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TORIC SURFACE CODES AND MINKOWSKI LENGTH
OF POLYGONS∗
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Abstract. In this paper we prove new lower bounds for the minimum distance of a toric surface
code CP defined by a convex lattice polygon P ⊂ R

2. The bounds involve a geometric invariant L(P ),
called the full Minkowski length of P . We also show how to compute L(P ) in polynomial time in the
number of lattice points in P .
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Introduction. Consider a convex polygon P in R
2 whose vertices lie in the

integer lattice Z
2. It determines a vector space LK(P ) (over a field K) of polynomials

f(t1, t2) whose monomials correspond to the lattice points in P :

LK(P ) = spanK{tm1
1 tm2

2 | (m1, m2) ∈ P ∩ Z
n}.

Let Fq be a finite field and Fq its algebraic closure. The toric surface code CP , first
introduced by Hansen in [6], is defined by evaluating the polynomials in LFq(P ) at all
of the points (t1, t2) in the algebraic torus (F∗

q)
2. To be more precise, CP is a linear

code whose codewords are the strings (f(t1, t2) | (t1, t2) ∈ (F∗
q)2) for f ∈ LFq(P ). It is

convenient to assume that P is contained in the square K2
q = [0, q − 2]2 so that all of

the monomials in LFq(P ) are linearly independent over Fq. Thus CP has block length
(q − 1)2 and the dimension equal to the number of the lattice points in P .

Note that the weight of each nonzero codeword in CP is the number of points
(t1, t2) ∈ (F∗

q)2 where the corresponding polynomial does not vanish. Therefore, the
minimum distance of CP (which is the minimum weight for linear codes) equals

d(CP ) = (q − 1)2 − max
0�=f∈LFq (P )

Z(f),

where Z(f) is the number of zeros (i.e., points of vanishing) in (F∗
q)

2 of f .
The name toric surface code comes from the fact that P defines a toric surface

X over Fq (strictly speaking the fan that defines X is a refinement of the normal fan
of P ), where L

Fq
(P ) can be identified with the space of global sections of a semiample

divisor on X (see, for example, [5]). This allows one to exploit algebraic geometric
techniques to produce results about the minimum distance of CP . In particular, Little
and Schenck in [10] used intersection theory on toric surfaces to come up with the
following general idea: If q is sufficiently large, then polynomials f ∈ LFq(P ) with

∗Received by the editors February 28, 2008; accepted for publication (in revised form) Septem-
ber 15, 2008; published electronically January 14, 2009.
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more absolutely irreducible factors will necessarily have more zeros in (F∗
q)

2 (see [10,
Proposition 5.2]).

In this paper we expand this idea to produce explicit bounds for the minimum
distance of CP in terms of certain geometric invariant L(P ), which we call the full
Minkowski length of P . Essentially L(P ) tells you the largest possible number of
absolutely irreducible factors a polynomial f ∈ LFq(P ) can have, but it derives it
from the geometry of the polygon P (see Definition 1.1). The number L(P ) is easily
computable—we give a simple algorithm which is polynomial in the number of lattice
points in P . Moreover, we obtain a description of the factorization f = f1 · · · fL(P )

for f ∈ LFq(P ) with the largest number of factors. More precisely, in Proposition 2.3
we show that the Newton polygon Pfi (which is the convex hull of the exponents of
the monomials in fi) is either a primitive segment, a unit simplex, or a triangle with
exactly one interior and three boundary lattice points, called an exceptional triangle.
This description enables us to prove the following bound.

Theorem 1. Let P ⊂ K2
q be a lattice polygon with area A and full Minkowski

length L. Then for q ≥ max
(
23,

(
c +

√
c2 + 5/2

)2), where c = A/2 − L + 9/4, the
minimum distance of the toric surface code CP satisfies

d(CP ) ≥ (q − 1)2 − L(q − 1) − �2√q� + 1.

The condition that no factorization f = f1 · · · fL(P ) contains an exceptional tri-
angle (as the Newton polygon of one of the factors) is geometric and can be easily
checked for any given P (we provide a simple algorithm for this which is polynomial
in the number of lattice points in P ). In this case we have a better bound for the
minimum distance of the toric surface code.

Theorem 2. Let P ⊂ K2
q be a lattice polygon with area A and full Minkowski

length L. Under the above condition on P , for q ≥ max
(
37,

(
c +

√
c2 + 2

)2), where
c = A/2 − L + 11/4, the minimum distance of the toric surface code CP satisfies

d(CP ) ≥ (q − 1)2 − L(q − 1).

We remark that our thresholds for q, where the bounds begin to hold, are much
smaller than the ones in Little and Schenck’s result (see [10, Proposition 5.2]).

Although, as mentioned above, the minimum distance problem for toric codes
is tightly connected to toric varieties, our methods are geometric and combinatorial
and do not use algebraic geometry, except for the Hasse–Weil bound adapted to toric
surfaces (see section 2.2). In section 1 we define the full Minkowski length L(P ) and
establish combinatorial properties of polygons with L(P ) = 1, 2. In section 2 we give
a proof of Theorems 1 and 2. Section 3 is devoted to the above mentioned algorithms
for computing L(P ) and determining the presence of an exceptional triangle. Finally,
in section 4 we give a detailed analysis of three toric surface codes which illustrates
our methods.

1. Full Minkowski length of polytopes.

1.1. Minkowski sum. Let P and Q be convex polytopes in R
n. Their Minkowski

sum is

P + Q = {p + q ∈ R
n | p ∈ P, q ∈ Q},

which is again a convex polytope. Figure 1 shows the Minkowski sum of a triangle
and a square.
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Fig. 1. The Minkowski sum of two polygons.

Let f be a Laurent polynomial in K[t±1
1 , . . . , t±1

n ] (for some field K). Then its
Newton polytope Pf is the convex hull of the exponent vectors of the monomials
appearing in f . Thus Pf is a lattice polytope as its vertices belong to the integer
lattice Z

n ⊂ R
n. Note that if f, g ∈ K[t±1

1 , . . . , t±1
n ], then the Newton polytope of

their product Pfg is the Minkowski sum Pf + Pg. A primitive lattice segment E
is a line segment whose only lattice points are its endpoints. The difference of the
endpoints is a vector vE whose coordinates are relatively prime (vE is defined up to a
sign). A polytope which is the Minkowski sum of primitive lattice segments is called
a (lattice) zonotope.

The automorphism group of the lattice is the group of affine unimodular trans-
formations, denoted by AGL(n, Z), which consists of translations by an integer vector
and linear transformations in GL(n, Z). Affine unimodular transformations correspond
to monomial changes of variables in K[t±1

1 , . . . , t±1
n ] and preserve the zero set of f in

the algebraic torus (K∗)n.

1.2. Full Minkowski length. Let P be a lattice polytope in R
n. Consider a

Minkowski decomposition

P = P1 + · · · + P�

into lattice polytopes Pi of positive dimension. Clearly, there are only finitely many
such decompositions. We let �(P ) be the largest number of summands in such decom-
positions of P , and call it the Minkowski length of P .

Definition 1.1. The full Minkowski length of P is the maximum of the Minkowski
lengths of all subpolytopes Q in P ,

L(P ) := max{�(Q) |Q ⊆ P}.

A subpolytope Q ⊆ P is called maximal for P if �(Q) = L(P ). A Minkowski decompo-
sition of Q into L(P ) summands of positive dimension will be referred to as a maximal
(Minkowski) decomposition in P.

Here are a few simple properties of L(P ) and maximal subpolytopes.
Proposition 1.2. Let P , P1, P2, and Q be lattice polytopes in R

n.
(1) L(P ) is AGL(n, Z)-invariant.
(2) L(P ) ≥ 1 if and only if dim(P ) > 0.
(3) If P1 + P2 ⊆ P , then L(P1) + L(P2) ≤ L(P ).
(4) If Q is maximal for P , then Q contains a zonotope Z maximal for P .
Proof. The first three statements are trivial. For the fourth one, note that if

Q = Q1 + · · · + QL(P )
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is a maximal Minkowski decomposition in P , then by replacing each Qi with one of
its edges we obtain a zonotope Z ⊆ Q with �(Z) ≥ L(P ). But Z ⊆ P , so �(Z) =
L(P ).

Notice that the summands of every maximal decomposition in P are polytopes of
full Minkowski length 1. It seems to be a hard problem to describe polytopes of full
Minkowski length 1 in general. However, in dimensions 1 and 2 we do have a simple
description for such polytopes (Theorem 1.4).

Definition 1.3. A lattice polytope P is strongly indecomposable if its full
Minkowski length L(P ) is 1. In other words, no subpolytope Q ⊆ P is a Minkowski
sum of lattice polytopes of positive dimensions.

Clearly, primitive segments are strongly indecomposable and are the only one-
dimensional strongly indecomposable polytopes.

Let Δ be the standard 2-simplex and T0 be the triangle with vertices (1, 0), (0, 1),
and (2, 2) (see Figure 2). It is easy to see that they are both strongly indecomposable.

���
���
���

���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

T0Δ

Fig. 2. Strongly indecomposable polygons.

The next theorem shows that these are essentially the only strongly indecompos-
able polygons. In the proof of this theorem and frequently later in the paper we will
use Pick’s formula: If P is a lattice polygon in R

2, then the area of P equals

A = I +
B

2
− 1,

where I is the number of interior lattice points in P and B is the number of boundary
points in P . The proof of this formula can be found, for example, in [3].

Theorem 1.4. Let P be a strongly indecomposable polygon. Then P is AGL(2, Z)-
equivalent to either the standard 2-simplex Δ or the triangle T0 above.

Proof. First, note that P cannot contain more than four lattice points. Indeed,
suppose a = (a1, a2) and b = (b1, b2) lie in P ∩Z

2. If ai ≡ bi mod 2, for i = 1, 2, then
the segment [a, b] lies in P and is not primitive; hence, L(P ) > 1. Since there are only
four possible pairs of remainders mod 2 and P has at most four lattice points.

Suppose P is a triangle, then its sides must be primitive and either P has no
interior lattice points or it has exactly one interior lattice point. In the first case, P
has area 1/2 (by Pick’s formula) and so is AGL(2, Z)-equivalent to Δ. In the second
case, P has area 3/2 (by Pick’s formula) and hence any two of its sides generate a
parallelogram of area 3. Every such triangle is AGL(2, Z)-equivalent to T0.

Now suppose P is a quadrilateral. Then it has no interior lattice points and so
its area is 1 (by Pick’s formula). Every such quadrilateral is AGL(2, Z)-equivalent to
the unit square. However, the unit square is obviously decomposable.

Definition 1.5. A lattice polygon is called a unit triangle if it is AGL(2, Z)-
equivalent to Δ, and an exceptional triangle if it is AGL(2, Z)-equivalent to T0.

https://www.researchgate.net/publication/268676958_Computing_the_continuous_discretely_Integer-point_enumeration_in_polyhedra?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

388 IVAN SOPRUNOV AND JENYA SOPRUNOVA

The following theorem describes maximal Minkowski decompositions for a given
lattice polygon P .

Theorem 1.6. Let P be a lattice polygon in R
2 with full Minkowski length L(P ).

Consider a maximal Minkowski decomposition in P :

Q = Q1 + · · · + QL(P ),

for some Q ⊆ P . Then one of the following holds:
(1) every Qi is either a primitive segment or a unit triangle;
(2) after an AGL(2, Z)-transformation and reordering of the summands the de-

composition is

Q = T0 + m1[0, e1] + m2[0, e2] + m3[0, e1 + e2],

where mi are nonnegative integers such that m1 + m2 + m3 = L(P ) − 1 and
the ei are the standard basis vectors.

Proof. Since every Qi must be strongly indecomposable, by Theorem 1.4 it is a
primitive segment, a unit triangle, or an exceptional triangle. We claim that if one of
the Qi is an exceptional triangle, then the other summands are primitive segments in
only three possible directions. This follows from the two lemmas below.

Lemma 1.7. Consider two primitive segments E1, E2 in Z
2, and let v1, v2 be the

corresponding vectors. If | det(v1, v2)| ≥ 3, then L(E1 + E2) ≥ 3.
Proof. We can assume that v1 = (1, 0) and v2 = (a, b) with 0 ≤ a < b and

b = det(v1, v2). Cases when 3 ≤ b ≤ 6 are easily checked by hand. For b ≥ 7 we can
use the same argument as in the proof of Theorem 1.4 to show that Π = E1 + E2

contains a segment of lattice length 3. Indeed, the area of Π equals b ≥ 7. By Pick’s
formula, Π has at least ten lattice points. But then there exist a = (a1, a2) and
b = (b1, b2) in Π such that ai ≡ bi mod 3, for i = 1, 2. Therefore the segment [a, b] is
contained in Π and has lattice length 3.

Lemma 1.8. Let P ⊂ R
2 be strongly indecomposable. Then L(T0 + P ) ≥ 3 unless

P is a primitive segment in the direction of e1, e2 or e1 + e2.
Proof. Let E1 be an edge of T0 and E2 an edge of P , and let v1, v2 be the

corresponding vectors. If | det(v1, v2)| ≥ 3, then by Lemma 1.7 L(E1 + E2) ≥ 3,
and since E1 + E2 ⊆ T0 + P we also have L(T0 + P ) ≥ 3. Therefore we suppose that
| det(v1, v2)| ≤ 2 for all edges E1 in T0. Then we have the following linear inequalities
for v2 = (s, t):

−2 ≤ s + t ≤ 2, −2 ≤ 2s− t ≤ 2, −2 ≤ s − 2t ≤ 2.

Clearly, the only integer solutions (up to central symmetry) are v1 = (1, 0), (0, 1),
and (1, 1). Now if P contains at least 2 edges in these directions, then it must also
contain (up to a translation) either T = span{(0, 0), (1, 0), (1, 1)} or T = span{(0, 0),
(0, 1), (1, 1)}. But in both cases the sum T0 + T contains a 1 × 2 rectangle which has
Minkowski length three. Therefore, L(T0 + P ) ≥ 3.

Remark 1.9. Notice that in Lemma 1.8 the special directions e1, e2 or e1+e2 have
an easy AGL(2, Z)-invariant description: they are obtained by connecting the interior
lattice point in T0 to the vertices.

While classifying polygons of every given full Minkowski length does not seem
feasible, we will make a few statements about polygons of full Minkowski length 2,
which we will use later.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TORIC CODES AND MINKOWSKI LENGTH OF POLYGONS 389

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

P1 P2 P3

Fig. 3. Full length two polygons with three interior lattice points.

Proposition 1.10. Suppose L(P ) = 2. Then we have the following:
(1) P has at most three interior lattice points, i.e., I(P ) ≤ 3.
(2) If I(P ) = 3, then P is AGL(2, Z)-equivalent to one of the polygons depicted

in Figure 3.
(3) If I(P ) = 3, then L(P + T0) ≥ 4.
Proof. (1) The proof is somewhat technical so we will sketch its major steps.

Assume P has four or more interior lattice points. First, it is not hard to show that one
can choose four interior lattice points in P so that after an AGL(2, Z)-transformation
they form either a unit square, {(0, 0), (1, 0), (0, 1), (1, 1)}, or a base 2 isosceles triangle,
{(−1, 0), (0, 0), (1, 0), (0, 1)}.

In the first case, note that P must include a lattice point which is distance one
from the square and lies on one of the lines containing the sides of the square. By
symmetry we can assume it is (2, 0). In Figure 4 on the left, the solid dots represent
the five points that now belong to P , the crosses represent the points that cannot
belong to P (otherwise its length would be greater than 2). Now if point (0, 2) does
not belong to P (the middle picture in Figure 4), then either (−1, 2) or (1, 2) does.
But in either case the four points of the unit square cannot all lie in the interior of P .
If point (0, 2) does belong to P , then it produces more forbidden points (the rightmost
picture in Figure 4). Then again, it is not hard to see that no such P can exist.

Fig. 4. Nonexistence of full length two polygons with I(P ) > 3.

Playing the same game, one can show that no P exists in the second case as well.
(2) First, one can show that the three interior lattice points cannot be collinear.

Thus we can assume that they are {(0, 0), (1, 0), (0, 1)}. Our first case is when (1, 1)
also lies in P . Since this must be a boundary point and there are no more interior
points in P , we see that (−1, 2) and (0, 2) are the only possible boundary points of P
on the line y = 2. Similarly, (2, 0) and (2,−1) are the only possible boundary points
of P on the line x = 2. Since both (−1, 2) and (2,−1) cannot belong to P , using
symmetry we arrive at two possibilities for the boundary piece of P containing (1, 1),
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Fig. 5. Constructing full length two polygons with I(P ) = 3.

depicted in Figure 5 on the left. As in part (1), we crossed out the points which cannot
appear in P since L(P ) = 2. Then it becomes clear that the only P (up to symmetry)
containing {(0, 0), (1, 0), (0, 1)} and (1, 1) are P1 and P2 in Figure 3.

In the second case, when (1, 1) does not lie in P we can assume that (1,−1) and
(−1, 1) do not lie in P either, otherwise we can reduce it to the previous case by a
unimodular transformation. Also, both (2,−1) and (−1, 2) cannot lie in P , therefore
by symmetry we can assume that (2,−1) does not. As before, by crossing out forbidden
points we obtain the rightmost picture in Figure 5. Now it is easy to see that the only
P containing the three points in the interior is P3 in Figure 3.

(3) By (2) it is enough to check that L(Pi + T ) ≥ 4 for every 1 ≤ i ≤ 3 and any
exceptional triangle T .

We first look at P1. By Lemma 1.8 and Remark 1.9 we have L(E +T ) ≥ 3 for any
primitive segment E except for the three special segments E1, E2, E3 that connect
the interior lattice point of T to its vertices. If T �= T0, then one of [0, e1], [0, e2],
[0, e1 + e2] is not among the Ei. But P1 contains the segments 2[0, e1], 2[0, e2], and
(−1,−1) + 2[0, e1 + e2]. If, say, [0, e1] is not among the Ei, then L(2[0, e1] + T ) ≥ 4
and hence L(P1 + T ) ≥ 4. It remains to show that L(P1 + T0) ≥ 4, which can easily
be checked by hand.

A similar argument works for P3. We only need to replace T0 with T ′
0, the triangle

with vertices (0, 0), (1, 1), and (−1, 2). Its special segments [0, e1], [0, e2], [0,−e1 + e2]
are contained in P with multiplicity 2. Finally, since P3 ⊂ P2 we do not need to do
any extra work for P2.

2. Bounds for toric surface codes.

2.1. Toric surface codes. Fix a finite field Fq where q is prime power. For any
convex lattice polygon P in R

2 we associate a Fq-vector space of bivariate polynomials
whose monomials have exponent vectors in P ∩ Z

2:

L(P ) = span
Fq
{tm | m ∈ P ∩ Z

2}, where tm = tm1
1 tm2

2 .

If P is contained in the square K2
q = [0, q − 2]2, then the monomials tm are linearly

independent over Fq and so dimL(P ) = |P ∩ Z
2|. In what follows we will always

assume that P ⊂ K2
q .

The toric surface code CP is a linear code whose codewords are the strings of
values of f ∈ L(P ) at all points of the algebraic torus (F ∗

q )2 (in some linear order):

CP = {(f(t), t ∈ (F ∗
q )2

) | f ∈ L(P )}.
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This is a linear code of block length (q−1)2 and dimension |P ∩Z
2|. The weight of each

nontrivial codeword equals the number of points t ∈ (F ∗
q )2 where the corresponding

polynomial does not vanish. Let Z(f) denote the number of points in (F ∗
q )2 where

f vanishes. Then the minimum distance d(CP ), which is also the minimum weight,
equals

d(CP ) = (q − 1)2 − max
0�=f∈L(P )

Z(f).

2.2. The Hasse–Weil bound. Consider f ∈ L(P ). Its Newton polygon Pf is
the convex hull of the lattice points in R

2 corresponding to the monomials in f . We
have

f(t) =
∑

m∈Pf∩Z2

λmtm, where tm = tm1
1 tm2

2 , λm ∈ Fq.

Let X be a smooth toric surface over Fq defined by a fan ΣX ⊂ R
2 which is a

refinement of the normal fan of Pf . Then f can be identified with a global section of
a semiample divisor on X . Let Cf be the closure in X of the affine curve given by
f = 0 in (F

∗
q )2. If f is absolutely irreducible, i.e., Cf is irreducible, then the number

of Fq-rational points |Cf (Fq)| satisfies the Hasse–Weil bound:

|Cf (Fq)| ≤ q + 1 + �2g
√

q�,

where g is the arithmetic genus of Cf . For the case of smooth curves, see, for example,
[11]; for singular curves we refer to [1].

Since we are interested in the number Z(f) of zeros of f in the torus (F ∗
q )2, the

above bound might be improved by subtracting possible Fq-rational points on Cf at
“infinity.” More precisely, we have the following proposition.

Proposition 2.1. Let f be absolutely irreducible with Newton polygon Pf . Then

(2.1) Z(f) ≤ q + 1 + �2I(Pf )
√

q� − B′(Pf ),

where I(Pf ) is the number of interior lattice points and B′(Pf ) is the number of
primitive edges of Pf .

Proof. It is a classical result from the theory of toric varieties that the arithmetic
genus g equals the number of interior lattice points in Pf (see [7] for the general case
or [10] for the case of curves).

Let D ⊂ X be the invariant divisor at “infinity,” i.e., D = X \ (F
∗
q )2. Then the

Hasse–Weil bound implies

Z(f) ≤ q + 1 + �2I(Pf )
√

q� − |Cf (Fq) ∩ D|.

The divisor D is the disjoint union of zero- and one-dimensional orbits in X . The
one-dimensional orbits are isomorphic to F

∗
q and correspond to the rays of ΣX . Since

ΣX is a refinement of the normal fan of Pf , some of the orbits correspond to the edges
of Pf . Let E be an edge of Pf and OE the corresponding orbit in X , and consider the
“restriction” of f to E, i.e., a univariate polynomial fE(s) whose coefficients are λm

for m ∈ E, ordered counterclockwise. Then the intersection number Cf · OE equals
the number of zeros of fE in F

∗
q (see [9, Theorem 1 of section 2]). Note that if E is

primitive, then fE is linear, hence, has exactly one Fq-rational zero on OE . Therefore,

https://www.researchgate.net/publication/256233935_Newton_polyhedra_and_the_genus_of_complete_intersections?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/235637878_Weil_Theorem_for_Singular_curves?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/2121368_Toric_Surface_Codes_and_Minkowski_Sums?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
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|Cf (Fq)∩D| is greater than or equal to B′(Pf ), the number of primitive edges of Pf ,
and the proposition follows.

Corollary 2.2. Let f ∈ L(P ) be absolutely irreducible and Pf its Newton poly-
gon.

(1) If Pf is an exceptional triangle, then Z(f) ≤ q − 2 + �2√q�.
(2) If I(Pf ) = 0, then Z(f) ≤ q − 1 unless Pf is twice a unit triangle in which

case Z(f) ≤ q + 1.
Proof. Part (1) follows immediately from Proposition 2.1. For (2) we use the

classification of polygons with no interior lattice points (see, for example, [9] or [2]):
Pf is AGL(2, Z)-equivalent to either (a) 2Δ or (b) a trapezoid (see Figure 6) where
0 ≤ a ≤ b (this includes primitive segments when a = b = 0 and unit triangles when
a = 0, b = 1). In the first case Z(f) ≤ q + 1 by (2.1). In the second case Pf has at
least two primitive edges, so Z(f) ≤ q − 1, again by (2.1).
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Fig. 6. Polygons with no interior lattice points.

2.3. Bounds for the minimum distance. Let CP be the toric surface code
defined by a lattice polygon P in K2

q . In this section we prove bounds for the minimum
distance of CP in terms of the full Minkowski length L(P ) of the polygon P .

Here is our first application of the results of the previous section.
Proposition 2.3. Let f ∈ L(P ) be a polynomial with the largest number of

absolutely irreducible factors, f = f1 · · · fL. Then we have the following:
(1) L = L(P ) and every P (fi) is either a primitive segment, a unit triangle, or

an exceptional triangle.
(2) The number of zeros of f in (F∗

q)
2 satisfies

Z(f) ≤ L(q − 1) + �2√q� − 1.

(3) If P (fi) is not an exceptional triangle for any 1 ≤ i ≤ L, then

Z(f) ≤ L(q − 1).

Proof. Part (1) follows directly from Theorem 1.6. Moreover, the theorem implies
that either (a) all Pi are primitive segments or unit triangles or (b) one of the Pi is
an exceptional triangle and the others are primitive segments. In the first case every
fi has at most q − 1 zeros in (F∗

q)
2 by Corollary 2.2. Not accounting for possible

common zeroes of the fi we obtain the bound in (3). In the second case one of the
fi has at most q − 2 + �2√q� zeros and the others have at most q − 1 zeros, again
by Corollary 2.2. As before, disregarding possible common zeros of the fi we get the
bound in (2).

The next proposition deals with polynomials f whose number of absolutely irre-
ducible factors is L(P ) − 1.

https://www.researchgate.net/publication/252869185_Newton_polygons_curves_on_torus_surfaces_and_the_converse_Weil_theorem?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/2125918_Multiples_of_lattice_polytopes_without_interior_lattice_points?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
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Proposition 2.4. Let P have full Minkowski length L, and let f ∈ L(P ) have
L − 1 absolutely irreducible factors. Then

Z(f) ≤ (L − 1)(q − 1) + �6√q�.
Proof. As before, let f = f1 · · · fL−1 be the decomposition of f into absolutely

irreducible factors, and let Pi be the Newton polygon of fi. First, by Proposition 1.2

k + 1 = L ≥
k∑

i=1

L(Pi) ≥ k;

hence, up to renumbering, L(P1) ≤ 2 and L(Pi) = 1 for 2 ≤ i ≤ k.
Assume L(P1) = 1. Then every Pi is either a strongly indecomposable triangle or

a lattice segment. We claim that at most three of the Pi are exceptional triangles, and
so the statement follows from Corollary 2.2. Indeed, if, say, P1, . . . , P4 are exceptional
triangles, then by Lemma 1.8 L(P1 + · · · + P4) ≥ 6. Applying Proposition 1.2 again
we get

k + 1 = L ≥ L(P1 + · · · + P4) +
k∑

i=5

L(Pi) ≥ 6 + (k − 4) = k + 2,

a contradiction.
Now assume L(P1) = 2. According to (1) in Proposition 1.10, we have I(P1) ≤ 3.

Also since L(P1) = 2, at most one of the other Pi is an exceptional triangle. This
follows from Lemma 1.8 using arguments similar to the previous case. We now have
three subcases.

• If I(P1) = 1, then we have

Z(f) ≤ (q + 1 + �2√q�) + (q − 2 + �2√q�) + (L− 3)(q − 1) ≤ (L− 1)(q − 1) + �6√q�.
• If I(P1) = 2, then P1 has at least one primitive edge which we prove in Lemma

2.5 below. Therefore by Proposition 2.1 we have

Z(f) ≤ (q + �4√q�) + (q − 2 + �2√q�) + (L − 3)(q − 1) ≤ (L − 1)(q − 1) + �6√q�.
• Finally, if I(P1) = 3, then none of the other Pi is an exceptional triangle. This

follows from Proposition 1.10, (3), and the above arguments. In this case P1 has at
least two primitive edges by Proposition 1.10, (2). Therefore by Proposition 2.1 we
have

Z(f) ≤ (q − 1 + �6√q�) + (L − 2)(q − 1) = (L − 1)(q − 1) + �6√q�.
Lemma 2.5. If L(P ) = 2 and I(P ) = 2, then P has a primitive edge.
Proof. Since L(P ) = 2, no edge can have more than 3 lattice points. If P has 4

or more edges, in which none are primitive, then P has at least 8 boundary lattice
points and, hence, at least 10 lattice points total. But then P contains a lattice segment
of lattice length 3 (see the proof of Lemma 1.7), which contradicts the assumption
L(P ) = 2.

It remains to show that triangles with no primitive edges, 2 interior lattice points,
and 6 boundary lattice points do not exist. Let T be such a triangle and let 2E1, 2E2

be two of its edges, where E1 and E2 are primitive. Then E1, E2 form a triangle T ′

of area A(T ′) = 1
4A(T ). On the other hand, by Pick’s formula A(P ) = 4, and hence
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A(T ′) = 1. This implies that up to an AGL(2, Z)-transformation E1 = [0, e1] and
E2 = [0, e1 + 2e2], but then I(T ) = 1, a contradiction.

Now we are ready for the main result of this section.
Theorem 2.6. Let P ⊂ K2

q−1 be a lattice polygon with area A = A(P ) and full
Minkowski length L = L(P ). Then

(1) for q ≥ max
(
23,

(
c+

√
c2 + 5/2

)2), where c = A/2−L+9/4, every polynomial
f ∈ L(P ) has at most L(q − 1) + �2√q�− 1 zeros in (F∗

q)2. Consequently, the
minimum distance for the toric surface code CP satisfies

d(CP ) ≥ (q − 1)2 − L(q − 1) − �2√q� + 1.

(2) If no maximal decomposition in P contains an exceptional triangle, then for
q ≥ max

(
37,

(
c +

√
c2 + 2

)2), where c = A/2 − L + 11/4, every polynomial
f ∈ L(P ) has at most L(q − 1) zeros in (F∗

q)
2. Consequently, the minimum

distance for the toric surface code CP satisfies

d(CP ) ≥ (q − 1)2 − L(q − 1).

Proof. (1) As we have seen in Proposition 2.3, (2), the bound holds for the poly-
nomials with the largest number of irreducible factors. We are going to show that for
large enough q every polynomial with fewer irreducible factors will have no greater
than L(q − 1) + �2√q� − 1 zeros in (F∗

q)
2.

Let f ∈ L(P ) have k < L absolutely irreducible factors f = f1 · · · fk, and let Pi be
the Newton polygon of fi. If k = L−1, then we can use the bound in Proposition 2.4:

(2.2) Z(f) ≤ (L − 1)(q − 1) + �6√q�.

The latter is at most L(q − 1) + �2√q� − 1 for all q ≥ 19.
Now suppose 1 ≤ k ≤ L − 2. First, assume I(Pi) = 0 for all 1 ≤ i ≤ k. Then by

Corollary 2.2 (2),

Z(f) ≤ s(q + 1) + (k − s)(q − 1) = 2s + k(q − 1),

where s is the number of twice unit triangles among the Pi. Since the sum of the full
Minkowski lengths of the Pi cannot exceed L we have 2s+(k−s) ≤ L, i.e., s ≤ L−k.
Using this inequality along with k ≤ L − 2, we obtain

Z(f) ≤ 2s + k(q − 1) ≤ 2L + k(q − 3) ≤ (L − 2)(q − 1) + 4.

The latter is at most L(q − 1) for all q ≥ 3 and the bounds follow.
Suppose I(Pi) > 0 for at least one of the Pi. Then, as we will show in Lemma 2.7,

(2.3) Z(f) ≤ k(q − 1) + 2
(
A + 3/2 − 2k

)√
q + 2.

Now the right-hand side will be at most L(q − 1) + 2
√

q − 1 whenever q satisfies

(2.4) (L − k)q − 2(A + 1/2 − 2k)
√

q − (L − k + 3) ≥ 0.

Before proceeding we introduce the following notation: m = L−k, d = A/2−L+1/4.
Then (2.4) becomes

mq − 4(d + m)
√

q − (m + 3) ≥ 0, 2 ≤ m ≤ L − 1.
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Since this is a quadratic inequality in
√

q, it will hold if

√
q ≥ C +

√
C2 + 1 + 3/m, where C = 2 + 2d/m.

Since m ≥ 2, it is enough to choose
√

q ≥ C +
√

C2 + 5/2. Finally, if d ≥ 0, then
C ≤ 2 + d, since m ≥ 2, and it is enough to choose

q ≥ (
c +

√
c2 + 5/2

)2
, where c = 2 + d = A/2 − L + 9/4.

If d < 0, then C < 2 and it is enough to choose q ≥ 23.
(2) The proof of the second statement is completely analogous. First, if f has

L irreducible factors, then the bound holds by Proposition 2.3, (3). Second, if f has
fewer than L factors we choose q large enough so that the right-hand sides of (2.2)
and (2.3) are no greater than L(q − 1). The same arguments as before show that it is
enough to choose

q ≥ max
(
37,

(
c +

√
c2 + 2

)2
)

, where c = A/2 − L + 11/4.

It remains to prove the following lemma.
Lemma 2.7. Let f = f1 · · · fk, for 1 ≤ k ≤ L− 2, and I(Pi) > 0 for at least

one i. Then

Z(f) ≤ k(q − 1) + 2
(
A + 3/2 − 2k

)√
q + 2.

Proof. We order the Pi so that for 1 ≤ i ≤ t every Pi either has interior lattice
points or is twice a unit triangle. Then, according to Proposition 2.1 and Corollary 2.2,
we have

(2.5) Z(f) ≤ t(q + 1) + 2
√

q

t∑
i=1

I(Pi) + (k − t)(q − 1).

Now we want to get a bound for
∑t

i=1 I(Pi). Recall that given two polytopes Q1 and
Q2 in R

2, their normalized mixed volume (two-dimensional) is

V (Q1, Q2) = A(Q1 + Q2) − A(Q1) − A(Q2).

The mixed volume is symmetric; bilinear with respect to Minkowski addition; mono-
tone increasing (i.e., if Q′

1 ⊂ Q1, then V (Q′
1, Q2) ≤ V (Q1, Q2)); and AGL(2, Z)-

invariant (see, for example, [4, p. 138]). This implies that

(2.6) V (Pi, Pj) ≥ 2 for 1 ≤ i ≤ t and 1 ≤ j ≤ k.

Indeed, by monotonicity it is enough to show that V (Pi, E) ≥ 2 for any lattice seg-
ment E, and by AGL(2, Z)-invariance we can assume that E is horizontal. It follows
readily from the definition that V (Pi, E) = h(Pi)|E|, where h(Pi) is the length of
the horizontal projection of Pi (the height of Pi) and |E| is the length of E. Clearly,
|E| ≥ 1 and h(Pi) ≥ 2 if Pi has at least one interior lattice point or is twice a unit
triangle.
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Using (2.6) and bilinearity of the mixed volume, by induction we obtain

A ≥ A

( k∑
i=1

Pi

)
= A(P1) + A

( k∑
i=2

Pi

)
+ V

(
P1,

k∑
i=2

Pi

)

≥ A(P1) + A

( k∑
i=2

Pi

)
+ 2(k − 1) ≥ · · ·

≥
t∑

i=1

A(Pi) + A

( k∑
i=t+1

Pi

)
+ 2

t∑
i=1

(k − i) ≥
t∑

i=1

A(Pi) + 2kt − t2 − t.

Now, by Pick’s formula A(Pi) = I(Pi) + 1
2B(Pi) − 1 ≥ I(Pi) + 1

2 since B(Pi), the
number of boundary lattice points, is at least 3. Therefore

t∑
i=1

I(Pi) ≤ A + t2 +
t

2
− 2kt.

Substituting this into (2.5) and simplifying, we obtain

(2.7) Z(f) ≤ k(q − 1) + 2
√

q

(
A + t2 +

t

2
− 2kt

)
+ 2t.

It remains to note that the maximum of the right-hand side of (2.7) is attained at
t = 1, provided k ≥ 1 and q ≥ 4, which establishes the required inequality.

3. Two algorithms. Given a polytope P , to make use of our bounds in Theo-
rem 2.6 it remains to understand

(1) how to find L(P ), the full Minkowski length of P , and
(2) how to determine whether there is a maximal Minkowski decomposition in P

one of whose summands is an exceptional triangle.
Here we provide algorithms that answer these questions in polynomial time in

|P ∩ Z
2|.

Recall that a zonotope Z =
∑k

i=1 Ej ⊆ P is called maximal for P if k, the number
of nontrivial Minkowski summands (counting their multiplicities), is equal to L(P ).

It follows from Proposition 1.2 that a maximal zonotope always exists although it
is usually not unique. It turns out that any maximal zonotope of P has at most four
distinct summands and among them there are maximal zonotopes with a particularly
easy description.

Proposition 3.1. Let P be a lattice polygon. Then we have the following:
(1) Any zonotope Z maximal for P has at most 4 different summands.
(2) There exists a zonotope Z maximal for P with at most 3 different summands.

Moreover, up to an AGL(2, Z)-transformation these summands are [0, e1],
[0, e2], and [0, e1 + e2].

Proof. Let Z =
∑L

i=1 Ej be a zonotope maximal for P , and let vj be the vector
of Ej . According to Lemma 1.7, | det(vi, vj)| ≤ 2 for any 1 ≤ i, j ≤ k.

The case when all vi are the same is trivial. Suppose there are exactly two different
summands; i.e., Z = m1E1 +m2E2 for some positive integers m1 ≥ m2 and E1 �= E2.
If | det(v1, v2)| = 1, then we can transform (v1, v2) to the standard basis (e1, e2) and
(2) follows. If | det(v1, v2)| = 2, then we can assume that v1 = e1 and v2 = e1 + 2e2.
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However, E1 + E2 contains 2[0, e2], therefore we can pass to Z ′ = (m1 − m2)[0, e1] +
2m2[0, e2]. Clearly, Z ′ ⊆ Z and Z ′ is maximal.

Now suppose that Z has at least three different summands. First, let us assume
that | det(vi, vj)| = 2 for all i �= j. As before, without loss of generality, v1 = e1 and
v2 = e1 + 2e2. Consider v3 = (s, t). By looking at the determinants det(vi, v3) for
i = 1, 2, we have |t| = 2 and |t − 2s| = 2. This implies that v3 is not primitive, a
contradiction. Therefore, | det(vi, vj)| = 1 for some i �= j, and we can assume that
v1 = e1 and v2 = e2. Again, we let v3 = (s, t) and look at the determinants det(vi, v3)
for i = 1, 2. We see that the only vectors v3 (up to central symmetry) that may
appear are (1, 1), (1,−1), (2, 1), (2,−1), (1, 2), (1,−2). No two of the last four vectors
can appear together as they generate parallelograms of area at least 3. For the same
reason (1, 1) cannot appear with (2,−1) or (1,−2), and (1,−1) cannot appear with
(2, 1) or (1, 2). We have three possible combinations:

(a) v1 = (1, 0), v2 = (0, 1), v3 = (1, 1), v4 = (1,−1);
(b) v1 = (1, 0), v2 = (0, 1), v3 = (1, 1), and v4 = (1, 2) or v4 = (2, 1);
(c) v1 = (1, 0), v2 = (0, 1), v3 = (1,−1), and v4 = (1,−2) or v4 = (2,−1).

We have proved our first claim. To prove the second, note that we can actually
reduce the number of distinct segments Ej . In case (a), 2E1 ⊂ E3 + E4, and we will
be able to get rid of either E3 or E4 by replacing E3 + E4 with 2E1. In either case,
the remaining segments are AGL(2, Z)-equivalent to [0, e1], [0, e2], and [0, e1 + e2].

In case (b) we can assume that v4 = (1, 2). Since 2E2 ⊂ E1 + E4, we will be able
to get rid of either E1 or E4 and the remaining segments are AGL(2, Z)-equivalent
to [0, e1], [0, e2], and [0, e1 + e2]. Case (c) is obtained from (b) by flipping the second
coordinate.

To find L(P ) we only need to look at all of the zonotopes Z ⊆ P with at most
three different summands AGL(2, Z)-equivalent to [0, e1], [0, e2], and [0, e1 + e2] and
find the one that has the largest number of summands (counting multiplicities).

Theorem 3.2. Let P be a lattice polygon, and let |P ∩Z
2| be the number of lattice

points in P . Then the full Minkowski length L(P ) can be found in polynomial time in
|P ∩ Z

2|.
Proof. The case when P is one-dimensional is trivial so we will be assuming that

P has dimension two.

For every triple of points {A, B, C} ⊆ P ∩ Z
2, where it is important which point

goes first and the order of the other two does not matter, we check if E1 = [A, B] and
E2 = [A, C] generate a parallelogram of area one. If so, we want to construct various
zonotopes whose summands are E1, E2, and E3 = [A, B + C]. We do this in the most
straightforward way.

First, for every 1 ≤ i ≤ 3, we find Mi, the largest integer such that a lattice
translate of MiEi is contained in P . For this we find the maximum number of lattice
points in the linear sections of P with lines in the direction of Ei (there are finitely
many such lines with at least one lattice point of P ).

Second, for each triple of integers m = (m1, m2, m3), where 0 ≤ mi ≤ Mi, we
check if some lattice translate of the zonotope Zm = m1E1+m2E2+m3E3 is contained
in P (we run through lattice points D in P to check if D + Zm is contained in P ).
For all such zonotopes that fit into P we look at m1 + m2 + m3 and find the maximal
possible value M of this sum.

Finally, the largest such sum M over all choices of {A, B, C} ⊆ P ∩ Z
2 is L(P ),

by Proposition 3.1. Clearly, this algorithm is polynomial in |P ∩ Z
2|.
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Notice that in the previous argument we have taken care of the maximal zonotopes
that are possibly multiples of a single segment. Indeed, if [A, B] is a primitive segment
connecting two lattice points in P , then unless P is one-dimensional there is a lattice
point C in P such that [A, B] and [A, C] generate a parallelogram of area one. We can
assume that A is the origin and B = (1, 0). Let C = (k, l) be a lattice point in P with
smallest positive l (flip P with respect to the x-axis if necessary). By the minimality
of l the triangle ABC has no lattice points except its vertices. By Pick’s formula, its
area is 1/2 and we have found the required third vertex C.

Theorem 3.3. Let P be a lattice polygon in R
n. Then we can decide in polynomial

time in |P ∩ Z
2| if there is a maximal Minkowski decomposition in P one of whose

summands is an exceptional triangle.
Proof. We first run the algorithm from Theorem 3.2 to find L(P ). Next, for each

triple of points A, B, C ∈ P ∩ Z
2 we check if the triangle TABC has exactly four

lattice points—the three vertices A, B, C and one point D strictly inside the triangle.
If so, this triangle is exceptional. If this triangle is a summand in some maximal
Minkowski decomposition in P , then the other summands that may appear in this
decomposition are the primitive segments E1, E2, and E3 connecting D to the vertices
A, B, C (see Remark 1.9).

Now it remains to look at all Minkowski sums TABC +m1E1 +m2E2 +m3E3 with
m1 +m2 +m3 = L(P )−1 and check if any of them fits into P . If this indeed happens
for some TABC , then there is a maximal decomposition in P with an exceptional
triangle. Otherwise any maximal decomposition is a sum of primitive segments and
unit triangles. Clearly, this algorithm is polynomial in |P ∩ Z

2|.
4. Three examples. In this section we illustrate our methods with three exam-

ples. Example 2 was given by Joyner in [8]. Example 3 appears in Little and Schenck’s
paper [10].
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Fig. 7. Pentagon.

Example 1. Consider the pentagon P with vertices (2, 0), (0, 2), (4, 4), (4, 3), and
(3, 1) as in Figure 7. One can easily check that L(P ) = 3 and there is a maximal
decomposition in P containing T0 (in fact, P contains T0 + [0, e2] + [0, e1 + e2]).
Note that P defines a toric surface code of dimension n = |P ∩ Z

2| = 12. To apply
Theorem 2.6 we compute A = 15/2, so c = 3. Therefore,

d(CP ) ≥ (q − 1)2 − 3(q − 1) − 2
√

q + 1

for all q ≥ 41. In this particular example we can establish a better lower bound for q,
namely q ≥ 19. Indeed, we have already seen in the proof of Theorem 2.6 that every

https://www.researchgate.net/publication/2103343_Toric_Codes_over_Finite_Fields?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
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f with 2 absolutely irreducible factors will have at most 3(q − 1) + 2
√

q − 1 zeros for
all q ≥ 19 (see (2.2)). If f is absolutely irreducible, then we use (2.1). Then it has at
most q + 1 + �10

√
q� − 2 zeros since Pf ⊆ P has at most 5 interior lattice points in

which case it will have at least two primitive edges. It remains to notice that

q + 1 + �10
√

q� − 2 ≤ 3(q − 1) + 2
√

q − 1

for all q ≥ 19.
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Fig. 8. Triangle.

Example 2. Consider the triangle P with vertices (0, 0), (4, 1), and (1, 4) (see
Figure 8). This example is similar to the previous one. We also have L(P ) = 3,
A = 15/2, but the dimension of the corresponding toric surface code is slightly smaller,
n = |P∩Z

2| = 11. However, in this case P has no exceptional triangles in any maximal
decomposition. Therefore, Theorem 2.6 provides a better bound for the minimum
distance

d(CP ) ≥ (q − 1)2 − 3(q − 1),

which holds for all q ≥ 53. As before, this can be improved to q ≥ 37 using (2.1) and
the fact that I(P ) = 6. Note that f = xy(x− a)(x− b)(x− c), for a, b, c ∈ F

∗
q distinct,

has exactly 3(q − 1) zeros in (F∗
q)2, hence for q ≥ 37 the above bound is exact

(4.1) d(CP ) = (q − 1)2 − 3(q − 1).

For q = 8 this was previously established by Joyner [8]. Also (4.1) follows from Little
and Schenck’s result [10] for all q ≥ (4I(P ) + 3)2 = 729.

Example 3. Let P be the hexagon with vertices (1, 0), (0, 1), (1, 2), (3, 3), (3, 2),
and (2, 0) (see Figure 9). We have L(P ) = 3, A = 5, and CP has dimension nine. Also P
has no maximal decomposition with an exceptional triangle. Therefore, Theorem 2.6
implies

d(CP ) ≥ (q − 1)2 − 3(q − 1)

for all q ≥ 37. Little and Schenck’s result [10] proves this bound for q > 225. In fact
we can show more in this example: for all q ≥ 11

(4.2) d(CP ) = (q − 1)2 − 3(q − 1) + 2.

To see this, first note that f = x(x − a)(y − b)(y − c), for a, b, c ∈ F
∗
q distinct, has

exactly 3(q − 1) − 2 zeros in (F∗
q)

2. Furthermore, every maximal decomposition in P
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Fig. 9. Hexagon.

is of the form E1 + 2E2, where Ei is a primitive segment in the direction of e1, e2, or
e1 + e2. This implies that every polynomial f with the largest number of absolutely
irreducible factors (three) will have at most 3(q − 1) − 2 zeros in (F∗

q)
2 (here we take

into account the intersections of the irreducible curves defined by the factors of f).
Now we claim that for q ≥ 11 polynomials with fewer factors (one or two) will have

at most 3(q−1)−2 zeros in (F∗
q)

2 as well. Indeed, decompositions with two summands
in P can have at most one exceptional triangle, hence, Z(f) ≤ 2(q − 1) + �2√q� for
every f with two irreducible factors. This will be no greater than 3(q − 1) − 2 for
q ≥ 9. If f is absolutely irreducible, then by (2.1) Z(f) ≤ q + 1 + �6√q� − 3, which is
no greater than 3(q − 1) − 2 starting with q = 11.

The computations preformed in [10] show the validity of (4.2) for all 5 ≤ q ≤ 11
except for q = 8 when the answer is d(CP ) = (q − 1)2 − 3(q − 1) = 28. For example,
the polynomial x2 + y + x3y3 has exactly 21 zeros in (F∗

8)2, and so the corresponding
codeword has weight 28. We now have a complete understanding of this example.

Acknowledgments. We thank Leah Gold and Felipe Martins for helpful discus-
sions on coding theory.
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[11] M. Tsfasman, S. Vlăduţ, and D. Nogin, Algebraic Geometric Codes: Basic Notions, Math-

ematical Surveys and Monographs 139, AMS, Providence, RI, 2007.

View publication statsView publication stats

https://www.researchgate.net/publication/274214612_Geometric_Inequalities?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/268676958_Computing_the_continuous_discretely_Integer-point_enumeration_in_polyhedra?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/268676958_Computing_the_continuous_discretely_Integer-point_enumeration_in_polyhedra?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/256233935_Newton_polyhedra_and_the_genus_of_complete_intersections?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/256233935_Newton_polyhedra_and_the_genus_of_complete_intersections?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/252869185_Newton_polygons_curves_on_torus_surfaces_and_the_converse_Weil_theorem?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/252869185_Newton_polygons_curves_on_torus_surfaces_and_the_converse_Weil_theorem?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/239540661_An_Introduction_to_Toric_Varieties?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/239540661_An_Introduction_to_Toric_Varieties?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/235637878_Weil_Theorem_for_Singular_curves?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/235637878_Weil_Theorem_for_Singular_curves?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/2125918_Multiples_of_lattice_polytopes_without_interior_lattice_points?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/2125918_Multiples_of_lattice_polytopes_without_interior_lattice_points?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/2121368_Toric_Surface_Codes_and_Minkowski_Sums?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/2121368_Toric_Surface_Codes_and_Minkowski_Sums?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/2121368_Toric_Surface_Codes_and_Minkowski_Sums?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/2103343_Toric_Codes_over_Finite_Fields?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/2103343_Toric_Codes_over_Finite_Fields?el=1_x_8&enrichId=rgreq-68ed7c23c0c0ff42258007ef9b61ad5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzMjgxMjtBUzo0NzI5NjM5OTM2MDgxOTJAMTQ4OTc3NDgxMTMzOA==
https://www.researchgate.net/publication/220532812

	Toric Surface Codes and Minkowski Length of Polygons
	Repository Citation

	p:\tex\sidma\23-1\71655\71655.dvi

