
Clemson University
TigerPrints

Publications Physics and Astronomy

7-2015

Toric partial orders
Mike Develin

Matthew Macauley
Clemson University, macaule@clemson.edu

Victor Reiner
University of Minnesota

Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs

Part of the Mathematics Commons

This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications
by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Please use the publisher's recommended citation. http://www.ams.org/journals/tran/2016-368-04/S0002-9947-2015-06356-9/
home.html

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro_pubs?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro_pubs?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.ams.org/journals/tran/2016-368-04/S0002-9947-2015-06356-9/home.html
http://www.ams.org/journals/tran/2016-368-04/S0002-9947-2015-06356-9/home.html
mailto:kokeefe@clemson.edu


ar
X

iv
:1

21
1.

42
47

v1
  [

m
at

h.
C

O
]  

18
 N

ov
 2

01
2

TORIC PARTIAL ORDERS

MIKE DEVELIN, MATTHEW MACAULEY, AND VICTOR REINER

ABSTRACT. We define toric partial orders, corresponding to regions ofgraphic toric hyperplane arrangements,
just as ordinary partial orders correspond to regions of graphic hyperplane arrangements. Combinatorially, toric
posets correspond to finite posets under the equivalence relation generated by converting minimal elements
into maximal elements, or sources into sinks. We derive toric analogues for several features of ordinary partial
orders, such as chains, antichains, transitivity, Hasse diagrams, linear extensions, and total orders.

1. INTRODUCTION

We define finitetoric partial ordersor toric posets, which are cyclic analogues of partial orders, but
differ from an established notion ofpartial cyclic ordersalready in the literature; see Remark 1.11 below.
Toric posets can be defined in combinatorial geometric ways that are analogous to partial orders or posets:

• Posets on a finite setV correspond to open polyhedral cones that arise as chambers in graphic
hyperplane arrangementsin R

V ; toric posets correspond to chambers occurring withingraphic
toric hyperplane arrangementsin the quotient spaceRV /ZV .
• Posets correspond totransitive closuresof acyclic orientations of graphs; toric posets correspond

to a notion oftoric transitive closuresof acyclic orientations.
• Both transitive closure and toric transitive closure will turn out to beconvex closures, so that there

is a notion oftoric Hasse diagramfor a toric poset, like the Hasse diagram of a poset.

We next make this more precise, indicating where the main results will be proven.

1.1. Posets geometrically.We first recall (e.g. from Stanley [24], Greene and Zaslavsky[12, §7], Post-
nikov, Reiner and Williams [20,§§3.3-3.4]) geometric features of posets, specifically theirrelations to
graphic hyperplane arrangements and acyclic orientations, emphasizing notions with toric counterparts.

Let V be a finite set of cardinality|V | = n; often we will chooseV = [n] := {1, 2, . . . , n}. One can
think of apartially ordered setor posetP onV as a binary relationi <P j which is

irreflexive: i 6<P i,
antisymmetric: i <P j impliesj 6<P i, and
transitive: i <P j andj <P k impliesi <P k.

However, one can also identifyP with a certainopen polyhedral conein R
V

(1) c = c(P ) := {x ∈ R
V : xi < xj if i <P j}.

Note that the conec determines the posetP = P (c) as follows:i <P j if and onlyxi < xj for all x in c.
Each such conec also arises as a connected component in the complement of at least onegraphic

hyperplane arrangementfor a graphG, and often arises in several such arrangements, as explained below.
Given a simple graphG = (V,E), thegraphic arrangementA(G) is the union of all hyperplanes inRV

of the formxi = xj where{i, j} is in E. Each pointx = (x1, . . . , xn) in the complementRV−A(G)
determines anacyclic orientationω(x) of the edge setE: for an edge{i, j} in E, sincexi 6= xj , either

xi < xj andω(x) directsi→ j, or
xj < xi andω(x) directsj → i.
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2 M. DEVELIN, M. MACAULEY, AND V. REINER

It is easily seen that the fibers of this mapαG : x 7−→ ω(x) are the connected components of the comple-
mentRV−A(G), which are open polyhedral cones calledchambers. Thus the mapαG induces a bijection
between the setAcyc(G) of all acyclic orientationsω of G and the setChamA(G) of chambersc ofA(G):

(2) R
V−A(G)

'' ''❖❖
❖❖❖

❖❖❖
❖❖❖

αG // Acyc(G)

ChamA(G)

88

These two sets are well-known [12, Theorem 7.1], [24] to havecardinality

|Acyc(G)| = |ChamA(G)| = TG(2, 0)

whereTG(x, y) is theTutte polynomialof G [25].
Posets are also determined by their extensions tototal ordersw1 < · · · < wn, which are indexed by

permutationsw = (w1, . . . , wn) of V . The total orders index the chambers

cw := {x ∈ R
V : xw1

< xw2
< · · · < xwn

}

in the complement of thecomplete graphic arrangementA(KV ), also known as thereflection arrangement
of typeAn−1 or braid arrangement. Given a posetP , its setL(P ) of all linear extensionsor extensions to
a total orderhas the property that

c(P ) =
⋃

w∈L(P )

cw

where(·) denotes topological closure. Thus when onefixesthe graphG, chambersc (or posetsP (c))
arising asα−1G (ω) for variousω in Acyc(G) are determined by their setsL(P (c)) of linear extensions.

The same posetP or chamberc = c(P ) generally arises in many graphic arrangementsA(G), as
one varies the graphG, leading to ambiguity in its labeling by a pair(G,ω) with ω in Acyc(G). Nev-
ertheless, this ambiguity is well-controlled, in that there are two canonical choices(Ḡ(P ), ω̄(P )) and
(ĜHasse(P ), ωHasse(P )) with the following properties.

• A graphG hasc(P ) occurring inChamA(G) if and only if ĜHasse(P ) ⊆ G ⊆ Ḡ(P ) where⊆ is
inclusion of edge sets. In this case,αG(c(P )) = ω whereω is the restriction̄ω(P )|G.
• The map which sends(G,ω) 7−→ (Ḡ(P ), ω̄(P )) is transitive closure. It adds intoG all edges
{i, j} which lie on somechain (= totally ordered subset) C of P , and directsi → j if i <C j.
Alternatively phrased, transitive closure adds the directed edgei→ j to (G,ω) whenever there is
a directed path fromi to j in (G,ω).

The existence of a uniqueinclusion-minimalchoice(ĜHasse(P ), ωHasse(P )), called theHasse diagramfor
P , follows from this well-known fact [8, 9]: thetransitive closureA 7−→ Ā on subsetsA of all possible
oriented edges

←→
K V = {(i, j) ∈ V × V : i 6= j}, is aconvex closure, meaning that

(3) for a 6= b with a, b 6∈ Ā anda ∈ A ∪ {b}, one hasb /∈ A ∪ {a}.

1.2. Toric posets. We do not initially define a toric posetP on the finite setV via some binary (or ternary)
relation. Rather we define it in terms of chambers in atoric graphic arrangementAtor(G) = π(A(G)),
the image of the graphic arrangementA(G) under the quotient mapRV π

→ R
V /ZV . These are important

examples ofunimodular toric arrangementsdiscussed by Novik, Postnikov and Sturmfels in [19,§§4-5];
see also Ehrenborg, Readdy and Slone [10].

Definition 1.1. A connected componentc of the complementRV /ZV−Ator(G) is called atoric chamber
for G; denote byChamAtor(G) the set of all toric chambers ofAtor(G).

A toric posetP is a setc that arises as a toric chamber for at least one graphG. We will writeP = P (c)
andc = c(P ), depending upon the context.

Example 1.2. Whenn = 2, so V = {1, 2}, there are only two simple graphsG = (V,E), a graph
G0 with no edges and the complete graphK2 with a single edge{1, 2}. For both such graphs, the torus
R

2/Z2 remains connected after removing the arrangementAtor(G), and hence they each have only one
toric chamber; call these chambersc0(= R

2/Z2) for the graphG0, andc(= R
2/Z2−{x1 = x2}) for the
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graphK2. They represent two different toric posetsP (c0) andP (c), even though their topological closures
c̄ = c̄0(= c0) = R

2/Z2 are the same.

A point x in R
V /ZV does not have uniquely defined coordinates(x1, . . . , xn). However, it is well-

defined to speak of thefractional partxi mod 1, that is, the unique representative of the class ofxi in R/Z
that lies in[0, 1). Therefore a pointx in R

V /ZV−Ator(G), still induces an acyclic orientationω(x) of G,
as follows: for each edge{i, j} in E, sincexi 6= xj mod Z, either

xi mod 1 < xj mod 1, andω(x) directsi→ j, or
xj mod 1 < xi mod 1, andω(x) directsj → i.

Denote this mapx 7→ ω(x) by R
V /ZV−Ator(G)

ᾱG−→ Acyc(G). Unfortunately, two points lying in the
same toric chamberc in ChamtorAtor(G) need not map to the same acyclic orientation underᾱG. This
ambiguity leads one naturally to the following equivalencerelation on acyclic orientations.

Definition 1.3. When two acyclic orientationsω andω′ of G differ only by converting one source vertex
of ω into a sink ofω′, say that they differ by aflip. The transitive closure of the flip operation generates an
equivalence relation onAcyc(G) denoted by≡.

A thorough investigation of this source-to-sink flip operation and equivalence relation was undertaken
by Pretzel in [21], and studied earlier by Mosesjan [17]. It has also appeared at other times in various
contexts1 in the literature [4, 11, 14, 23]. Its relation to geometry oftoric chambersc = c(P ) or toric
posetsP = P (c) is our first main result, proven in§ 2.

Theorem 1.4. The map̄αG induces a bijection betweenChamAtor(G) andAcyc(G)/≡ as follows:

(4) R
V /ZV−Ator(G)

����

ᾱG // Acyc(G)

����
ChamAtor(G)

ᾱG

// Acyc(G)/≡

In other words, two pointsx, x′ in R
V /ZV−Ator(G) haveᾱG(x) ≡ ᾱG(x

′) if and only ifx, x′ lie in the
same toric chamberc in ChamAtor(G).

The two setsChamAtor(G) andAcyc(G)/≡ appearing in the theorem are known to have cardinality

|Acyc(G)/≡ | = |ChamAtor(G)| = TG(1, 0)

whereTG(x, y) is the Tutte polynomial ofG; see [13] and [19, Theorem 4.1].

Example 1.5. A treeG onn vertices has Tutte polynomialTG(x, y) = xn−1. It will haveT (2, 0) = 2n−1

acyclic orientationsω and induced partial orders, but onlyT (1, 0) = 1 toric chamber or toric partial order:
any two acyclic orientations of a tree are equivalent by a sequence of source-to-sink moves.

Example 1.6. As a less drastic example, considerV = {1, 2, 3, 4} andG = (V,E) this graph:

1 2

3 4

It has Tutte polynomialTG(x, y) = x3+x2+x+y, and hence hasTG(2, 0) = 23+22+2+0 = 14 acyclic
orientationsω. Theseω fall into TG(1, 0) = 13+12+1+0 = 3 different≡-classes[ω], having cardinalities

1 Pretzel called the source-to-sink flippushing down maximal vertices; in [14], it was called aclick. In the category of represen-
tations of a quiver, it is related to Bernstein, Gelfand and Ponomarev’sreflection functors[1].
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4, 4, 6, respectively, corresponding to three different toric posetsPi or chambersci in ChamAtor(G):

P1 : 4

3

__❄❄❄❄❄❄❄

2

OO

1

??⑧⑧⑧⑧⑧⑧⑧

OO 1

4

__❄❄❄❄❄❄❄

3

OO

2

??⑧⑧⑧⑧⑧⑧⑧

OO 2

1

__❄❄❄❄❄❄❄

4

OO

3

??⑧⑧⑧⑧⑧⑧⑧

OO 3

2

__❄❄❄❄❄❄❄

1

OO

4

??⑧⑧⑧⑧⑧⑧⑧

OO

P2 : 1

2

__❄❄❄❄❄❄❄

3

OO

4

??⑧⑧⑧⑧⑧⑧⑧

OO 2

3

__❄❄❄❄❄❄❄

4

OO

1

??⑧⑧⑧⑧⑧⑧⑧

OO 3

4

__❄❄❄❄❄❄❄

1

OO

2

??⑧⑧⑧⑧⑧⑧⑧

OO 4

1

__❄❄❄❄❄❄❄

2

OO

3

??⑧⑧⑧⑧⑧⑧⑧

OO

P3 : 1

2

??⑧⑧⑧⑧⑧⑧⑧
4

__❄❄❄❄❄❄❄

3

??⑧⑧⑧⑧⑧⑧⑧

__❄❄❄❄❄❄❄

2 4

1

OO ??⑧⑧⑧⑧⑧⑧⑧
3

OO__❄❄❄❄❄❄❄

2

1

??⑧⑧⑧⑧⑧⑧⑧
3

__❄❄❄❄❄❄❄

4

??⑧⑧⑧⑧⑧⑧⑧

__❄❄❄❄❄❄❄

3

2

??⑧⑧⑧⑧⑧⑧⑧
4

__❄❄❄❄❄❄❄

1

??⑧⑧⑧⑧⑧⑧⑧

__❄❄❄❄❄❄❄

1 3

2

OO ??⑧⑧⑧⑧⑧⑧⑧
4

OO__❄❄❄❄❄❄❄

4

1

??⑧⑧⑧⑧⑧⑧⑧
3

__❄❄❄❄❄❄❄

2

??⑧⑧⑧⑧⑧⑧⑧

__❄❄❄❄❄❄❄

Toric total orders(see§ 5) are indexed by the(n− 1)! cyclic equivalence classes of permutations

(5)

[w] := [(w1, w2, . . . , wn)] = { (w1, w2, . . . , wn−1, wn),
(w2, . . . , wn−1, wn, w1),

...
(wn, w1, w2, . . . , wn−1) }

and correspond to the toric chambersc[w] in the complement of thetoric complete graphic arrangement
Ator(KV ). For a particular toric posetP = P (c), one says that[w] is a toric total extensionof P if
c[w] ⊆ c. Denote byLtor(P ) the set of all such toric total extensions[w] of P . Although it is possible (see
Example 5.3 below) for two different toric posetsP to have the same setLtor(P ), the following assertion
(combining Proposition 3.2 and Corollary 5.2 below) still holds.

Proposition 1.7. When one fixes the graphG, the toric chamberc (or its posetP = P (c)) for which
ᾱG(c) = [ω] is completely determined by its topological closurec. Furthermore one hasc =

⋃

w∈Ltor(P ) c[w].

so that this closure depends only on the set of toric total extensionsLtor(P ).
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Example 1.8.The graphG from Example 1.6 and its three toric posetsP1, P2, P3 partition the(4−1)! = 6
different toric total orders onV = {1, 2, 3, 4} into their sets of toric total extensionsLtor(Pi) as follows:

Ltor(P1) = {[(1, 2, 3, 4)]},

Ltor(P2) = {[(1, 4, 3, 2)]},

Ltor(P3) = {[(1, 2, 4, 3)], [(1, 3, 2, 4)], [(1, 3, 4, 2)], [(1, 4, 2, 3)]}.

As with posets, the same toric posetP = P (c) arises as a chamberc in manytoric graphic arrange-
mentsAtor(G). However, as with posets, this ambiguity is well-controlled, in that there are two canonical
choices of equivalence classes(Ḡtor(P ), [ω̄tor(P )]) and(ĜtorHasse(P ), [ωtorHasse(P )]) with the following
properties.

• A graphG hasc(P ) occurring inChamAtor(G) if and only if

ĜtorHasse(P ) ⊆ G ⊆ Ḡtor(P )

where⊆ is inclusion of edges. In this case, ifᾱG(c(P )) = [ω], thenω can be taken to be the
restriction toG of a particular orientation in the class[ω̄tor(P )].
• The map which sends(G,ω) 7−→ (Ḡtor, ω̄tor) may be described by what will be called (in§ 7)

toric transitive closure: one adds intoG all edges{i, j} which lie on sometoric chainC in P .
Here a toric chain (see§ 6) is a subsetC ⊂ V which is totally ordered ineveryposet associated
with an orientation in the class[ω]. One directsi→ j if there is atoric directed pathfrom i to j in
(G,ω), as defined in§ 4 below. Alternatively phrased, toric transitive closure will add the directed
edgei→ j to (G,ω) whenever there is a toric directed path fromi to j in (G,ω).

The existence of the uniqueinclusion-minimalchoice(ĜtorHasse(P ), [ωtorHasse(P )]), which we will call
thetoric Hasse diagramof P , follows from our second main result, proven in§ 8.

Theorem 1.9. Considered as a closure operationA 7−→ Ātor on subsetsA of all possible oriented edges
←→
K V = {(i, j) ∈ V × V : i 6= j}, toric transitive closure is a convex closure, that is, it satisfies(3) above.

Example 1.10.The toric posetP1 = P (c1) from Example 1.6 appears as a chamberc1 in ChamAtor(Gi)
for exactly four graphsG1, G2, G3, G4, each shown below with an orientationωi such that̄αGi

(c1) = [ωi].

4

3

__❄❄❄❄❄❄❄

2

OO

1

??⑧⑧⑧⑧⑧⑧⑧

OO 4

3

__❄❄❄❄❄❄❄

2

OO

WW✴✴✴✴✴✴✴✴✴✴✴✴✴

1

??⑧⑧⑧⑧⑧⑧⑧

OO 4

3

__❄❄❄❄❄❄❄

2

OO

1

??⑧⑧⑧⑧⑧⑧⑧

OO

GG✎✎✎✎✎✎✎✎✎✎✎✎✎

4

3

__❄❄❄❄❄❄❄

2

OO

WW✴✴✴✴✴✴✴✴✴✴✴✴✴

1

??⑧⑧⑧⑧⑧⑧⑧

OO

GG✎✎✎✎✎✎✎✎✎✎✎✎✎

For any of these four pairs(Gi, ωi) with i = 1, 2, 3, 4, one has that the leftmost pair is its Hasse diagram

(Ĝi

torHasse
, ωtorHasse

i ), and the rightmost pair is its toric transitive closure(Ḡtor
i , ω̄tor

i ).

We close this Introduction with two remarks, one on terminology, the other giving further motivation.

Remark 1.11. Aside from the connection to toric hyperplane arrangements, we have chosen the name
“toric partial order”, as opposed to the arguably more natural term “cyclic partial order”, because the latter
is easily confused withpartial cyclic orders, the following pre-existing concept in the literature, going back
at least as far as Megiddo [16].

Definition 1.12. A partial cyclic orderonV is a ternary relationT ⊆ V × V × V that is

antisymmetric: If (i, j, k) ∈ T then(k, j, i) 6∈ T ;
transitive: If (i, j, k) ∈ T and(i, k, ℓ) ∈ T , then(i, j, ℓ) ∈ T ;
cyclic: If (i, j, k) ∈ T , then(j, k, i) ∈ T .
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Definition 1.13. When a partial cyclic order onV is completein the sense that for every triple{i, j, k} ⊆ V
of distinct elements,T contains some permutation of(i, j, k), thenT is called atotal cyclic order. A total
cyclic order onV is easily seen to be the same a toric total order: specify a cyclic equivalence class[w] as
in (5), and then check that[w] is determined by knowing its restrictions[w|{i,j,k}] for all triples{i, j, k}.

Partial cyclic orders have been widely studied, and have some interesting features not shared by ordinary
partial orders. For example, every partial order can be extended to a total order, but not every partial cyclic
order can be extended to a total cyclic order; an example of this on13 vertices is given in [16].

Remark 1.14. We mention a further analogy between posets and toric posets, related to Coxeter groups,
that was one of our motivations for formalizing this concept.

Recall [2] that aCoxeter system(W,S) is a groupW with generating setS = {s1, . . . , sn} having
presentationW = 〈S : (sisj)

mi,j = e〉 for somemi,j in {1, 2, 3, . . .} ∪ {∞}, wheremi,i = 1 for all i
andmi,j ≥ 2 for i 6= j. Associated to(W,S) is theCoxeter graphon vertex setS with an edge{si, sj}
labeled bymi,j whenevermi,j > 2, so thatsi, sj do not commute; ignoring the edge labels, we will call
this the unlabeled Coxeter graph. ACoxeter elementfor (W,S) is an element of the formsw1

sw2
· · · swn

for some choice of a total orderw onS.

Theorem 1.15.Fix a Coxeter system(W,S) with unlabeled Coxeter graphG, and consider the map send-
ing an acyclic orientationω in Acyc(G) having posetP = αG(ω) to the Coxeter elementsw1

sw2
· · · swn

for any choice of a linear extensionw in L(P ).

(i) This map is well-defined, and induces a bijection (see [2,§V.6] and [3])

Acyc(G)←→ { Coxeter elements for(W,S) }.

(ii) It also induces a well-defined map on the toric equivalence classes[ω] to theW -conjugacy classes
of all Coxeter elements, and gives a bijection (see [11, 13, 14, 22] and [19, Remark 5.5])

Acyc(G)/≡ ←→ {W -conjugacy classes of Coxeter elements for(W,S)}.

We believe toric partial orders will play a key role in resolving more questions aboutW -conjugacy classes.

2. TORIC ARRANGEMENTS AND PROOF OFTHEOREM 1.4

Recall the statement of the theorem.

Theorem 1.4.The map̄αG induces a bijection betweenChamAtor(G) andAcyc(G)/≡ as follows:

R
V /ZV−Ator(G)

����

ᾱG // Acyc(G)

����
ChamAtor(G)

ᾱG

// Acyc(G)/≡

In other words, two pointsx, x′ in R
V /ZV−Ator(G) haveᾱG(x) ≡ ᾱG(x

′) if and only ifx, x′ lie in the
same toric chamberc in ChamAtor(G).

Before embarking on the proof, we introduce one further geometric object intimately connected with

the graphic arrangementA(G) =
⋃

{i,j}∈E{x ∈ R
V : xi = xj} ⊂ R

V , and

the toric graphic arrangementAtor(G) = π(A(G)), its image underRV π
→ R

V /ZV .

Definition 2.1. Define theaffine graphic arrangementin R
V by

(6) Aaff(G) := π−1(Ator(G)) = π−1(π(A(G))) =
⋃

{i,j}∈E
k∈Z

{x ∈ R
V : xi = xj + k}.

Call the connected componentsĉ of the complementRV−Aaff(G) affine chambers, and denote the set of
all such chambersChamAaff(G).

The reason for introducingAaff(G) andChamAaff(G) is the following immediate consequence of the
path-lifting property forRV π

→ R
V /ZV as a (universal) covering map (see e.g. [18, Chap. 13]), along with

the definition (6) ofAaff(G) as the full inverse image underπ ofAtor(G).
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Proposition 2.2. Two pointsx, y in R
V /ZV−Ator(G) lie in the same chamberc in ChamAtor(G) if and

only if they have two liftŝx, ŷ lying in the same affine chamberĉ in ChamAaff(G).

The point will be that, since affine chambersĉ are (open) convex polyhedral regions inRV , it is sometimes
easier to argue about lifted pointsx̂ rather thanx itself.

Our proof of Theorem 1.4 proceeds by showing the mapR
V /ZV−Ator(G)

ᾱG−→ Acyc(G) descends to

a well-defined mapChamAtor(G)
ᾱG−→ Acyc(G)/≡,

which is surjective,
and injective.

2.1. Well-definition. We must show that whenx, y lie in the same toric chamberc in ChamAtor(G),
thenᾱG(x) ≡ ᾱG(y). As in Proposition 2.2, pick liftŝx, ŷ in R

V and a patĥγ between them in some
affine chamber̂c. Because these chambers are open, one can assume without loss of generality that̂γ takes
steps in coordinate directions only, and therefore thatx̂, ŷ differ in only a single coordinate: saŷxi 6= ŷi,
but x̂j = ŷj for all j 6= i. Furthermore, as̄αG(x) changes only when a coordinate ofx̂ passes through an
integer, without loss of generality, one may assume

x̂i mod 1 = 1− ε,

ŷi mod 1 = ε

for some arbitrarily smallε > 0. Since the points on̂γ all avoidAaff(G), and theith coordinate will pass
through0 at some point on the patĥγ, each of the coordinateŝxj(= ŷj) for indicesj with {i, j} in E must
have0 < x̂j mod 1 < 1. Hence one can chooseε small enough that allj for which{i, j} in E satisfy

(ŷi mod 1 =) ε < x̂j mod 1 < 1− ε (= x̂i mod 1) .

One finds that̄αG(x̂) andᾱG(ŷ) differ by changingi from sink to a source, sōαG(x̂) ≡ ᾱG(ŷ), as desired.

2.2. Surjectivity. It suffices to check that the mapRV /ZV−Ator(G)
ᾱG−→ Acyc(G) is surjective. Given

an acyclic orientationω of G, pick any linear extensionw1 < · · · < wn of its associated partial order
α−1G (ω) onV . Then choose real numbers0 < xw1

< · · · < xwn
< 1, so that

x = (x1, . . . , xn) = (x1 mod 1, . . . , xn mod 1)

and hencēαG(x) = ω.

2.3. Injectivity. The key to injectivity is the following lemma.

Lemma 2.3. Supposex lies in a toric chamberc in ChamAtor(G), andᾱG(x) = ω. Then for anyω′ ≡ ω,
there exists somex′ in the same toric chamberc havingᾱG(x

′) = ω′.

Proof. It suffices to check this whenω′ is obtained fromω by changing a source vertexi in ω to a sink in
ω′. SinceᾱG(x) = ω, one must have for eachj with {i, j} in E that

(0 ≤)xi mod 1 < xj mod 1(< 1).

Lift x to x̂ = (x1 mod 1, . . . , xn mod 1), and chooseε small enough so that eachj with {i, j} in E
hasxj mod 1 < 1 − ε. Define ŷ to have all the same coordinates asx̂ except forŷi = −ε, so that
ŷi mod 1 = 1 − ε, and hencey := π(ŷ) hasᾱG(y) = ω′ by construction. Note that the straight-line path
γ̂ from x̂ to ŷ changes only theith coordinate, decreasing it from̂xi to ŷi = −ε, and hence never crosses
any of the affine hyperplanes inAaff(G). Thereforêx, ŷ lie in the same affine chamber, andx, y lie in the
same toric chamberc. �

Now suppose that pointsx, x′ in two toric chambersc, c′ haveᾱG(x) ≡ ᾱG(x
′), and we must show that

c = c′. By Lemma 2.3, without loss of generality one hasᾱG(x) = ω = ᾱG(x
′). Thus one can liftx, x′

to x̂, x̂′ havingx̂i, x̂
′
i in [0, 1) for all i, and henceαG(x̂) = ω = αG(x̂

′). For each edge{i, j} in E, say
directedi→ j in ω, one has both

0 ≤ x̂i < x̂j < 1,

0 ≤ x̂′i < x̂′j < 1.



8 M. DEVELIN, M. MACAULEY, AND V. REINER

Thus every point̂y on the straight-line patĥγ between̂x andx̂′ also satisfies0 ≤ ŷi < ŷj < 1, avoiding
all affine hyperplanes inAaff(G). Thusx̂, x̂′ lie in the same affine chamberĉ, so thatx, x′ lie in the same
toric chamber, as desired. This completes the proof of injectivity, and hence the proof of Theorem 1.4.�

One corollary to Theorem 1.4 is a (slightly) more concrete description of a toric chamberc.

Corollary 2.4. For a graphG = (V,E) and toric chamberc in ChamAtor(G) with ᾱG(c) = [ω], one has

c =
⋃

ω′∈[ω]

ᾱ−1G (ω′) =
⋃

ω′∈[ω]

{x ∈ R
V /ZV : xi mod 1 < xj mod 1 if ω′ directsi→ j}.

3. TORIC EXTENSIONS

Recall that for two (ordinary) posetsP, P ′ on a setV , one says thatP ′ is an extension ofP wheni <P j
impliesi <P ′ j. It is easily seen how to reformulate this geometrically:P ′ is an extension ofP if and only
one has an inclusion of their open polyhedral conesc(P ′) ⊆ c(P ), as defined in (1). This motivates the
following definition.

Definition 3.1. Given two toric posetsP, P ′ say thatP ′ is a toric extension ofP if one has an inclusion of
their open chambersc(P ′) ⊆ c(P ) within R

V /ZV .

An obvious situation where this can occur is when one hasG = (V,E) andG′ = (V,E′) two graphs
on the same vertex setV , with G anedge-subgraphof G′ in the sense thatE ⊆ E′,

Proposition 3.2. Fix G = (V,E) a simple graph.

(i) Toric chambers inChamAtor(G) are determined by their topological closures: for any pair of
chambersc1, c2 in ChamAtor(G), if c̄1 = c̄2 thenc1 = c2.

(ii) If G is an edge-subgraph ofG′, thenc̄ =
⋃

c′ c̄
′, where the union runs over all toric chambersc′

in ChamAtor(G
′) for whichP (c′) is a toric extension ofP (c).

Proof. For (i), first note that any toric chamberc in ChamAtor(G) has boundarȳc−c contained in
Ator(G). Now assume two toric chambersc1, c2 in ChamAtor(G) havec̄1 = c̄2, and we wish to show
c1 = c2. Any pointx of c1 hasx ∈ c1 ⊆ c̄1 = c̄2. However,x cannot lie inAtor(G) sincec1 is disjoint
fromAtor(G), sox does not lie in̄c2−c2 ⊂ Ator(G) by our first observation. Hencex lies in c2. But then
c1, c2 are connected components ofR

V /ZV−ChamAtor(G), sharing the pointx, soc1 = c2.
For (ii), we first argue that

(7) c̄ = π
(

π−1(c)
)

using the fact that the covering mapRV π
→ R

V /ZV is locally a homeomorphism. For any pointx in
R

V /ZV there is an open neighborhoodU which lifts to an open neighborhood̂U , mapping homeomor-
phically underπ to U . Hencex is the limit of a sequence{xi}

∞
i=1 of points in c if and only if its lift

x̂ = π|−1
Û

(x) is a limit of the sequence of points{π|−1
Û

(xi)}
∞
i=1 in π−1(c). This shows (7).

Since a toric chamberc hasπ−1(c) given by a union of affine chambersĉ in ChamAaff(G), in light of
(7), it suffices to show that any affine chamberĉ in ChamAaff(G) has closurêc given by the union of the
closureŝc′ taken over all affine chamberŝc′ in ChamAaff(G

′) that satisfŷc′ ⊆ ĉ. However, this is clear
sinceĉ is a polyhedron bounded by hyperplanes taken fromAaff(G), whileAaff(G

′) simply refines this
decomposition with more hyperplanes. �

4. TORIC DIRECTED PATHS

A particular special case of Proposition 3.2 is worth noting: every graphG = (V,E) is an edge-subgraph
of thecomplete graphKV . As noted in the Introduction, acyclic orientationsω of KV correspond to total
ordersw1 < · · · < wn, indexed by permutationsw = (w1, . . . , wn) of V = [n] := {1, 2, . . . , n}.
It is easy to characterize the equivalence relation≡ on these total orders, and hence the toric chambers
ChamAtor(KV ), in terms of cyclic shifts of these linear orders. However, it is worthwhile to define this
concept is a bit more generally– it turns out to be crucial in Section 6.
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Definition 4.1. Given a simple graphG = (V,E) and an acyclic orientationω of G, say that a sequence
(i1, i2, . . . , im) of elements ofV forms atoric directed path inω if (G,ω) contains all of these edges:

(8) im

im−1

bb❉❉❉❉❉❉❉❉

...

OO

i2

OO

i1

OO

<<②②②②②②②②②

In particular, for small values ofm, a toric directed path inω

• of sizem = 2 is a directed edge(i1, i2),
• of sizem = 1 is a degenerate path(i1) for anyi1 in V , and
• of sizem = 0 is the empty subset∅ ⊂ V .

Proposition 4.2. An acyclic orientationω of G contains a toric directed path(i1, i2, . . . , im) if and only
if every acyclic orientationω′ in its≡-equivalence class contains a (unique) toric directed path

(iℓ, iℓ+1, . . . , im, i1, i2, . . . , iℓ−1)

which is one of its cyclic shifts, that is, it lies in the cyclic equivalence class[(i1, . . . , im)].

Proof. A toric directed path(i1, i2, . . . , im) has only one source, namelyi1, and only one sink, namelyim.
The assertion follows by checking that the effect of a source-to-sink flip ati1 (resp.im) is a cyclic shift to
the toric directed path(i2, . . . , im, i1) (resp.(im, i1, i2, . . . , im−1)). �

Remark 4.3. We point out a reformulation of the sink-to-source equivalence relation≡ onAcyc(G), due
to Pretzel [21], leading to a reformulation of toric directed paths, useful in Section 10 on toric antichains.

Given a simple graphG = (V,E), say that a cyclic equivalence classI = [(i1, . . . , im)] of ordered
vertices is adirected cycleof G if m ≥ 3 andG contains all of the (undirected) edges{ij , ij+1}j=1,2...,m,
with subscripts taken modulom. Given such a directed cycleI defineColeman’sν-function[5]

Acyc(G)
νI−→ Z

whereνI(ω) for an acyclic orientationω of G is defined to be the number of edges{ij, ij+1} in I whichω
orientsij → ij+1 minus the number of edges{ij, ij+1} whichω orientsij+1 → ij . It is easy to see that
νI is preserved by flips, and thus extends in a well-defined manner to ≡-classes[ω]. In fact, Pretzel [21]
showed that this is a complete≡-invariant:

Proposition 4.4. Fixing the graphG = (V,E), two acyclic orientationsω, ω′ in Acyc(G) haveω ≡ ω′ if
and only ifνI(ω) = νI(ω

′) for every directed cycleI ofG.

Toric directed paths then have an obvious characterizationin terms of theirνI function.

Corollary 4.5. Given a directed cycle inI = [(i1, . . . , im)] in G, an acyclic orientationω in Acyc(G)
contains a toric directed path lying in the cyclic equivalence classI if and only ifνI(ω) = m− 1.

5. TORIC TOTAL ORDERS

An important special case of toric directed paths occurs when one considers acyclic orientations of the
complete graphKV . Acyclic orientations ofKV correspond to permutationsw = (w1, . . . , wn) of V
(or total orders), and always form toric directed paths inw. Hence their toric equivalence classes are the
equivalence classes[w] of permutations up to cyclic shifts, ortoric total orders. This concept coincides
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with the pre-existing concept oftotal cyclic orderfrom Definition 1.13, even though toricpartial orders
are not the same aspartial cyclic orders. Therefore, we can use these terms interchangeably.

By Theorem 1.4, these toric total orders[w] index the chambersc[w] in ChamAtor(KV ). By Corol-
lary 2.4, one has this more concrete description of such chambers:

(9) c[w] =

n
⋃

i=1

{x ∈ R
V /ZV : xwi

mod 1 < · · · < xwn
mod 1 < xw1

mod 1 < · · · < xwi−1
mod 1}.

Definition 5.1. Given a toric posetP = P (c) on V , say that a toric total order[w] on V is a toric total
extensionof P if the toric chamberc[w] of ChamAtor(KV ) is contained inc. Denote byLtor(P ) the set
of all such toric total extensions[w] of P .

The following corollary is then a special case of Proposition 3.2.

Corollary 5.2. Fix a simple graphG = (V,E). Then any toric chamber/posetc = c(P ) in ChamAtor(G)
has topological closure

c̄ =
⋃

[w]∈Ltor(P )

c̄[w].

and is completely determined by its setLtor(P ) of toric total extensions: ifc1, c2 in ChamAtor(G) have
Ltor(P (c1)) = Ltor(P (c2)), thenc1 = c2.

Example 5.3. Corollary 5.2 fails when one doesnotfix the graphG. For example, whenV = {1, 2, 3}, all
7 of thenon-completegraphsG 6= KV = K3 share the property thatChamAtor(G) has only one chamber
c = c(P ) with Ltor(P ) = {[(1, 2, 3)], [(1, 3, 2)]}, whose closurēc is the entire torusR3/Z3. However, the
unique toric chambersc for these7 graphs are all different, when considered asopensubsets ofR3/Z3,
and therefore each represents adifferenttoric posetP = P (c).

On the other hand, the complete graphVV = K3 has2 different toric equivalence classes of acyclic
orientations, representing two different chambers withinthe same toric arrangementAtor(K3), and two
different toric posets:P (c[(1,2,3)]) andP (c[(1,3,2)]).

6. TORIC CHAINS

We introduce the toric analogue of a chain (= totally orderedsubset) in a poset, and explicate its rela-
tion to the toric directed paths from Definition 4.1 and the toric total extensions from Definition 5.1 (or
equivalently, total cyclic extensions).

As motivation, note that in an ordinary posetP (c), a chainC = {i1, . . . , im} ⊆ V has the following
geometric description: there is a total ordering(i1, . . . , im) of C such that every pointx in the open
polyhedral conec = c(P ) hasxi1 < xi2 < · · · < xim .

Definition 6.1. Fix a toric posetP = P (c) on a finite setV . Call a subsetC = {i1, . . . , im} ⊆ V a
toric chain in P if there exists a cyclic equivalence class[(i1, . . . , im)] of linear orderings ofC with the
following property: for everyx in the open toric chamberc = c(P ) there exists some(j1, . . . , jm) in
[(i1, . . . , im)] for which

(10) xj1 mod 1 < xj2 mod 1 < · · · < xjm mod 1.

In this situation, we will say thatP |C = [(i1, . . . , im)].

Remark 6.2. Note that

• singleton sets{i} and the empty subset∅ ⊂ V are always toric chains inP ,
• subsets of toric chains are toric chains, and
• a pair{i, j} is a toric chain inP = P (c) if and only if every pointx in the open toric chamberc

hasxi mod 1 6= xj mod 1; in particular, this will be true wheneverc as appears as toric chamber
in ChamAtor(G) for a graphG having{i, j} as an edge ofG.

Though the definition of toric chain does not refer to a particular graphG, there are several convenient
characterizations that involve a graph. In the following proposition, we list five equivalent conditions. The
exception when|C| 6= 2 is needed because the last condition is vacuously true whenever |C| = 2; in this
case, only the first four are equivalent.
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Proposition 6.3. Fix a toric posetP = P (c) on a finite setV , andC = {i1, . . . , im} ⊆ V . The first four
of the following five conditions are equivalent, and whenm = |C| 6= 2, they are also equivalent to the fifth.

(a) C is a toric chain inP , withP |C = [(i1, . . . , im)].
(b) For every graphG = (V,E) and acyclic orientationω of G havingᾱG(c) = [ω], the subsetC is

a chain in the posetP (G,ω), ordered in some cyclic shift of the order(ii, . . . , im).
(c) For every graphG = (V,E) and acyclic orientationω of G havingᾱG(c) = [ω], the subsetC

occurs as a subsequence of a toric directed path inω, in some cyclic shift of the order(ii, . . . , im).
(d) There exists a graphG = (V,E) and acyclic orientationω of G havingᾱG(c) = [ω] such thatC

occurs as a subsequence of a toric directed path inω, in some cyclic shift of the order(i1, . . . , im).
(e) Every total cyclic extension[w] in Ltor(P (c)) has the same restriction[w|C ] = [(i1, . . . , im)].

The following easy and well-known lemma will be used in the proof.

Lemma 6.4. When two elementsi, j are incomparable in a finite posetQ onV , one can choose a linear
extensionw = (w1, . . . , wn) in L(Q) that hasi, j appearing consecutively, say(ws, ws+1) = (i, j).

Proof. Beginw with any linear extensionw1, w2, . . . , ws−1 for the order idealQ<i ∪ Q<j, followed by
ws = i, ws+1 = j, and finish with any linear extensionws+2, ws+3, . . . , wn for Q− (Q≤i ∪Q≤j). �

Proof of Proposition 6.3.Note that if |C| ≤ 1, all five conditions (a)-(e) are vacuously true, so without
loss of generality|C| ≥ 2. We will first show (a) implies (b) implies (c) implies (d) implies (e). Then we
will show that (e) implies (a) when|C| ≥ 3, and (d) implies (a) when|C| = 2.

(a) implies (b). Assume thatC is a toric chain ofP , with P |C = [(i1, . . . , im)], and take a graphG and
orientationω such that̄αG(c) = [ω].

We first show by contradiction thatC must be totally ordered inQ := P (G,ω). Assume not, and say
i, j in C are incomparable inQ. By Lemma 6.4 there is a linear extensionw = (w1, . . . , wn) in L(Q)
havingi, j appear consecutively, say(ws, ws+1) = (i, j). Choosex in R

n with 0 ≤ xw1
< · · · < xwn

< 1
and letx′ be obtained byx by exchangingxi, xj , that isx′i = xj andx′j = xi. Sincex = x mod 1 and
x′ = x′ mod 1, one has̄αG(x) = ω = ᾱG(x

′), and hencex, x′ lie in c = c(P ). The condition (10) onx, x′

implies that[w|C ] = [w′|C ] should give the same cyclic order onC, which forcesm = 2 andC = {i, j}.
However, the averagex′′ = x+x′

2 gives a third point inc havingx′′i mod 1 = x′′i = x′′j = x′′j mod 1,
contradicting (10).

Once one knows thatC is totally ordered inQ, consideration of (10) for the pointx chosen as above
implies thatw|C lies in [(i1, . . . , im)], and hence the same is true ofQ|C .

(b) implies (c). Assume for the toric posetP = P (c), every graphG and orientationω with ᾱG(c) = [ω]
hasC totally ordered inP (G,ω) by a cyclic shift(j1, . . . , jm) in [(i1, . . . , im)]. We will show thatC
actually occurs in this order as a subsequence of some toric directed path inω.

By Proposition 4.2, one is free to alterω within the class[ω]. So chooseω within [ω] among all those
for whichP (G,ω) onV totally ordersC asj1 < · · · < jm, but minimizing the cardinality|Z| where

Z := {z ∈ V : z there is a directedω path fromjm to z}

Note thatZ is nonempty, since it containsjm. We claim that minimality forces|Z| = 1, that is,Z = {jm}.
To argue the claim by contradiction, assumeZ 6= {jm}. Then one can find anω-sinkz 6= jm in Z, asV is
finite, andω is acyclic. Perform a sink-to-source flip atz to create a new orientationω′ in [ω]. Thenω′ still
hasP (G,ω′) totally orderingC asj1 < · · · < jm, but its setZ ′ has|Z ′| < |Z| becauseZ ′ ⊂ Z−{z}.

Now Z = {jm} means thatjm is anω-sink. Createω′ by flipping jm from sink to source. Sincej1 is
supposed to be comparable withjm in P (G,ω′), one must havejm <P (G,ω′) j1, that is, there is anω′-path
of the formjm → k → · · · → j1; possiblyk = j1 here. But this means that prior to the sink-to-source flip
of jm, one had a toric directedω-pathk → · · · → j1 → j2 → · · · → jm that containedC, as desired.

(c) implies (d). Trivial.

(d) implies (e). Assume the graphG has ᾱG(c) = [ω] andC occurs in the order(i1, . . . , im) as a
subsequence of a toric directed path inω. We must show that every total cyclic extension[w] of P = P (c)
has restriction[w|C ] = [(i1, . . . , im)].
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By Definition 5.1, one hasc[w] ⊆ c. By (9), one can pick a pointx in c[w], so that

xw1
mod 1 < · · · < xwn

mod 1.

Sincex also lies inc, one has̄αG(x) = ω′ ≡ ω. Proposition 4.2 implies thatω′ contains as a toric directed
path some cyclic shift(j1, . . . , jm) of (i1, . . . , im). Hence

xj1 mod 1 < · · · < xjm mod 1,

which forcesw|C = (j1, . . . , jm), as desired.

(e) implies (a) when |C| ≥ 3. Assume that every total cyclic extension[w] of P = P (c) hasw|C lying
in the same cyclic equivalence class[(i1, . . . , im)]. We want to show that every pointx in c satisfies (10).
Recall from Corollary 2.4 that there is at least one graphG and≡-class[ω] containingᾱG(x), that is,
ᾱG(c) = [ω]. It suffices to show that the partial orderQ := P (G,ω) onV induced by any orientationω in
this≡-class has restrictionQ|C to the subsetC giving a total order(j1, . . . , jm), and this total order lies in
[(i1, . . . , im)].

Suppose thatQ|C is not a total order; say elementsi, j in C are incomparable inQ. By Lemma 6.4,
one can then choose linear extensionsw,w′ in L(Q) that both havei, j consecutive, and differ only in
swappingi, j, say(ws, ws+1) = (i, j) and(w′s, w

′
s+1) = (j, i). Pick pointsx, x′ that satisfy

0 ≤ xw1
< · · · < xwn

< 1

0 ≤ x′w′

1
< · · · < x′w′

n
< 1.

Sincex = x mod 1, x′ = x′ mod 1, one finds thatx, x′ lie in c[w], c[w′], respectively. Also one has
ᾱG(x) = ω = ᾱG(x

′) so that bothx, x′ lie in c. Hencec[w], c[w′] ⊆ c, that is, both[w], [w′] are total cyclic
extensions inLtor(P (c)). However, since|C| ≥ 3, there exists some third elementk in C−{i, j}, and
[w], [w′] differ in their cyclic ordering of{i, j, k}. This contradicts assumption (e), soQ|C is a total order.

Once one knows thatQ|C is a total orderj1 < · · · < jm, the above argument shows that(j1, . . . , jm)
lies in the cyclic equivalence class[w|C ] for everyw in Ltor(P ), which is[(i1, . . . , im)] by assumption.

(d) implies (a) when |C| = 2. SupposēαG(c) = [ω] andC occurs as a subsequence of a toric directed
path inω, with i1 < i2. By Proposition 4.2, ifω′ ≡ ω, thenC occurs in a toric directed path inω′. This
means that for anyx with ᾱG(x) = ω′, we havexi1 mod 1 6= xi2 mod 1, and so eitherxi1 mod 1 <
xi2 mod 1 or xi2 mod 1 < xi1 mod 1 must hold for everyx in c. ThusC is a toric chain ofP (c). �

7. TORIC TRANSITIVITY

We next clarify the edges that are “forced” in a toric partialorder, an analogue of transitivity that we
refer astoric transitivity.

Theorem 7.1. Fix a toric posetP = P (c) onV , and assume thatG = (V,E) hasc appearing as a toric
chamber inChamAtor(G), sayᾱG(c) = [ω]. Then for any non-edge pair{i, j} 6∈ E, either

(i) i, j lies on a toric chain inP , in which casec is also a toric chamber forG+ = (V,E ∪ {i, j}),
and there is a unique extensionω+ of ω such that̄αG+(c) = ω+, or

(ii) i, j lies on no toric chains inP , and then the hyperplanexi = xj mod 1 intersects the open toric
chamberc.

Proof. Assertion (i) follows from Proposition 6.3: wheni, j lie on a toric chainC in P , assertion (b) of
that proposition says that they lie on a toric directed path in ω for every representative of the class[ω],
and hence the inequalityxi mod 1 < xj mod 1 (or its reverse inequality) is already implied by the other
inequalities defining the points of̄α−1G (ω) that come from the edges ofG induced byC.

For assertion (ii), note that whenever there exist no pointsx of the open toric chamberc having
xi mod 1 = xj mod 1, then everyx in c has eitherxi mod 1 < xj mod 1 or xj mod 1 < xi mod 1.
This shows that{i, j} is itself a toric chain inP = P (c); see Remark 6.2. �

This suggests the following definition.
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Definition 7.2. Given a graphG = (V,E) andω in Acyc(G), thetoric transitive closureof the pair(G,ω)
is the pair(Ḡtor, ω̄tor) defined as follows. The edges ofḠtor are obtained by adding to the edges ofG all
pairs{i, j} that are a subset of some toric directed path inω; see the dotted edges in (11) below. The
acyclic orientation̄ωtor orients the edgei → j if the toric directed path contains a path fromi to j, rather
than fromj to i.

(11) im

im−1

bb❉❉❉❉❉❉❉❉

im−2

OO

YY✷
✷
✷
✷
✷
✷
✷
✷

...

OO

i3

OO

TT✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭

i2

OO

SS✫
✫
✫
✫
✫
✫
✫
✫
✫
✫
✫
✫
✫
✫
✫
✫
✫
✫
✫

i1

OO

<<②②②②②②②②②

EE☞
☞
☞

☞
☞

☞
☞

☞

JJ✖
✖
✖
✖
✖
✖
✖
✖
✖
✖
✖
✖
✖
✖
✖
✖

KK✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘

Corollary 7.3. The toric transitive closure depends only upon the toric poset P = P (c) which satisfies
ᾱG(c) = [ω], in the following sense: given two graphsGi = (V,Ei) for i = 1, 2, andωi in Acyc(Gi) with
ᾱGi

(c) = [ωi], then

(i) Ḡtor
1 = Ḡtor

2 , and
(ii) ω̄tor

1 ≡ ω̄tor
2 .

Proof. Assertion (i) follows from the fact that{i, j} appears as an edge in̄Gtor if and only if it is a
subset of some toric chain ofP , and adding{i, j} does not affect the toric posetP = P (c), according to
Theorem 7.1(i). For assertion (ii), note that iterating Theorem 7.1(i) gives

ᾱ−1
Ḡtor(ω̄

tor
1 ) = ᾱ−1G1

(ω1) = c = ᾱ−1G2
(ω2) = ᾱ−1

Ḡtor(ω̄
tor
2 ).

Assertion (ii) then follows from Theorem 1.4. �

Remark 7.4. Note that the toric transitive closure of̄Ator is always a subset of the ordinary transitive
closureĀ, since any toric directed path that contains(i, j) as a subsequence also contains an ordinary
directed path fromi to j.

8. PROOF OFTHEOREM 1.9

Here we wish to regard a pair(G,ω) of a simple graphG = (V,E) and acyclic orientationω in Acyc(G)

as a subsetA ⊂
←→
K V of the set of all possible directed edges

←→
K V = {(i, j) ∈ V × V : i 6= j}. Then the

toric transitive closure operation(G,ω) 7−→ (Ḡtor, ω̄tor) from Definition 7.2 may be regarded as aclosure

operatoron
←→
K V , that is, a mapA 7−→ Ātor from 2

←→
K V to itself, satisfying

A ⊆ Ātor,
A ⊆ B impliesĀtor ⊆ B̄tor, and
¯̄Ator = Ātor.
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Recall the statement of Theorem 1.9:

Theorem 1.9.The toric transitive closure operationA 7−→ Ātor is a convex closure, that is,

for a 6= b with a, b 6∈ Ātor anda ∈ A ∪ {b}
tor

, one hasb /∈ A ∪ {a}
tor

.

For the purposes of the proof, introduce one further bit of terminology.

Definition 8.1. Forω in Acyc(G) and a toric directed pathC = (i1, . . . , im) in ω of sizem ≥ 3, as in (8),
call (i1, im) the long edgeof C, and call the other edges(i1, i2), (i2, i3), . . . , (im−1, im) theshort edges
of C.

Proof of Theorem 1.9.Proceed by contradiction: suppose(i, j) 6= (k, ℓ) arenot in Ātor, but both

• (k, ℓ) lies inA ∪ (i, j)
tor

, say because(i, j) creates a toric directed pathC also containing(k, ℓ),
which was not already present in̄Ator, and

• (i, j) lies inA ∪ (k, ℓ)
tor

, say because(k, ℓ) creates a toric directed pathD also containing(i, j),
which was not already present in̄Ator.

Introduce the (ordinary) partial orderQ onV which is the (ordinary) transitive closure ofĀtor∪{(i, j), (k, ℓ)}.
We use this to argue a contradiction in various cases.

Case 1. Either (i, j) is the long edge of C, or (k, ℓ) is the long edge of D. By relabeling, assume
without loss of generality that(i, j) is the long edge ofC. Then inQ, one has

(12) i ≤ k < ℓ ≤ j

with at least one of the two weak inequalities being strict.

Subcase 1a.(k, ℓ) is also the long edge ofD. Then inQ one also hask ≤ i < j ≤ ℓ, which with (12) gives

k ≤ i ≤ k < ℓ ≤ j ≤ ℓ

forcing the contradiction(i, j) = (k, ℓ).

Subcase 1b.(k, ℓ) is a short edge ofD. Then sinceC has(i, j) as its long edge and gives a toric directed
path containing(k, ℓ) (while Ātor had no such path),C must contain a directed path fromk to ℓ with at
least two steps. Combining this withD−{(k, ℓ)} gives a toric directed path in̄Ator that contains(i, j);
contradiction.

Case 2. Both (i, j), (k, ℓ) are short edges of C,D, respectively. In this case,Ātor cannot contain
a path fromi to j, else replacing(i, j) in C with this path would give the contradiction that(i, j) is in
Ātor. Similarly, Ātor cannot contain a path fromk to ℓ. Also note that, sinceC (or D) is a directed path
containing all four of{i, j, k, ℓ}, the four of them are totally ordered inQ. We now argue in subcases based
on howQ totally orders{i, j, k, ℓ}.

Subcase 2a. EitherQ hasi < j ≤ k < ℓ or k < ℓ ≤ i < j. In this case, adding(i, j) to Ātor cannot help
to create a directed path fromk to ℓ, contradicting the existence ofC.

Subcase 2b. EitherQ hasi ≤ k < ℓ ≤ j, with at least one of the weak inequalities strict, ork ≤ i < j ≤ ℓ,
with at least one of the weak inequalities strict.Assume without loss of generality, by relabeling, that one
is in the first casei ≤ k < ℓ ≤ j. But then adding(i, j) to Ātor again cannot help to create a directed path
from k to ℓ, contradicting the existence ofC.

Subcase 2c. EitherQ hasi ≤ k ≤ j ≤ ℓ, with at least two consecutive strict inequalities, ork ≤ i ≤ ℓ ≤ j,
with at least two consecutive strict inequalities.Assume without loss of generality, by relabeling, that one
is in the first casei ≤ k ≤ j ≤ ℓ. But then the consecutive strict inequalities either implythe existence
within Ātor of a directed path fromi to j, or one fromk to ℓ; contradiction. �
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9. TORIC HASSE DIAGRAMS

For convex closuresA 7−→ Ā, it is well-known that for any subsetA, its extreme points

ex(A) := {a ∈ A : a 6∈ A−{a}}

gives the unique set which is minimal under inclusion among all subsets having the same closure asA; see
[7]. For ordinary transitive closure of an acyclic orientation (G,ω) as a subset of

←→
KV , its extreme points

are exactly the subset of directed edges(i, j) in the usualHasse diagramfor its associated partial orderP .
This suggests the following definition.

Definition 9.1. Given a graphG = (V,E) andω in Acyc(G), corresponding to a subsetA of
←→
KV , its toric

Hasse diagramis the pair(ĜtorHasse, ωtorHasse) corresponding to its subset of extreme pointsex(A) with
respect to the toric transitive closure operationA 7−→ Ātor. The toric Hasse diagram of a toric posetP is
(G)

Definition 7.2 allows one to rephrase this as follows:

ĜtorHasse is obtained fromG by removing allchord edges{ij, ik} with |j − k| ≥ 2 from all toric
directed pathsC = {i1, . . . , im} in ω that havem = |C| ≥ 4, and
ωtorHasse is the restrictionω|

ĜtorHasse .

One then has the following analogue of Corollary 7.3.

Corollary 9.2. The toric Hasse diagram depends only on the toric posetP = P (c) havingᾱG(c) = [ω], in
the following sense: given two graphsGi = (V,Ei) for i = 1, 2, andωi in Acyc(Gi) with ᾱG(c) = [ωi],
then

(i) ĜtorHasse
1 = ĜtorHasse

2 , and
(ii) ωtorHasse

1 ≡ ωtorHasse
2 .

Proof. Same as the proof of Corollary 7.3. The key point is that the toric directed pathsC = {i1, . . . , im}
in ω are the toric chains inP , and when|C| ≥ 4, removing chords fromC still keeps it a toric chain. �

10. TORIC ANTICHAINS

Since chains in posets have a good toric analogue, one might ask if the same is true for antichains.
Recall that anantichainof an ordinary posetP onV is a subsetA = {i1, . . . , im} ⊆ V characterized

• combinatoriallyby the condition that no pair{i, j} ⊂ A with i 6= j are comparable, that is, they
lie on no chain ofP , or
• geometricallyby the equivalent condition that the(|V | − m + 1)-dimensional linear subspace
{x ∈ R

V : xi1 = xi2 = · · · = xim} intersects the open polyhedral cone/chamberc(P ) in R
V .

In the toric situation, these two conditions lead to different notions of toric antichains.

Definition 10.1. Given a toric posetP = P (c) on the finite setV , say thatA = {i1, . . . , im} ⊆ V is a

• combinatorial toric antichainof P if no {i, j} ⊂ A with i 6= j lie on a common toric chain ofP .
• geometric toric antichainif the subspace{x ∈ R

V /ZV : xi1 = xi2 = · · · = xim} intersects the
open toric chamberc = c(P ).

By analogy to the notion of the width of a poset, which is the size of its largest antichain, define the
geometric (resp. combinatorial) toric widthof a toric poset to be the size of the largest geometric (resp.
combinatorial) toric antichain.

Given a toric posetP = P (c) and a graphG = (V,E) with ᾱG(c) = [ω], the definition and Corol-
lary 2.4 imply thatA ⊆ V is a geometric toric antichain ofP if and only if A is an antichain ofP (G,ω′)
for someω′ ≡ ω. The following proposition should also be clear.

Proposition 10.2. In a toric posetP , every geometric toric antichain is a combinatorial toric antichain.
Thus its geometric toric width is bounded above by its combinatorial toric width.

The next example shows that the inequality between these twonotions of toric width can be strict.
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Example 10.3.Consider the toric posetP = P (c) whose toric Hasse diagram is the circular graphG = C6

and for whichᾱG(c) contains the following representativesω1, ω2 andω3 of Acyc(G):

5

4

OO

3

OO

2

OO

6

TT✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯

1

OO ??⑧⑧⑧⑧⑧⑧⑧

4

3

OO

2

OO

6

1

OO ??⑧⑧⑧⑧⑧⑧⑧
5

OO

TT✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯

3 6

2

OO

5

OO

1

OO

GG✎✎✎✎✎✎✎✎✎✎✎✎✎
4

OO

WW✴✴✴✴✴✴✴✴✴✴✴✴✴

All three of these orientations satisfyνI(ωi) = 2 for the directed cycleI = [(1, 2, 3, 4, 5, 6)] of G, where
νI is Coleman’sν-function from Remark 4.3. Moreover, Proposition 4.4 says thatνI(ω) = 2 must hold for
any otherω in [ωi]. It is easy to check that for any suchω, the directed graph(G,ω) must be isomorphic
to either(G,ω1), (G,ω2), or (G,ω3).

Consequently,P has no toric chains except for those of cardinality0, 1, 2, that is, the empty set∅, the6
singletons and the6 edge pairs inG. From this one can easily check that the combinatorial toricantichains
of P are the empty set∅, the6 singletons, the pairs{i, j} which do not form edges ofG, and the two
triples{1, 3, 5}, {2, 4, 6}. In particular,P has combinatorial toric width3.

However, we claim neither of these triples{1, 3, 5}, {2, 4, 6} can be a geometric toric antichain, so that
the geometric toric width ofP is 2. To argue that{1, 3, 5} is not a geometric toric antichain, consider three
paths of length2 in G between the elements of{1, 3, 5}, that is, the paths

1− 2− 3

3− 4− 5

5− 6− 1

The only way one could avoid having anω-directed path between two elements of{1, 3, 5} would be if
ω orients both edges in each of the three paths listed above in opposite directions. But this would lead to
νI(ω) = 0 which is impossible forω in [ωi]. The argument for{2, 4, 6} is similar.

Despite the difference in the two notions of toric width, onemight still hope that one of the notions gives
a toric analogue for one or both of these two classic results on chains and antichains in ordinary posets.

Theorem 10.4. For any (ordinary) finite posetP , one has:

(i) Dilworth’s Theorem [6]:

max{|A| : A an antichain inP} = min{ℓ : V = ∪ℓi=1Ci, with Ci chains inP}

(ii) Mirsky’s Theorem [15]:

max{|C| : C a chain inP} = min{ℓ : V = ∪ℓi=1Ai, with Ai antichains inP}.

One at least has the following inequalities, coming from theeasy observation that a toric chain and toric
antichain (whether combinatorial or geometric) can intersect in at most one element.

Proposition 10.5.For a toric posetP , both versions (geometric or combinatorial) of a toric antichain lead
to the following inequalities holds:

max{|A| : A a toric antichain inP} ≤ min{ℓ : V = ∪ℓi=1Ci, with Ci toric chains inP}
max{|C| : C a toric chain inP} ≤ min{ℓ : V = ∪ℓi=1Ai, with Ai toric antichains inP}.

However, the following example shows that both inequalities in Proposition 10.5 can be strict: neither of
our two notions of toric antichain leads to a version of Dilworth’s Theorem, nor of Mirsky’s theorem.
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Example 10.6.Consider the toric posetP = P (c) whose toric Hasse diagram is the circular graphG = C5

and for whichᾱG(c) contains the following representativesω1 andω2 of Acyc(G):

4

3

OO

2

OO

5

WW✴✴✴✴✴✴✴✴✴✴✴✴✴

1

OO ??⑧⑧⑧⑧⑧⑧⑧

3

2

OO

5

1

OO ??⑧⑧⑧⑧⑧⑧⑧
4

OO

WW✴✴✴✴✴✴✴✴✴✴✴✴✴

Both orientations above satisfyνI(ωi) = 1 for the directed cycleI = [(1, 2, 3, 4, 5)] of G. Proposition 4.4
says thatνI(ω) = 1 must hold for any otherω in [ωi], and so for such anω, the directed graph(G,ω) must
be isomorphic to either(G,ω1) or (G,ω2).

Consequently,P has no toric chains except for those of cardinality0, 1, 2, that is, the empty set∅, the
5 singletons and the5 edge pairs inG. In particular, the maximum size of a toric chain is2. From this one
can also easily check that the combinatorial toric antichains ofP are the empty set∅, the5 singletons, and
the5 pairs{i, j} which do not form edges ofG. In fact, all of these are also geometric toric antichains, so
in this example the two notions coincide, and for either one the toric width is2.

However, as|V | = 5, there is no partition ofV into two toric chains (the analogue of Dilworth’s
Theorem fails), nor into two toric antichains (the analogueof Mirsky’s Theorem fails).
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