(c))
arising asx;' (w) for variousw in Acyc(G) are determined by their sefg P(c)) of linear extensions.
The same poseP or chamberc = ¢(P) generally arises in many graphic arrangeme#(s:), as
one varies the grapty, leading to ambiguity in its labeling by a p&ai€, w) with w in Acyc(G). Nev-
ertheless, this ambiguity is well-controlled, in that #h@re two canonical choicd& (P),w(P)) and
(GHasse( Py, Hasse( pY)) with the following properties.
e AgraphG hasc(P) occurring inCham A(G) if and only if GH2sse(P) C G C G(P) whereC is
inclusion of edge sets. In this case; (¢(P)) = w wherew is the restrictiono(P)|¢.
e The map which send&,w) — (G(P),(P)) is transitive closure It adds intoG all edges
{4, 7} which lie on somechain (= totally ordered subsgtC of P, and directs — j if i <¢ j.
Alternatively phrased, transitive closure adds the deeé&dge — j to (G,w) whenever there is
a directed path fromto j in (G, w).
The existence of a uniqueclusion-minimathoice(GMss¢ (P), wHasse( P)), called theHasse diagranfior
P, follows from this well-known fact [8,/9]: théransitive closured — A on subsetsi of all possible
oriented edge?v ={(i,j) € V. x V :i # j}, is aconvex closuremeaning that

(3) fora # bwith a,b ¢ Aanda € AU {b}, one had ¢ AU {a}.

1.2. Toric posets. We do not initially define a toric posét on the finite seV” via some binary (or ternary)
relation. Rather we define it in terms of chambers torc graphic arrangementd;., (G) = 7(A(G)),
the image of the graphic arrangemet(iz) under the quotient mag" = RY /Z". These are important
examples ofunimodular toric arrangementdiscussed by Novik, Postnikov and SturmfelsLin [3$4-5];
see also Ehrenborg, Readdy and Slone [10].

Definition 1.1. A connected componentof the complemenR" /ZY — A, (G) is called aoric chamber
for G; denote byCham A;., (G) the set of all toric chambers of;,, (G).

A toric posetP is a set that arises as a toric chamber for at least one géapive will write P = P(c)
andc = ¢(P), depending upon the context.

Example 1.2. Whenn = 2, soV = {1, 2}, there are only two simple grapli¢ = (V, E), a graph
Gy with no edges and the complete grafih with a single edg€ 1, 2}. For both such graphs, the torus
R2 /72 remains connected after removing the arrangemgpt(G), and hence they each have only one
toric chamber; call these chambegs= R?/Z?) for the graphG, ande(= R?/Z2—{z; = z»}) for the



TORIC PARTIAL ORDERS 3

graphK,. They represent two different toric posétsc,) andP(c), even though their topological closures
¢ = ¢o(= cp) = R?/Z? are the same.

A point z in RV /Z"Y does not have uniquely defined coordinates, . . ., z,). However, it is well-
defined to speak of tHeactional partz; mod 1, thatis, the unique representative of the class;dfi R/Z
that lies in[0, 1). Therefore a point in RV /ZY — A, (G), still induces an acyclic orientatian(z) of G,
as follows: for each edgg, j} in E, sincez; # x; mod Z, either

® z; mod 1 < z; mod 1, andw(z) directs: — j, or
® z; mod 1 < z; mod 1, andw(z) directsj — i.

Denote this map: — w(z) by RV /ZY — Aior (G) 25 Acyc(G). Unfortunately, two points lying in the
same toric chamberin Chamy,, A, (G) need not map to the same acyclic orientation urader This
ambiguity leads one naturally to the following equivalenglation on acyclic orientations.

Definition 1.3. When two acyclic orientations andw’ of G differ only by converting one source vertex
of w into a sink ofw’, say that they differ by #ip. The transitive closure of the flip operation generates an
equivalence relation oAcyc(G) denoted by=.

A thorough investigation of this source-to-sink flip op@atand equivalence relation was undertaken
by Pretzel in|[21], and studied earlier by Mosesjan [17]. dtlalso appeared at other times in various
contextd in the literature [4, 17, 14, 23]. lIts relation to geometrytofic chambers: = ¢(P) or toric
posetsP = P(c) is our first main result, proven i§i2.

Theorem 1.4. The mapr induces a bijection betwedtham Ay, (G) and Acyc(G) /= as follows:

(4) RY /ZV — Aior (G) 25— Acyce(G)

| |

Cham Agor (G) =z Acyc(G) /=
In other words, two points, ' in RV /ZY — A;.,(G) haveag(z) = ag(a’) if and only ifz, 2’ lie in the
same toric chamberin Cham Ay, (G).
The two setham Ao, (G) andAcyc(G)/= appearing in the theorem are known to have cardinality
| Acye(G)/= | = | Cham Awor(G)| = Tex(1,0)
whereT(z,y) is the Tutte polynomial of7; see [13] and [19, Theorem 4.1].

Example 1.5. A tree G onn vertices has Tutte polynomiak; (z, y) = z"~L. It will have T'(2,0) = 27!
acyclic orientationss and induced partial orders, but orifi(1,0) = 1 toric chamber or toric partial order:
any two acyclic orientations of a tree are equivalent by aisage of source-to-sink moves.

Example 1.6. As a less drastic example, considér= {1,2,3,4} andG = (V, E) this graph:

1 2

3 4

It has Tutte polynomidl’s(z,y) = 2%+ 2% +x+vy, and hence hdz(2,0) = 23 +2242+0 = 14 acyclic
orientationso. Thesew fallinto 7z (1,0) = 13+12+1+0 = 3 different=-classegw], having cardinalities

1 pretzel called the source-to-sink fljmshing down maximal verticeim [14], it was called lick. In the category of represen-
tations of a quiver, it is related to Bernstein, Gelfand anddMmarev’seflection functorgl].



4 M. DEVELIN, M. MACAULEY, AND V. REINER

4,4, 6, respectively, corresponding to three different toricgie®; or chambersg; in Cham A, (G):

Py : 4 1 2 3

|

1

Py : 1

|

4 1

AN
/
N
/

Ps3 : 1 2

2 / \ 4
\ | /

4

NN AN

/ \ | /

Toric total orders(see§ ) are indexed by thé: — 1)! cyclic equivalence classes of permutations

[’U}] = [(wlaw27 ) 7wn)] = { (’U}l,wg, ) 7wn—11wn)7
(w27---7wn717wn7w1)7

(5)
(wn,wl,wg,...,wn_l) }

and correspond to the toric chambeys in the complement of theoric complete graphic arrangement
Aior(Ky). For a particular toric poseP? = P(c), one says thafw] is atoric total extensiorof P if
cjw) C c. Denote byL;.. (P) the set of all such toric total extensiops of P. Although it is possible (see
Exampld5.B below) for two different toric pose®sto have the same sé},,. (P), the following assertion
(combining Propositioh 312 and Corolldry 5.2 below) stildhs.

Proposition 1.7. When one fixes the gragh, the toric chamber (or its posetP = P(c)) for which
ac(c) = [w] is completely determined by its topological closar€urthermore one has= U,,c ., .. () Clu]-
so that this closure depends only on the set of toric totaresionsCy., (P).



TORIC PARTIAL ORDERS 5

Example 1.8. The graphG from Examplé 1.6 and its three toric poséls P, P; partition the(4—1)! =
different toric total orders oY = {1, 2, 3,4} into their sets of toric total extensios,, (P;) as follows:

EtOY(Pl) = {[(17 27 37 4)]}7
‘Ctor(PQ) = {[(17 4,3, 2)]}7
EtOT(P3) = {[(17 2’ 47 3)]7 [(17 3’ 27 4‘)]7 [(17 3’ 47 2)]7 [(17 4" 2’ 3)]}

As with posets, the same toric podet= P(c) arises as a chamberin manytoric graphic arrange-
mentsA;., (G). However, as with posets, this ambiguity is well-contrd]lm that there are two canonical
choices of equivalence classgs“* (P), [0 (P)]) and(GtorHasse( p), [ytorHasse( py]) with the following
properties.

e A graphG hasc(P) occurring inCham Ay, (G) if and only if

étorHasse(P) C G C Gtor(P)

whereC is inclusion of edges. In this case,df; (¢(P)) = [w], thenw can be taken to be the
restriction toGG of a particular orientation in the clags'* (P)].
e The map which send&, w) — (G*°*, ") may be described by what will be called i)
toric transitive closure one adds intd> all edges{, j} which lie on someoric chainC in P.
Here a toric chain (se&lg) is a subse€ C V which is totally ordered ireveryposet associated
with an orientation in the clags]. One directs — j if there is atoric directed pattfrom to j in
(G,w), as defined ir§[d below. Alternatively phrased, toric transitive closurié add the directed
edgei — j to (G,w) whenever there is a toric directed path fromo j in (G, w).
The existence of the uniqurclusion-minimakhoice(GtorHasse( p), [wtorHasse( )]y which we will call
thetoric Hasse diagranof P, follows from our second main result, provergiig,

Theorem 1.9. Considered as a closure operatioh— A" on subsets! of all possible oriented edges
v ={(,7) € V x V : i # j}, toric transitive closure is a convex closure, that is, itist¢s(3) above.

Example 1.10.The toric poseP; = P(c;) from Examplé L appears as a chamhen Cham Ay, (G;)
for exactly four graph&:,, Go, G5, G4, each shown below with an orientatiensuch thatig, (¢1) = [w;].

ORI N
\j A
a4

1 1 1 1

For any of these four pairs7;,w;) with i = 1,2, 3,4, one has that the leftmost pair is its Hasse diagram
~ torHasse

(G; ,wiorHassey “and the rightmost pair is its toric transitive closgégr, oi°r).
We close this Introduction with two remarks, one on termiggl the other giving further motivation.

Remark 1.11. Aside from the connection to toric hyperplane arrangemem¢shave chosen the name
“toric partial order”, as opposed to the arguably more radtierm “cyclic partial order”, because the latter
is easily confused witpartial cyclic orders the following pre-existing concept in the literature, mgpback
at least as far as Megiddo [16].

Definition 1.12. A partial cyclic orderonV is a ternary relatiol” C V x V x V thatis

m antisymmetriclf (¢, j, k) € T then(k, j,7) € T
m transitive If (¢,7,k) € T and(i, k,¢) € T, then(i, j,¢) € T;
m cyclic If (4,4, k) € T, then(j, k,i) € T.
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Definition 1.13. When a partial cyclic order oW is completen the sense that for every trip{e, j, k} C V
of distinct elements]” contains some permutation @f j, k), thenT is called aotal cyclic order A total
cyclic order onV is easily seen to be the same a toric total order: specify ica@guivalence claspu| as
in (8), and then check thaw] is determined by knowing its restrictiofis|y; ; »}] for all triples {i, j, k}.

Partial cyclic orders have been widely studied, and havessotaresting features not shared by ordinary
partial orders. For example, every partial order can benebad to a total order, but not every partial cyclic
order can be extended to a total cyclic order; an examplei®bthl 3 vertices is given in [16].

Remark 1.14. We mention a further analogy between posets and toric pasédsed to Coxeter groups,
that was one of our motivations for formalizing this concept

Recall [2] that aCoxeter systenilV, S) is a groupW with generating seb = {si,..., s,} having
presentatioV = (S : (s;s;)™" = e) for somem, ; in {1,2,3,...} U {oco}, wherem,; = 1 for all ¢
andm,; ; > 2 fori # j. Associated tqIV, S) is theCoxeter grapton vertex sefS with an edge(s;, s; }
labeled bym; ; whenevem,; ; > 2, so thats;, s; do not commute; ignoring the edge labels, we will call
this the unlabeled Coxeter graph.Qoxeter elemerfor (W, .S) is an element of the formy,, su, - - - Sw,,
for some choice of a total orderon S.

Theorem 1.15.Fix a Coxeter systerfiV, S) with unlabeled Coxeter grap@, and consider the map send-
ing an acyclic orientationw in Acyc(G) having pose = ag(w) to the Coxeter element,, s., - - - Sw,,
for any choice of a linear extensianin £(P).

(i) This map is well-defined, and induces a bijection (se€V¥26] and [3])
Acyc(G) «+— { Coxeter elements fqiv, S) }.

(i) Italsoinduces a well-defined map on the toric equivakenlassegv] to thelW-conjugacy classes
of all Coxeter elements, and gives a bijection (seel[11, 4322] and [19, Remark 5.5])

Acyc(G)/= +— {W-conjugacy classes of Coxeter elementgdt S)}.
We believe toric partial orders will play a key role in resatymore questions aboli -conjugacy classes.

2. TORIC ARRANGEMENTS AND PROOF OF HEOREM[L .4

Recall the statement of the theorem.

Theorem[1.4.The mapx¢ induces a bijection betwedbham A, (G) and Acyc(G)/= as follows:
RY JZY ~Auor(G) “E—= Acyc(G)

| |

Cham Asor (G) -z Acye(G) /=

In other words, two points, z’ in RV /ZY — A, (G) haveag(z) = ag(a2’) if and only ifz, 2’ lie in the
same toric chamberin Cham A;q, (G).
Before embarking on the proof, we introduce one further getamobject intimately connected with
= the graphic arrangemest(G) = Uy, j1cp{r € RY 12 = 2;} C R, and
= the toric graphic arrangemedt,.(G) = 7(A(G)), its image undeR” & R /ZV.
Definition 2.1. Define theaffine graphic arrangemeiin RY by
(6) Aai (G) =7 (Ao (@) = 7 M (w(A@) = | {weRY iz ==, +k},

tijieE
kez

Call the connected componeritsf the complemenR" — A, (G) affine chambersand denote the set of
all such chamber€ham A, (G).

The reason for introducind.s(G) andCham A, (G) is the following immediate consequence of the
path-lifting property folRY = RY /Z" as a (universal) covering map (see e.g! [18, Chap. 13])gaiagitn
the definition[(6) ofd.+(G) as the full inverse image underof Ay, (G).
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Proposition 2.2. Two pointsr, i in RY /ZY — A, (G) lie in the same chamberin Cham Ay, (G) if and
only if they have two liftg;, § lying in the same affine chambé&m Cham A,4(G).

The point will be that, since affine chambérare (open) convex polyhedral regionsif , it is sometimes
easier to argue about lifted pointgather thane itself.

Our proof of Theorer 114 proceeds by showing the REPZY — Ao, (G) 2% Acyc(G) descends to

= awell-defined magham Ao, (G) 2% Acye(G) /=,
= which is surjective,
= and injective.

2.1. Well-definition. We must show that when, y lie in the same toric chamberin Cham A, (G),
thenag(zr) = ac(y). As in Propositiod 212, pick lifts, § in RV and a pathy between them in some
affine chambeé. Because these chambers are open, one can assume witlsaftdes erality that takes
steps in coordinate directions only, and therefore hagtdiffer in only a single coordinate: say; # ¢,
butz; = g; for all j # i. Furthermore, ag&¢(x) changes only when a coordinateijopasses through an
integer, without loss of generality, one may assume

j?i modl=1-— g,
g;mod1l=c¢
for some arbitrarily smalt > 0. Since the points ofy all avoid A.¢ (G), and thei*” coordinate will pass

throughO at some point on the path each of the coordinates (= g;) for indices;j with {7, j} in E must
have0 < #; mod 1 < 1. Hence one can choosesmall enough that all for which {¢, j} in E satisfy

(gimodl=)e<&jmodl <1l—e(=2 modl).

One finds thatvz () andacg(y) differ by changing from sink to a source, s8¢ (Z) = ag (), as desired.

2.2. Surjectivity. It suffices to check that the m&" /ZY — Aior (G) 25, Acyc(G) is surjective. Given
an acyclic orientatiom of G, pick any linear extension; < --- < w, of its associated partial order
ag'(w) onV. Then choose real numbers< x,, < --- < x,,, < 1, so that

x=(1,...,2n) = (1 mod 1,...,2, mod 1)

and henceéig(z) = w.

2.3. Injectivity. The key to injectivity is the following lemma.

Lemma 2.3. Suppose lies in a toric chambee in Cham Ay, (G), andag(z) = w. Then forany’ = w,
there exists some' in the same toric chamberhavingag(z') = w'.

Proof. It suffices to check this when' is obtained fromv by changing a source vertéxn w to a sink in
w'. Sinceag(x) = w, one must have for eaghwith {i, j} in E that

(0 <)z; mod 1 < zj mod 1(< 1).

Lift 2 to & = (21 mod 1,...,x, mod 1), and choose small enough so that eaghwith {i,j} in E
hasz; mod 1 < 1 — ¢. Definey to have all the same coordinates &axcept fory; = —e, so that
7; mod 1 = 1 — ¢, and henceg := 7(§) hasac(y) = w’ by construction. Note that the straight-line path
4 from & to 5 changes only th&" coordinate, decreasing it frofn to §; = —¢, and hence never crosses
any of the affine hyperplanes it.«(G). Thereforez, 4 lie in the same affine chamber, angdy lie in the
same toric chambet. O

Now suppose that points z’ in two toric chambers, ¢’ haveag(z) = ag(z’'), and we must show that
¢ = ¢. By Lemmd2.3B, without loss of generality one las(z) = w = ag(z’). Thus one can lift, 2’
to &, &’ havingi;, & in [0, 1) for all 4, and hencewg (%) = w = ag(&'). For each edgéi, j} in E, say
directedi — j in w, one has both
0<z; < i‘j <1,

0< @ <) <1
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Thus every poing on the straight-line path betweeni andz’ also satisfie® < §; < g; < 1, avoiding
all affine hyperplanes i, (G). Thusz, &’ lie in the same affine chambérso thatz, 2’ lie in the same
toric chamber, as desired. This completes the proof of fivjeg and hence the proof of Theordm11.40]

One corollary to Theorefn 1.4 is a (slightly) more concretecdgtion of a toric chamber.
Corollary 2.4. For a graphG = (V, E) and toric chambet in Cham A;,, (G) with a¢(¢) = [w], one has

c= U ag' (W) = U {z € RV/ZY : 2; mod 1 < z; mod 1 if w’ directsi — j}.
w’€[w] w’ €w]

3. TORIC EXTENSIONS

Recall that for two (ordinary) posef3 P’ on a sel/, one says thaP’ is an extension aP wheni <p j
impliesi <p: j. Itis easily seen how to reformulate this geometricaltyis an extension of if and only
one has an inclusion of their open polyhedral cor(g®) C c(P), as defined in[{1). This motivates the
following definition.

Definition 3.1. Given two toric poset®, P’ say thatP’ is a toric extension oP if one has an inclusion of
their open chamberg P’) C ¢(P) within RV /ZV .

An obvious situation where this can occur is when one®as (V, E) andG’ = (V, E’) two graphs
on the same vertex s&t, with G anedge-subgrapbf G’ in the sense that C E’,

Proposition 3.2. Fix G = (V, E) a simple graph.
(i) Toric chambers inCham Ay, (G) are determined by their topological closures: for any pair o
chambers:, ¢o in Cham Ao, (G), if & = & theney = cs.
(i) If G is an edge-subgraph @, thenc = |J_., ¢, where the union runs over all toric chambefs
in Cham Ao, (G’) for which P(¢) is a toric extension oP(c).

Proof. For (i), first note that any toric chamberin Cham A, (G) has boundary—c contained in
Ator (G). Now assume two toric chambers, ¢z in Cham A, (G) haveé, = ¢, and we wish to show
¢1 = co. Any pointz of ¢; hasz € ¢; C ¢ = ¢2. However,z cannot lie inA;,, (G) sincec is disjoint
from Ao (G), sox does not lie ity —co C Ao (G) by our first observation. Hencelies in c,. But then
c1, co are connected componentsRY /ZY — Cham Ay, (G), sharing the point, soc; = c».

For (ii), we first argue that

@) = (WT(C))

using the fact that the covering m&d” = RV /ZV is locally a homeomorphism. For any pointin
RY /ZV there is an open neighborho6dwhich lifts to an open neighborhodd, mapping homeomor-
phically underr to U. Hencez is the limit of a sequencéx;}5°, of points inc if and only if its lift
& = 7| («) is a limit of the sequence of poinsr| ! (;)}32, in 7~ (c). This showsl(7).

Since a toric chamberhast—!(c) given by a union of affine chambetsn Cham A,g(G), in light of
(@), it suffices to show that any affine chambén Cham A.¢(G) has closure given by the union of the
closures” taken over all affine chambe#sin Cham A, (G’) that satisfye’ C ¢. However, this is clear
sincec is a polyhedron bounded by hyperplanes taken frédg (G), while A.¢(G’) simply refines this
decomposition with more hyperplanes. O

4. TORIC DIRECTED PATHS

A particular special case of PropositlonI3.2 is worth natiexery graphG = (V, E) is an edge-subgraph
of thecomplete graphy,. As noted in the Introduction, acyclic orientatiaon®f Ky, correspond to total
ordersw; < --- < wy,, indexed by permutations = (wi,...,w,) of V.= [n] := {1,2,...,n}.
It is easy to characterize the equivalence relatioon these total orders, and hence the toric chambers
Cham Ao, (K ), in terms of cyclic shifts of these linear orders. Howeveis worthwhile to define this
concept is a bit more generally— it turns out to be crucialéat®n6.
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Definition 4.1. Given a simple grapl = (V, E) and an acyclic orientation of G, say that a sequence
(i1,12,...,1m) Of elements ol forms atoric directed path inv if (G,w) contains all of these edges:

(8) im

Z'1n—1

!

o

In particular, for small values o, a toric directed path iw
e of sizem = 2 is a directed edgg1, i2),
e of sizem = 1is a degenerate pathy ) for anyi; in V, and
e of sizem = 0 is the empty subset C V.

11

Proposition 4.2. An acyclic orientationw of G contains a toric directed pathiy, i, . .., %) if and only
if every acyclic orientation’ in its =-equivalence class contains a (unique) toric directed path

(iéa ié+la e 7ima Z'172‘27 L 7if—l)
which is one of its cyclic shifts, that is, it lies in the cgdiquivalence clasgii, . - . , im)]-
Proof. A toric directed pattiy, i, . . ., i, ) has only one source, namely and only one sink, namety, .
The assertion follows by checking that the effect of a sotioesink flip ati; (resp.i,,) is a cyclic shift to
the toric directed pathis, . . . , iy, 1) (reSp.(im, i1,%92, - - -, tm—1))- O

Remark 4.3. We point out a reformulation of the sink-to-source equinakerelation= on Acyc(G), due
to Pretzel([21], leading to a reformulation of toric direttfgaths, useful in Sectidn L0 on toric antichains.
Given a simple graplir = (V, E), say that a cyclic equivalence class= [(i1,. .., in)] Of ordered

with subscripts taken modute. Given such a directed cycledefineColeman’s/-function[5]
Acyc(G) 25 7

wherev; (w) for an acyclic orientation of G is defined to be the number of edggs, 7,41} in I whichw
orientsi; — 4,4, minus the number of edgds;, i;,1 } whichw orientsi;;; — i;. It is easy to see that
vy is preserved by flips, and thus extends in a well-defined nraone-classesw]. In fact, Pretzel [21]
showed that this is a completeinvariant;

Proposition 4.4. Fixing the graphG = (V, E), two acyclic orientations), w’ in Acyc(G) havew = W' if
and only ifvy(w) = vy (w') for every directed cyclé of G.

Toric directed paths then have an obvious characterizatiterms of their/; function.

Corollary 4.5. Given a directed cycle id = [(i1,...,4m»)] in G, an acyclic orientationv in Acyc(G)
contains a toric directed path lying in the cyclic equivaterclassl if and only ifv; (w) = m — 1.

5. TORIC TOTAL ORDERS

An important special case of toric directed paths occurswdre considers acyclic orientations of the
complete graphky. Acyclic orientations ofi(y, correspond to permutations = (wy,...,w,) of V
(or total order9, and always form toric directed pathsdn Hence their toric equivalence classes are the
equivalence classégs)| of permutations up to cyclic shifts, doric total orders This concept coincides
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with the pre-existing concept ¢btal cyclic orderfrom Definition[I.18, even though torjgartial orders
are not the same goartial cyclic orders. Therefore, we can use these terms interezdohyg

By Theoreni 114, these toric total ordéts] index the chambers,,) in Cham A, (Kyv). By Corol-
lary[2.4, one has this more concrete description of such beasn

9) ) = U{:c eRY/ZY : xzy, mod 1 < --- <z modl <y, modl < --- <y, , mod1}.
=1

Definition 5.1. Given a toric poseP = P(c) onV, say that a toric total ordéw] on V is atoric total

extensiorof P if the toric chamber;,,; of Cham Ay, (Kv ) is contained irc. Denote byLy,, (P) the set

of all such toric total extensiorja] of P.

The following corollary is then a special case of Proposi{Bc2.

Corollary 5.2. Fix a simple grapiG = (V, E). Then any toric chamber/poset ¢(P) in Cham Ay, (G)
has topological closure
c= U Clw]-

[w]eﬁtor(P)
and is completely determined by its €gt, (P) of toric total extensions: i€, co in Cham Ay, (G) have
ﬁtor(P(Cl)) = ;Ctor(P(CQ)), thencl = C2.

Example 5.3. Corollary{5.2 fails when one doestfix the graphG. For example, whelr = {1, 2,3}, all
7 of thenon-completgraphs= # Ky = K5 share the property thatham A, (G) has only one chamber
c = ¢(P) with Lo, (P) = {[(1,2,3)], (1, 3,2)]}, whose closureé is the entire toru®?/Z>. However, the
unique toric chambers for these7 graphs are all different, when consideredoaensubsets ofR3 /Z3,
and therefore each representdifferenttoric posetP = P(c).

On the other hand, the complete graigh = K3 has2 different toric equivalence classes of acyclic
orientations, representing two different chambers withi same toric arrangemedt,, (K3), and two
different toric posetsP(c((1,2,3))) andP(cy1,3,2)))-

6. TORIC CHAINS

We introduce the toric analogue of a chain (= totally ordeseliset) in a poset, and explicate its rela-
tion to the toric directed paths from Definitibn #.1 and thecdotal extensions from Definition 3.1 (or
equivalently, total cyclic extensions).

As motivation, note that in an ordinary posetc), a chainC' = {i1,...,i»} C V has the following
geometric description: there is a total orderifig, . .., ,) of C' such that every point in the open
polyhedral cone = ¢(P) hasz;, < x;, < -+ < x;,, .

Definition 6.1. Fix a toric posetP = P(c) on a finite sefi”. Call a subseC = {iy,...,in} C V a

toric chainin P if there exists a cyclic equivalence cld$s, . . ., i,,)] of linear orderings of” with the
following property: for everyr in the open toric chamber = ¢(P) there exists soméjy, ..., j,) in
[(i1,...,4m)] for which

(10) z;, mod 1 <xj, modl <---<z; modl.

In this situation, we will say thaP|c = [(i1, ..., im)]-

Remark 6.2. Note that

e singleton setg:} and the empty subset C V' are always toric chains if,

e subsets of toric chains are toric chains, and

e apair{i,j} is atoric chain inP = P(c) if and only if every pointz in the open toric chamber
hasz; mod 1 # x; mod 1; in particular, this will be true wheneveras appears as toric chamber
in Cham A, (G) for a graphG having{i, j} as an edge of:.

Though the definition of toric chain does not refer to a patéicgraphG, there are several convenient
characterizations that involve a graph. In the followinggasition, we list five equivalent conditions. The
exception whenC| # 2 is needed because the last condition is vacuously true wkef@ = 2; in this
case, only the first four are equivalent.
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Proposition 6.3. Fix a toric posetP = P(c) on a finite sel/, andC = {i, ..., iy} C V. The first four
of the following five conditions are equivalent, and whee= |C| # 2, they are also equivalent to the fifth.
(a) Cis atoric chaininP, with Plc = [(i1, ..., im)]-
(b) For every graphG = (V, E) and acyclic orientationw of G havingag(c) = [w], the subse€ is
a chain in the poseP (G, w), ordered in some cyclic shift of the ord@t, . . ., i, ).
(c) For every graphG = (V, E) and acyclic orientationv of G havingag(c) = [w], the subset
occurs as a subsequence of a toric directed path,iim some cyclic shift of the ordét;, . . ., i,,).
(d) There exists a grapy = (V, E) and acyclic orientationv of G havingag(c) = |w] such thatC
occurs as a subsequence of a toric directed path,im some cyclic shift of the ordéi, . . ., i,,).
(e) Every total cyclic extensidm] in Lo, (P(c)) has the same restrictiow|c| = [(i1, - -, im)]-

The following easy and well-known lemma will be used in theqgdr

Lemma 6.4. When two elements; are incomparable in a finite posé€l on V', one can choose a linear

extensionv = (wy, ..., wy) in £(Q) that hasi, j appearing consecutively, s&y, wsy1) = (i,75).
Proof. Beginw with any linear extensiomw, , ws, ..., ws—; for the order ideal) .; U Q) <, followed by
ws = i, wer1 = 7, and finish with any linear extensian, 2, ws3, ..., w, for Q— (Q<; U Q<;). O

Proof of Propositio 613.Note that if|C| < 1, all five conditions (a)-(e) are vacuously true, so without
loss of generalityC| > 2. We will first show (a) implies (b) implies (c) implies (d) irties (e). Then we
will show that (e) implies (a) whefC| > 3, and (d) implies (a) whefC| = 2.

(a) implies (b). Assume that” is a toric chain ofP, with P|c = [(i1,...,4,)], and take a grap&' and
orientatiorw such thatig(c) = [w].

We first show by contradiction th&tf must be totally ordered i) := P(G,w). Assume not, and say
i,7 in C are incomparable i). By Lemma6.4 there is a linear extensien= (w1, ...,w,) in £(Q)
havingi, j appear consecutively, s§y,, wsy1) = (4, 7). Chooser in R™ with0 < z,,, < -+ <z, <1
and letz’ be obtained by by exchanging:;, z;, that isz} = z; andz); = z;. Sincer = z mod 1 and
' =2/ mod 1, one hasvg(z) = w = ag(z’), and hence, 2’ lie in ¢ = ¢(P). The condition[(ID) o, 2’
implies thatjw|c] = [w’|¢] should give the same cyclic order 6h which forcesn = 2 andC = {i, j}.

Howeve_r, .the average’ = %ﬂ”' gives a third point inc havingz; mod 1 = zi/ = 2/ = 27 mod 1,
contradicting[(ID).

Once one knows thaf' is totally ordered inQ, consideration of (10) for the point chosen as above
implies thatw|¢ lies in[(i1, . . ., 4, )], and hence the same is true@fc.

(b) implies (c). Assume for the toric posdt = P(c), every graphG and orientatiorw with ag(c) = [w]
hasC totally ordered inP(G,w) by a cyclic shift(ji, ..., jm) in [(i1,...,im)]. We will show thatC
actually occurs in this order as a subsequence of some fogicteld path inv.

By Propositioi 4.2, one is free to alterwithin the clas§w]. So choosev within [w] among all those
for which P(G,w) onV totally ordersC' asj; < --- < ji,, but minimizing the cardinalityZ| where

7Z :={z € V : z there is a directed path fromj,, to z}

Note that” is nonempty, since it contains,. We claim that minimality forcegZ| = 1, thatis,Z = {j..}.
To argue the claim by contradiction, assufe“ {j,,,}. Then one can find an-sink z # j,,, in Z, asV is
finite, andw is acyclic. Perform a sink-to-source flip:ato create a new orientatia in [w]. Thenw’ still
hasP(G,w') totally orderingC' asj; < --- < jn, butits setZ’ has|Z’| < |Z| becaus&Z’ C Z—{z}.

Now Z = {j,,} means thaj,, is anw-sink. Create.’ by flipping j,,, from sink to source. Sincg is
supposed to be comparable wjth in P(G,w’), one must havg,, <p . ji1, thatis, there is an’-path
of the formyj,, — k — --- — j1; possiblyk = j; here. But this means that prior to the sink-to-source flip
of j,,, one had a toric directed-pathk — --- — j; — jo — --- — j,, that contained”, as desired.

(c) implies (d). Trivial.

(d) implies (e). Assume the grapldr hasag(c) = [w] andC occurs in the orde(iy,...,i,) as a
subsequence of a toric directed patlhvinWe must show that every total cyclic extensjarn of P = P(c)
has restrictiofw|c] = [(i1, . - -, 9m)]-
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By Definition[5.1, one has;,,) C c. By (9), one can pick a point in c[,,, so that
Ty, mod 1 < -+ <z, mod 1.

Sincez also lies inc, one hasi¢(r) = w’ = w. Propositiol 4P implies thai’ contains as a toric directed
path some cyclic shiftjy, . .., jm) of (i1,...,im,). Hence

25 mod 1 <--- < xj; modl,
which forcesw|c = (41, .., Jm), as desired.

(e) implies (a) when |C| > 3. Assume that every total cyclic extensifn| of P = P(c) hasw|¢ lying
in the same cyclic equivalence cld¢s, . . ., i,,)]. We want to show that every pointin ¢ satisfies[(Z0).
Recall from Corollanf 214 that there is at least one gréphnd =-class|w] containingas(z), that is,
ag(c) = [w]. It suffices to show that the partial ord@r:= P(G,w) onV induced by any orientation in
this =-class has restrictio|¢ to the subset’ giving a total ordex 1, . .., j,,), and this total order lies in
[(G1, - yim)]-

Suppose thaf)|¢ is not a total order; say elements; in C' are incomparable id). By Lemma6.4,
one can then choose linear extensiansy’ in £(Q) that both have, j consecutive, and differ only in
swappingi, j, say(ws, wsy1) = (4,7) and(wl, w, ;) = (j,4). Pick pointsz, 2’ that satisfy

0< 2y, < - <@y, <1
/ /
0<my <--- <z <1

Sincex = xmod 1,2' = 2’ mod 1, one finds thatr, 2’ lie in ¢, ¢, respectively. Also one has
ag(r) = w = ag(z') so that bothr, 2’ lie in c. Hencecy,), ¢ € ¢, thatis, bothw], [w'] are total cyclic
extensions inC.. (P(c)). However, sincdC| > 3, there exists some third eleméenin C—{i, j}, and
[w], [w'] differ in their cyclic ordering of 7, j, k}. This contradicts assumption (e), & is a total order.
Once one knows tha&p|¢ is a total orderj; < --- < jn, the above argument shows thigt, . . ., j)
lies in the cyclic equivalence clags|¢] for everyw in Lo, (P), which is[(i1, . . ., i )] by assumption.

(d) implies (a) when |C| = 2. Supposex:(c) = [w] andC occurs as a subsequence of a toric directed
path inw, with i; < i>. By Propositiod 4.2, if’’ = w, thenC occurs in a toric directed path inf. This
means that for any with a¢(z) = w’, we haver;, mod 1 # z;, mod 1, and so eithetr;, mod 1 <
x;, mod 1 0rz;, mod 1 < z;; mod 1 must hold for every: in ¢. ThusC is a toric chain ofP(c). O

7. TORIC TRANSITIVITY

We next clarify the edges that are “forced” in a toric partiedier, an analogue of transitivity that we
refer agtoric transitivity.

Theorem 7.1. Fix a toric posetP = P(c) onV, and assume tha¥ = (V| F) hasc appearing as a toric
chamber inCham Ay, (G), sayaq(c) = [w]. Then for any non-edge pafti, j} ¢ E, either

(i) 7,7 lies on a toric chain inP, in which case: is also a toric chamber fo&* = (V, E U {i, j}),
and there is a unique extensiart of w such thatig+ (c) = wt, or

(i) 4,7 lies on no toric chains i, and then the hyperplang = x; mod 1 intersects the open toric
chambere.

Proof. Assertion (i) follows from Proposition 8.3: whenj lie on a toric chainC' in P, assertion (b) of
that proposition says that they lie on a toric directed patl for every representative of the clasd,
and hence the inequality; mod 1 < z; mod 1 (or its reverse inequality) is already implied by the other
inequalities defining the points @fgl (w) that come from the edges 6finduced byC'.

For assertion (ii), note that whenever there exist no paintsf the open toric chambet having
z; mod 1 = z; mod 1, then everyr in ¢ has eitherr; mod 1 < z; mod 1 or z; mod 1 < z; mod 1.
This shows thafi, j} is itself a toric chain in® = P(c); see Remark 6] 2. O

This suggests the following definition.
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Definition 7.2. Given a graplt? = (V, E) andw in Acyc(G), thetoric transitive closuref the pair(G, w)

is the pair(G*r, @*r) defined as follows. The edgesGf°* are obtained by adding to the edgesbéll
pairs {4, j} that are a subset of some toric directed pathyjrsee the dotted edges in{11) below. The
acyclic orientationut* orients the edgeé — ; if the toric directed path contains a path fraro j, rather
than fromj toi.

(11) im

Corollary 7.3. The toric transitive closure depends only upon the toricgpds = P(c) which satisfies
ag(e) = [w], in the following sense: given two graphs = (V, E;) fori = 1,2, andw; in Acyc(G;) with
ag,(c) = [w;], then

(i) Gt = Gter, and

(i) @i = o5,

Proof. Assertion (i) follows from the fact thafi, j} appears as an edge @i°" if and only if it is a

subset of some toric chain &f, and adding{:, j} does not affect the toric pos& = P(c), according to
Theorent Z1L(i). For assertion (ii), note that iterating dteen7.1(i) gives

Aguer (D17) = O, (1) = € = g, (w2) = Age, (@5).

Assertion (ii) then follows from Theorein 1.4. O

Remark 7.4. Note that the toric transitive closure afor is always a subset of the ordinary transitive
closure A, since any toric directed path that conta{isj) as a subsequence also contains an ordinary
directed path froni to ;.

8. PROOF OFTHEOREM[L.9

Here we wish to regard a pdif7, w) of a simple grapliz = (V, E) and acyclic orientatiow in Acyc(G)
as a subsetl C <I_(‘)V of the set of all possible directed edgf%v ={(i,j) € VxV :i# j}. Thenthe
toric transitive closure operatidids, w) — (G*°*, w"") from Definition[Z.2 may be regarded aslasure
operatoron ?V, that is, a mapl — A" from 2 X v to itself, satisfying

A C Ator’
= A C Bimplies A" C B, and
n Ator — Ator.
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Recall the statement of Theorém]1.9:

Theorem[1.9.The toric transitive closure operatiod — A" is a convex closure, that is,

fora # bwitha,b ¢ A* anda € AU {b}tor, onehash ¢ AU {a}tor.

For the purposes of the proof, introduce one further bit ohteology.

Definition 8.1. Forw in Acyc(G) and a toric directed pati = (i1, ..., %) in w of sizem > 3, as in[8),
call (i1, .,) thelong edgeof C, and call the other edg€s, , i2), (i2,i3), . - ., (im-1,im) theshort edges
of C.

Proof of Theoreri I19Proceed by contradiction: suppage;) # (k, £) arenotin A, but both

o (k,0)liesin AU (i, j)tor, say becausg, j) creates a toric directed pathalso containindk, ¢),
which was not already presentiti°r, and

e (i,7) liesin AU (k, é)tor, say becausek, /) creates a toric directed path also containingj, j),
which was not already presentii°r.

Introduce the (ordinary) partial ord€ronV which is the (ordinary) transitive closure df°*U{ (i, ), (k, £)}.
We use this to argue a contradiction in various cases.

Case 1. Either (i, ) is the long edge of C, or (k,¢) is the long edge of D. By relabeling, assume
without loss of generality thdt, j) is the long edge of’. Then inQ@, one has

(12) 1<k<l<j
with at least one of the two weak inequalities being strict.

Subcase 1ak, ¢) is also the long edge dP. Then inQ one also hag < i < j < ¢, which with (12) gives
E<i<k<t<j</{
forcing the contradictiofi, j) = (k, £).

Subcase 1h(k, ¢) is a short edge oD. Then since has(i, j) as its long edge and gives a toric directed
path containingk, ¢) (while A** had no such path),” must contain a directed path froknto ¢ with at
least two steps. Combining this with—{(k, ¢)} gives a toric directed path id'°* that containg3, 5);
contradiction.

Case 2. Both (i, j), (k,¢) are short edges of C, D, respectively. In this caseA*" cannot contain

a path fromi to j, else replacindi, j) in C with this path would give the contradiction th@t j) is in
Ater, Similarly, A** cannot contain a path frofto ¢. Also note that, sinc€ (or D) is a directed path
containing all four of(4, j, k, ¢}, the four of them are totally ordered@. We now argue in subcases based
on how(Q totally orders{i, j, k, £}.

Subcase 2a. Eithep hasi < j < k < {ork < ¢ < i < j. Inthis case, adding, j) to A*" cannot help
to create a directed path frokto ¢, contradicting the existence 6f.

Subcase 2b. Eithe&p hasi < k < ¢ < j, with at least one of the weak inequalities strictjox i < j < ¢,
with at least one of the weak inequalities stridssume without loss of generality, by relabeling, that one
is in the first casé < k < ¢ < j. But then addingi, j) to A*°* again cannot help to create a directed path
from k to ¢, contradicting the existence 6f.

Subcase 2c. Eith€p hasi < k < j < ¢, with at least two consecutive strictinequalitiesfox ¢ < £ < j,
with at least two consecutive strict inequalitidsssume without loss of generality, by relabeling, that one
is in the first casé < k < j < /. But then the consecutive strict inequalities either imjply existence
within At°r of a directed path fromto 5, or one fromk to ¢; contradiction. O
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9. TORIC HASSE DIAGRAMS
For convex closured — A, it is well-known that for any subset, its extreme points
ex(A) ={acA:a ¢ A—{a}}

gives the unique set which is minimal under inclusion amdhgLépsets having the same closuregsee
[7]. For ordinary transitive closure of an acyclic oriemat(G,w) as a subset oKy, its extreme points
are exactly the subset of directed ed@eg) in the usuaHasse diagranfor its associated partial ordé.
This suggests the following definition.

Definition 9.1. Given a graplG = (V, E)) andw in Acyc(G), corresponding to a subsétof [?V) its toric
Hasse diagranis the pair(éerasse, wtorHasse) corresponding to its subset of extreme pointé4) with
respect to the toric transitive closure operatibrR— At°r. The toric Hasse diagram of a toric pogets
(@)
Definition[Z.2 allows one to rephrase this as follows:
m (ytorHasse js obtained fromG by removing allchord edgegi;, ix } with | — k| > 2 from all toric

directed path€' = {i1, ..., iy} inw that haven = |C| > 4, and
m wrortasse jg the restrictionu| geormasse -

One then has the following analogue of Corollaryl 7.3.

Corollary 9.2. The toric Hasse diagram depends only on the toric péset P(c) havingag(c) = [w], in
the following sense: given two graptis = (V, E;) for i = 1,2, andw; in Acyc(G;) with ag(c) = [wi],
then

(l) égorHasse — égorHasse, and
(”) wiorHasse = wgorHasse'

Proof. Same as the proof of Corollaky ¥.3. The key point is that thie tirected path€® = {i1,...,im}
in w are the toric chains i#, and wheriC| > 4, removing chords front” still keeps it a toric chain. O

10. TORIC ANTICHAINS

Since chains in posets have a good toric analogue, one meghf the same is true for antichains.
Recall that arantichainof an ordinary poseP onV is a subsetd = {i1,...,i,} C V characterized

e combinatoriallyby the condition that no paifi, j} C A with ¢ # j are comparable, that is, they
lie on no chain ofP, or

e geometricallyby the equivalent condition that th&V'| — m + 1)-dimensional linear subspace
{x eRY :2;, =z, = --- = x;,, } intersects the open polyhedral cone/chamf&) in RY .

In the toric situation, these two conditions lead to diffgneotions of toric antichains.

Definition 10.1. Given a toric poseP = P(c) on the finite sel/, say thatd = {i1,...,in} C Visa

e combinatorial toric antichairof P if no {i, j} C A with i # j lie on a common toric chain aP.
e geometric toric antichaiif the subspacézr € RV /ZY : z;, = z;, = --- = x;,, } intersects the
open toric chamber = ¢(P).
By analogy to the notion of the width of a poset, which is theesof its largest antichain, define the
geometric (resp. combinatorial) toric widihf a toric poset to be the size of the largest geometric (resp.
combinatorial) toric antichain.

Given a toric poseP = P(c) and a graptG = (V, E) with ag(c) = [w], the definition and Corol-
lary[2.4 imply thatA C V is a geometric toric antichain d? if and only if A is an antichain of?(G,w’)
for somew’ = w. The following proposition should also be clear.

Proposition 10.2. In a toric posetP, every geometric toric antichain is a combinatorial torintachain.
Thus its geometric toric width is bounded above by its coatbimal toric width.

The next example shows that the inequality between thesadivons of toric width can be strict.
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Example 10.3.Consider the toric posét = P(c) whose toric Hasse diagram is the circular grépk Cg
and for whicha¢(c) contains the following representatives, w» andws of Acyc(G):

5

| AV AV
L A

1 1 5

All three of these orientations satisfy(w;) = 2 for the directed cycld = [(1,2, 3,4, 5,6)] of G, where
vy is Coleman’s/-function from Remark4]3. Moreover, Propositionl4.4 sdgit; (w) = 2 must hold for
any otherw in [w;]. Itis easy to check that for any such the directed graptG, w) must be isomorphic
to either(G, w1 ), (G,ws), or (G, w3).

ConsequentlyP has no toric chains except for those of cardinality, 2, that is, the empty set, the6
singletons and thé edge pairs irG. From this one can easily check that the combinatorial emtechains
of P are the empty sev, the 6 singletons, the pair§i, j} which do not form edges aoff, and the two
triples{1,3,5},{2,4,6}. In particular,P has combinatorial toric widtB.

However, we claim neither of these tripl€s, 3,5}, {2, 4, 6} can be a geometric toric antichain, so that
the geometric toric width oP is 2. To argue thaf1, 3,5} is not a geometric toric antichain, consider three
paths of lengti2 in G between the elements §f, 3, 5}, that is, the paths

1-2-3
3—-4-5
5—-6-1

The only way one could avoid having andirected path between two elements{af 3,5} would be if
w orients both edges in each of the three paths listed abovegasite directions. But this would lead to
vr(w) = 0 which is impossible fow in [w;]. The argument fof2, 4,6} is similar.

Despite the difference in the two notions of toric width, onight still hope that one of the notions gives
a toric analogue for one or both of these two classic resulishains and antichains in ordinary posets.

Theorem 10.4. For any (ordinary) finite poseP, one has:
(i) Dilworth’s Theorem|[6]:
max{|A| : A an antichaininP} = min{¢: V = U’_, C;, with C; chains inP}
(iiy Mirsky’s Theorem|[15]:
max{|C| : C'achaininP} = min{¢ : V = U{_, A;, with A; antichains inP}.

One at least has the following inequalities, coming fromehsy observation that a toric chain and toric
antichain (whether combinatorial or geometric) can irgetén at most one element.

Proposition 10.5. For a toric posetP, both versions (geometric or combinatorial) of a toric aiain lead
to the following inequalities holds:

min{/ : V = U{_, C;, with C; toric chains inP}

min{¢ : V = U¢_, A;, with A; toric antichains inP}.

max{|A4| : A atoric antichaininP}

<
max{|C| : C atoric chaininP} <

However, the following example shows that both inequaitirePropositiom 10]5 can be strict: neither of
our two notions of toric antichain leads to a version of Dilttx’s Theorem, nor of Mirsky’s theorem.
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Example 10.6.Consider the toric posét = P(c) whose toric Hasse diagram is the circular grépk Cs
and for whicha¢(c) contains the following representatives andws of Acyc(G):

4

5

|

4

2 5
1

Both orientations above satisfy (w;) = 1 for the directed cycld = [(1, 2, 3,4, 5)] of G. Propositioh 4.4
says that; (w) = 1 must hold for any othev in [w;], and so for such an, the directed grapfi?, w) must
be isomorphic to eithefG, w1) or (G, ws).

ConsequentlyP has no toric chains except for those of cardindiity, 2, that is, the empty se¥, the
5 singletons and the edge pairs irG. In particular, the maximum size of a toric chair2isFrom this one
can also easily check that the combinatorial toric antichaf P are the empty set, the5 singletons, and
the5 pairs{i, j} which do not form edges a¥. In fact, all of these are also geometric toric antichaios, s
in this example the two notions coincide, and for either dretoric width is2.

However, asV’| = 5, there is no partition ol into two toric chains (the analogue of Dilworth’s
Theorem fails), nor into two toric antichains (the analogtilirsky’s Theorem fails).

_—— N —>> W
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