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Introduction 

In this paper, we prove a formula for the Todd class of a toric variety, which we use 
to obtain results about lattice polyhedra and Dedekind sums. These applications 
include a formula for the number of lattice points in an arbitrary lattice tetra- 
hedron, and a generalization of Rademacher's three-term reciprocity formula for 
Dedekind sums. This paper is written in three parts, with separate introductions so 
that the parts may be read independently. Readers who are interested primarily in 
the applications to lattice polyhedra or Dedekind sums are encouraged to skip to 
Part  II or III. 

It is well known that the Chern classes of a nonsingular toric variety are 
expressed nicely as the sum of the classes of certain special subvarieties. For 
simplicial but possibly singular toric varieties, we use this same sum to define the 
mock Chern class, and then define the mock Todd class via the Todd polynomials. 
We prove that in the dimension of the singular locus, the difference between the 
actual Todd class and the mock Todd class has a local expression. The codimen- 
sion two part  of this difference is expressed explicitly in terms of Dedekind sums. In 
this way, we obtain an expression for the codimension two part  of the Todd class of 
an arbitrary toric variety given in terms of Dedekind sums. 

This leads to several number-theoretic applications. First, we give a formula for 
the number of lattice points in an arbitrary lattice tetrahedron in terms of six 
Dedekind sums, one for each edge of the tetrahedron. This formula generalizes the 
lattice point formula of Mordell. We also use the Todd class result to prove facts 
about Dedekind sums. We derive a formula expressing the sum of two arbitrary 
Dedekind sums in terms of a third, as well as an n-term reciprocity law which 
generalizes the three-term law of Rademacher. 
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Part I: The Todd class of simplicial toric varieties 

1 Introduction 

In this first part, we investigate the Todd class of simplicial toric varieties. Toric 
varieties form a very special class of rational varieties. They arise from combina- 
torial objects called fans, which are collection of cones in a lattice. Toric varieties 
are of interest both in their own right as algebraic varieties, and in their application 
to the theory of convex polytopes. For example, Danilov established the direct 
connection between the Todd class of toric varieties and the problem of counting 
the number of lattice points in a convex lattice polytope [Dan, p. 134]. Thus the 
problem of finding explicit expressions for the Todd class of a toric variety is of 
interest not only to algebraic geometers. 

For nonsingular toric varieties, we may obtain an expression for the Todd class 
in the following manner: Let Z be a fan and let X~ denote the toric variety 
associated to ~. To each cone of Z there corresponds a special subvariety of X~. In 
the case that X~ happens to be nonsingular, the total Chern class of Xz is simply the 
sum of the classes of these subvarieties. The Todd class may then be computed from 
the Chern classes using the Todd polynomials [Dan, p. 132]. Motivated by this 
result, we define the mock Chern class of a simplicial toric variety Xz as the sum of 
the classes of the special subvarieties (those corresponding to the cones of 2). Since 
the Chow groups of a simplicial toric variety have a natural ring structure [Dan, 
p. 131], we may define the mock Todd class to be the Todd polynomials in the mock 
Chern classes. 

We shall investigate the difference between the Todd class and the mock Todd 
class of a simplicial toric variety. It is not hard to show that this difference lies on 
the singular locus, and so vanishes in codimensions smaller than d, the codimen- 
sion of the singular locus. Our main theorem is that in codimension d, the difference 
between the Todd class and the mock Todd class is the sum of the special cycles of 
codimension d with coefficients computable in terms of the local combinatorics of 
the fan. 

To make this precise, we let Z" be a simplicial fan and X~ be the associated toric 
variety. We then define the mock Chern classes by: 

1 
cix  = Z 

where the sum ranges over all /-dimensional cones z in 2", and F~ is the class 
in (A~Xz)Q of the subvariety corresponding to z. The mock Todd class is then 
defined by: 

TDX~ = ~ T D i X x  , 

i > o  

where TD~Xz is the i th Todd polynomial [Hir] in the classes C1 . . . . .  C~. Every 
algebraic variety has a naturally defined Todd class [Full, and we denote the 
codimension i part of this class by Td~X. 

We then have: 

Theorem 1. Let N be a lattice and let 5~ be the set of  all d-dimensional simplicial 
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cones in N with non-singular ( d -  1)-dimensional faces. Then there is a unique 

function 

t : Y ~ @  

with the property that i f  ~ is a complete simplicial fan in N all of  whose ( d -  l)- 

dimensional cones are non-singular (so that codim(SingXs) >~ d), then 

TdaXz - TDaXz = ~ t(r)F~ 

with the sum taken over all d-dimensional cones r ~ Z. 

In the case d = 2, we show that the function t is expressed in terms of 
a Dedekind sum. Precisely, if ~ is a two-dimensional cone generated by el and 
pel + qe2 where {el, e2 } forms a lattice basis in the plane containing T, then 

1 1 
= s ( p ,  q )  - 7 -  + 

4q 

where s(p, q) is the classical Dedekind sum. In this way, we obtain a formula for the 
Todd class of a toric variety in codimension two in terms of Dedekind sums. Given 
a fan 2;, it is in practice quite easy to compute TDzXz,  as the ring A * X z  is given 
rather explicitly. Thus, the previous theorem gives a computable expression for 
T d z X 2  - in terms of Dedekind sums. 

Worth noting is the similarity between the present work and that of Hirzebruch 
and Zagier [HiZa], in which Dedekind sums appear as "signature defects." They 
examine the difference between the signature of a singular quotient variety M/G, 
and the expression 

l 
]GI Sig n M ,  

which gives the true signature in the case that M/G is nonsingular. Applying these 
ideas to certain algebraic surfaces yields number-theoretic results, just as in the 
present case, where "Todd class defects" yield number-theoretic results similar to 
those explored in Parts II and III of this paper. 

Also worth noting is the difference in approach between this work and that of 
Morelli [Mor],  who found formulas for the Todd class of singular toric varieties 
after suitably extending the coefficient field. Morelli's formulas are additive on the 
cones of a fixed lattice, whereas the formulas of this paper are invariant under 
lattice automorphisms. 

2 General facts about toric varieties 

In this section, we state without proof the facts about toric varieties that we will 
need in the remainder of Part  I. We also establish notation used in future sections. 
The reader may find proofs of these results Oda's book [Oda]  or in the survey 
article [Dan]. 
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2.1 Basic facts and notations 

Toric varieties arise from combinatorial  objects called fans. Here are some facts 
about  fans and the relation between the combinatorics of a fan and the geometry of 
the associated toric variety. 

Let N be a lattice of  dimension n. A half-space in N is a set of the form 
2-1  (7l. => 0), where 2 e Horn(N,  Z). A cone in N is a finite intersection of half-spaces. 
Equivalently, we may think of a cone as the convex hull in N | lR of a finite set of 
rays starting at the origin. If n l , . . . , n k e N ,  we use (n l  . . . . .  nk> to denote the 

convex hull of the rays On1 . . . . .  Onk, which is called the cone generated by 
{nl . . . . .  nk}. Throughout ,  we shall assume that our cones contain no linear 
subspace of  positive dimension. 

A fan in N is a finite collection Z of cones such that 
(1) For  all rr, re2; ,  a n  r is a c o m m o n  face of a and r. 
(2) If a e 2;, then all faces of a are also in S. 

We use Z (i) to denote the set of / -dimensional  cones of Z. One-dimensional  cones 
are called rays or edges. If  p is a ray, we shall also use p to denote the unique 
primitive element of N lying on p. 

To  each fan 2; in N, there is an associated toric variety Xs. To each a e S, there 
corresponds a subvariety V(a) of X~ such that  

(1) dim ~ = codim V(a) 

(2) r = ~ ,*~ V(z) = V(r 
The construct ion of X~, as well as the subvarieties V(a) may be found in [Oda,  
Sects. 1.2 and 1.3]. 

The following properties show the relation between the combinatorics of  Z and 
the geometry of Xr:  

(1) A fan is called complete if its cones cover the lattice N. It is then true that 
X~ is complete if and only if Z is complete (cf. [Oda,  Sect. 1.4]). 

(2) A cone a is called non-singular if it is generated by a subset of  a basis for the 
lattice N. A fan is said to be non-singular if all of its cones are non-singular. Then it 
is true that X r  is non-singular  if and only if 2; is non-singular  (cf. [Oda,  Sect. 1.43). 
In fact, the singular locus of X~ is ~ V(3), the union being taken over all singular 
cones z �9 Z. 

(3) A cone tr of dimension k is called simplicial if ~ is generated by k elements of 
N. In  particular, any non-singular  cone or  any 2-dimensional cone is simplicial. 
A fan is called simplicial if all of its cones are simplicial. If rr is a simplicial cone 
generated by primitive elements nl . . . . .  n k E N  , then we define mul t~  to be 
#(P/ (n l  . . . .  , nk)), where P is the k-plane in N containing a. 

2.2 Resolution of  singularities 

A subdivision of a cone 3 is a fan F such that  the union of the cones of F is z. F is 
called an interior subdivision if every ray of F (except the rays of 3) lies in the interior 
of r. I f  2; is a fan, r e _r, and F is a subdivision of r, then we obtain a new fan Z" from 
2; by replacing z with the cones of F, and replacing cones of 2; which intersect r with 
suitably subdivided cones. In this case, we obtain a proper, birational map of  toric 
varieties: 

r~: Xr, -* Xz  
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(cf. [Oda, Sect. 1.5]). If F is an interior subdivision of z, then the map zr is an 
isomorphism except above V(z). 

Given any fan Z we may obtain a non-singular fan X' through a sequence of 
such interior subdivisions of singular cones. In this way, we obtain a resolution of 
singularities for an arbitrary toric variety. If dim Z = 2, this resolution is described 
explicitly in terms of continued fractions (cf. [Oda, Sect. 1.6]). 

2.3 The Chow ring 

Because a simplicial toric variety is locally the quotent of a smooth variety by 
a finite group, the rational Chow groups of a simplicial toric variety have a natural 
ring structure described explicitly below [Dan, p. 127]. Throughout, A * X  is used 
to abbreviate (A*X)•. 

Let Z be a simplicial fan in a lattice N, and let M = Horn(N, 7/) be the dual 
lattice with ( , ) :  M • N --* 2g the natural pairing. For a ~ Z, we denote by F~ the 
class in A(alm~)x~ of the subvariety V(a). Then the ring A*X~ is generated by 
{Fp]p E Z(a)}, the classes of the special divisors, with the relations: 

(1) For  each m E M, 

(m,p)Fp = O. 

(2) If P l . . . .  , Pk are distinct, then 

1 pk)F(p .. . . . .  ok) 
F p l . . . . . F p  = m u l t ( p l  . . . . .  

0 

if (P l  . . . . .  pk) ~ 1; 

otherwise . 

2.4 Push-forward of &var&nt cycles 

Let Z be a simplicial fan and let Z' be a subdivision of Z, with n: Xz, ~ Xz. If 
a'~Z' ,  we will use E,, to denote the class in A*Xz,  of the subvariety V(a'), and for 
a~Z,  F~, will denote the class in A*Xs  corresponding to V(a). 

In this case, it is easy to describe the push-forward map 

~, :  A*Xz, -~  A * X z .  

Let a' 6 Z', and let a be the smallest cone of X such that a' ~ a. Then 

~ , ( E ~ , ) = { F ~  if dima'=dimaotherwise. 

This fact is well-known and is proven by unraveling the construction of the map 
given in [Oda, Sect. 1.5]. 

2.5 Chern classes of  a non-singular toric variety 

I fZ is a non-singular fan, the Chern classes of Xz are given by the sum of the special 
subvarieties: 

c i X r =  ~ F~. 
z ~ Z( i )  
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As X~ is non-singular, the Todd class Td Xz may then be computed from the Chern 
classes using the Todd polynomials, in the usual way. See [Dan, p. 114]. 

3 Push-forward of products 

This section contains a theorem about  pushing forward a product of cycles under 
a proper, birational map of  toric varieties. This result will be the key step in proving 
the theorems about Todd classes found in the following sections. 

We start  with a simplicial fan E, and let z e 2 (~). Let 27 be obtained from X by an 
interior subdivision of z. As mentioned in Sect. 2.2, this gives a map  ~: X~, --* X~ of 
toric varieties which is an isomorphism except above V(z). 

Let I4/[ . . . . .  W ; e A * X ~ ,  with W[eAe 'Xz , ,  and let W~ --- re, W[. We now con- 
sider the difference 

a = ~, l-I  W[ -- H l~i~ Aex ,~ ,  

where e ~ ~ % Since ~ is an isomorphism above X x \  V(r), this difference vanishes 
when restricted to A~(X~\  V(r)), and hence lies in the image of A e-a V(z) "--* Aex,v .  

If e < d, we see that & vanishes. 
Our theorem concerns the case e = d. In  this case, we see immediately that 6 is 

some rational multiple of  F~. In examining exactly what rational number occurs 
here, it suffices to consider the case in which the W[ are all divisors (i = 1 . . . .  , d), 
since the Chow rings above are generated by divisors. We now show that the 
rational number in question does no t  depend on all of 2;, but  only on the cone ~ and 
its subdivision. 

Theorem 2. Given a d-dimensional simplicial cone r and a simplicial interior subdivi- 

sion F o f r ,  there exists a unique function 

f~,r: Nd ~ if2 

with the properties: 

(1) f~,r( f l l , .  - ., fix) -'- 0 unless all fli are primitive elements of  rays o f F .  

(2) f~,r is symmetric in its d variables. 

(3) I f  ill . . . .  , fld are distinct rays  o fF ,  then 

I 1 

mult  ( f l l7 � 9  fix ) 

( o U l t ( f l  1' ' f ix) 

if ( i l l  . . . . .  f l ~ ) ~ r  

/f ( / h  . . . . .  f l~)  = 

otherwise . 

(4) / f r n ~ M  -~- I--Iota(N, Z) and flz, . . . , flx~ N, then 

F .  (m, fl ) f , , A f l , / h  . . . . .  /~x) = 0 .  
fle Ft 1) 

This function has an additional property: 

(5) Let ~ be a complete simplicial fan in N such that z ~ Z, and ~' be the fan  

obtained from ~ by performing the subdivision F o f  z, with 7z: Xz,--* Xz the natural 
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map. Then for any edges fll . . . . .  fld of Z', we have 

d d 

re, I~ Efl~- 1-[ u,Efl, =f~,r(fl ,  . . . . .  fld)F,. 
i = 1  i = 1  

Proof That  (1)-(4) determine f~,r uniquely is a s t ra ightforward induct ion-- (3)  
determines the value for distinct fii, and (4) allows us to reduce the number  of  
coincidences among  the fll until they are all distinct�9 

T o  prove the existence off~.r as well as (5), let z :  Xz, ~ Xz  be as in the s ta tement  
of the theorem, and let fl~ . . . .  , fld be edges of  2;'. Then, as noted at the beginning of  
this section, it follows from general principles of  intersection theory that  

d d 

re, I-[ E f t , -  I-[ rc, Efl .~AdXz 
i = l  i = l  

is a ra t ional  multiple of F~. Thus, we may  write 

d d 

7r, ~ E f t , -  I-[ 7~*Efli ~ - g ( f l l , . . .  ,fld)Fr �9 
i = 1  i = 1  

It follows from the completeness of X~ and facts of  Sect. 2.3 that F ~ ,  0, and hence 
the above  equat ion defines g uniquely. We will show tha t  g satisfies (1)-(4), and 
hence g = fi, r ,  establishing the existence of fi, r as well as p roper ty  (5), (Note tha t  
a priori, g depends on all of  X', while fi .r depends only on  z and its subdivision.) 

g satisfies (1). We must show that  if some flj is not  a ray of F, then 
d d 

~, l-[i= 1 E/j, - l-[i= 1 ~,Efl, = 0. This follows easily from intersection theory, as 
follows: Let D~ = V(fl~)c Xz, .  If f l i eZ  ~1), let Di = ~(D~)= V(fl~)~ Xz ,  and if 
f l ~ Z  ~), let D~ = 0. We are then interested in 

6 = u ,  lq [D;]  - l-I [D~]eAdX~ �9 

The condi t ion flj g; z ensures that Dj = V(flj) ~_ V(~). Thus, if we consider 6 living 
in A d- 1Dj, and apply  the exact sequence 

A*(Djc~ V(z)) ~ ~ A*(Dj) -* A*(Dj \  V('c)) -~ O, 

we see on the one hand  tha t  6 lies in the image of  c~, and on the other  hand, 6 is 
a class of d imension n - d. However ,  dim(Djc~ V(~)) < n - d as V(z) ~ Oj. We  
conclude that  6 = 0. 

g satisfies (2)�9 This is evident from the commuta t iv i ty  of intersection products.  

g satisfies (3). Let fl~ . . . . .  fld be distinct rays of Z. 

(A) I f ( f l ~ , . .  , f ld )EF,  then d = 1 fla) E(fl'' �9 F [ i= l  Eft,  m u l t ( f l l  . . . . .  �9 ..,/~,>, so 

d 1 

~* l--I E~, m u l t < f l l , ,  fld) F~ 
i = 1  " " ,  

while downstairs ,  ( i l l  . . . . .  f ld)r  SO 
d 

~[ •,Efl, = O . 
i = 1  
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1 
This gives g(fll . . . . .  rid) = 

m u l t f f l l  . . . . .  rid)" 
(B) If  ( i l l  . . . . .  rid) = r, then since T ~ s  

d 

E~, = 0,  
i = 1  

while downstairs ,  

d d 1 

1-I Tr, E,, = I-[ FB,-  
i= 1 i= 1 mult  ~ F~ , 

- 1  
so g(fll . . . . .  rid) -- 

mult  z '  
(C) Otherwise,  ( i l l  . . . . .  fin) is neither a cone of Z '  nor  of  X, so both  [ ] :=1  E/~, 

and 1-I/a= 1 n,E/~, vanish, and hence g(fll . . . . .  rid) = 0. 

g satisfies (4). It  will be convenient  to set Fp = OeA~Xz  when f l e Z ' m \ Z  ~). 
With this notat ion,  it is then true that  for any / 3 e U  m, n,E:  = Fo. N o w  let 
f12 . . . . .  f ldeF  m and let m e M .  We then have 

(*) ~ (m, f l )E~=O inA*Xz ,  
f ief ,( .  

and 

(m, f l)F~ = 0 in A * X z ,  
/~e Z'(" 

which implies 

(**)  ~, (m, f l ) F p = O .  
f i e f ' ( l )  

( * ) and ( ** ) now yield: 

{m, f l > E p . E & . . . . . E & = O  and ~ (m, f l ) F p . F & . . . . . F & = O .  
~e I ' ( "  fle Z,'(" 

Together ,  these yield 

~, (m, f l ) ( n , ( E ~ . E & . . . . . E & ) -  F~.FG.. . . .F&) = O. 

Hence, 

(m, fl )(zr,(Ea. E&.. . ..E&) -- x ,  Ea. lr, E&.. . . .~ ,E&) = O, 
Bei,(, 

and finally 

E <m, /~>g(/~, /h . . . . .  &))F,=O. 
//e Z-,m 

Since G 4= 0 in Adxz, and using that  g satisfies (1), we get 

E (m, p>g(/~, &,. . . ,  &) = o ,  

which completes  the proof.  
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4 Todd class formula 

In this section, we prove the main theorem of Part I, which asserts that in the 
codimension of the singular locus, the difference between the Todd class and the 
mock Todd class of a simplicial toric variety may be computed locally, We first 
recall some facts and definitions. 

If Z is a complete non-singular fan, the Chern classes of Xz are given by 

c X z =  ~ F ~ :  1-[ (1 + F p ) ,  
z ~ Z  p ~ Z  m 

the second equality following easily from the description of the Chow ring given in 
Sect. 2.3. 

For a simplicial toric variety Xz, we define the mock Chern class of Xz by 

1 
C X z = ~z m ~ z  F~ = I-I ( I + F o ) .  

z p~_y'(ll 

Again the second inequality follows from Sect. 2.3. We let CiXz be the codimension 
i part of CXz, i.e. 

1 
CiXz = ~ F~. 

42~" mult z 

We then define the mock Todd class of Xz by 

T D X z  = ~ T D i X z ,  
i > O  

where TD~Xz is the i th Todd polynomial in the class C~ . . . . .  C~. 
We now examine the difference 

TdiXz  - TDiXz  . 

For i < d = codim(Sing Xz), the difference vanishes. This is because we may find 
a non-singular subdivision Z' of Z such that the map n: Xz, ~ Xz  is an isomor- 
phism except over a set of codimension d. So if i < d, then as we have seen at the 
beginning of the previous section, a product in codimension i pushes forward, and 
we have ~,TD~Xz, = TDiXz .  But since Xz, is non-singular, TDiXz ,  = Td~Xz,, 

and this gives n,  TdiXz,  = TD~Xz. Finally, we use the fact that the Todd class 
pushes forward under proper birational morphisms [Ful, p. 353] to obtain 
TdiXz  = TDiXz .  

Before we examine the above difference in the case i = d, we will prove a lemma 
about pushing forward an arbitrary polynomial of degree d in the mock Chern 
classes. 

Lemma 1. Let P be a polynomial of  graded degree d in the variables C1,. . �9 Ca (Ci 

having degree i). I f  Z is a simplicial fan, z~ Z ~d), and F is a simplicial interior 

subdivision of v, and Z' is the fan obtained from Z by subdividing z, with n: Xz, --* Xz  

the induced map of  varieties, then 

n , P ( C 1 X z , ,  . . . , C e X z , )  - P ( C 1 X z  . . . . .  C a X z )  = rF~ , 

where r ~ if) depends only on z and F (but not on all of Z). 



10 J.E. Pommersheim 

Proof. By linearity, it suffices to consider the case in which P is a monomial :  

d 

P = C ~ . . . C ~ "  where ~ i n i = d .  
i = 1  

In this case, the above difference is equal to: 

I( ?( ? (  Pl E X'(1) P l ,P2 E Z'(1) D I , ' ' '  Pa~ X'(I} 

Pi E I '(i) P i ,  P i  E - F'(1) Pl, �9 
E Fpl""  "Fpd) ~ld 
, paer- 'li) 

where each sum is taken over all distinct subsets {pt . . . . .  pg} of E '~) of size i. 
(Again, we set F o = 0 if p~E'I~)\X(~).) We may  rewrite this difference as 

2 ~, [ ] I ]  1-}G - F I G  
i = 1 j = 1  p~A: i = 1  j = l  p6A: 

where the sum ranges over all sequences A i . . . . .  AT', A~ . . . . .  A ~ , . . . ,  AJ . . . . .  A~" 
of subsets of 2; '(~) such tha t  # ( A : )  = i. 

Finally, by propert ies  (1) and (5) of the theorem of the preceeding section, we see 
that  the above quant i ty  equals 

,A~ , A 2 , . . .  , . . . ,  . . .  f~,r( 1 . . . .  A? ~:, A~, ,A~ ~) F~ 

where once again, A~ . . . . .  A71, A2 i . . . . .  A~ :, . . . .  Aa 1 . . . . .  A~" range over  all se- 
quences of subsets of 27 '(~) such that  # ( A { )  = i. 

Note  that  the bracketed coefficient above  gives a recipe for calculating r in 
terms of z and F. 

Theorem 1 now follows from: 

L e m m a  2. I f  E is a simplicial fan, z ~ E td) is a cone whose (d - l )-dimensional faces 

are non-singular, and F is a non-singular interior subdivision of  T, then letting X' be 

the fan obtained by subdividing T, and letting n: X~, ~ Xx ,  we have 

n , T D a X z ,  - T D d X z  = r~F~ , 

where r~ depends only on z (not on all o f  Z nor on the subdivision F). 

Proof. Since the d th m o c k  Todd  class is a polynomial  of  graded degree d in the 
mock  Chern  classes, the previous l emma asserts that  re exists and  depends only on 
z and F, so all we must  show is that  re is independent  of F. 

Let FI and Fz be two non-singular  interior subdivisions of  z. To  show that  
r~, r, and r,, r~ agree, we let I; be a complete  simplicial fan such tha t  r e 2; (a), and such 
that  every other  cone in 22 la) is non-singular.  (We m a y  construct  such a s by 
choosing an arbi t rary  complete  simplicial fan containing z and desingularizing all 
cones in s except z.) Le t  1;[ and  E~ be the fans obtained f rom E by replacing 
z with /'1 and if2, respectively, and let n l : X z l - - , X s  and 7~2: XEI ~ Xz be the 
induced maps  of toric varieties. 
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Note  that since Xz,, and Xsl are non-singular in codimension d, we have 

r q , T D a X z ~  = rq,Td'~Xs~ = TddX~,  

and rc2,TDaXr~ = 7z2,TdaXs = T d d X z .  

(Once again, we are using the fact that  the Todd class pushes forward under proper  
birational morphisms.) 

But r~, r1 and re, r~ are defined by 

rq ,TDdX~~ - TDeXz = r~,r~F~ 

and zc2,TDdXzl - TD'~Xx = r~,r~F~, 

so we see that r,, rl F~ = re, rl F~. Since F, :t: 0 in AdXz, we conclude that re, r, = r~, r2, 
as desired. 

Proof of Theorem 1. The lemma guarantees that there is a function t: 5 p ---, Q such 
that each time we desingularize a cone r of  2;, there is a contr ibut ion of t(z)F~ to the 
difference g , T D ~ X z , -  TDdXz. The theorem then easily follows by induction, 
desingularizing one d-dimensional cone at a time. 

Remark. Throughou t  this section, the hypothesis that  s or  F be simplicial may be 
weakened to "simplicial in dimension d," by which we mean that all d-dimensional 
cones are simplicial. For  if 2; is simplicial in dimension d, then we may find 
a simplicial subdivision X~ such that  2;~ ~d) = 2 ~d), and so the map g:  Xz,, --* X~ is an 

isomorphism except above a subvariety of  codimension strictly greater than d. It is 
then easy to check that all of  the assertions of this section make sense and remain 
true when applied to the fan Z. In the next section, in which we consider the case 
d = 2, we may drop the simplicial hypothesis altogether, since any fan is simplicial 
in dimension two. 

5 The eodimension two formula 

We now show that in codimension two, the function t of  the previous section is 
given in terms of a Dedekind sum. This leads to a formula expressing the Todd  
class of a toric variety in codimension two in terms of Dedekind sums. 

The Dedekind sum s(p, q) for relatively prime integers p and q is defined by 

s(p, q) = ~ i pi ) 

where 

((x)) = { 0  - [x ]  - �89 x r  
X E Z  . 

These sums occur in many contexts and may be characterized in many  ways, 
including a cotangent  formula and a reciprocity law. The book [ R a G r ]  contains 
a nice collection of properties of these sums. 
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Dedekind  sums may  also be defined by means  of cont inued fractions. If  
0 < p < q w i t h ( p , q ) = l ,  and 

q = bl 1 , b i e N  
1 

q - P b2 
1 

" , .  _ _ _ _  

bk 

is the negative-regular  cont inued fraction expansion of q , and pp' - l ( m o d  q) 
q - p  

with 0 < p'  < q, then 

= ( 3 - b i ) +  + p ' ) - 2  , 
s(p, q) -i2 i q 

This follows f rom Theorem 1 of [My] ,  which explores the connect ion between 
Dedekind  sums and cont inued fractions. 

We are now ready to find the value of t(~) for a two-dimensional  cone z. Given 
a two-dimensional  cone z in a lattice N, ~ m a y  be written as ( e l ,  pel + qe2 ), where 
{e~,e2} forms a basis of N in the plane containing z, q > 1, (p,q) = 1, and 
0 __< p < q. With this representat ion,  q is uniquely determined,  but  p is determined 
only up to multiplicative inverses modu lo  q. In this situation, we say that  z has type 

(p, q). We may  say equally well, however,  that  z has type (p', q), where pp' = 1 

modulo  q. These facts are easily verified. See [Oda,  p. 24]. 
We then have 

T h e o r e m  3. Let Z be a complete simplicial fan. For each "~E~ (2), let (p~, q~) be the 

type of z. Then 

I 11j Td2Xx = T D 2 X x  + ~ s(p~, q~) + F~ 
~ e,~2~ 4 4q~ " 

In other words, for a two-dimensional cone z of type (p, q), we have 

t(z) = s(p, q) + - - - - -  
1 1 

4 4 q '  

Proof Let  z be a cone of type (p, q) in a two-dimensional  lattice. In order to 
compute  t(z), we consider any complete  fan Z such that  z e Z and all other  cones of  

are non-singular.  It  is now a routine lattice computa t ion  to find the value of t(z) 

using the explicit descript ion of the function t (in terms of a subdivision of z) which 
was given in Sect. 4. We will also need facts abou t  the explicit resolution of 
singularities of toric surfaces (cf. [Oda,  Sect. 1.6]). We now summar ize  these facts. 

Let z be a cone of type (p, q). Fo r  simplicity, assume that  z = ((1, 0), (p, q))  in 
Z z, with (p, q) = 1 and 0 < p < q. Then there is a unique minimal  non-singular  
subdivision F of z which m a y  be described explicitly using cont inued fractions. 

Here is what  we will need abou t  F:  
(1) Consider  the convex hull H of the set z c~ N \ { ( 0 ,  0)}, and let 

po = (1, o), p~ . . . . .  pk, p ~ , ~  = (p, q) 
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be, in this order,  the primitive elements of  N on the compac t  faces of the bounda ry  
of H. Then F, the unique minimal  non-singular  subdivision of z is given by 

F m = { P o  . . . . .  Pk+I} ,  and 

/ - ( 2 )  = { (pO,  Pl>,  <Pl ,  P 2 )  . . . . .  (Pk,  P k + l ) }  �9 

It follows f rom O _ _ < p < q  
p p ' + q q ' =  1 a n d O _ _ < p ' < q .  

(2) If  

that  pl = ( 1 , 1 )  and P k = ( P + q ' , q - - P ' ) ,  where 

q - b, 1 , b i ~ N  
1 

q - P bz 
1 

bk 

is the negative-regular  cont inued fraction expansion of q , then for 0 < i =< k, 

we have q - p 

Pi+l =- b l p i - - , o i - 1  �9 

To finish the p roof  of  Theorem 3, we must  compute  t ( r ) =  n ,  T D a X s ,  
- T D  2 Xz, where X is a two-dimensional  fan containing z, and 2;' is obta ined from 

2; by subdividing v in the manner  described above. By definition, 

n ,  TD2 Xz,  - T D 2 X z  = 1A~ [ (n ,  C2 X,~, -- C2 X z )  + (Tc, C2Xz, - -  C 2 X 2 )  ] �9 

By the computa t ion  of L e m m a  1, this becomes 

~I, ~2 EF(1) {71, )'2} c F tit 

where the second sum ranges over  all two-element  subsets of F (1). 
F r o m  this point, we will w r i t e f f o r f ~ , r .  
By proper ty  (3) of Theorem 2, we have 

f (P l ,  P~)=O i f [ i - j [ > l  and { i , j } ,  {0, k +  1}, 

so the first sum above reduces to 

f (P i ,  Pl) + 2 f (P l ,  Pi+l) + 2 f ( p o ,  Pk+I) , 
i = 0  i = 0  

and the second becomes 

0 Pi, Pi+l) + f ( P o ,  Pk+I �9 
i= 

Using f ( p i ,  Pi+ ~) = 1 and f ( p o ,  Pk+ 1) = _ _1 (Proper ty  (3) again), the total  equals 
q 

3(k + I) 3 - -  + f ( P l ,  Pl) , 
q i= 

and we must  compute  o n l y f ( p i ,  Pi) for i = 0, 1 . . . . .  k + 1. 
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i = O: U s i n g  Po = (1, 0), P l  = (1, 1) a n d  Pk+l  = (P, q), a n d  t ak ing  m = (1, 0), P rop -  

er ty  (4) gives 

k + l  

Z 
i = 0  

(m, p j )  f ( p j ,  Po) = 0 ,  

which becomes  

(m, Po)  f (Po, Po) + (m, p,  ) f (pl ,  Po) + (m, Pk+,)  f (Pk+ l, PO) = O, 

a n d  s o f ( p o ,  Po) = -p - 1. 
q 

i = k + 1: This  is similar .  Th i s  t ime  we use Po = (1, 0), Pk = (P + q', q -- P') and  

Pk+l = (P, q), a n d  take  m (1, 0). P r o p e r t y  (4) t hen  gives 

k + l  

(m, p j ) f ( p j ,  Ok+l) = O, 
i = 0  

which becomes  

(m, Po ) f (Po ,  Pk +, ) + (m, Pk ) f (Pk ,  Pk +, ) + (m,  Pk +, ) f (Pk  + ,, Pk + 1 ) = O, 

p' 

a n d  s o f ( p k + l , p k + l )  = - - - -  1. 
q 

1 < i _< k + 1: In  this case, { P i -  1, Pi } is a basis  of 77 2 and  Pl + 1 = bi Pi - Pi- 1. Take  

m ~ (7/2)* such tha t  (m, Pi 1 ) = 0 a n d  (m,  P l ) = 1. T h e n  (m,  P i+ 1 ) = b l, and  the 

e q u a t i o n  

k + l  

~, (m, p j ) f ( p j ,  p~) = O, 
i = 0  

tells us tha t  

(m,  p i - 1 ) f ( p i - l , P i )  + (m, p l ) f ( p i ,  Pi) + (m, P i + l ) f ( P i + l , P i )  = O, 

a n d  so f (pi, Pl) = - bi. 

A d d i n g  it all up ,  we get 

1 1 

= s(p,q) + ~ -  4q'  

as was to be  shown.  
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Part II: Counting lattice points in a tetrahedron 

6 Introduction 

For a long time, mathematicians have been interested in the problem of counting 
the number of lattice points in integral convex polytopes, i.e., convex polytopes 
with vertices at lattice points. For  such a polytope A of dimension n in a lattice M, it 
is convenient to introduce the function lA(k) to denote the number of lattice points 
in A dilated by a factor of the integer k: 

l~(k) = # ( k A  c~ M )  k e 7 l  + . 

l~ turns out to be a polynomial function in k of degree n with rational coefficients: 

1 3 ( k ) = a , k ' + a ,  l k  "-a + ' " + a o  

and is called the Ehrhart polynomial of A [Ehr]. One hopes to find expressions for 
the coefficients ai in terms of the geometry of A. Ehrhart showed that: 

(1) a, equals the volume of A. 
(2) a, 1 equals half the sum of the volumes of the (n - 1)-dimensional faces of 

A. (Here and throughout, the volume of a k-dimensional face of A is measured with 
respect to the k-dimensional lattice in the k-plane containing A.) 

(3) ao = 1. 
For n = 2, this gives a complete answer, namely Pick's Theorem (cf. [Ham]) ,  

which says that if A is a lattice polygon, then 

l~(k) = vol(A)k 2 + �89 + 1 , 

where S(A) denotes the sum of the lattice lengths of the edges of A. 
For a three-dimensional integral convex polytope A, (1) (3) give 

l~(k) = vol(A)k 3 + �89 2 + a lk  + 1 , 

where S(A) denotes the sum of the lattice volumes of the two-dimensional faces of 
A. Our problem is thus reduced to determining at.  By analogy with Pick's 
Theorem, one would hope to express al in terms of the volumes of the one- 
dimensional faces (edges) of A. However this is not possible [Reel. To see this, 
consider the tetrahedron A, in 77 3 with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and 

(1, 1, r), where r~77 +. It is easily seen that al = 1 - 6 '  but the lattice volumes of the 

one-dimensional faces (and the two-dimensional faces) of A, are independent of r. 
Thus, even in the case o fa  tetrahedron, a formula for the coefficient al must involve 
ingredients other than just the volumes of the faces of A. 

In this paper, we present a formula for al in the case of a general lattice 
tetrahedron A given in terms of: 

(1) The lattice volumes of the one and two-dimensional faces of A, and 
(2) certain functions of the dihedral angles formed at each edge, computed in 

terms of Dedekind sums. 
We now define these functions. 
Let P and Q be distinct non-parallel planes in a three-dimensional lattice M. 

P and Q then form a dihedral angle (i.e., a cone with one-dimensional cospan), to 
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which we attach two numbers, the multiplicity, m(P, Q), and the Dedekind measure, 
d(P, Q), as follows: 

Let L be the line where P and Q intersect. Choose distinct elements Vo, Vl ~ L, 
and choose points v 2 e P \ L ,  v3 ~ Q\L.  Let p be the unique primitive element of 
M on the ray from the origin through v~ - Vo. Take M' to be the lattice M/Zp,  and 
let v~ and v; be the images in M' of v2 and v3. Let v~ and v~ denote the primitive 
elements on the rays in M' from the origin through v~ and v;. Then it is easy to see 
that a basis {et, ez} of M' may be chosen so that {v~, v~} = {el, pe~ + qe2}, where 
0 -<_ p < q. (In this case we say that the cone in M' generated by v~ and v~ has type 
(p, q).) We then define 

re(P, Q) = q,  

and d(P, Q) = - s(p, q) + �88 

Here s(p, q) denotes the classical Dedekind sum. (For the definition of s(p, q), see 
the beginning of Sect. 5.) 

It is easy to check that re(P, Q) and d(P, Q) are well-defined (i.e., independent of 
the choices of Vo, vl, v2, v3) and are invariant under translations and lattice 
automorphisms. 

re(P, Q) and d(P, Q) may be easily computed by picking Vo, vl, v2, v3 as above 
and then choosing a coordinate system so that 

Vo = (0, 0, 0 ) ,  

vx = (r, 0, 0),  so that p = (1, 0, 0), 

v2 = (t, u, 0),  and 

v3 = (x, y, z ) ,  

_ _ _  Z 

Y , and q - , and we where u, z > 0. It then follows easily that p gcd(y, z) gcd(y, z) 

may compute m(P, Q) and d(P, Q) from these. 
Now let Vo, Vl, v2, v3 be the vertices of a tetrahedron A in a three-dimensional 

lattice M. For  0 < i < j < 3, let F~j and Fi'j be the two two-dimensional faces of 
A containing the edge vivj, and let Pij and P~j be the planes containing these faces. 

We then have the following formula for al,  given in terms of the volumes of the 
faces of A, and the multiplicity and Dedekind measures of the six dihedral angles 
formed by A: 

Theorem 4. With the above notation, 

al = ~ 36m(Pij, P~j)\vol(-Fi'j~) -t- vol(F/j)//-}- d(Pij, PIj) vol(vivj) �9 0 ~ i < j < 3  

The connection between counting lattice points in a tetrahedron and Dedekind 
sums was known to Mordell, who considered the tetrahedron A(a, b, c) with 
vertices at (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c). Mordell gave a formula for the 
number of lattice points in A (a, b, c), expressed in terms of three Dedekind sums, in 
the case that a, b, c are pairwise relatively prime [Mor].  In the Sect. 9, we use 
Theorem 4 to give a formula for the number of lattice points in A(a, b, c) for 
arbitrary positive integers a, b, and c. This is 
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Theorem 5. I f  a, b, c > 0 with gcd(a, b, c) = 1, and d is the tetrahedron in 77 3 with 
vertices (0, O, 0), (a, O, 0), (0, b, 0), and (0, O, c), then 

abCk3 ( a b + a c + b c + d ) k z  
#(kAc~7l 3 ) =  6 + 4 

[ l ( b  bc ab d ~ )  a + b + c + A + B + C  
+ - - + - - + - - +  4 

a c 4 

A {bc aA'~ [ac b B \  C /ab c C \ 7  
- 

+ 1 ,  

where A = gcd(b, c), B = gcd(a, c), C = gcd(a, b), and d = ABC. 

The derivation of the formula of Theorem 4 relies on the well-established 
connection between convex polytopes and toric varieties. To each integral con- 
vex polytope A, there is an associated toric variety X~ (see Sect. 7). Theorems of 
algebraic geometry applied to the variety XA often yield results about  the polytope 
A. Danilov [Dan, p. 1 34] showed that expressions for the Todd class of Xa give rise 
to formulas for the Ehrhart polynomial of A. Theorems 1 and 2 will be derived from 
Theorem 3, which expresses the codimension two part of the Todd class of a toric 
variety in terms of Dedekind sums. This may be used to obtain into an expression 
for the a,_ 2 coefficient of the Ehrhart  polynomial of an arbitrary integral convex 
polytope. 

7 Polytopes and torie varieties 

In this section, we present background information about the connection between 
polytopes and toric varieties. In Sect. 7.1, we describe how an integral convex 
polytope A gives rise to a toric variety X~. In Sect. 7.2, we state the relation, due to 
Danilov, between the Todd class of X~ and the Ehrhart polynomial of A. In Sect. 
7.3, we state a formula for the Todd class of a toric variety in codimension two (a 
restatement of Theorem 3), which will be essential for the proof of Theorem 4. 

7.1 The toric variety associated to a polytope 

Let A be an integral convex polytope in an n-dimensional lattice M. Then there is 
an associated n-dimensional toric variety XA. TO each face F of A, there is a special 
subvariety V(F), whose complex dimension is the same as the real dimension of F. 
The construction of X~ and its special subvarieties may be found in [Oda]  or 
[Dan].  X~ is obtained as the toric variety associated to a certain fan S~ in the dual 
lattice N = Hom(M, 77). We briefly describe the construction of Za. 

A determines a polytope in the vector space MR = M | IR. If  F is a face of A, 
define a cone a r  in M by 

U 
m ~ F r > O  
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We then define 

Z~ = {o r lF  is a face of A} , 

where the dual 6 of a cone er in M is defined by 

6- = {n e N~ [ (n, m) > 0 for all m e er} , 

and ( , ) : N  x M-- ,  7Z is the natural pairing. XA is a fan in N which determines 
a toric variety as in [Oda, Sect. 1.2]. 

7.2 The Todd class and lattice points 

Every algebraic variety has a naturally defined Todd class [Ful]. Danilov [Dan, 
p. 134] showed how to determine the Ehrhart  polynomial of an integral convex 
polytope A from the Todd class of the associated toric variety Xa. This relation, 
a consequence of the Riemann-Roch Theorem, allows us to prove Theorem 4 using 
toric varieties. 

Let IV(F) ]  denote the class in (A,X~)Q of the special subvariety V(F). If the 
Todd class of Xa has an expression of the form 

TdXA = ~ r r [ V ( F ) ]  

with rr e Q, then the coefficient of ak in the Ehrhart polynomial of A is given by 

ak= ~ r r v o l ( F ) .  
d l m F = k  

7.3 The Todd class in codimension two 

We restate here the formula of Theorem 3 in the context of a toric variety 
Xa associated to a lattice tetrahedron A. This formula allows us to compute the 
codimension two part of the Todd class of X~. 

Let A be a three-dimensional integral convex polytope. For each edge E of A, 
we will use d(E) and re(E) to denote d(P, P') and re(P, P'), where P and P '  are the 
planes containing the two two-dimensional faces of A which meet at E. 

The Todd class formula may now be stated as follows: 

Td2Xa = TDzX~ + ~ d(E) 4m(E) [ V ( E ) ] ,  

where 

with the sums taken over all two-dimensional faces F and all edges E of A. 

Remark. It is easy to see that this is a restatement of Theorem 3. The quantities 
d(E) and re(E) are defined in terms of the cone er E. If this cone modulo its 
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cospan has type (p,q), then the dual 6E has type ( - p , q ) .  The expression 

1 1 
t(6-E) = s ( -  p,q) + - ~ ,  + ~ of  the above-mentioned theorem thus becomes 

1 
d(E) 4re(E)' as stated above. 

8 Proof of  the lattice point formula 

In this section, we use the toric variety results stated in the previous section to 
derive the formula of Theorem 4. Because of the results of Sect. 7.2, to prove 
Theorem 4 it is enough to prove the following result about the Todd class of the 
corresponding toric variety XA. 

Let Eij denote the edge vivj of A. 

Theorem 6. With the notation of  Theorem 4, 

1 
F , + + d(Pij, Pij) [V(Eij)] . 

TdeXa = ~" [_36m(P0., P~j)\vol(F,j)  vol(F~j) / 0_<i<j=<3 

Proof By the Todd class formula of Sect. 7.3, we have 

'E( 1 ] ( ' )  
T d 2 X ~ = 1 2  ~ [ V ( F ) ]  + ~ m ~ [ V ( E ) ]  + ~  d(E) 4re(E) [ V ( E ) ] ,  

where F ranges over the two-dimensional faces and E over the edges of A. The 
cycles corresponding to faces multiply as follows [Dan, p. 127]: 

1 
( , )  [ v ( F ) ]  [ V(F ' ) ]  - [V(F ~ F ' ) ] ,  

m(F c~ F')  

where F 4= F '  are two-dimensional faces of A. Thus, we get 

(**) Td2X ~ = 1 ~ [V(V)] 2 + ~ d (E) [V(E) ]  . 

We will compute the first sum above using 

Lemma. Let F 4: F' be two-dimensional faces of  A. Then 

vol(F')  [ V(F)] = vol(F) [ V(F')]  . 

Proof Let F = VlVjVk and F '  = vlvjvl. Let p and p'  be the primitive elements of 
N dual to F and F' ,  respectively. First note that 

voI(F) (p ' ,  Vk -- vz) 

vol(F')  (p ,  v~ - Vk) 

This was pointed out to me by Burr Totaro. It is perhaps easiest to see this by 
choosing coordinates so that 

v~ = (0, 0, 0),  

vj = (x, O, O), 

Vk = (y, Z, 0),  and 

v~ = (w, v, u).  
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X Z  X ZU 

Then vol(vlvjvk) =--~,  vol(vlvjv,) = ~gcd(v,  u), and <p' ,  vk - vl)  - 
gcd(v, U)' 

(p ,  vt -- vk) = u, and the above equali ty follows. 
The l emma now follows easily from 

<p', vk - v , )EV(F ' ) ]  + (p ,  vk -- vt)  [V(F)]  = O, 

which is a basic relation in the Chow ring of a toric variety. See [Dan,  p. 127] or 
Sect. 2.3. 

It is now easy to complete  the p roof  of Theorem 6. For  by the lemma,  

By (*), this becomes 

vol(F) . . . . . .  
I-V(F)]2 - v o ~  Lv t r~J  [ V ( F ' ) ] .  

vol(F)  1 . . . . . .  
[ v ( v ) ]  2 _ v o - i ~ )  re(E) L vtLjj, 

where E = F n F ' .  It then easily follows that  

v o l ( r 6 )  . . . . .  1 E (vol(/]j) @ )  
E ~- V(F) ]  2 = 3 0 < i  < j  < 3 \ v o l ( r , } )  + [ v tL , j~ j .  

Putt ing this into (**)  yields the equat ion of Theorem 6. 

9 A specific tetrahedron 

In  this section, we prove Theo rem 5, which gives the Ehrhar t  polynomial  of the 
te t rahedron  A (a, b, c) with vertices at 

Vo -- (0, 0, 0) ,  

vl = ( a ,  0 , 0 ) ,  

v2 = (0, b, 0 ) ,  and 

v3 = (0, 0, c ) ,  

Without  loss of  generality, we assume gcd(a, b, c ) =  1. We set A = gcd(b, c), 
B = gcd(a, c), C = gcd(a, b), and d = ABC.  

We first compute  the coefficients a3, a2, and a0 using Ehrhar t ' s  results. (See 
(1)-(3) of  Sect. 5.) (These results are easy consequences of  facts abou t  Todd  classes 
of toric varieties.) 

abc 
a3 = vol(A) = 6 

a2 = ~ S(A) = ab + ac 4 + bc + d, and 

a o =  l .  
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It remains to compute  a l ,  for which we use Theorem 4. One easily verifies that 

vol(/)o/)l) = a, 

VOI(/)lV2) = C, 

ab 
vol(vo/)l vz) = ~ ,  

bc 
vol(voV2 I)3) = S '  

We also have m(Poi, P'oi) = 1, 

cC 
= w  m(Plz ,  P]2) d 

bB 
= -  

r e ( P 1 3 ,  Pi3)  d 

aA 
= m m(Pz3, P23) d 

vol(voV2) : b, vol(voV3) : c , 

vol(VlV3) = B, VOI(V2V3) = A , 

ac 
vol(vovl v3) = - -  

2 '  

d 
= - -  . VOI(VlVzV3) 2 

and d(Poi, P~i) = �88 for i = 1, 2, 3, while 

lab 1 

, d (P13 ,P13)  = - s , + ~ ,  

f b c  a A ~  1 
, d(Pz3,P'23) = -- s I - 7 , - v I  -I- 

\ a  a /  

The desired formula now follows easily from Theorem 4. 

Part III: Dedekind sum relations 

10 Introduction 

In this part, we use toric varieties to prove a law expressing the sum of two 
arbi t rary Dedekind sums in terms of a third. This is seen to be a generalization of  
Rademacher ' s  three-term law for Dedekind sums IRa] .  A consequence of our  law is 
an n-term reciprocity law for Dedekind sums. The proofs of these results are based 
on the formula of Theorem 3, which relates the Todd class of toric varieties to 
Dedekind sums. 

The Dedekind sum s(p, q) for relatively prime integers p and q is defined by 

where 

((x)) = { 0 -  [x]  - �89 x C Z  
x ~ Z  . 

These sums first appeared in Dedekind 's  work on the eta-function, and since then 
have arisen in a variety of contexts, including the lattice point  formula of  Mordell  
[Mor ] ,  and the work of Hirzebruch and Zagier [HiZa] ,  which connects them with 
signatures of quotient spaces. Dedekind sums may  be characterized in many  ways, 
including the reciprocity law 

s(p, q) + s(q, p) = - ~ + -f~ + - +  , 
P 
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which is due to Dedekind [Ded]. [RaGr] contains a number of elementary proofs 
of this law. Rademacher [Ra] found a three-term reciprocity law: 

1 l ( ~ c  b a~ )  s(bc', a) + s(ca', b) + s(ab', c) = - ~ + + --ca + ' 

where a, b, c are pairwise coprime and a a ' - l ( m o d b ) ,  b b ' - l ( m o d c ) ,  and 
cc' - 1 (mod a). It is easy to see that this is a generalization of Dedekind's two-term 
law. 

We prove the following theorem which gives the sum of two arbitrary Dedekind 
sums in terms of a third. 

Theorem 7. Le t  p, q, u, v~ N with (p, q) = (u, v) = 1. Then 

s(p, q) + s(u, v) = s(pu' -- qv', pv + qu) -- ~ + ~ ~ + tq + ' 

where t = pv + qu and u', v' are any integers which satisfy uu' + vv' = 1. 

The special case of this formula with q and v relatively prime is equivalent to 
Rademacher's three-term law. (Given a, b, c pairwise coprime, set q = a, v = b, and 
find p, q ~  such that pa + qb = c. The equation of the corollary then gives 
Rademacher's formula.) 

In order to state the n-term law, let M be a two-dimensional lattice and let 
det ~ A Z M  denote one of the two possible choices of a determinant on M (so that 
d e t ( e l ,  e 2 )  = _ | whenever {el, e2} is a basis of M). 

Given ml, m2 6 M, we say that the pair (rnt, m2) has type (p, q) if there exists 
a basis {el, e2 of M such that 

m I = e 1 and 

m2 = pel  + qe2 . 

In this case, q is determined up to sign, and p is determined modulo q. 
We then have 

Theorem 8. Le t  m l , m 2 , . . . , m ,  be distinct primitive elements o f  M such that 

det(ml, mi+l) > 0 for  i = 1 . . . . .  n. (For notational purposes set m ,+l  = ml ,  and 

m n +  2 ~ mE.) If necessary, reorder the ml so that for  any i, j ~ { 1 , . . . ,  n} we have 

det(mi, mj) < 0 or det(mj ,  mi+l)  < O. (This is to insure that the mi "9o around" 

M exact ly  once.) Suppose that (mi ,  mi+a ) has type (Pl, qi). Then 

i n 1 ~ d e t ( m i ,  m i + 2 )  

i = 1  s(pi '  qi) = 1 - ~ + ]~ i=a det(mi, mi+l )de t (m i + l ,  m i + 2 )  ' 

It is not hard to prove this theorem by induction using Theorem 7. 
Hirzebruch and Zagier [HiZa] were the first to use geometric techniques to 

prove results about Dedekind sums. By considering "signature defects" of certain 
four-dimensional quotient spaces, they were able to derive Rademacher's three- 
term law and other facts about Dedekind sums. 
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11 Proof of the generalized three-term law 

In Sect. 11.1, we present background information about toric varieties necessary 
for the proofs in Sect. 11.2. As noted, Theorem 8 is a straightforward consequence 
of Theorem 7. However, a direct proof of Theorem 8 is more natural and no more 
difficult than a proof  of Theorem 7. Thus we choose to prove Theorem 8 first, and 
derive Theorem 7 as an easy corollary. 

11.1 Toric variety facts 

Each collection F = {ml, m2 . . . . .  m,} of elements of M as in Theorem 8 form the 
set of rays of a unique complete fan in M, and hence determines a two-dimensional 
toric variety Xr.  To each mi there is an associated divisor V(ml) c Xr  (cf. [-Oda, 
Sects. 1.2 and 1.3]). The two main facts we'll need about Xr  are: 

(1) The codimension two part of the Todd class of Xr  is given by 

T d 2 X r  = 1 

under the identification (AZXr)Q ~- ~. This is because toric varieties are rational. 
See [Oda, Sect. 1.2]. 

(2) Theorem 3 in this context becomes: 

where 

TdZXr  = T D 2 X r  + s(pi, qi) - 4qi + ' 
i = 1  

Here [V(rni)] denotes the class of the divisor V(ml) in (A1Xr)Q. 
We will also need to know how to multiply the special cycles. For this, we use 

the description of the Chow ring of a toric variety given in [Dan, p. 127] (or see 
Sect. 2.3). We have: 

1 
(*) [ V(mi)] [ V(mi+ l)] - -  and 

det(mi, mi+ 1)' 

(**) iV(rag)j2 = _ det(mi, m,,+2) 
det(mi, mi+l)det(mi+l, m i + 2 )  

while all other products [V(ml)] IV(m j)] vanish. 

11.2 Proof of  the n-term law 

It is now quite easy to prove Theorems 7 and 8. By (1) and (2), we get 

1 = i 2  i [V(mi)] +i=1 +i=1 s(pi, q i ) - ~ +  �9 
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Thus it follows that  

(3) ~ s(pl, q,) = 1 
i = 1  

By (*),  

4 12 [V(mi)] + -6 q 
i = 1  i = 1  

J.E. Pommersheim 

[V(mi)]  = 2 + [V(mi)] 2 
i = 1  i = 1  q// i = 1  

~ 1 ~ det(mi, mm+2) 
= 2 - -  - by (**)  . 

i=1 qi i=1 det(m/, mi+l)det(rni+l,mi+2) 

Put t ing  this into (3), we get the equa t ion  of Theorem 8. 

To prove Theorem 7, set n = 3 and  take ml = (p, q), m2 = ( - 1 ,  0), and  
rn3 = (u, - v )  in the lat t ice ;g2. One  then computes  that  

( m l ,  m2)  has type ( - p ,  q) , 

(m2, m 3)  has type ( - u ,  v) , and 

(m3, ml ) has  type (pu' - qv', pv + qu) . 

Theorem 7 now follows. 
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