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Abstract

In this paper, we investigate the structure of the saturation of ideals generated by sparse homoge-
neous polynomials over a projective toric variety X with respect to the irrelevant ideal of X. As our
main results, we establish a duality property and make it explicit by introducing toric Sylvester forms,
under a certain positivity assumption on X. In particular, we prove that toric Sylvester forms yield
bases of some graded components of Isat/I , where I denotes an ideal generated by n+ 1 generic forms,
n is the dimension of X and Isat the saturation of I with respect to the irrelevant ideal of the Cox
ring of X. Then, to illustrate the relevance of toric Sylvester forms we provide three consequences in
elimination theory: (1) we introduce a new family of elimination matrices that can be used to solve
sparse polynomial systems by means of linear algebra methods, including overdetermined polynomial
systems; (2) by incorporating toric Sylvester forms to the classical Koszul complex associated to a
polynomial system, we obtain new expressions of the sparse resultant as a determinant of a complex;
(3) we give a new formula for computing toric residues of the product of two forms.

Keywords: sparse polynomial systems, toric geometry, sparse resultants, elimination theory.

1 Introduction

The elimination of variables in a system of homogeneous polynomial equations is deeply connected to the saturation
of ideals with respect to a certain geometrically irrelevant ideal. Thus, the search and study of universal generators
of the saturation of an ideal generated by generic homogeneous polynomials is an important topic in elimination
theory. In the classical literature of the previous century, such universal generators were called inertia forms by
Hurwitz, Mertens, Van der Waerden and many others, including Zariski; see the references in [Jou91; Jou97] and
[Zar37]. As examples, Jacobian determinants and resultants associated to a square homogeneous polynomial system
are important inertia forms.

To be more specific, consider the ideal I = (F0, . . . , Fn) where Fi is the generic homogeneous polynomial of
degree di in the graded polynomial ring C = A[x0, . . . , xn], where deg(xi) = 1 for all i = 0, . . . , n and where A
stands for the universal ring of coefficients of the Fi’s. The saturation of the ideal I with respect to the ideal
m = (x0, . . . , xn), which we denote by Isat = I : m∞, is the ideal of inertia forms. In this context, the ideal m is the
(geometrically) irrelevant ideal of the projective space of dimension n which is associated to C. The elements in I
being trivially inertia forms, Isat/I is the natural quotient to study. It turns out that the Jacobian determinant of
the Fi’s is a generator, as an A-module, of the graded component of Isat/I in degree δ = d0 + · · ·+ dn− (n+ 1) and
their resultant is a generator of Isat/I in degree 0. In order to unravel the structure of Isat/I in degrees smaller
than δ, Jouanolou introduced and studied the formalism of Sylvester forms [Jou97]. His ideas were based on the
fact that for each µ = (µ0, . . . , µn) ∈ Nn+1 such that |µ| :=

∑

i µi < mini di, each polynomial Fi can be decomposed
as

Fi =
n
∑

j=0

x
µj+1

j Fi,j (1.1)

and one can consider the determinant det(Fi,j)0≤i,j≤n. This latter is called a Sylvester form of the Fi’s and denoted
by Sylvµ. Independently of the choice of decompositions (1.1), the class of Sylvµ modulo I , which is denoted by
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sylvµ, gives a nonzero element in (Isat/I)δ−|µ|. Moreover, (Isat/I)δ−|µ| is a free A-module which can be generated
by the Sylvester forms of degree δ− |µ|. This result is a consequence of a duality property between Sylvester forms
and monomials; namely, for all ν < mini di we have an isomorphism of A-modules

(Isat/I)δ−ν ≃ HomA(Cν , A).

More explicitely, this isomorphism corresponds to the equalities

xµ′

sylvµ =

{

sylv0 µ = µ′

0 µ 6= µ′

where sylv0 is a generator of (Isat/I)δ. We note that up to a nonzero multiplicative constant, sylv0 is equal to the
class of the Jacobian determinant of the Fi’s; see [Jou97, §3.10].

The definition and main properties of Sylvester forms have been recently extended to the case of n + 1 generic
multi-homogeneous polynomials, i.e. of polynomials defining hypersurfaces over a product of projective spaces of
total dimension n; see [BCN22]. In this paper, we develop the theory of Sylvester forms in the general setting
of homogeneous polynomials in the coordinate ring of a projective toric variety XΣ. In addition, to illustrate the
importance of these forms in elimination theory, we also provide applications to the construction of elimination
matrices for overdetermined polynomial systems, and to the computation of toric resultants and toric residues. As
far as we know, these applications are also new results in the context of multi-homogeneous polynomial systems.
In what follows we give a brief overview of the main contributions in this paper.

Let k be an algebraically closed field and XΣ be a n-dimensional projective toric variety over k given by a
complete fan Σ in a lattice N . Let R be the homogeneous coordinate ring of XΣ over k, also known as the Cox ring

of XΣ, which is graded using the combinatorics of Σ; see Section 2 or [Cox95] for more details. Assuming that there
exists a smooth n-dimensional cone σ ∈ Σ(n), we write x1, . . . , xn the variables of R associated to σ and we denote
by z1, . . . , zr the remaining ones. With these notations, a homogeneous polynomial in XΣ of degree α ∈ Cl(XΣ),
the class group of XΣ, is an element in the graded component Rα of R in degree α; it is a k-linear combination
of monomials xµ = xµ1

1 · · ·xµn
n z

µn+1
1 · · · z

µn+r
r of degree α. Now, the generic homogeneous polynomial of degree α

is the polynomial
∑

xµ∈Rα
ci,µx

µ where the coefficients ci,µ are seen as variables. Thus, being given n + 1 degrees
α0, . . . , αn, the corresponding generic homogeneous polynomial system over XΣ is given by the n + 1 homogeneous
polynomials

Fi =
∑

xµ∈Rαi

ci,µx
µ ∈ C = A⊗k R = A[x1, . . . , xn, z1, . . . , zr], i = 0, . . . , n, (1.2)

where A is the universal ring of coefficients over k, i.e. A = k[ci,µ : xµ ∈ Rαi , i = 0, . . . , n]. We define the ideal
I = (F0, . . . , Fn) and the ideal b = (x̃σ : x̃σ =

∏

ρ/∈σ xρ, σ ∈ Σ(n)), which is the irrelevant ideal of XΣ. The

saturation of I is the ideal of C defined as Isat = (I : b∞).

The first main result of this paper is the following duality property which is a generalization of [BCN22, Theorem
A] to the case of a projective toric variety (see Theorem 3.1). We set δ = α0 + · · ·+αn −KX ∈ Cl(XΣ), where KX

is the anticanonical class of XΣ.

Theorem. Let XΣ be a projective toric variety, let σ ∈ Σ(n) be an n-dimensional smooth cone and let ν ∈ Cl(XΣ).
Then, with the above notation, there exists a non-empty region Γ ( Cl(XΣ) such that if δ − ν /∈ Γ then

(Isat/I)δ−ν ≃ HomA((C/I)ν , A).

In the cases where (C/I)ν = Cν , the above duality implies that (Isat/I)δ−ν is a free A-module (see Corollary
3.1) and a natural question is to find explicit bases. To tackle this question, we introduce toric Sylvester forms. We
first prove that for suitable ν and xµ ∈ Rν , each generic homogeneous polynomial Fi can be decomposed into n+ 1
generic homogeneous polynomials (Fµ

ij)0≤j≤n, similarly to (1.1). The existence of such decompositions requires a
certain property on the smooth cone σ ∈ Σ(n); when it holds we will say that XΣ is σ-positive (see Definition
2.1 and Theorem 2.1). Then, from these decompositions we define toric Sylvester forms as the determinants
Sylvµ := det(Fµ

ij) ∈ Isatδ−ν and show that their classes in (Isat/I)δ−ν , denoted by sylvµ, are independent of the
choice of decompositions. Finally, we obtain the following explicit duality property which can be seen as the second
main contribution of this paper (see Theorem 4.1).

Theorem. Let XΣ be a projective toric variety and let σ ∈ Σ(n) be a smooth cone such that XΣ is σ-positive.

Then, under suitable conditions on ν ∈ Cl(XΣ), for any pair xµ, xµ′

∈ Rν we have

xµ sylvµ′ =

{

sylv0 µ = µ′

0 otherwise,
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where sylv0 is a generator of (Isat/I)δ as an A-module. Therefore, the toric Sylvester forms sylvµ, for all xµ ∈ Rν ,
yield an A-basis of (Isat/I)δ−ν .

In the rest of the paper, we provide three applications of toric Sylvester forms in elimination theory. The first
application deals with elimination matrices. An important question in elimination theory is the study of matrices
M with entries in A such that:

i) their rank drops when the coefficients ci,µ’s are specialized in k and the corresponding polynomial system
has solutions in XΣ,

ii) their corank coincides with the number of solutions, counting multiplicities, when the coefficients ci,µ’s are
specialized in k and the corresponding polynomial system has finitely many solutions in XΣ.

The first property is related to resultant theory (see e.g. [CDS97; GKZ94]) whilst the second is used for solving
0-dimensional polynomial systems (see e.g. [BT22; EM99]). In this paper, we introduce a new family of elimination
matrices by adding to a classical Macaulay-block matrix in some degree α ∈ Cl(XΣ), a block-matrix built from the
toric Sylvester forms of degree α (see Definition 5.1). We call these matrices hybrid elimination matrices and prove
their main properties in Theorem 5.1. Compared with the more classical Macaulay matrices, this new family yields
more compact matrices that can still be used for solving 0-dimensional polynomial systems. In addition, we also
prove that the construction of hybrid elimination matrices can be extended to polynomial systems defined by more
than n + 1 polynomials (see Theorem 5.3).

Our second application concerns the computation of sparse resultants. A classical result in elimination theory is
that the sparse resultant can be computed as the determinant of certain graded components of the Koszul complex
built from the considered polynomial system (see [GKZ94]). Generalizing a construction of Cattani, Dickenstein and
Sturmfels in [CDS97, §2] using the so-called toric Jacobian, we modify the usual Koszul complex by incorporating
the Sylvester forms in its last differential and prove that the determinant of some suitable graded parts of this new
complex is equal to the sparse resultant, up to a nonzero multiplicative constant in k (see Theorem 6.1). This result
yields new formulas for computing the sparse resultant as a determinant of a complex.

Our third application deals with the computation of toric residues. The toric residue of the generic polynomial
system (1.2) was defined by Cox in [Cox96]. It is a map that sends any polynomial in (C/I)δ to the fraction field
K(A) of A. The computation of this residue map by means of determinants has been an active research topic
with many contributions, including [Jou97; DK05; CCD97]. In this paper, using toric Sylvester forms we construct
matrices whose determinants are used to compute the residue of a product of two forms PQ, where P ∈ Cν ,
Q ∈ Cδ−ν and ν ∈ Cl(XΣ). This formula can be seen as an extension of a similar formula proved by Jouanolou in
the case XΣ = Pn [Jou97, Proposition 3.10.27]. It yields more compact matrices in comparison with the formula
proved by D’Andrea and Khetan in [DK05, Theorem 5.1] for computing the toric residue of a form of degree δ.

The paper is organised as follows. In Section 2, we present all the tools of toric geometry that are needed in
the rest of the paper. In particular, we prove the existence of decompositions of forms in a projective toric variety
XΣ which is σ-positive for a smooth cone σ ∈ Σ(n). In Section 3, we show that the claimed duality property holds
outside a region Γ ⊂ Cl(XΣ) which depends on the supports of the local cohomology modules of the corresponding
Cox ring. In Section 4, we define Sylvester forms and show that they give an A-basis of (Isat/I)δ−ν for certain
degrees ν ∈ Cl(XΣ). In Section 5, we introduce hybrid elimination matrices when XΣ is assumed to be smooth and
σ-positive for a smooth cone σ ∈ Σ(n). In Section 6, we prove that the determinant of certain graded parts of a
modified Koszul complex in a region ΓRes ⊂ Cl(XΣ) is equal to the sparse resultant, up to a nonzero multiplicative
constant in k. Finally, in Section 7 we prove a new formula for computing the toric residue of a product of two
forms.

2 Preliminaries on toric geometry

In this section, we fix our notation and briefly review some material we will use from toric geometry; we refer to
the book by Cox, Little and Schenck [CLS12] for more details. We also prove a decomposition property that we
will use in order to introduce toric Sylvester forms later on.

Projective toric varieties. Let k be an algebraically closed field and let M be a lattice of rank n. We denote
by N = Hom(M,Z) the dual of M , by TN = N ⊗ k× the algebraic torus associated to N and we set MR = M ⊗R,
which are two vector spaces over the real numbers. Let A = {m1, . . . ,ms} ⊂ M be a finite set of lattice points
and consider its convex hull ∆ = conv(A) ⊂ MR. The projective toric variety X∆ can be defined as the algebraic
closure of the image of the map

ΦA : TN −→ P
s−1
k t := (t1, . . . , tn) −→ (tm1 : · · · : tms ).

This variety is called toric because the group action of TN on itself extends to X∆ with good geometric properties.
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Example 2.1. If ∆ is a product of simplices of the form ∆nj = {t ∈ Rnj : tk ≥ 0,
∑nj

k=0 tk ≤ 1} for j = 1, . . . , s,
then XΣ = Pn1 × · · · × Pns .

When ∆ is n-dimensional, another definition of X∆, more intrinsic, can be stated from the normal fan Σ ⊂ N
of ∆, so that this variety is also denoted by XΣ (we note that the equivalence between these definitions requires
that ∆ is very ample [CLS12, Definition 2.1.13, Proposition 3.1.6], but if this is not the case one can always find
an integer k such that the polytope k∆ is very ample [CLS12, Corollary 2.2.18]). The geometric properties of XΣ

are deeply connected with the combinatorial properties of the fan Σ. For instance, XΣ is a smooth variety if and
only if Σ is smooth, which means that the minimal generators of all cones σ ∈ Σ are part of a basis of N .

We denote by Σ(r) the set of r-dimensional cones of Σ, which are also called rays when r = 1. We assume that
the generators of the rays uρ ∈ N for ρ ∈ Σ(1) are primitive and span the vector space NR; by [CLS12, Corollary
3.3.10], this condition is equivalent to the toric variety XΣ having no torus factors. Moreover, as ∆ is a bounded
polytope, its normal fan Σ is complete and its cones are strongly convex. Under these assumptions, Σ(1) contains
at least n + 1 rays. In addition, denoting by Cl(XΣ) the class group of XΣ, there is a short exact sequence

0 −→ M
F

−→ Z
Σ(1) π

−→ Cl(XΣ) −→ 0, (2.1)

where F is an (n + r) × n matrix whose rows are the generators of the rays in Σ(1) and π is chosen accordingly to
be a cokernel matrix; see [CLS12, Theorem 4.1.3].

Finally, we recall that a Cartier divisor D is nef if and only if D is generated by global sections [CLS12, Theorem
6.3.12], and ample if and only if the normal fan of its polytope is Σ [CLS12, Proposition 7.2.3]. As XΣ is assumed
to be a projective toric variety, it follows that there always exists an ample divisor on XΣ (see [Har77, Chapter 2,
Theorem 7.10]).

The Cox ring and a decomposition property. The homogeneous coordinate ring of a projective toric
variety XΣ, also known as the Cox ring, is the ring R = k[xρ, ρ ∈ Σ(1)] which is Cl(XΣ)-graded by means of the
map π defined in (2.1): R = ⊕α∈Cl(XΣ)Rα, with Rα = H0(XΣ,OΣ(D)) where D is a torus-invariant Weil divisor
such that [D] = α and OΣ is the structure sheaf of XΣ; see [Cox95] for more details.

In what follows, we will use the following notation for the variables of the Cox ring. Assuming that there exists
a maximal smooth cone σ ∈ Σ(n), we will denote by x1, . . . , xn the variables associated to the rays ρ ∈ σ(1) and
by z1, . . . , zr the remaining variables of R. According to the choice of σ, one can always write a matrix of the map
π in (2.1) under the form

π =
(

P Idr

)

, (2.2)

where P is a block matrix (Pi,j)1≤i≤r,1≤j≤n whose rows correspond to the relations between uρ for ρ /∈ σ and the
basis given by σ. In order to introduce Sylvester forms later on, we will need the following property which is not
standard.

Definition 2.1. For σ ∈ Σ(n), the projective toric variety XΣ is called σ-positive if σ is a maximal smooth cone
such that a matrix of the map π defined in (2.1) can be written as in (2.2) with the additional condition that
Pi,j ≥ 0 for i = 1, . . . , r and j = 1, . . . , n.

Intuitively, the above property can be understood as the fact that the vector −uρ belongs to σ for all ρ /∈ σ(1),
as each row of π corresponds to the identity uρj +

∑

ρi∈σ(1) Pi,juρi = 0. A first observation is that not all smooth

toric varieties is σ-positive for a certain σ ∈ Σ(n), as shown in the following example.

Example 2.2. Let Σ be the complete smooth fan in NR = R2 with the following rays:

ρ1 = (1, 0) ρ2 = (0, 1) ρ3 = (−1, 1) ρ4 = (−1, 0) ρ5 = (−1,−1) ρ6 = (0,−1).

It is straightforward to check that for every σ ∈ Σ(2), there is ρ /∈ σ(1) such that −uρ /∈ σ.

On the other hand, most of the projective toric varieties that are of interest for our applications are σ-positive
for some smooth maximal cone σ. For instance, this property is preserved under product of toric varieties. To
be more precise, recall that the product of two toric varieties is defined by the product fan (see [CLS12, Theorem
2.4.7]). Any cone of this fan is of the form σ1 ×σ2, where the elements are considered as pairs (u, v) for u ∈ σ1 and
v ∈ σ2. It is easy to check that dimσ1 × σ2 = dimσ1 + dimσ2.

Lemma 2.1. If X1, resp. X2, is a toric variety which is σ1-positive, resp. σ2-positive, for some maximal cone σ1

in a fan Σ1, resp. σ2 in a fan Σ2, then the product X1 ×X2 is σ1 × σ2-positive.

Proof. Any ray ρ of the product fan is generated by an element of the form (uρ1 , 0), resp. (0, uρ2), for ρ1 a ray of
σ1 and ρ2 a ray σ2. By assumption, −uρ1 can be written as a positive combination of elements in σ1, therefore of
σ1 × σ2.
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Example 2.3. The projective space Pn is σ-positive as the map π can be written as π = (1 · · · 1). Therefore, any
product of projective spaces is σ′-positive by Lemma 2.1. Another classical family of smooth toric varieties are
Hirzebruch surfaces Hr ⊂ R2: for each r ∈ Z>0, it is the variety corresponding to the fan Σr with rays

ρ1 = (1, 0) ρ2 = (0, 1) ρ3 = (−1,−r) ρ4 = (0,−1).

Hirzebruch surfaces are smooth and are σ-positive with respect to the smooth maximal cone σ = (ρ1, ρ2) as π can
be written as

π =

(

1 r 1 0
0 1 0 1

)

.

We are now ready to prove the existence of certain decompositions of homogeneous polynomials that we will use
in Section 4 in order to define toric Sylvester forms. Let J be an ideal of R generate by homogeneous polynomials
f0, . . . , fn of degree α0, . . . , αn, respectively.

Theorem 2.1. Let XΣ be a projective toric variety of dimension n such that XΣ is σ-positive with respect to a
smooth cone σ ∈ Σ(n). Let ν ∈ Cl(XΣ) be a nef class and let ∆ν be the corresponding polytope, written as in
(2.3), satisfying 0 ≤ νj < mini ai,j for ρj /∈ σ(1). Then, the two following properties hold:

• Rν = (R/J)ν .

• For every xµ ∈ Rν and fi ∈ Rαi and i = 0, . . . , n, there exists a decomposition of the form

fi = z
µn+1+1
1 · · · z

µn+r+1
r fµ

i,0 + xµ1+1
1 fµ

i,1 + · · · + xµn+1
n fµ

i,n

where the fµ
i,j , i, j = 0, . . . , n, are homogeneous polynomials in R.

Proof. The graded quotient map Rν −→ (R/J)ν is surjective. Using the degree constraint, its kernel must be zero,
giving the first property. On the other hand, we have to prove that for xµ = xµ1

1 . . . xµn
n z

µn+1
1 . . . z

µn+r
r ∈ Rν (we

recall that µ = Fm + ν for m ∈ Ai), every monomial xFm+ai ∈ Ri that is not divisible by z
µn+1+1
1 · · · z

µn+r+1
r is

divisible by some of the monomials xµ1+1
1 , . . . , xµn+1

n . Using the toric homogenization, the fact that the first does
not hold implies that

〈un+j ,m〉 + ai,j ≤ µn+j j = 1, . . . , r.

Considering any of these j and using that νj = µn+j +
∑n

k=1 Pk,jµk, via the map π defined in Definition 2.1, we
get:

〈un+j ,m〉 + min ai,j ≤ µn+j =⇒ 〈un+j ,m〉 + νj < µn+j =⇒

〈un+j ,m〉 +
n
∑

k=1

Pk,jµk < 0 =⇒
n
∑

k=1

Pk,j(µk − 〈uk,m〉) < 0.

As XΣ is σ-positive, there must exists k ∈ {1, . . . , n} such that µk − 〈uk, m〉 < 0. This implies that x
µk+1
k divides

xFm+ai , as the coefficient of xk in this monomial is Fuk + ai,k = 〈uk,m〉.

Corollary 2.1. Assume that the projective toric variety XΣ is σ-positive for some σ ∈ Σ(n). If ∆i is n-dimensional
for all i = 0, . . . , n, then Theorem 2.1 holds for ν = 0.

Proof. If ∆i is n-dimensional, then ai,j > 0 for j > n thanks to the positivity property. Therefore, 0 < mini ai,j

for ρj /∈ σ(1), which proves the claim.

Generic sparse homogeneous polynomial systems. Let ∆0, . . . ,∆n be rational polytopes in MR, let Σ
be the normal fan of the Minkowski sum ∆ =

∑n
i=0 ∆i and let XΣ be the corresponding projective toric variety (as

XΣ is defined by the normal fan of ∆, XΣ is complete and ∆ corresponds to an ample divisor [CLS12, Proposition
6.1.4], which implies that XΣ is projective).

Suppose that XΣ admits a maximal smooth cone σ ∈ Σ(n) whose corresponding variables in the Cox ring R of
XΣ are x1, . . . , xn, as in (2.2). The polytopes ∆i can be seen as elements ai = (ai,j) ∈ ZΣ(1) using the following
facet presentations

∆i = {m ∈ MR : 〈m,uj〉 ≥ −ai,j , ρj ∈ Σ(1)}, i = 0, . . . , n, (2.3)

which are chosen to be minimal so that the ∆i’s correspond to basepoint free divisors. These presentations relate
each of the polytopes ∆i to Weil divisors that can be written as

∑

j ai,jDj where Dj is the torus invariant divisor
associated with the ray ρj . Using (2.1), we see that two polytopes that map to the same class in Cl(XΣ) are
translations of each other. For each class αi ∈ Cl(XΣ), we choose this presentation so that the vertex associated to
the cone σ is 0 ∈ M . In particular, this implies that ai,j = 0 for ρj ∈ σ(1).
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Now, let α0, . . . , αn be nef classes in Cl(XΣ) associated to ∆0, . . . ,∆n, and Rα0 , . . . , Rαn be the corresponding
graded components in the Cox ring, respectively. These graded components are finite k-vector spaces and have
a monomial basis given by xµ := xµ1

1 · · ·xµn
n z

µn+1

1 · · · zµr
r ∈ R. Let A = k[ci,µ : xµ ∈ Rαi , i = 0, . . . , n] and

C = A[x1, . . . , xn, z1, . . . , zr]. The generic homogeneous sparse polynomial system of degree α0, . . . , αn is the system
defined by the polynomials

Fi =
∑

xµ∈Rαi

ci,µx
µ ∈ C = A[x1, . . . , xn, z1, . . . , zr], i = 0, . . . , n. (2.4)

The ring C can be interpreted as the Cox ring of the toric variety XΣ ×k Spec(A) over generic coefficients and its
graded components are given by Cα = Rα ⊗k A.

If the system is dehomogenized by setting z1 = · · · = zr = 1, the Newton polytope of Fi is ∆i for i = 0, . . . , n.
Conversely, the polynomials F0, . . . , Fn can be defined as the homogenization of the system of polynomials F̃0 =
· · · = F̃n = 0 with supports in the subsets Ai = ∆i ∩ M for i = 0, . . . , n. More precisely, the homogeneization of
the polynomial

F̃i =
∑

m∈Ai

ci,mxm ∈ C̃ = A[x1, . . . , xn]

is the polynomial

Fi =
∑

m∈Ai

ci,mxFm+ai ∈ C = A[x1, . . . , xn, z1, . . . , zr]

where F and ai are defined in (2.1) and (2.3), respectively. We note that by homogenizing the monomials associated
to the lattice points in Ai, we can choose a monomial basis of Rαi using µ = Fm + ai. We refer to [BT22, Section
2.2] for more details about homogenization and dehomogenization of sparse polynomial systems.

Finally, we note that that if XΣ is assumed to be σ-positive, then Theorem 2.1 can be easily extended to our
setting and yield a decomposition of the generic homogeneous sparse polynomials Fi, i = 0, . . . , n, over XΣ ×k A,
where Fµ

i,j are homogeneous polynomials in C.

Torsion and local cohomology. From the fan Σ of a toric variety XΣ, the irrelevant ideal b of its homogeneous
coordinate ring C = A[xρ, ρ ∈ Σ(1)] is defined as

b = (xσ such that σ ∈ Σ(n)), where xσ =
∏

ρ/∈σ(1)

xρ.

The b-torsion of a graded C-module S is classically defined as

Γb(S) = {a ∈ S : b
ka = 0, k ∈ N}

and the local cohomology modules Hi
b(S) are then the derived functors of S −→ Γb(S). When the module S is a

quotient ring B = C/I for I = 〈F0, . . . , Fn〉 the ideal defined by (2.4), the 0-th local cohomology is H0
b (B) = Isat/I

where Isat denotes the saturation of the ideal I with respect to the irrelevant ideal of C, i.e. Isat := (I : b∞) = {p ∈
C : ∃k ∈ Z b

kp ⊂ I}.

Local cohomology modules are strongly related to sheaf cohomology modules. More precisely, let S be a finitely
generated Cl(XΣ)-graded R-module with associated coherent sheaf S in XΣ and α ∈ Cl(XΣ). If p ≥ 2, then

Hp
b
(S)α ≃ Hp−1(XΣ,S(α)). (2.5)

Furthermore, the following exact sequence holds (see [CLS12, Theorem 9.5.7] for proofs):

0 −→ H0
b (S)α −→ Sα −→ H0(XΣ,S(α)) −→ H1

b (S)α −→ 0.

If S = R, then Rα = H0(XΣ,OΣ(α)) and therefore

H0
b (R) = H1

b (R) = 0, (2.6)

which implies that Hi
b(C) = 0 for i = 0, 1.

Notation 2.1. For the sake of simplicity in the notation, for any Cartier divisor D and any integer p ≥ 0, we will
write Hp(XΣ, α) in place of Hp(XΣ,OΣ(D)), where α = [D] ∈ Cl(XΣ).

The following theorems by Demazure and Batyrev-Borisov are the main tools that we will rely on in order to
analyze the vanishing of sheaf cohomology modules of toric varieties.
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Theorem 2.2. [Dem70, Corollary 1] Let XΣ be a toric variety and α ∈ Cl(XΣ) be a nef class, then Hp(XΣ, α) ≃ 0
for all p > 0.

Theorem 2.3. [BB11, Theorem 2.5] Let XΣ be a toric variety and α ∈ Cl(XΣ) be a nef class, then

Hp(XΣ,−α) ≃

{

0 if p 6= dim ∆α

⊕m∈Relint(∆α)∩Mkχ−m if p = dim ∆α

Another important result we will use is the toric version of Serre duality (see [CLS12, Theorem 9.2.10] for a
proof): for any α ∈ Cl(XΣ) and any integer p ≥ 0,

Hp(XΣ, α) ∼= Hn−p(XΣ,−KX − α)∨,

where KX the anticanonical class in Cl(XΣ).

Hilbert functions and the Grothendieck-Serre formula. Let XΣ be a smooth projective toric variety
and let R be its Cox ring. The Hilbert function of graded R-module S is defined as

HF(S,−) : Cl(XΣ) → Z≥0

α 7→ HF(S, α) := dimk(Sα).

For α ≫ 0 (component-wise), this function becomes a (multivariate) polynomial which is called the Hilbert poly-
nomial and is denoted by HP(S, α) (see [MS03, Lemma 2.8]).

Remark 2.1. If S = R/J with J an ideal of R defining a 0-dimensional subscheme in XΣ, then the Hilbert
polynomial of S is a constant which is equal to the number of points counted with multiplicity.

An important relation between the Hilbert function, the Hilbert polynomial and local cohomology modules is
given by the Grothendieck-Serre formula (see [MS03, Proposition 2.14]): for any α ∈ Cl(XΣ),

HF(S, α) = HP(S, α) +
n
∑

i=0

(−1)i dimk H
i
b(S)α. (2.7)

3 A duality theorem

Let XΣ be a projective toric variety of dimension n such that it admits a maximal smooth cone σ ∈ Σ(n). In
this section, we consider the ideal generated by n + 1 generic homogeneous sparse polynomials (see Section 2) and
analyze some graded components of its saturation via a duality property. For that purpose, we take again the
notation (2.4): F0, . . . , Fn are the generic homogeneous polynomials of degree α0, . . . , αn, respectively; they are of
the form

Fi =
∑

xµ∈Ci

ci,µx
µ ∈ C = A[x1, . . . , xn, z1, . . . , zr]. (3.1)

As a preliminary result, we first show that F0, . . . , Fn form a regular sequence outside V (b) ⊂ Spec(C).

Lemma 3.1. The homogeneous generic polynomials F0, . . . , Fn define a regular sequence in the localization ring
Cτ := Cxτ for any τ ∈ Σ(n).

Proof. We claim that F0 is a nonzero divisor in C. This follows as a corollary of Dedekind-Mertens Lemma [BJ14,
Corollary 2.8], which says that F is a nonzero divisor in A[x1, . . . , xn] if its content ideal is a nonzero divisor in A.
The content ideal is generated by the coefficients c0,µ for xµ ∈ C0 and they are all nonzero divisors. Therefore, F0

is a nonzero divisor also in Cτ for all τ ∈ Σ(n).

Now, as Σ always refines the normal fan of ∆i, we can always find a vertex aτ ∈ Ai corresponding to each
maximal cone τ ∈ Σ(n). Let ci,τ be the coefficient associated to this vertex. Then, similarly to [BCN22, Lemma
3.2], for any t ∈ {1, . . . , n− 1} there is a isomorphism of algebras

Bt
τ =

(

A[x1, . . . , xn, z1, . . . , zr]/〈F0, . . . , Ft〉
)

τ

∼
−→ (At

τ [x1, . . . , xn, z1, . . . , zr])τ

where At
τ = k[ci,µ ci,µ 6= ci,τ 0 ≤ i ≤ t] and which maps ci,τx

aτ to Fi − ci,τx
aτ and which leaves invariant

the other variables and coefficients. Applying again Dedekind-Mertens Lemma as above, we deduce that Ft+1 is a
nonzero divisor in (At

τ [x1, . . . , xn, z1, . . . , zr])τ , and therefore in Bt
τ .
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Next, we consider the two canonical spectral sequences associated with the Čech-Koszul double complex
C•
b (K•(F )), where K•(F ) denotes the Koszul complex of the sequence of homogeneous polynomials F0, . . . , Fn

in C. The terms of this Koszul complex are graded free C-modules and we denote their homology modules by Hp

for simplicity in the notation. If we start taking homologies horizontally, the second page is:

H0
b (Hn+1) H0

b (Hn) H0
b (Hn−1) · · · H0

b (H0) = Isat/I

0 0 0 · · · H1
b (H0)

...
...

...
. . .

...

0 0 0 · · · Hn
b (H0)

0 0 0 · · · Hn+1
b

(H0)
.

The vanishing of the local cohomology modules Hi
b(Hj) for i > 0 and j > 0 follows from the fact that the Fi’s

form a regular sequence after localization by a generator of b by Lemma 3.1. In addition, we deduce that Hp

are geometrically supported on V (b) for all p > 0 by a classical property of Koszul complexes, and hence that
H0

b (Hp) = Hp for all p > 0.

On the other hand, if we start taking homologies vertically, we obtain the following first page:

0 0 0 · · · 0

0 0 0 · · · 0

...
...

...
...

Hn
b (C(−

∑

j αj)) → Hn
b (⊕kC(−

∑

j 6=k αj)) → Hn
b (⊕k,k′C(−

∑

j 6=k,k′ αj)) · · · Hn
b (C)

Hn+1
b

(C(−
∑

j αj)) → Hn+1
b

(⊕kC(−
∑

j 6=k αj)) → Hn+1
b

(⊕k,k′C(−
∑

j 6=k,k′ αj)) · · · Hn+1
b

(C)

using that Kj(F ) = ⊕|J|=jC(−
∑

k∈J αk) for J ⊂ {0, . . . , n}. We note that the vanishing of the two first rows
follows from (2.6), and also that the vanishing of Hp

b
(C) for all p > n + 1 is a consequence of Grothendieck’s

vanishing Theorem [Gro57, Theorem 3.6.5].

Notation 3.1. The support SuppS of a graded module S is the subset of ν ∈ Cl(XΣ) such that Sν 6= 0. We
denote by Γ1 the support of the modules on the main diagonal, expect on the last row, and by Γ0 the support of
the modules in the diagonal under Γ1, except on the last row again, i.e

Γi = Supp(⊕n
p=0H

p
b
(Kp+i−1(F ))) i = 0, 1.

In addition, we define ΓRes to be the support of all the cohomology modules that are appearing above the diagonal
in the first page of the second spectral sequence, i.e. ΓRes = ∪i<j SuppHi

b(Kj(F )). Moreover, from now on, we
denote by δ the divisor class α0 + · · · + αn −KX where KX denotes the anticanonical divisor of XΣ.

The comparison of the two above spectral sequences leads to the following duality.

Theorem 3.1. Let XΣ be a projective toric variety which admits a maximal smooth cone σ ∈ Σ(n) and let
ν ∈ Cl(XΣ). If δ − ν /∈ Γ0 ∪ Γ1 then

(Isat/I)δ−ν ≃ HomA((C/I)ν , A).

Proof. From the comparison of the two spectral sequences associated to the double complex C•
b(K•(F )), for all

δ − ν /∈ Γ0 ∪ Γ1 we get an isomorphism

(Isat/I)δ−ν ≃ Ker



Hn+1
b

(C(−
∑

j

αj)) −→ Hn+1
b

(⊕kC(−
∑

j 6=k

αj))





δ−ν

.
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Moreover, using toric Serre duality and the relation between sheaf and local cohomology modules, we obtain

Hn+1
b

(C(−
∑

j

αj))δ−ν ≃ Hn(XΣ,−ν −KX) ≃ H0(XΣ, ν)∨ ≃ HomA(Cν , A).

By the same argument, we also have Hn+1
b

(⊕kC(−
∑

j 6=k αi))δ−ν ≃ HomA(Iν , A). Using the first isomorphism, we
get the duality property.

Theorem 3.1 holds if δ − ν ∈ SuppHn+1
b

(⊕jC(−
∑

i6=j αi))), which is a priori not contained in Γ0 or Γ1, but if
it does not belong to this support, then we get the following important consequence.

Corollary 3.1. Let XΣ be a projective toric variety which admits a maximal smooth cone σ ∈ Σ(n). Let
ν ∈ Cl(XΣ) be a nef class and ∆ν be the corresponding polytope, written as in (2.3), satisfying 0 ≤ νj < mini ai,j

for ρj /∈ σ(1). Then,
(Isat/I)δ−ν ≃ HomA(Cν , A).

In particular, (Isat/I)δ−ν is a free A-module whose rank is equal to the rank of Cν .

Proof. We note that these conditions imply that Cν = (C/I)ν , as in Theorem 2.1, but without requiring the
property of being σ-positive in this case.

We also note that the case ν = 0, which corresponds to the isomorphism (Isat/I)δ ≃ A, was already known; see
[BC93; CCD97].

4 Toric Sylvester forms

Take again the notation of Section 3. As a consequence of Corollary 3.1, some graded components of Isat/I are free
A-modules and hence a natural question is to provide explicit A-bases for them. This is precisely the goal of this
section. We will first describe the graded component (Isat/I)δ, which essentially follows from [CCD97], and then
introduce Sylvester forms to deal with the other cases. In what follows, we assume that the projective toric variety
XΣ is σ-positive with respect to the maximal smooth cone σ ∈ Σ(n).

Following [CCD97], we find a nonzero element of (Isat/I)δ ≃ A as follows. Using Corollary 2.1, if ∆0, . . . ,∆n

are n-dimensional, one can decompose each polynomial as

Fi = x1Fi,1 + · · · + xnFi,n + z1 · · · zrFi,n+1, (4.1)

and consider the determinant
Sylv0 = det

(

Fi,j

)

0≤i,j≤n
.

This homogeneous polynomial is called the toric jacobian; we will denote its class modulo I by sylv0.

Proposition 4.1. The element Sylv0 belongs to (Isat)δ. Moreover, sylv0 is independent on the choices of decom-
positions (4.1) and the choice of σ (as long as XΣ is σ-positive). In addition, sylv0 is a generator of (Isat/I)δ, which
is a free A-module of rank 1.

Proof. The fact that Sylv0 ∈ Isat follows from xi Sylv0 ∈ I for i = 1, . . . , n and z1 · · · zr Sylv0 ∈ I . The A-module
(Isat/I)δ is free of rank 1 by Theorem 3.1 and the fact that C0 ≃ A. The fact that sylv0 is nonzero is a consequence
of [CCD97, Theorem 0.2] and the independence of the choice of the decomposition (4.1) is a consequence of the
classical Wiebe’s lemma; see [Jou95, Proposition 3.8.1.6].

The property Sylv0 /∈ I and the independence from σ is proved in [CCD97, Theorem 0.2]. In this paper the
hypothesis that the αi ’s are Q-ample, for i = 0, . . . , n, is used in order to derive the decomposition (4.1). In our
context, we already derived such a decomposition in Theorem 2.1 so, as claimed in [CCD97, Remark 2.12, iv], the
same property holds in this case.

In order to prove that sylv0 has degree δ, we find the degree of each entry (i, j) of the matrix defined by the
Fi,j . In (4.1), we divided a set of monomials of degree αi, by a monomial of degree

{

π(ej) if the monomial is xj for j = 1, . . . , n,

π(
∑

k=n+1 ej) if the monomial is z1 · · · zr,

where {ej}
n+r
j=1 is the canonical basis of ZΣ(1). On the other hand, the anticanonical class KX coincides with

the degree of the monomial x1 · · ·xnz1 · · · zr, which is equal to π(
∑n+r

j=1 ej). Therefore, the degree of each of the
summands constituting the determinant is equal to:

n
∑

i=0

(

αi − π(eτ(i))
)

=

(

n
∑

i=0

αi

)

−KX = δ,

where τ ∈ Sn is the element of the symmetric group corresponding to such summand.
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We note that applying Theorem (2.3), the Sylvester form sylv0 is in correspondence with the unique lattice
point in the interior of the polytope ∆Σ associated to the anticanonical divisor KX :

(Isat/I)δ ≃ Hn+1
b

(C(−
∑

αi))δ ≃ Hn(XΣ,−KX) ≃ ⊕m∈Relint(∆Σ)Aχ−m.

So far we proved that the toric Jacobian sylv0 yields an A-basis of (Isat/I)δ ≃ A. The next step is to construct
an A-basis of (Isat/I)δ−ν when it is a free A-module.

Definition 4.1. Let XΣ be a projective toric variety which is σ-positive for some σ ∈ Σ(n). Let ν ∈ Cl(XΣ) be
a nef class and ∆ν be the corresponding polytope, written as in (2.3), satisfying 0 ≤ νj < mini ai,j for ρj /∈ σ(1).
According to Theorem 2.1, for any xµ ∈ Rν and for any i ∈ {0, . . . , n} the polynomial Fi can be decomposed as

Fi = z
µn+1+1
1 · · · z

µn+r+1
r Fµ

i,0 + xµ1+1
1 Fµ

i,1 + · · · + xµn+1
n Fµ

i,n (4.2)

and we define the toric Sylvester form Sylvµ as the determinant

Sylvµ = det(Fµ
i,j)0≤i,j≤n.

The class of Sylvµ modulo I is denoted by sylvµ.

Theorem 4.1. Let XΣ be a projective toric variety which is σ-positive for some σ ∈ Σ(n). Then, for any ν ∈ Cl(XΣ)

satisfying the hypotheses of Theorem 2.1 and any pair xµ, xµ′

∈ Rν :

xµ′

sylvµ =

{

sylv0 µ = µ′

0 otherwise.

The element Sylvµ belongs to (Isat)δ−ν . Its class sylvµ ∈ (Isat/I)δ−ν is a nonzero element which is independent of
the choices of decompositions and of σ (as long as XΣ has the σ-positive property). Therefore, {sylvµ}xµ∈Cν gives
a basis of (Isat/I)δ−ν .

Proof. First, the fact that Sylvµ has degree δ − ν follows by using the same reasonning as the one at the end of
Proposition 4.1. Now, applying Cramer’s rule from the decompositions (4.2) we get

x
µj+1

j Sylvµ = det













· · · x
µj+1

j F0,j · · ·

· · ·
... · · ·

· · · x
µj+1

j F0,j · · ·
= det









· · · F0 · · ·

· · ·
... · · ·

· · · Fn · · ·
∈ I,

and the same holds for the monomial z
µn+1+1
1 · · · z

µn+r+1
r . This proves that Sylvµ ∈ Isatδ−ν . Now, suppose that for

xµ 6= xµ′

∈ Rν there exists j ∈ {1, . . . , n} such that µ′
j > µj and x

µj+1

j divides xµ′

. Then,

xµ′

Sylvµ =
xµ′

x
µj+1

j

x
µj+1

j Sylvµ ∈ I =⇒ xµ′

sylvµ = 0 ∈ (Isat/I)δ−ν .

If this does not hold, then µ′
j ≤ µj for all j ∈ {1, . . . , n}. Using the σ-positive property, this implies that

∑n
j=1 Pj,kµ

′
j ≤

∑n
j=1 Pj,kµj for k = 1, . . . , r, but if it was an equality, then:

νk = µ′
n+k +

∑

j=1

Pj,kµ
′
j = µn+k +

∑

j=1

Pj,kµj k = 1, . . . , r

since xµ and xµ′

have the same degree ν. This would imply that xµ = xµ′

, which yields a contradiction. Otherwise,
µ′
n+k > µn+k for all k = 1, . . . , r, implying:

xµ′

Sylvµ =
xµ′

z
µn+1+1
1 · · · z

µn+r+1
r

z
µn+1+1

1 · · · z
µn+r+1
r Sylvµ ∈ I =⇒ xµ′

sylvµ = 0 ∈ (Isat/I)δ−ν .

On the other hand, we have

xµ Sylvµ = x
µj

1 · · ·xµn
n z

µn+1
1 z

µn+r
r det(Fi,j) = det(x

µj

j Fi,j)

but at the same time, the decomposition

Fi = x1x
µ1
1 Fi,1 + x2x

µ2
2 Fi,2 + · · · + z1 · · · zrz

µn+1
1 · · · z

µn+r
r Fi,n+1

gives the Sylvester form sylv0, implying the equality and that Sylvµ /∈ I . The fact that they form a basis follows
from the duality in Theorem 3.1 and from the observation that sylv0 is a basis of (Isat/I)δ

Remark 4.1. We note that over the field k, the duality between Sylvester forms and monomials in Theorem 4.1
could also be deduced from the global transformation law in [CCD97, Theorem 0.2]. The approach we developed
above allows us to work over the ring A, which is the universal ring of coefficients over k.
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5 Application to toric elimination matrices

An important motivation for studying the structure of the saturation of an ideal generated by generic sparse polyno-
mials is for applications in elimination theory, in particular for solving sparse polynomial systems. In this section we
introduce a family of matrices whose construction involves toric Sylvester forms. It yields new compact elimination
matrices that can be used for solving 0-dimensional sparse polynomial systems via linear algebra methods; we refer
the reader to [EM99; BT22; Tel20] for a thorough exposition of such solving methods that we will not discuss in
this paper.

In what follows, we will consider a smooth projective toric variety XΣ which is σ-positive for some maximal
cone σ, and a generic sparse polynomial system defined by homogeneous polynomials F0, . . . , Fn as defined in (2.4).
We need to assume that XΣ is smooth because we will use the Grothendieck-Serre formula (see Section 2). This
setting covers many cases that are of interest for applications. We note that the smoothness assumption is not
very restrictive as XΣ can be replaced by one of its desingularization variety (see e.g. [CLS12, Chapters 10, 11]).
However, it is not straightforward that the desingularization of a toric variety satisfying the positivity property will
itself satisfy this property.

Notation 5.1. The elimination matrices we will consider are universal with respect to the coefficients of the Fi’s,
so we introduce the following notation to study rigorously their properties under specialization of these coefficients.
Recall that I denotes the ideal in C generated by F0, . . . , Fn.

Any specialization (i.e. ring morphism) θ : A −→ k induces a surjective map C −→ R where R = k[xρ : ρ ∈ Σ(1)]
(this map leaves invariant the variables xρ). For all i = 0, . . . , n we define fi = θ(Fi) ∈ R and we denote by
I(f) the homogeneous ideal (f0, . . . , fn) of R and set B(f) = R/I(f). Moreover, we also set Bsat = C/Isat,
B(f)sat = R/I(f)sat and Bsat(f) = C/Isat(f) (observe that I(f)sat and Isat(f) are in general not the same ideals).
Finally, for any matrix M with coefficients in A, we denote by M(f) its specialization by θ : A −→ k.

Finally, we note that we will consider Pic(XΣ) instead of Cl(XΣ) as all Weil divisors are Cartier in a smooth
variety (see [CLS12, Proposition 4.2.6]).

5.1 Hybrid elimination matrices

We begin by describing precisely what we mean by an elimination matrix M associated to the polynomials F0, . . . , Fn.
It is a matrix whose columns are filled with coefficients of some homogeneous forms that are of the same degree
and that all belong to the saturated ideal Isat ⊂ C. Thus, its entries are polynomials in A. Moreover, it is required
that for any specialization map θ : A −→ k the following two properties hold :

i) The corank of M(f) is equal to zero if and only if f0 = · · · = fn = 0 has no solution in XΣ.

ii) If the number of solutions of f0 = · · · = fn = 0 is finite in XΣ and equals κ, then the corank of M(f) is κ.

We note that the first property yields a certificate of existence of a common root of the fi’s, which is equivalent
to the vanishing of their sparse resultant; we will come back to resultants in the next section. The second property
is mainly required for solving 0-dimensional polynomial systems by means of linear algebra techniques based on
eigen-computations because in this approach, the common roots of the fi’s are extracted from the cokernel of M(f).

A very classical family of elimination matrices is obtained by filling columns with all the multiples of the Fi’s
of a certain degree. These matrices are usually called Macaulay-type matrices and are widely used for solving
0-dimensional polynomial systems (see [BT22]). To be more precise, these matrices, that we will denote by Mα,
are presentation matrices of the A-module Bα, i.e. are matrices of the maps

(

⊕n
i=0 C(−αi))α −→ Cα (5.1)

(G0, . . . , Gn) 7→
n
∑

i=0

GiFi.

Of course, some conditions on α ∈ Pic(XΣ) are required in order to guarantee that Mα is an elimination matrix; we
refer to [EM99] and to [Tel20, Chapter 5] for more details. Applying results we proved in the previous sections, we
extend the family of Macaulay-type matrices by using toric Sylvester forms. We recall that Sylvester forms belong
to Isat by Theorem 4.1.

Definition 5.1. Let α be such that
(

Isat/I
)

α
≃ ⊕µA is a free A-module; e.g. α /∈ Γ0 ∪ Γ1 and Iδ−α = 0 as in

Corollary 3.1. Consider the map

(⊕n
i=0C(−αi))α ⊕

(

Isat/I
)

α
→ Cα (5.2)

(G0, . . . , Gn) ⊕ (lµ)xµ∈Cδ−α
7→

n
∑

i=0

GiFi +
∑

xµ∈Cδ−α

lµ Sylvµ



12 Laurent Busé and Carles Checa

where we recall that lµ ∈ A for all µ. Its matrix is called a hybrid elimination matrix and will be denoted by Hα.

The matrices Hα are called hybrid because they are composed of two blocks, one from the classical Macaulay-
type matrices and another one built from toric Sylvester forms. In particular, Mα = Hα if (Isat/I)α = 0, so that
the family of matrices Hα can be seen as an extension of the family of Macaulay-type matrices Mα; from now on
we will use the notation Hα instead of Mα. Our next step is to prove that these matrices are elimination matrices.

5.2 Main properties

In this section, we first prove that the matrices Hα introduced in Definition 5.1 are elimination matrices. Then, we
give an illustrative example and also provide another criterion to construct the matrices Hα without relying on the
computation of the supports Γ0 and Γ1.

First, suppose given a specialization map (see Notation 5.1) and a degree α. From the results of Section 3 and
Section 4, and also Definition 5.1, we deduce that the image of the matrix Hα(f) is Isat(f)α, so that its corank is
HF(Bsat(f), α). Therefore, a natural question is to compare this Hilbert function of Bsat(f) with the one of B(f)sat

in degrees for which hybrid matrices H are defined; see Definition 5.1. We recall that we take again the notation of
Section 3 and we assume that the toric variety XΣ is smooth and σ-positive for a maximal cone σ ∈ Σ(n).

Lemma 5.1. Let α /∈ Γ0 ∪ Γ1 ⊂ Pic(XΣ) and suppose given specialized polynomials f0, . . . , fn defining a 0-
dimensional subscheme in XΣ, possibly empty, of κ points, counted with multiplicity. Then,

HF(B(f)sat, α) = HF(Bsat(f), α) = κ.

Proof. This proof goes along the same lines as [BCN22, Lemma 2.7]. First, one observes that I(f) ⊂ Isat(f) ⊂
I(f)sat so that B(f)sat, Bsat(f) and B(f) have the same Hilbert polynomial, which is the constant κ by our
assumption.

Now, Hi
b(B(f)sat) = 0 for i = 0 and for all i > 1 since V (I(f)) is finite. Applying Grothendieck-Serre formula,

it follows that HF(B(f)sat, α) = κ for all α such that H1
b (B(f)sat)α = 0. Analyzing the two spectral sequences

associated to the Čech-Koszul complex of f0, . . . , fn, we get that the above vanishing holds for all α /∈ Γ0 ∪ Γ1.

Similarly, Grothendieck-Serre formula and the finiteness of V (I(f)) imply that HF(Bsat(f), α) = κ for all α
such that H0

b (B(f)sat)α = H1
b (B(f)sat)α = 0. By [Cha13, Proposition 6.3], the vanishing of these modules can be

derived from the similar vanishing conditions H0
b (Bsat)α = H1

b (Bsat)α = 0. These latter conditions hold for all
α /∈ Γ0 ∪ Γ1, which concludes the proof.

Remark 5.1. As a consequence of the above lemma, the canonical map from Isatα to I(f)satα , which is induced by
a specialization ρ, is surjective, i.e. generators of I(f)satα can be computed by means of universal formulas.

Theorem 5.1. Assume that the toric variety XΣ is smooth and σ-positive for a maximal cone σ ∈ Σ(n). Then,
for any α /∈ Γ0 ∪ Γ1 ⊂ Pic(XΣ) the matrix Hα is an elimination matrix, i.e. :

i) corank(Hα(f)) = 0 if and only if V (I(f)) is empty in XΣ,

ii) If V (I(f)) is a finite subscheme of degree κ in XΣ, then corank(Hα(f)) = κ.

Proof. The proof of i) follows from Lemma 5.1. For ii): if V (I(f)) is empty, equivalently B(f)sat = 0 (this
equivalence follows by the Grothendieck-Serre formula which requires the smoothness of XΣ), then HF(Bsat(f), α) =
0 by Lemma 5.1. If V (I(f)) 6= ∅, then the fi’s have a common solution, say the point p ∈ XΣ (over k) with defining
ideal Ip (radical and maximal in R). Therefore, since Isat(f) ⊂ I(f)sat ⊂ Ip and HF(R/Ip, β) = 1 for all β ∈ Pic(XΣ)
by the maximality of Ip, we deduce that HF(R/Isat(f), α) 6= 0 for any α.

Example 5.1. Let M = Z2 and XΣ be the Hirzebruch surface H1 described in Example 2.3. Consider the following
polytope presentations:

∆i = {m ∈ Z
2 : 〈m, (1, 0)〉 ≥ 0, 〈m, (0, 1)〉 ≥ 0, 〈m, (−1,−1)〉 ≥ −2, 〈m, (0,−1)〉 ≥ −1}, i = 0, 1, 2.

H1 has the σ-positive for σ = 〈(1, 0), (0, 1)〉. The class in Pic(H1) = Z2 corresponding to these polytopes is
αi = (2, 1) and we write the corresponding generic sparse homogeneous polynomials as:

F0 = a0z
2
1z2 + a1x1z1z2 + a2x

2
1z2 + a3x2z1 + a4x1x2 resp. F1, F2 with coefficients bi, ci i = 0, . . . , 4.
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(3,1)

(3,2)
(4,2)

(2,1)
Figure 1: This is the picture of the regions Γ0,Γ1,ΓRes,Γ ⊂ Pic(XΣ) = Z2

(being the last one defined in Section 6). The blue region corresponds to
Γ0, the red region corresponds to Γ1, the green region corresponds to ΓRes

and the brown region corresponds to Γ. We marked in orange those α with
(Isat/I)α 6= 0. We derived the local cohomology of H1 from [Alt+20]; see
also [EMS00; Bot11].

Figure 1 describes the supports Γ0,Γ1,ΓRes (also Γ, which will be defined in Section 6). We deduce that elimination
matrices Hα are obtained for α ∈ {(4, 2), (3, 2), (3, 1), (2, 1)}. In the cases α = (4, 2) and α = (3, 2), we get two
Macaulay-type matrices. The two other cases give the following matrices:

• Case α = (3, 1). This matrix corresponds to α = δ and in this case, we are introducing a Sylvester form.
This form is Sylv0 and can be computed, as before, by a determinant that we write as:

det

( )a1z1z2 + a2x1z2 + a4x2 a3z1 a0z1
b1z1z2 + b2x1z2 + b4x2 b3z1 b0z1
c1z1z2 + c2x1z2 + c4x2 c3z1 c0z1

= [130]z31z2 + [230]x1z
2
1z2 + [430]x2z

2
1 ,

where [ijk] = det

( )ai aj ak

bi bj bk
ci cj ck

. Therefore, the elimination matrix Hα is of the form:

H(3,1) =





















a0 0 b0 0 c0 0 [130]
a1 a0 b1 b0 c1 c0 [230]
a2 a1 b2 b1 c2 c1 0
0 a2 0 b2 0 c2 0
a3 0 b3 0 c3 0 [430]
a4 a3 b4 b3 c4 c3 0
0 a4 0 b4 0 c4 0





















.

This type of matrices for α = δ were already known from [CDS97] as the ∆i’s are all equal and ample in H1.
Nevertheless, we note that the block of Sylvester forms is different with our construction, in particular it is
more sparse.

• Case α = (2, 1). We obtain the following matrix Hα which is built from two different Sylvester forms:

H(2,1) =













a0 b0 c0 [013] [023]
a1 b1 c1 [023] + [014] [024] + [123]
a2 b2 c2 [024] [124]
a3 b3 c3 0 0
a4 b4 c4 0 0













where the Sylvester forms correspond to the monomial basis {z1, x1} in Cν for ν = (1, 0). As far as we know,
this kind of matrices are new.

Example 5.2. Consider again Example 5.1 but suppose now that α2 = (1, 1). This implies that the corresponding
generic sparse homogeneous polynomial is:

F2 = c0z1z2 + c1x1z2 + c3x2. (5.3)

In this case, the Newton polytopes ∆i’s are not scaled copies of a fixed ample class and α2 is not even ample in
H1. Now, δ = (2, 1) and the corresponding Sylvester is

det

( )a1z1z2 + a2x1z2 + a4x2 a3z1 a0z1
b1z1z2 + b2x1z2 + b4x2 b3z1 b0z1

c1z2 c3 c0
= [130]z21z2 + [230]x1z1z2 + [430]x2z1,
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where [ijk] := det

( )ai aj ak

bi bj bk
ci cj ck

, with the convention that ci = 0 if this coefficient does not appear in F2. Then, the

corresponding elimination matrix is

H(2,1) =













a0 b0 c0 0 [013]
a1 b1 c1 c0 [023] + [014]
a2 b2 0 c1 0
a3 b3 c3 0 [024]
a4 b4 0 c3 0













.

This example illustrates that Theorem 5.1 extends the results of [CCD97] in the case α = δ, with the only restriction
that the ∆i’s must be n-dimensional.

As illustrated in Example 5.1, the construction of elimination matrices Hα requires the computation of the
support of the local cohomology modules Hi

b(R). This task can be delicate, although several results are known; see
for instance [Alt+20], especially when Σ splits or the rank of Pic(XΣ) is 2 or 3, or [EMS00; Bot11]. In order to
avoid such computations, our next result yields some combinatorial sufficient conditions to get hybrid elimination
matrices.

We recall that we use the same notation as in Section 3. In particular, we write αi ∈ Pic(XΣ) for the classes
associated to the homogeneous polynomial system, KX for the anticanonical divisor, δ = α0 + · · · + αn − KX ,
ν, α ∈ Pic(XΣ) as elements in the class group.

Theorem 5.2. Assume that the toric variety XΣ is smooth and σ-positive for some maximal cone σ ∈ Σ(n).
Moreover, assume that all the polytopes ∆i are n-dimensional and that α ∈ Pic(XΣ) satisfies one of the two
following properties:

i) α = δ + ν with ν ∈ Pic(XΣ) a nef class,

ii) α = δ − ν for ν ∈ Pic(XΣ) a nef class satisfying the hypotheses of Theorem 2.1, and αi − ν is nef for all
i = 0, . . . , n.

Then, Hα is an elimination matrix. In addition, it is purely of Macaulay-type if and only if α satisfies only i).

Proof. First, we recall that the Kj(F )’s denote the modules involved in the Koszul complex associated to F0, . . . , Fn.
We will also denote by J subsets of {0, . . . , n}.

We begin with the case i). If α = δ + ν, we have

Hi
b(Kj(F ))δ+ν ≃ Hi

b(⊕|J|=jC(−
∑

i∈J

αi))δ+ν ≃ ⊕|J|=jH
i
b(C)δ+ν−

∑
i∈J αi

,

where we use that the local cohomology functors are exact. Using (2.5), for i ≥ 2 and J ⊂ {0, . . . , n}, we get:

Hi
b(C)δ+ν−

∑
i∈J αi

≃ Hi−1(XΣ,
∑

i/∈J

αi −KX + ν) ≃ Hn−i+1(XΣ,−
∑

i/∈J

αi − ν),

which is zero by Theorem 2.3, unless ν = 0 and J = {0, . . . , n}. The vanishing of Hi
b(C) for i = 0, 1 follows

from (2.6). From here, we check that H0
b (B)α ≃ (Isat/I)α = 0 and H1

b (B)α = 0, unless ν = 0, in which case
(Isat/I)δ = 〈sylv0〉 and we have the hybrid elimination matrix Hδ.

Now, we turn to the case ii). We have:

Hi
b(Kj(F ))δ−ν ≃ Hi

b(⊕|J|=jC(−
∑

i∈J

αi))δ−ν ≃ ⊕|J|=jH
i
b(C)δ−ν−

∑
i∈J αi

.

For i > 1, using Serre duality we get:

Hi
b(C)δ−ν−

∑
j∈J αj

≃ Hi−1(XΣ,
∑

j /∈J

αj −KX − ν) ≃ Hn−i+1(XΣ, ν −
∑

j /∈J

αj).

As we supposed that αi − ν is nef, if J 6= {0, . . . , n},
∑

j /∈J αj − ν is also nef and we can apply Theorem 2.3.

Moreover, if J = {0, . . . , n}, Hn−i+1(XΣ, ν) vanishes by Theorem 2.2, unless i = n + 1. In such cases, we have
Hn+1

b
(Kn+1)δ−ν ≃ Cν . The claimed result follows using the fact that δ − ν /∈ Γ0 ∪ Γ1 and (Isat/I)δ−ν has a basis

of toric Sylvester forms.

Corollary 5.1. Assume that the toric variety XΣ is smooth and σ-positive for some maximal cone σ ∈ Σ(n). If
all the ∆i’s are n-dimensional then Hδ is an elimination matrix.
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Proof. If the ∆i’s are full-dimensional then, similarly to Corollary 2.1, we have that 0 = νj < minαij . Moreover,
ν = 0 is a nef divisor. Therefore, this must be the only case in which the hypothesis i) and ii) of Theorem 5.2 are
satisfied, yielding the elimination matrix Hδ.

Example 5.3. Taking again Example 5.1, we see that many elimination matrices are obtained from Theorem 5.2.
Thus, the matrix of Macaulay-type with α = (4, 2) corresponds to the case i). The matrices with α = (3, 1), (2, 1)
correspond to case ii) as ν = (0, 0), (1, 0) are nef divisors and so are αi − ν = (2, 1), (1, 1) for i = 0, 1, 2. However,
the matrix with α = (3, 2) does not belong to either of the two cases as ν = (0, 1) is not a nef divisor.

5.3 Overdetermined sparse polynomial systems

In this section we extend the construction of hybrid elimination matrices to the case of homogeneous polynomial
systems that are defined by r + 1 equations with r ≥ n. Such systems, so-called overdetermined, appear often in
various applications.

Notation 5.2. We assume that the projective toric variety XΣ is smooth and σ-positive for some maximal cone σ.
In what follows, F0, . . . , Fr are generic homogeneous sparse polynomials corresponding to the nef classes α0, . . . , αr,
I denotes the ideal they generate and B = C/I the corresponding quotient ring. For each subset T ⊂ {0, . . . , r}
of cardinality n + 1, we set IT = (Fi : i ∈ T ), BT = C/IT and δT =

∑

i∈T αi −KX . We denote by Sylvµ,T the
Sylvester forms that can be formed from {Fi}i∈T ; see Section 4. We also denote by K•(F ) the Koszul complex of
F0, . . . , Fr and by KT,•(F ) the Koszul complex built from the generators of IT .

The following result is a generalization of [BCP23, Chapter 3, Proposition 3.23] which deals with the particular
case XΣ = Pn.

Theorem 5.3. Using the previous notation, suppose that there is a subset S ⊂ {0, . . . , r} of cardinality n + 1 and
a nef class ν ∈ Pic(XΣ) satisfying the hypotheses of Theorem 2.1 such that

∀i ∈ S j /∈ S αi − αj nef and ∀i ∈ S αi − ν is nef.

Then, the set of Sylvester forms

{sylvµ,T : T ⊂ {0, . . . , r} such that |T | = n + 1 and xµ ∈ CδT −δS+ν}

yields a generating set of the A-module (Isat/I)δS−ν .

Proof. First, we use Serre duality and Theorem 2.3 in order to compute the local cohomology modules Hi
b(Kj(F ))δS−ν ,

for i, j = 0, . . . , n + 1, similarly to what we did in Theorem 5.2. Namely, for i ≥ 2 we get

Hi
b(Kj(F ))δS−ν ≃ ⊕|T |=jH

i
b(C(−

∑

k∈T

αk))δS−ν ≃ Hn+1−i(XΣ,
∑

k∈T

αk −
∑

k′∈S

αk′ + ν).

The elements in S ∩ T cancel each other, and the rest of elements k′ ∈ S can be either (i) paired up with αk

for k ∈ T satisfying that αk − αk′ is nef, (ii) paired up with ν satisfying that αk′ − ν is nef or, (iii) they are
nef themselves. Therefore, the previous cohomology module is of the form Hn+1−i(XΣ,−α) with α a sum of nef
divisors, and applying Theorem 2.3 we deduce:

Hi
b(Kj(F ))δS−ν ≃

{

⊕|T |=n+1C
∨∑

j∈T αj−
∑

i∈S αi+ν if i, j = n + 1

0 otherwise.

As a consequence, from the comparison of the two spectral sequences that are considered in Theorem 3.1, we obtain
the following transgression map, which is an isomorphism of graded modules:

τ : Hn+1(K•(F ),Hn
b (C))δS−ν

∼
−→ H0

b (B)δS−ν .

For any T ⊂ {0, . . . , r}, let τT be the corresponding transgression map for KT,•(F ) and BT . For each of these
Koszul complexes, we have a canonical morphism of complexes KT,•(F ) −→ K•(F ) that all together induce the
morphism of complexes:

L•(F ) =
⊕

|T |=n+1

KT,•(F ) −→ K•(F ).

It follows that there is a commutative diagram:

⊕|T |=n+1Hn+1(KT,•(F ),Hn+1
b

(C))δS−ν Hn+1(K•(F ),Hn+1
b

(C))δS−ν

⊕|T |=n+1H
0
b (BT )δS−ν H0

b (B)δS−ν

⊕T τT τ (5.4)
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As the two vertical arrows are isomorphisms, in order to show that the bottom arrow is surjective, it is enough to
show that the top arrow is surjective. For that purpose, observe that Ln+1 = Kn+1 by construction and also

⊕|T |=n+1Hn+1(KT,•(F ),Hn+1
b

(C))δS−ν = ker(Hn+1
b

(Ln+1(F )) −→ Hn+1
b

(Ln(F )))δS−ν .

However, by the same argument as before Hn+1
b

(Ln(F )))δS−ν = 0, so

⊕|T |=n+1Hn+1(KT,•(F ),Hn+1
b

(C))δS−ν ≃ ⊕|T |=n+1C
∨∑

j∈T αj−
∑

i∈S αi+ν .

which is generated by the Sylvester forms at each of these degrees. On the other hand,

Hn+1(K•(F ),Hn+1
b

(C))δS−ν ≃

ker(Hn+1
b

(Kn+1)δS−ν −→ Hn+1
b

(Kn)δS−ν)/ Im(Hn+1
b

(Kn+2)δS−ν −→ Hn+1
b

(Kn+1)δS−ν).

As above, Hn+1
b

(Kn)δS−ν = 0 and:

Hn+1(K•(F ),Hn+1
b

(C))δS−ν ≃ Hn+1
b

(Kn+1)δS−ν/ Im(Hn+1
b

(Kn+2)δS−ν −→ Hn+1
b

(Kn+1)δS−ν).

This implies that the top map in the diagram (5.4) is surjective, as we wanted to prove. It follows that the basis of
Sylvester forms of ⊕|T |=n+1H

0
b (BT )δS−ν is a set of generators of H0

b (B)δS−ν = (Isat/I)δS−ν .

We are now ready to extend the construction of hybrid elimination matrices to overdetermined homogeneous
polynomial systems.

Definition 5.2. Under the assumptions of Theorem 5.3, we denote by Hα the matrix of the following map:

(⊕n
i=0C(−αi))α

⊕

T⊂{0,...,r}
|T |=n+1

(

IsatT /IT
)

α
→ Cα (5.5)

(G0, . . . , Gn) ⊕ (. . . , lµ,T , . . .) 7→
n
∑

i=0

GiFi +
∑

T⊂{0,...,r}
|T |=n+1

∑

xµ∈CδT −α

lµ,T Sylvµ,T

where α = δS − ν and where we recall that lµ,T ∈ A for all µ and T .

Theorem 5.4. Under the assumptions of Theorem 5.3, Hα is an elimination matrix, where α = δS − ν.

Proof. The proof goes along the same lines as the proof of Theorem 5.1 for the case r = n.

Example 5.4. Taking again the notation of Example 2.3, we add another polynomial with degree α3 = (2, 1) in
H1 and write it in homogeneous coordinates as

F3 = d0z
2
1z2 + d1x1z1z2 + d2x

2
1z2 + d3x2z1 + d4x1x2.

Following Theorem 5.4, the matrix HδS is





















a0 0 b0 0 c0 0 d0 0 [130]abc [130]abd [130]acd [130]bcd
a1 a0 b1 b0 c1 c0 d1 d0 [230]abc [230]abd [230]acd [230]bcd
a2 a1 b2 b1 c2 c1 d2 d1 0 0 0 0
0 a2 0 b2 0 c2 0 d2 0 0 0 0
a3 0 b3 0 c3 0 d3 0 [430]abc [430]abd [430]acd [430]bcd
a4 a3 b4 b3 c4 c3 d4 d3 0 0 0 0
0 a4 0 b4 0 c4 0 d4 0 0 0 0





















where [ijk]abc =

( )ai aj ak

bi bj bk
ci cj ck

, and [ijk]abd, [ijk]acd, [ijk]bcd defined accordingly. It is an elimination matrix for the

overdetermined polynomial system defined by F0, F1, F2 and F3.

We conclude this section with a comment on the computational impact of the hybrid elimination matrices
obtained in Theorem 5.4. Indeed, these matrices are designed for solving (overdetermined) 0-dimensional polynomial
systems by means of eigenvalues and eigenvectors computations, over a projective space, a multi-projective space or
more generally a smooth projective toric variety which is σ-positive for some maximal cone σ. In comparison with
the more classical Macaulay-type matrices, hybrid elimination matrices yield in general more compact matrices,
in particular matrices with a smaller number of rows, which is a key ingredient with respect to computational
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Type of system
degree α number of rows

[BT21] hybrid matrices [BT21] hybrid matrices

Polynomials of deg. 2 in P3 4 3 35 20
Polynomials of deg. 10 in P3 28 27 4495 4060

Polynomials of deg. (2, 1) in P2 × P1 (6,3) (4,2) 112 45
Polynomials in H1 × P1 3(∆× [0, 1]) 2(∆× [0, 1]) 88 36

Table 1: The first column describes the type of system of 6 random polynomials which is considered. The second column
provides the degree α for which the Macaulay-type matrices in [BT21] and the hybrid elimination matrices are constructed.
The third column gives the corresponding number of rows of these two matrices.

complexity [BT21]. Indeed, this number of rows is controlled by the vanishing of the local cohomology modules at
certain degrees, including the control of the saturation index of the homogeneous ideal I(f) generated by general
polynomials f0, . . . , fr of degree α0, . . . , αr. In the case of hybrid elimination matrices, the situation is similar with
the difference that now one considers the homogeneous ideal generated by f0, . . . , fr and their toric Sylvester forms,
whose saturation index is necessarily smaller than the one of I(f).

To be more concrete, we considered some specific polynomial systems for which we report in Table 1, the
number of rows of hybrid elimination matrices and of the Macaulay-type matrices built in [BT21] by means of a
”degree-by-degree” strategy (which is more efficient than using the classical Macaulay-type matrices construction).
We considered random systems of 6 polynomials in 3-dimensional varieties in four different settings of Newton
polytopes and degrees (in the case of H1 ×P1, the Newton polytope is ∆× [0, 1], where ∆ corresponds to the same
degrees as in Example 2.3).

Finally, we notice that the number of columns of hybrid elimination matrices may increase fast when the number
of equations is large compared to the dimension of the ground projective toric variety. Further work is needed to
analyze if some toric Sylvester forms can be avoided or combined to gain in efficiency. A more practical approach for
future improvements would be to add Sylvester forms step by step until the expected corank is achieved, similarly
to the ”degree by degree” approach developed in [BT21].

6 Sylvester forms and sparse resultants

Resultants are central tools in elimination theory and there is a huge literature on various methods to compute them.
A classical result is that the sparse resultant can be computed as the determinant of certain graded components of
the Koszul complex built from the considered polynomial system; see for instance [GKZ94; DD00; WZ92; Ben+21].
In this section, we show that Sylvester forms can be incorporated in the usual Koszul complex and obtain this way
new expressions for the sparse resultant as the determinant of a complex. This extends results in [CDS97, §2] by
providing more compact formulas.

In what follows, we assume that XΣ is a smooth projective toric variety which is σ-positive for some maximal
cone σ ∈ Σ(n). We take again the notation of Section 3 and we consider the generic homogeneous sparse polynomials
F0, . . . , Fn defined by (2.4). We recall that their supports Ai, i = 0, . . . , n, can be seen as the lattice points in
∆i ⊂ MR (see Section 2).

To begin with, we first recall briefly the definition of the sparse resultant. The space of coefficients of the Fi’s
has a natural structure of multi-projective space, as the equations Fi = 0 are not modified after multiplication by a
nonzero scalar. We denote it as

∏n
i=0 P

Ai , where PAi stands for the projective space associated to the coefficients
of the polynomial Fi. Let

Z(F ) = {x× (. . . , ci,µ, . . .) ∈ XΣ ×
n
∏

i=0

P
Ai F0 = · · · = Fn = 0}

be the incidence variety of F0, . . . , Fn and consider the canonical projection onto the second factor

π : XΣ ×
n
∏

i=0

P
Ai −→

n
∏

i=0

P
Ai .

Whenever the image of Z(F ) via π is an irreducible hypersurface, the sparse resultant, denoted ResA, is defined
as an equation of the direct image π∗(Z(F)). Thus, by universality ResA is a primitive and irreducible polynomial
in the coefficients of F0, . . . , Fn, which is defined up to sign. We note that if π∗(Z(F )) has codimension at least 2,
then ResA is set to 1.
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To compute ResA, a classical method is to consider the Koszul complex K•(F ) of the sequence of polynomials
F0, . . . , Fn, which is of the form

K•(F ) : Kn+1 = C(−
∑

αi) −→ . . . −→ K2 = ⊕k,k′C(−αk − αk′) −→ K1 = ⊕kC(−αk) → C.

It is a graded complex of free graded A-modules. In [GKZ94] it is proved that the determinant of some of its
graded components is equal to ResA, up to multiplication by a nonzero scalar in k. More precisely, for all α /∈
ΓRes ⊂ Pic(XΣ) the strand K•(F )α is an acyclic complex of free A-modules and H0(K•(F )α) = Bα. Moreover, if
in addition (Isat/I)α = 0 then det(K•(F )α) equals the sparse resultant ResA up to a nonzero scalar (see [GKZ94,
Chapter 3, Theorem 4.2] for proofs). Observe that the map on the far right of the complex K•(F )α is nothing but
the Macaulay-type map (5.1), whose matrix is an elimination matrix of the form Mα.

In order to incorporate Sylvester forms in the above construction we proceed as follows: we consider a graded
strand K•(F )α of the Koszul complex, such that (Isat/I)α is a nonzero free A-module, and we define a new complex,
denoted Ksat

• (F )α, by adding Sylvester forms to the map on the far right: i.e.

Ksat
• (F )α = C(−

∑

αi)α
dn−−→ . . . −→ ⊕k,k′C(−αk − αk′)α

d1−→ ⊕kC(−αk)α ⊕ (Isat/I)α −→ Cα.

It is a graded complex of free A-modules. By definition, H0(Ksat
• (F )α) = (Bsat)α and the map on the far right is

precisely the map we used to define hybrid elimination matrices Hα. Observe also that if (Isat/I)α = 0 then we
recover the strand of usual Koszul complex K•(F )α.

The following result generalizes [GKZ94, Chapter 3, Theorem 4.2], as well as [CDS97, Theorem 2.2] where a
formula for the sparse resultant as the determinant of a complex incorporating the toric Jacobian (i.e. α = δ) is
proved (under the assumption that the polytopes ∆i are scaled copies of a given polytope).

Theorem 6.1. Assume that XΣ is a smooth projective toric variety which is σ-positive for a maximal cone σ. Let
α /∈ ΓRes, then Ksat

• (F )α is an acyclic complex of free A-modules. Moreover, if α = δ − ν as in Theorem 5.2 ii),
then det(Ksat

• (F )α) is equal to ResA up to a nonzero multiplicative scalar in k.

Proof. The acyclicicity of Ksat
• (F )α follows from the acyclicity of the Koszul complex K•(F )α beacuse the image

of d1 does not map to (Isat/I)α) and (Isat/I)α is a free A-module. Now, the acyclicity of Ksat
• (F )α, together with

the fact that H0(Ksat
• (F )α) = (Bsat)α, imply that det(Ksat

• (F )α) and ResA are two polynomials in A that vanish
under the same specializations in k. As a consequence of the projective Nullstellenstaz, we only have to compare
their degrees in order to prove that they are the same polynomial, up to multiplication by a nonzero constant in k.

As proved in [GKZ94, Section 3, Theorem 14], the determinant of a complex of vector spaces

V• : Vn+1 −→ . . . −→ V1 −→ V0

is given by the formula

det(V•) =
⊗

i

rk(Fi)
∧

V
(−1)i

i .

This result implies that the degree of determinants of complexes can be calculated as alternate sums. In our setting,
we know that det(Ksat

• (F )α) = ResA (up to multiplication by a nonzero constant) if (Isat/I)α = 0, and also that
HF(C,α) = HP(C,α) for α ≫ 0 (component-wise). Therefore, for α ≫ 0,

deg(ResA) = deg det(Ksat
• (F )α) =

∑

J⊂{0,...,n}

(−1)|J| HF(C,α−
∑

j∈J

αi) =
∑

J⊂{0,...,n}

(−1)|J| HP(C,α−
∑

j∈J

αi).

This alternate sum yields a polynomial whose degree coincides with the degree of the resultant. Therefore, for
α = δ − ν as in the statement, we have (Isat/I)δ−ν = HomA(Cν , A) 6= 0 and we can check that the difference
of degrees between the previous alternate sum and the degree of the resultant is compensated by (Isat/I)δ−ν as
follows:

deg det(K•(F )δ−ν) − deg(ResA) =
∑

J⊂{0,...,n}

(−1)|J| HF(C, δ − ν −
∑

j∈J

αj) − HP(C, δ − ν −
∑

j∈J

αj).

Using Grothendieck-Serre formula (2.7), we deduce that this coincides with the quantity

∑

J⊂{0,...,n}

(−1)|J|
n+1
∑

i=0

(−1)i dimk H
i
b(C)δ−ν−

∑
j∈J αj

.

Now, applying Theorem 5.2 ii), all the elements in the above sum vanish except the term Hn+1
b

(C)−KX−ν , which
is counted with the sign (−1)2(n+1) = 1. In particular, using Serre duality we get Hn+1

b
(C)−KX−ν

∼= Cν which is
dual to (Isat/I)δ−ν , so the difference of degrees is compensated in the complex Ksat

• (F )δ−ν , which concludes the
proof.
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We note that if the polytopes ∆i are n-dimensional for i = 0, . . . , n, then Theorem 6.1 applied with ν = 0
recovers the results in [CDS97], with the slight improvement that the αi’s are not necessarily of the form kiβ for
ki > 0 and β an ample class.

Remark 6.1. The relation between (Isat/I)δ−ν and HP(C, ν) in the previous result can be seen as an instance
of multivariate Ehrhart reciprocity; see [Bec02, Theorem 2]. This result shows that if HP(C, ν) is the multivariate
Hilbert polynomial in XΣ corresponding to the number of lattice points in ∆ν and if HP◦(C, ν) is another Hilbert
polynomial associated to the number of lattice points in the interior of ∆ν , then HP(C, ν) = (−1)n HP◦(C, ν).

From the above result, we can also identify cases where the matrices Hα are square matrices, and therefore their
determinant (in the usual sense of the determinant of a matrix) is equal to the sparse resultant, up to a nonzero
multiplicative constant.

Corollary 6.1. Let Γ = Supp⊕k,k′C(−αk − αk′). For α /∈ Γ, we have det(Hα) = ResA, up to a nonzero
multiplicative constant.

Proof. If α /∈ Γ, then the complex K•(F )α has only two terms and therefore det(K•(F )α) = det(Hα).

Remark 6.2. Computing the determinant of a complex can be done using some techniques such as Cayley deter-
minants; see [GKZ94, Appendix A], but it is not very practical. However, Theorem 6.1 yields new expressions of
the sparse resultant as a ratio of two determinants if α /∈ Supp⊕k,l,mC(−αk −αl −αm); see [CDS97, Corollary 2.4]
for a combinatorial characterization of such case.

We close this section with a comment related to the well-known Canny-Emiris formula. For Macaulay-type
formulas of the form Mα, the Canny-Emiris formula gives a possible way to choose a nonzero minor; see [CE93] for
the formula and [DJS22] for a proof and the non-vanishing of the minor using tropical deformations. It is an open
problem to see whether the conditions on the proof of the Canny-Emiris formula [DJS22] coincide with the Cayley
determinant for such choice of a minor. In the case of hybrid elimination matrices Hα, the Canny-Emiris formula
has only been explored in for n = 2 and α = δ (see [DE01]).

Example 6.1. Let’s consider the four matrices provided in Example 5.1, which correspond to the cases α ∈
{(4, 2), (3, 2), (3, 1), (2, 1)}. The last three are square matrices while the first one is not. We have drawn the region
Γ in brown in Figure 1, in order to indicate the elements that provide a square matrix, as well as ΓRes, in green, for
the acyclicity of the complex. For the Macaulay-type matrices, we can combinatorially describe a maximal minor
of M(4,2) using the Canny-Emiris formula; see [CE93; DJS22]. The matrix H(3,2) is square,

H(3,2) =





























a0 0 0 b0 0 0 c0 0 0
a1 a0 0 b1 b0 0 c1 c0 0
a2 a1 a0 b2 b1 b0 c2 c1 c0
0 a2 a1 0 b2 b1 0 c2 c1
0 0 a2 0 0 b2 0 0 c2
a3 0 0 b3 0 0 c3 0 0
a4 a3 0 b4 b3 0 c4 c3 0
0 a4 a3 0 b4 b3 0 c4 c3
0 0 a4 0 0 b4 0 0 c4





























,

and it might be obtained using a greedy approach to the same formula (see [CP93; CE22]), but as far as we know,
there was no certificate of its existence as a resultant formula until now. The hybrid matrices for α = (3, 1), (2, 1)
are square, but if they weren’t, a procedure for choosing a minor is known for n = 2 and α = δ = (3, 1); see [DE01].

7 Toric residue of the product of two forms

Another topic for which Sylvester forms are of interest is the computation of toric residues. These objects were
initially introduced by Cox as a way to relate the residue of a family of n + 1 forms to the integral of a certain
form in a toric variety XΣ (see [Cox96]). Being given F0, . . . , Fn generic homogeneous polynomials as in (2.4), and
denoting by K(A) the quotient field of the universal ring of coefficients A, Cox proved the existence of a residue
map

ResidueF : Bδ −→ K(A)

(recall that I = (F0, . . . , Fn) and B = C/I) which has the following property: for any specialization θ : A −→ k
(see Notation 5.1) such that the specialized system f0 = · · · = fn = 0 has no solution in XΣ, the residue map
Residuef : (R/I(f))δ −→ k is an isomorphism. Cox defined residue maps through trace maps of Čech cohomology,
but it can be characterized through the fact that, if there is no solution in XΣ, ρ(sylv0) is sent to ±1 ∈ k, so
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generically ResidueF (sylv0) = ±1, as we used in Proposition 4.1. Many authors contributed formulas based on
elimination matrices and resultants to compute residues [KS05; DK05; CCD97; CDS97] and also used them in
other applications such as polynomial interpolation [Sop07] or mirror symmetry [BM02]. In particular, in [DK05]
an explicit formula for computing the toric residue of a form of degree δ as a quotient of two determinants “à la
Macaulay” is proved.

If a form G of degree δ can be written as a product G = PQ, a natural question is to ask whether one can
take advantage of this factorization in the computation of the residue of G = PQ with respect to the polynomial
system F0, . . . , Fn. In the case XΣ = Pn, Jouanolou proved that this is indeed possible by exploiting the duality
between the degrees δ − ν and ν of P and Q, respectively (see [Jou97, Proposition 3.10.27]). In what follows, we
generalize Jouanolou’s formula to a general smooth projective toric variety XΣ which is σ-positive for a maximal
cone σ. For that purpose, we use toric Sylvester forms and the elimination matrices Hδ−ν we introduced in Section
5.1. The new formulas we obtain can be seen as an extension of the rational formula “à la Macaulay” proved in
[DK05, Corollary 3.4].

Remark 7.1. We note that in [Jou97] the residue is defined as a map onto A, and not in K(A), by multiplying
with ResA in the image; see also [CDS97, Theorem 1.4] for a proof that the product of the residue and the resultant
lies in A.

Let Hδ−ν be an elimination matrix that satisfies the assumptions of Theorem 5.2 ii), and let Hδ−ν be a maximal
minor of Hδ−ν which contains the entire block built with Sylvester forms. Now, being given two generic forms P ∈ Cν

and Q ∈ Cδ−ν , we consider the matrix

Θδ−ν =

(

Hδ−ν q

0 pT 0

)

(7.1)

where p, respectively q, stands for the vector of coefficients of P , respectively Q. Recall that by construction of
the matrix Hδ−ν , the matrix Hδ−ν is built as the join of a Macaulay-type block-matrix and another column-block
matrix built from Sylvester forms. Thus, the row pT is aligned with the second column-block, built from Sylvester
forms, of Hδ−ν ; see Example 5.4 for an illustration.

We first prove that the residue of the product of two monomials can be computed as a quotient of determinants.
In what follows, we denote by Hα,β the submatrix of Hδ−ν that is obtained by deleting the column corresponding
to the monomial xα ∈ Cν and the row corresponding to the monomial xβ ∈ Cδ−ν .

Lemma 7.1. Assume that XΣ is a smooth projective toric variety which is σ-positive for a maximal cone σ. Let
F0, . . . , Fn be a system of homogeneous polynomials in C as in (2.4), then for any pair of monomials xα ∈ Cν and
xβ ∈ Cδ−ν ,

ResidueF (xα+β) = (−1)α+β det(Hα,β)

det(Hδ−ν)
.

Proof. Let Hβ be the matrix obtained by multiplying the row of det(Hδ−ν) corresponding to xβ by the monomial
xβ itself. Then, by expanding the determinant along this row, one gets:

xαxβ det(Hδ−ν) = xα det(Hβ) = xα(
∑

GiFi +
∑

α′∈Cν

cα′,β Sylvα′) =
∑

xαGiFi + cα,β Sylv0 .

Taking residues at both sides, we deduce that

ResidueF (xα+β) det(Hδ−ν) = (−1)α+βcα,β .

Finally, from the expansion of the determinant det(Hβ), one sees immediately that cα,β = det(Hα,β).

We are now ready to prove the claimed formula for the residue of the product of two forms.

Theorem 7.1. Assume that XΣ is a smooth projective toric variety which is σ-positive for a maximal cone σ.
Let F0, . . . , Fn be a system of homogeneous polynomials in C as in (2.4), then for any pair of forms P ∈ Cν and
Q ∈ Cδ−ν ,

ResidueF (PQ) =
det(Θδ−ν)

det(Hδ−ν)
.

Proof. Write P =
∑

xα∈Cν
pαx

α and Q =
∑

xβ∈Cδ−ν
qβx

β. Then, by linearlity of residues, we have:

ResidueF (PQ) =
∑

xα∈Cν xβ∈Cδ−ν

pαqβ ResidueF (xα+β) =

∑

α,β(−1)α+βpαqβ det(Hα,β)

det(Hδ−ν)
.

The numerator is precisely the expansion of the determinant det(Θδ−ν) of the matrix defined in (7.1), with respect
to the last row and column.
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Example 7.1. In Example 5.1, the elimination matrix Hα for α = (2, 1) is square, therefore we take

H(2,1) = H(2,1) =













a0 b0 c0 [013] [023]
a1 b1 c1 [023] + [014] [024] + [123]
a2 b2 c2 [024] [124]
a3 b3 c3 0 0
a4 b4 c4 0 0













Let P = p0z1 + p1x1 and Q = q0z
2
1z2 + q1z1z2x1 + q2z2x

2
1 + q3z1x2 + q4x1x2 be homogeneous forms in C(1,0) and

C(2,1), respectively, then

Θ(2,1) =

















a0 b0 c0 [013] [023] q0
a1 b1 c1 [023] + [014] [024] + [123] q1
a2 b2 c2 [024] [124] q2
a3 b3 c3 0 0 q3
a4 b4 c4 0 0 q4
0 0 0 p0 p1 0

















.

and aplying Theorem 7.1 we deduce that ResidueF (PQ) =
det(Θ(2,1))

det(H(2,1))
. For the sake of comparison, let us examine

the formula we obtain by developing the product of P and Q. In this case, we apply Theorem 7.1 with δ = (3, 1)
and ν = 0, so we have to consider the matrix Θ(3,1) which is of the form:

Θ(3,1) =

























a0 0 b0 0 c0 0 [130] p0q0
a1 a0 b1 b0 c1 c0 [230] p0q1 + p1q0
a2 a1 b2 b1 c2 c1 0 p0q2 + p1q1
0 a2 0 b2 0 c2 0 p1q2
a3 0 b3 0 c3 0 [430] p0q3
a4 a3 b4 b3 c4 c3 0 p0q4 + p1q3
0 a4 0 b4 0 c4 0 p1q4
0 0 0 0 0 0 1 0

























since the product PQ is equal to

p0q0z
3
1z2 + (p0q1 + p1q0)z21z2x1 + (p0q2 + p1q1)z1z2x

2
1 + p0q3z

2
1x2 + (p0q4 + p1q3)z1x1x2 + p1q2z2x

3
1 + p1q4x

2
1x2.

The expansion of the determinant of Θ(3,1) with respect to the last row leads to the same formula as in [DK05,
Corollary 3.4].
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[Dem70] Michel Demazure. “Sous-groupes algébriques de rang maximum du groupe de Cremona”. fr. In: Annales
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