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Toric Quasifolds Elisa Prato 

Quasifolds are a class of highly singular spaces. 
They are locally modeled by manifolds modulo 
the smooth action of countable groups. If all 
the countable groups happen to be finite, then 
quasifolds are orbifolds, and if they all happen 
to be equal to the identity, they are manifolds. 

They were first introduced in [25] in order to address, from 
the symplectic viewpoint, the longstanding open problem 
of extending the classical constructions of toric geometry 
to convex polytopes that are not rational.

In order to clarify this last statement, let us begin by re-
calling what it means for a convex polytope to be rational. 
It is well known that every convex polytope in (Rn)∗ can 
be written as the bounded intersection of finitely many 
closed half-spaces:

where X1,… ,Xd ∈ Rn , �1,… , �d ∈ R , and d is the 
number of facets (codimension-one faces) of Δ [31, Theo-
rem 1.1]. It is not restrictive to assume that Δ has full 
dimension n. We remark that the vectors X1,… ,Xd are 
orthogonal to the facets of Δ and inward-pointing. For 
brevity, we will refer to these vectors as normals for Δ . 
The polytope is then said to be rational if the normals can 
be chosen inside of a lattice L ⊂ Rn . Rationality is a rather 
restrictive condition, and in fact, many interesting convex 
polytopes are not rational, for instance the regular penta-
gon and the regular dodecahedron.

Toric geometry, initiated by Michel Demazure in [12], 
sets out to associate with each rational convex polytope a 
beautiful geometric space with special torus symmetries. 
One of the remarkable consequences of doing so is that the 
geometry of the space can be used to deduce combinatorial 
information on the polytope, and conversely. The construc-
tion of toric spaces can be done from different geometric 
perspectives: algebraic [13], complex [1, 10], and symplec-
tic [11].1

The crucial fact to recall here is that these constructions 
always rely on the lattice L and on a set of primitive nor-
mals in L. Evidently, for nonrational polytopes this setup is 
missing. The first step in generalizing toric geometry to this 
case (see [25]) consists in replacing the lattice with a similar 

(1)Δ =

d�

j=1

{ � ∈ (Rn)∗ ∣ ⟨�,Xj⟩ ≥ �j },

enough object that allows sufficient freedom to contain a 
set of normals for the polytope. The optimal choice turns 
out to be a quasilattice Q, namely the Z-span of a set of  
R-spanning vectors of Rn.

In the case of the regular pentagon, for example, one 
considers the Z-span of the fifth roots of unity (see Fig-
ure 1). We thus have a new framework given by the triple

and once this has been fixed, the standard toric construc-
tions can be extended. For polytopes that are simple (mean-
ing that each vertex is the intersection of exactly n facets), 
these constructions give rise to what we call toric quasi-
folds. This was done first in the symplectic category [25], 
and then, jointly with Fiammetta Battaglia, in the complex/
Kähler category [5]. The torus symmetries of the rational 
case are replaced by the symmetries of a quasitorus: it 
is the abelian group Rn∕Q , which is itself a quasifold. 
Though not Hausdorff in general, toric quasifolds have 
beautiful atlases that generalize the standard toric atlases 
of the rational case: each chart is the quotient of an open 
subset of Cn ≃ R2n modulo the smooth action of a count-
able subgroup of the standard torus Rn∕Zn.

Battaglia has extended both the symplectic and com-
plex/Kähler constructions to completely general convex 
polytopes, no longer necessarily simple; the resulting toric 
spaces are even more singular, but they turn out to be 
stratified by toric quasifolds [3, 4].

It is interesting that quasilattices are also crucial in the 
theories of aperiodic tilings (see [22] and [28, Chapter 2]). 
The pentagonal quasilattice above, for example, arises in 
relation to Penrose tilings.

It is our goal here to illustrate toric quasifolds, and their 
atlases, by describing a number of examples. We do so in 
the symplectic category, but of course everything can be 
reformulated in the complex one. We begin with a  
2-dimensional example that displays all of the main char-
acteristics of quasifolds: the quasisphere. We pass on to 
considering examples of dimensions 4 and 6 that came 
about by exploring the natural connection with Penrose 
and Ammann tilings. We then briefly address the toric 
spaces corresponding to the regular convex polyhedra. We 
conclude with a number of considerations.

For the formal definition of quasifold, we refer 
the reader to [25, 5]. The complex and symplectic 

(2)(Δ,Q, normals in Q) ,

1The starting point in the algebraic and complex category is actually, more generally, a fan instead of a polytope, but the basic idea 
that follows applies verbatim (see [6]).
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atlases for toric quasifolds are explicitly described in [5, 
proofs of Theorems 2.2 and 3.2].

From Sphere to Orbisphere 
to Quasisphere
Quasispheres, introduced in [25], are generalizations of 
spheres and orbispheres, so we will begin by recalling some 
relevant facts about those two objects.

For a positive real number r, let B(r) ⊂ C be the open 

ball with center the origin and radius 
√
r . Consider, for 

every positive real number � , the group

Notice that Γ� is the identity when � is an integer, it is 
finite for � rational, and it is countable for � irrational. The 
group Γ� acts on the ball B(r) by complex multiplication. 
For z ∈ B(r) , we will denote by [z] ∈ B(r)∕Γ� the corre-
sponding orbit.

The Sphere
Let us write the 2- and 3-dimensional unit spheres as 
follows:

The surjective mapping

is known as the Hopf fibration. It is easily seen that the 
fibers of this mapping are given by the orbits of the circle 
group

acting on S3 by complex multiplication as follows:

Γ� =
{
e2�ik� ∈ S1 ∣ k ∈ Z

}
.

S2 = { (z, x) ∈ C ×R ∣ |z|2 + x2 = 1 },

S3 = { (z,w) ∈ C2 ∣ |z|2 + |w|2 = 1 } .

f ∶ S3 ⟶ S2 ,

(z,w) ⟼
(
2zw, |z|2 − |w|2

)
,

S1 = { e2�i� ∣ � ∈ R }

e2�i� ⋅ (z,w) =
(
e2�i�z, e2�i�w

)
.

Therefore, S2 can be identified with the space of orbits 
S3∕S1 . Notice that the S1-orbits through the points (0, 1) 
and (1, 0) of S3 correspond, respectively, to the south pole, 
S = (0,−1) , and north pole, N = (0, 1) , of S2.

For each (z,w) ∈ S3 , we denote by [z ∶ w] ∈ S3∕S1 ≃ S2 
the corresponding orbit. Let us describe the standard atlas 
of S2 . Consider the covering given by the open subsets

As the notation suggests, the first of these subsets is a 
neighborhood of the south pole S = [0 ∶ 1] , while the 
second is a neighborhood of the north pole N = [1 ∶ 0] . 
Finally, we have the homeomorphisms

and

The Orbisphere
This simple quotient construction can be extended to the 
orbifold setting as follows. Let p, q be two relatively prime 
positive integers and consider the 3-dimensional ellipsoid

The circle group S1 acts on S3p,q as follows:

Taking the space of orbits in this case yields the 2-dimen-
sional orbifold S2p,q = S3p,q∕S

1 , called the orbisphere. It 

admits the two singular points S =
�
0 ∶

√
p
�
 and 

N =
�√

q ∶ 0
�
.

Similarly to what we have done for the sphere, for each 
(z,w) ∈ S3p,q , we denote by [z ∶ w] ∈ S2p,q the corresponding 

orbit. We then consider the covering given by the two 
open subsets

The first is a neighborhood of the point S =
�
0 ∶

√
p
�
 , 

while the second is a neighborhood of the point 
N =

�√
q ∶ 0

�
 . The mappings

US =
{
[z ∶ w] ∈ S2 ∣ w ≠ 0

}
,

UN =
{
[z ∶ w] ∈ S2 ∣ z ≠ 0

}
.

B(1) ⟶ US , z ⟼
�
z ∶

√
1 − �z�2

�
,

B(1) ⟶ UN , w ⟼

�√
1 − �w�2 ∶ w

�
.

S3p,q =
{
(z,w) ∈ C2 ∣ p|z|2 + q|w|2 = pq

}
.

(3)e2�i� ⋅ (z,w) =
(
e2�ip�z, e2�iq�w

)
.

US =
{
[z ∶ w] ∈ S2p,q ∣ w ≠ 0

}
,

UN =
{
[z ∶ w] ∈ S2p,q ∣ z ≠ 0

}
.

B(q)∕Γ 1
q
⟶ US , [z] ⟼

[
z ∶

√
p −

p

q
|z|2

]
,

Figure 1.   The regular pentagon and the fifth roots of unity.
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and

are homeomorphisms, turning US and UN into orbifold 
charts.

The Quasisphere
We now extend the construction even further. Let s, t be 
two positive real numbers with s∕t ∉ Q and consider the 
3-dimensional ellipsoid

Simply substituting s, t for p, q in (3) does not define 
an S1-action on S3s,t . In fact, if you replace � by � + h , 
where h is a nonzero integer, you get e2�i(�+h) = e2�i� , but (
e2�is(�+h), e2�it(�+h)

)
≠
(
e2�is�, e2�it�

)
 . The idea is to con-

sider the irrational wrap on the standard two-torus instead:

The standard action of N on S3s,t is now well defined, 
and we take our quasisphere to be the space of orbits 
S2s,t = S3s,t∕N . This quotient is the simplest example of a 
quasifold. It is wilder than the sphere and orbisphere in 
that it is not a Hausdorff topological space. However, quasi-
sphere charts are a straightforward and very natural gener-
alization of the standard sphere and orbisphere charts.

Exactly as done above, for each (z,w) ∈ S3s,t , we denote 
by [z : w] the corresponding orbit. We then consider the 
covering of S2s,t given by the open subsets

The first is a neighborhood of the point S =
�
0 ∶

√
s
�
 , while 

the second is a neighborhood of the point N =
�√

t ∶ 0
�
 . 

They are each homeomorphic to the quotient of an open 
subset of C modulo the action of a countable group. In fact, 
the mappings

and

are homeomorphisms.

Remark 1.  The sphere is the symplectic toric manifold cor-
responding to the unit interval with lattice Z and primitive 
normals X1 = 1 , X2 = −1 . The orbisphere, on the other hand, 

B(p)∕Γ 1
p
⟶ UN , [w] ⟼

[√
q −

q

p
|w|2 ∶ w

]
,

S3s,t =
{
(z,w) ∈ C2 ∣ s|z|2 + t|w|2 = st

}
.

N =
{ (

e2�is�, e2�it�
)
∈ R2∕Z2 ∣ � ∈ R

}
.

US =
{
[z ∶ w] ∈ S

2
s,t ∣ w ≠ 0

}
,

UN =
{
[z ∶ w] ∈ S

2
s,t ∣ z ≠ 0

}
.

B(t)∕Γs∕t ⟶ US , [z] ⟼

[
z ∶

√
s −

s

t
|z|2

]
,

B(s)∕Γt∕s ⟶ UN , [w] ⟼

[√
t −

t

s
|w|2 ∶ w

]
,

is the symplectic toric orbifold corresponding to the same 
interval with same lattice and normals X1 = q , X2 = −p . 
Finally, the quasisphere is the symplectic toric quasifold cor-
responding to the same interval with quasilattice Q = sZ + tZ 
and normals X1 = t , X2 = −s . Wanting to consider a rational 
polytope, such as the unit interval, in a nonrational setting 
may seem strange at first sight, but in fact it is quite useful. 
We will see other instances of this in the next section. Also, 
the sphere and orbisphere provide the simplest examples 
showing that the same polytope and (quasi)lattice yield dif-
ferent symplectic toric spaces if the normals are changed. 
The choice of normals within the same quasilattice is in fact 
totally free, but sometimes a natural choice is dictated by 
the context. This is actually the case for all of the examples 
that follow.

Quasifolds and Aperiodic Tilings
Quasifolds Corresponding to Penrose 
and Ammann Tilings
The fact that quasilattices appear naturally in aperiodic 
tilings led us to explore, jointly with Battaglia, the connec-
tion between toric quasifolds and Penrose and Ammann 
tilings.

Penrose rhombus tilings are aperiodic tilings that are 
composed of two different types of rhombuses, thick and 
thin [24]. These rhombuses are simple convex polytopes, 
and it is natural to want to compute the corresponding 
toric quasifolds. The normals of each rhombus taken 
separately actually span a lattice, so each of them is rational 
in its own right. However, if we want to treat simultane-
ously all of the rhombuses of a given tiling, we need to 
consider a quasilattice. The natural choice here is the 
pentagonal quasilattice that we introduced earlier, with 
normals the relevant fifth roots of unity (see Figure 2). The 
generalized toric construction then yields a pair of four-
dimensional toric quasifolds, one for each type of rhombus. 
They are both given by a quotient of the type 
(S2(r) × S2(r))∕Γ , where S2(r) denotes the 2-sphere of 
radius r and Γ is a countable subgroup of the standard 

2-torus. The radius r is 
�
1

2

√
2 + �

�1∕2
 for the thick 

rhombus and 
�

1

2�

√
2 + �

�1∕2
 for the thin one, where 

Figure 2.   The Penrose rhombuses.
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� =
1+

√
5

2
 is the golden ratio. The two quasifolds are 

diffeomorphic but not symplectomorphic.
Something analogous happens for the three-dimensional 

generalization of this tiling due to Ammann, which is 
composed of two different types of rhombohedrons, prolate 
and oblate [29]. Again, each rhombohedron is rational, but 
to treat all of them simultaneously, we need to consider a 
quasilattice, known in crystallography as the face-centered 
icosahedral lattice. As normals we choose the relevant 
generators. One then obtains a pair of six-dimensional 
symplectic toric quasifolds, one for each type of rhombohe-
dron. Similarly to what happens with the rhombus tiling, 
they are given by 

(
S2(r) × S2(r) × S2(r)

)
∕Γ , where Γ is a 

countable subgroup of the standard 3-torus. The radius r 

here is 
[
2�2(3 − �)

]−1∕4
 for the oblate rhombohedron and 

[2(3 − �)]−1∕4 for the prolate one. Again, the two spaces 
here are diffeomorphic but not symplectomorphic.

As we have seen, the quasifolds for both Penrose rhom-
bus tilings and Ammann tilings are global, namely the quo-
tient of a manifold modulo the action of a countable group.

Something entirely different happens with the kite-and-
dart tiling [24]. First of all, the only tile here that is convex, 
and therefore relevant to our discussion, is the kite. More
over, the kite, unlike the rhombuses and rhombohedrons, 
is actually nonrational. So there is no choice but to consider 
a quasilattice, and the natural one happens to be, again, 
the pentagonal quasilattice; the normals are, up to sign, the 
relevant fifth roots of unity (see Figure 3). Then the result-
ing toric quasifold is not global. It is the four-dimensional 
quasifold given by

Let us describe one of its charts. Consider the open subset

and the countable group

M =
{
(z1, z2, z3, z4) ∈ C4 ∣ �|z1|2 + |z2|2 + �|z3|2

= �|z2|2 + |z3|2 + �|z4|2 = �
}
∕

{
exp (−s + �t, s, t,−t + �s) ∈ R4∕Z4 ∣ s, t ∈ R

}
.

Ũ =
{
(z2, z3) ∈ C2 ∣ |z2|2 + 𝜙|z3|2 < 𝜙, 𝜙|z2|2 + |z3|2 < 𝜙

}

Γ =
{ (

e2�i�h, e2�i�k
)
∈ R2∕Z2 ∣ h, k ∈ Z

}
.

Then the mapping

is a homeomorphism.

Decomposing Penrose Tiles and Symplectic 
Cutting
Decomposing Penrose tiles by cutting them in half, yield-
ing isosceles triangles as in Figure 4, is a very simple geo-
metric operation that has important repercussions.

First of all, it is the first step in both the inflation and 
deflation procedures. In the case of inflation, the triangles 
are appropriately combined to form a new tiling, whose 
tiles are rescaled by a factor � . In the case of deflation, the 
triangles are further decomposed into smaller ones to yield 
the half-tiles of another tiling that is rescaled by a factor 
1∕� . It is easy to see that these operations are inverses of 
each other. We refer the reader to [2] for a detailed descrip-
tion in the case of rhombus tilings.

Cutting kites in half can also be used to transform a kite-
and-dart tiling into a rhombus tiling. The triangles are ap-
propriately combined with each other and possibly a dart 
to form thick and thin rhombuses (see [28] and Figure 5).

The process of subdividing a simple convex polytope 
into two smaller ones corresponds, at the (smooth) sym-
plectic level, to the symplectic cutting operation, which 
was introduced by Lerman [20]. In the toric setting, the 
original manifold decomposes into two new ones, each 
corresponding to one of the subdivided polytopes. The 
decomposition of Penrose tiles motivated us to extend this 

Ũ∕Γ ⟶

�
[z1 ∶ z2 ∶ z3 ∶ z4] ∈ M ∣ z1 ≠ 0, z4 ≠ 0

�
,

�
z2 ∶ z3

�
⟼

�√
𝜙 − �z2�2 − 𝜙�z3�2 ∶ z2 ∶ z3 ∶

√
𝜙 − 𝜙�z2�2 − �z3�2

�
,

Figure 3.   The Penrose kite.

Figure 4.   Cutting Penrose tiles.

Figure 5.   From a kite-and-dart tiling to a rhombus tiling.
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operation to the simple nonrational toric case. We find, for 
example, that the toric quasifold corresponding to each 
half-kite is given by

The Regular Convex Polyhedra
The regular convex polyhedra are notable examples of con-
vex polytopes, and it is thus only natural to want to under-
stand what the corresponding toric spaces look like. The 
cube and the regular tetrahedron are rational and simple, 
and they yield smooth manifolds given, respectively, by 
S2 × S2 × S2 and CP3 . The other three each present their 
complexities. The regular octahedron is rational but not 
simple, the regular dodecahedron is simple but not rational, 
while the regular icosahedron is neither rational nor sim-
ple. The first yields a space that is stratified by manifolds, 
the second yields a quasifold, while the third yields a space 
that is stratified by quasifolds; they are described explicitly 
in joint work with Battaglia. The quasilattice for the dodec-
ahedron is known in physics as the simple icosahedral 
lattice, while the one for the icosahedron is known as the 
body-centered icosahedral lattice. Here, too, the normals 
are chosen among the quasilattice generators.

Final Considerations
Quasifolds, Aperiodic Tilings, and Quasicrystals
As we have shown, a number of interesting examples of 
toric quasifolds arise in connection with aperiodic tilings. 
There also appears to be a correspondence between some 
of the fundamental operations in the two theories. We have 
seen, in fact, that decomposing convex Penrose tiles into 
halves corresponds to cutting the associated symplectic 
toric quasifolds. We expect, moreover, that recombining 
these half-tiles, as needed for the inflation and deflation 
procedures, will correspond to a nonrational generalization 
of the inverse operation of symplectic cutting, which is 
given, in the smooth case, by the symplectic sum [14]. We 
believe that it would be interesting to pursue the study of 
these connections even further. As a matter of fact, certain 
aperiodic tilings have been used as mathematical models for 
the theory of quasicrystals [28]; these are special materi-
als that were experimentally discovered by Dan Shecht-
man et al. [27] that have discrete nonperiodic diffraction 
patterns. Indeed, the very existence of these materials had 
been predicted by Alan Mackay in connection with his 
studies of Penrose and Ammann tilings [22, 23]. Ultimately, 
it is quite possible that toric quasifolds might contribute to 
their theoretical understanding. A first step would consist 
in analyzing from the toric viewpoint other tilings (and 
their operations) that are relevant in this respect. Signifi-
cant (though not the only) examples would be Socolar’s 
octagonal and dodecagonal tilings, which are used as a basis 
for a treatment of the elasticity of octagonal and dodecago-
nal quasicrystals [30].

{
(z1, z2, z3) ∈ C3 ∣ |z1|2 + �|z2|2 + �|z3|2 = 1

}
{
(e2�is, e2�i�s, e2�i�(s+k)) ∈ R3∕Z3 ∣ s ∈ R, k ∈ Z

} .

Combinatorial Equivalence in Toric Geometry
By slightly perturbing the hyperplanes in (1), it can be 
shown that every simple or simplicial polytope can be per-
turbed to a rational one that is combinatorially equivalent 
[31, Proposition 2.17]. In the simple case, these perturba-
tions yield, at the toric level, interesting families of quasi-
folds. For example, jointly with Battaglia and Zaffran, we 
have used one such perturbation to construct a one-param-
eter family of toric quasifolds that generalize and contain 
Hirzebruch surfaces. This perturbation property also holds 
true for every three-dimensional polytope, not necessarily 
simple or simplicial [31, Corollary 4.8]. In higher dimen-
sions, there are examples of polytopes for which this does 
not happen. The first was found by Perles in the 1960s and 
has dimension 8 (see [31, Example 6.21] and [32]). As we 
have seen, from the toric viewpoint, these polytopes, being 
necessarily nonsimple, yield spaces that are stratified by 
quasifolds. We believe it would be interesting to study 
these stratified spaces and understand how their geometry 
is affected by the fact that the corresponding polytopes 
cannot be deformed to rational ones within their combina-
torial class.

Recent Alternative Approaches to Nonrational 
Toric Geometry
In recent years, there has been a surge of interest in nonra-
tional toric geometry, and several alternative approaches to 
this subject have been introduced. It should be said, first 
of all, that toric quasifolds can be thought of as examples 
of both stacks and diffeological spaces. The stack approach 
to nonrational toric geometry was espoused first by Hoff-
man–Sjamaar [16, 15] and then by Katzarkov et al. [19]. 
Diffeological quasifolds, on the other hand, were stud-
ied jointly with Iglesias–Zemmour in [17], providing an 
explicit link to noncommutative geometry [9]; applications 
of this viewpoint to the toric setting are a work in progress. 
Other recent points of view, due to Battaglia–Zaffran [7, 8], 
Lin–Sjamaar [21], Ratiu–Zung [26], and Ishida et al. [18], 
involve foliations of smooth manifolds, either in the com-
plex or presymplectic setting. We would like to point out 
that most of the alternative nonrational toric viewpoints are 
founded on variations on the theme of the fundamental tri-
ple (2), beginning, first and foremost, with the quasilattice 
Q. In joint work with Battaglia [6], we describe in detail 
how many of these different perspectives connect with 
each other and with ours; a dictionary is provided, in the 
hope that it will offer clarity and facilitate future interac-
tion in the field.
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