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Toric varieties, monoid schemes and cdh descent
By Guillermo Cortiñas at Buenos Aires, Christian Haesemeyer at Los Angeles,

Mark E. Walker at Lincoln and Charles Weibel at New Brunswick

Abstract. We give conditions for the Mayer–Vietoris property to hold for the alge-
braic K-theory of blow-up squares of toric varieties and schemes, using the theory of monoid
schemes. These conditions are used to relate algebraic K-theory to topological cyclic homol-
ogy in characteristic p. To achieve our goals, we develop many notions for monoid schemes
based on classical algebraic geometry, such as separated and proper maps and resolution of
singularities.

0. Introduction

The goal of this paper is to prove Haesemeyer’s theorem [19], [7, Theorem 3.12] for toric
schemes in any characteristic. It is proven below as Corollary 14.4.

Theorem 0.1. Assume k is a commutative regular noetherian ring containing an infinite

field and let G be a presheaf of spectra defined on the category of schemes of finite type over k. If

G satisfies the Mayer–Vietoris property for Zariski covers, finite abstract blow-up squares, and

blow-ups along regularly embedded closed subschemes, then G satisfies the Mayer–Vietoris

property for all abstract blow-up squares of toric k-schemes obtained from subdividing a fan.

The application we have in mind is to understand the relationship between the algebraic
K-theory K�.X/ D ��K.X/ and topological cyclic homology TC�.X/ D ¹��TC

�.X; p/º

of a toric scheme over a regular ring of characteristic p (and in particular of toric varieties
over a field of characteristic p). Thus we consider the presheaf of homotopy fibers ¹F �.X/º

of the map of pro-spectra from K.X/ to ¹TC �.X; p/º. Work of Geisser–Hesselholt ([11]
and [12, Theorem B]) shows that this homotopy fiber (regarded as a pro-presheaf of spectra)
satisfies the hypotheses of Theorem 0.1 and hence a slight modification of the proof of our
theorem implies that it satisfies the Mayer–Vietoris property for all abstract blow-up squares of
toric schemes. We will give a rigorous proof of this in Corollary 14.8 below.

Cortiñas’ research was supported by Conicet and partially supported by grants UBACyT W386, PIP 112-
200801-00900, and MTM2007-64704 (Feder funds). Haesemeyer’s research was partially supported by NSF grant
DMS-0966821. Walker’s research was partially supported by NSF grant DMS-0601666. Weibel’s research was
supported by NSA and NSF grants.



2 Cortiñas, Haesemeyer, Walker and Weibel, Toric varieties, monoid schemes and cdh descent

One major tool in our proof will be a theorem of Bierstone–Milman [1] which says that
the singularities of a toric variety (or scheme) can be resolved by a sequence of blow-ups
XC ! X along a center C that is a smooth, equivariant closed subscheme of X along which
X is normally flat. If one only had to consider toric schemes, this would allow one to use
Haesemeyer’s original argument to prove Theorem 0.1, since toric schemes over a regular
ring are normal and Cohen–Macaulay. However, examples show that the blow-up of a toric
scheme along a smooth center (even a point) can be non-normal. Thus, even starting with
a toric scheme, the tower of blow-ups constructed by Bierstone–Milman will often involve
non-normal schemes with a torus action. The proof of our theorem requires us to work with
a larger class of schemes, one containing all the schemes in this tower. Beyond this, we need
a class of schemes which is closed under passage to (possibly non-reduced) equivariant closed
subschemes, pullbacks and blow-ups.

It turns out that all these operations may be lifted to the category of monoid schemes of
finite type, and that the realizations of monoid schemes over a commutative regular ring k con-
taining a field form a class of schemes with the above-mentioned properties. The k-realization
of an affine monoid scheme is a scheme of the form Spec kŒA�, with A an abelian monoid; the
k-realization of a monoid scheme (Definition 5.3) is a scheme over k which is covered by affine
open subschemes of this form, with homomorphisms of the underlying monoids inducing the
gluing maps between these open subschemes.

To achieve our goals, it is easier to work directly with the category of monoid schemes,
and Sections 1–3 of this paper are devoted to a introduction to monoid schemes. Toric monoid
schemes are introduced in Section 4 and the relation to toric varieties is carefully described. In
Sections 5 and 6, we prove that the k-realization functor preserves limits and show that many
monoid scheme-theoretic properties translate well into algebraic geometry. Projective monoid
schemes, blow-ups and proper maps are introduced in Sections 7 and 8. After introducing
the technical notion of pctf monoid schemes in Section 9, birational maps and resolution of
singularities are given in Sections 10 and 11.

The last part of this paper (Sections 12–14) is devoted to the notion of cohomological
descent (Definition 12.11), the proof of our Main Theorem 0.1 and its application to algebraic
K-theory and topological cyclic homology.

As far as the authors are aware, this paper presents the first attempt at a systematic study
of geometric properties of monoid schemes within the category of monoid schemes, and the
relationship of these with the geometric properties of their realizations. The idea of a monoid
scheme itself goes back at least to Kato [25], and general definitions were given by Deitmar
in [8] and (under the name M0-schemes) by Connes, Consani and Marcolli in [4]. Deitmar
studies notions of flatness and étaleness for monoid schemes, and introduces discrete valua-
tion monoids. New in this paper is our systematic investigation of separatedness, properness,
general valuation monoids and the valuative criteria, projectivity and blowing up, and the in-
troduction of a class of monoid schemes (the above mentioned pctf monoid schemes) with
better formal properties than only those given by fans, yet avoiding the worst pathologies of
non-cancellative monoids.

1. Monoids

Since we know of no suitable reference for the facts we need concerning monoids and
their prime spectra, we begin with a short exposé of this basic material.
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Unless otherwise stated, a monoid in this paper is a pointed abelian monoid, i.e., an abel-
ian monoid object in the symmetric monoidal category of pointed sets with smash product as
monoidal product. More explicitly, a monoid is a pointed setAwith basepoint 0, equipped with
a pairing � W A ^ A! A (written �.a; b/ D ab) that is associative and commutative and has
an identity element 1. The basepoint is unique because it is characterized by the property that
0a D 0 for all a 2 A. For example, if R is a commutative ring, then forgetting addition gives
a monoid .R;�/ of this type. SometimesC notation is used for �, for example in applications
to toric varieties; in these cases we write 0 for the identity element, and1 for the basepoint.

We can convert any unpointed abelian monoid B into a pointed abelian monoid B� by
adjoining a basepoint. Neither the zero monoid ¹0º nor the monoid ¹0; 1; tº with t2 D 0 are of
this form.

A morphism of monoids is a map of pointed sets preserving the multiplicative iden-
tity and multiplication. The initial monoid is S0 D ¹0; 1º with 1 � 1 D 1, and the initial map
�A W S

0 ! A is such that the identity on A equals the composition

A
Š
���! S0 ^ A

�A^id
���! A ^ A

�
���! A:

Localization. A multiplicatively closed subset S � A is a subset containing 1 and
closed under multiplication. Given a multiplicatively closed subset S of A, the localization

S�1A consists of equivalence classes of fractions of the form a
s

with a 2 A and s 2 S . As usual,
a
s
D a0

s0 if and only if as0s00 D a0ss00 for some s00 2 S , and the operation in S�1A is given by
multiplication of fractions. There is a canonical monoid homomorphismA! S�1A sending a
to a

1
, and a; b 2 A are mapped to the same element of S�1A if and only if as D bs for some

s 2 S .
An ideal I in a monoidA is a pointed subset such thatAI � I . If I � A is an ideal, A=I

is the monoid obtained by collapsing I to 0 – i.e., it is canonically isomorphic to .A n I / [ ¹0º
with the unique multiplication rule that makes the canonical surjection A � A=I into a mor-
phism of monoids. More generally, any surjective homomorphism of monoids A! B is the
quotient by a congruence, i.e., an equivalence relation compatible with the monoid operation.

Every nonzero monoid A has a unique maximal ideal (written mA), namely the comple-
ment of the submonoid of units

U.A/ WD ¹a 2 A W ab D 1 for some bº:

We say that a monoid morphism g W A! B is local if g.mA/ � mB or, equivalently, if
g�1.U.B// � U.A/.

A prime ideal is a proper ideal p (p ¤ A) whose complement S D Anp is closed under
multiplication; in this case we write Ap for the localization S�1A. The dimension of A is
the supremum of the lengths of all chains of prime ideals, and the height of p is the dimension
ofAp. Since the intersection of an arbitrary chain of primes is prime, every prime ideal contains
a minimal prime ideal (by Zorn’s lemma).

Lemma 1.1. For every multiplicatively closed subset S ofAwith 0 62 S , there is a prime

ideal p of A such that S�1A D Ap.

Proof. Since S�1A is a nonzero monoid, it has a maximal (proper) ideal m; the in-
verse image of m in A is a prime ideal p. Let T denote A n p; then S � T and any t 2 T is
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a unit in S�1A. Hence there are homomorphisms S�1A! T �1A D Ap and T �1A! S�1A

covering the identity of A. Hence both composites S�1A! S�1A and Ap ! Ap are identity
maps, by the universal property of localization.

We let MSpec.A/ denote the set of prime ideals of A; it is a topological space when
equipped with its Zariski topology, in which closed subsets are those of the form

V.I / D ¹p W I � pº

for an ideal I of A. The principal open subsets

D.s/ D ¹p 2 MSpec.A/ W s … pº D MSpec.AŒ1=s�/

form a basis for the Zariski topology. The space MSpec.A/ is quasi-compact, since any open
D.s/ containing the unique maximal ideal mA must have D.s/ D MSpec.A/.

There is a sheaf of monoids A on MSpec.A/ whose stalk at p is Ap; if U is open, then
A.U / is the subset of

Q
p2U Ap consisting of elements which locally come from some S�1A.

Explicitly,

A.U / D

²
a 2

Y

p2U

Ap W .8p 2 U/.9s … p; x 2 A/.8q 2 U/s … q) aq D
a

s

³
:

In particular, A D AmA
, and A.D.s// D AŒ1=s�. More generally any ideal I of A determines

a sheaf I on MSpecA by

I.U / D ¹a 2 A.U / W .8p 2 U/ ap 2 Ap � I º

Example 1.2. The free (abelian) pointed monoid on the set ¹t1; : : : ; tnº is the multi-
plicative monoid Fn consisting of all monomials in the polynomial ring ZŒt1; : : : ; tn� (together
with 0). Each of the 2n subsets of ¹t1; : : : ; tnº generates a prime ideal p, and every prime ideal
of Fn has this form. We write An for MSpec.Fn/.

If A! B is a morphism of monoids, then the inverse image of a prime ideal is a prime
ideal, and we have a continuous map MSpec.B/! MSpec.A/. If I is an ideal of A, then
MSpec.A=I /! MSpec.A/ is a closed injection onto V.I /. If S is multiplicatively closed
in A, then either S�1A D 0 (in which case MSpecS�1A D ;) or S�1A D Ap for some p

(Lemma 1.1); in either case � W MSpec.S�1A/! MSpec.A/ is an injection onto the set of
primes that are disjoint from S . The restriction ��1.A/ to this subset is the sheaf of monoids
on MSpec.Ap/.

Recall that a point x1 of a topological space X is called generalization of a point x0 (and
x0 is called a specialization of x1) if x0 is in the closure of x1. For example, if p;q 2 MSpecA,
then p generalizes q if and only if p � q.

Lemma 1.3. Let p be a prime ideal in a monoid A. Then MSpec.Ap/! MSpec.A/ is

an injection, closed under generalization, and the following are equivalent:

(i) MSpec.Ap/ is open in MSpec.A/.

(ii) MSpec.Ap/ D D.s/ for some s 2 A.

(iii) There is an s 2 A such that Ap D AŒ1=s�.
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Proof. The first assertion was observed above. Since D.s/ D MSpec.AŒ1=s�/, (iii) is
equivalent to (ii), a special case of (i). Conversely, suppose that U D MSpec.Ap/ is the com-
plement of V.I / for some ideal I of A. Then U D

S
s2I D.s/. In particular, there is an s in I

such that p 2 D.s/. But then U � D.s/ and hence U D D.s/.

Example 1.4. Let A be the free pointed abelian monoid generated by the infinite set
¹t1; t2; : : : º. If p is the prime ideal generated by some finite subset of the elements ti , then
MSpec.Ap/ cannot be open in MSpec.A/. Indeed, if it were open, then by Lemma 1.3 it would
have the form D.s/ for some element s 2 A. But any s involves only a finite number of vari-
ables, so the prime ideal tjA belongs to D.s/ for infinitely many tj 62 p. In particular, D.s/
cannot be contained in MSpecAp.

Lemma 1.5. If A is finitely generated as a monoid, then MSpec.A/ is a finite par-

tially ordered set. If S is a multiplicative subset of A, then S�1A is also finitely generated, and

MSpec.S�1A/ is open in MSpec.A/.

Proof. Suppose A is generated by x1; : : : ; xm. Then for any prime ideal p, the multi-
plicative subset S D A n p is generated by ¹xi W xi … pº. Indeed, if s 2 S , then s D

Q
i x

ei

i

with ei D 0 whenever xi 2 p. Thus A has at most 2m prime ideals.
By Lemma 1.1, we may assume S D A n p for some prime p. If s is the product of the

generators of S , then Ap D AŒ1=s�. By Lemma 1.3, MSpec.Ap/ is open.

We say A is cancellative if for a; b; c 2 A the conditions ab D ac and a ¤ 0 together
imply that b D c. In this case, the unpointed monoid A n ¹0º injects into its group completion
and ¹0º is the unique minimal prime ideal of A. We define the pointed group completion of A
to be the pointed monoid AC obtained by adjoining a basepoint to the usual group completion
of the unpointed monoid A n ¹0º. Note that A is a pointed submonoid of AC, and that AC is
the localization A¹0º of A at the minimal prime ideal.

We say A is torsionfree if whenever an D bn for a; b 2 A and some n � 1, we have
a D b. The monoid ¹0;˙1º is cancellative but not torsionfree. IfA is cancellative andAC n ¹0º

is a torsionfree abelian group, then A is torsionfree.
An element is nilpotent if an D 0 for some n, and the nilradical of A is the set nil.A/ of

nilpotent elements. It is easy to prove (using Zorn’s lemma as in ring theory) that nil.A/ is the
intersection of the minimal prime ideals of A. We say that A is reduced if nil.A/ D 0, and set
Ared D A= nil.A/.

Any closed subset Z of X D MSpec.A/ defines a largest ideal I such that Z D V.I /,
and A=I is a reduced monoid. Indeed, if Z D V.I0/, then A=I D .A=I0/red; I is the intersec-
tion of the prime ideals containing I0. Anticipating Lemma 2.9, we write NZeq for MSpec.A=I /
and call it the equivariant closure of Z in X . For example, NX eq is MSpec.Ared/. Another
important special case is when Z D ¹p1; : : : ;plº is a set of prime ideals of A; in this case
NZeq D MSpec.A= \ pi /.

Definition 1.6. The normalization of a cancellative monoid A is defined to be the sub-
monoid

Anor D ¹˛ 2 A
C W ˛n 2 A for some n � 1º

of AC. We say that A is normal if it is cancellative and A D Anor. The normalization of S�1A

is S�1Anor. If A is torsionfree, then so is Anor.
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Remark 1.6.1. If A is cancellative, then MSpec.Anor/! MSpec.A/ is a topological
homeomorphism. Indeed, if p is a prime ideal of A, then pnor WD ¹b 2 Anor W .9n/b

n 2 pº is a
prime ideal of Anor and p D pnor \ A. It is easily seen that every prime ideal of Anor has the
form pnor for some p.

Remark 1.6.2. If A is normal and p is a prime ideal, then A=p is also normal. Indeed,
if x; y 2 A and s 2 A n p are such that xn and sny are mapped to the same element of A=p,
then either xn D sny in A or x; y 2 p. Since A is assumed normal, it follows that either x 2 p

or there is a z 2 A such that x D sz in A.

More generally, let f W A! B be a morphism of monoids. We say that f is integral

if for every b 2 B there is an integer n � 1 such that bn lies in the image of A, and we say
that f is finite if there exist b1; : : : ; bn 2 B (n � 1) such that B D

S
i Abi . The normalization

A! Anor is integral but not always finite.

Lemma 1.7. Let A
f
�! B be a monoid morphism with B finitely generated over A.

(i) If f is integral, then f is finite.

(ii) If f is finite and B is cancellative, then f is integral.

Proof. Choose a surjection AŒt1; : : : ; tn� � B , with the ti mapping onto generators bi

of B over A. If f is integral, then there is anm such that bm
i is in the image of A for all i ; thus

every element of B can be written as a product f .a/cj , where a 2 A and cj is a monomial on
the bi with exponents � m. This proves (i).

Next assume that f is finite and that B is cancellative. Let b1; : : : ; bn 2 B be such that
B D

S
i Abi . For each i , we choose an index �.i/ and ai 2 A such that b2

i D aib�.i/; then
� is a map from the finite set ¹1; : : : ; nº to itself. For each fixed i , the iterates �r.i/ cannot
all be distinct, so there exist s � 1 and r � 1 such that j D �r.i/ satisfies �s.j / D j . Hence
there is an a 2 A and m � 1 such that bm

j D abj . Because B is cancellative, this implies that
bm�1

j D f .a/. Thus bj and hence bi is integral over A, as required.

Remark 1.7.1. The hypothesis that B be cancellative in part (ii) of Lemma 1.7 is nec-
essary. For example, the monoid B generated by x; y subject to y2 D xy contains the free
monoid A generated by x; the extension A � B is finite but not integral.

For a pointed set X and commutative ring k, kŒX� denotes the free k-module on X ,
modulo the summand indexed by the base point of X . If A is a pointed monoid, kŒA� is a ring
in the usual way, with multiplication given by the product rule for A. If B is an unpointed
monoid, kŒB�� coincides with the usual monoid ring for B with k coefficients. If I is an ideal
of the monoid A, then kŒI � is an ideal of the ring kŒA�, and kŒA=I � D kŒA�=kŒI �. If I is prime,
kŒI � need not be a prime ideal.

The category of pointed monoids has all small colimits. For example, the coproduct of
A1 and A2 is the smash product A1 ^ A2; the maps from A1 and A2 to A1 ^ A2 send a1 to
a1 ^ 1 and a2 to 1 ^ a2. The functor A 7! kŒA� preserves colimits since it has a right adjoint,
sending an algebra R to .R;�/, the underlying multiplicative monoid of R; in particular, the
natural map

kŒA1�˝k kŒA2�! kŒA1 ^ A2�
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is an isomorphism. More generally, the pushout A1 ^C A2 of a diagram

(1.8) C
f

//

g

��

A2

��

A1
// A1 ^C A2

is the quotient of A1 ^ A2 by the congruence generated by .a1f .c/; a2/ � .a1; g.c/a2/. Note
that kŒA1 ^C A2� Š kŒA1�˝kŒC � kŒA2�.

Lemma 1.9. Every prime ideal p of A1 ^ A2 has the form p1 ^ A2 [ A1 ^ p2 for

unique prime ideals p1 and p2. Explicitly, pi is the inverse image of p under the canonical

inclusion Ai ! A1 ^ A2.

Proof. Given a prime ideal p of A1 ^ A2, set

p1 D p \ A1; p2 D p \ A2 and q D p1 ^ A2 [ A1 ^ p2:

Then q is prime because its complement is .A1np1/ � .A2np2/, which is multiplicatively
closed. Clearly q � p; to see that q D p, consider an element a1 ^ a2 of p. As p is prime,
either a1 ^ 1 or 1 ^ a2 is in p. In the first case, a1 2 p1 so a1 ^ a2 is in p1 ^ A2 � q; in the
second case, a2 2 p2 so a1 ^ a2 is in A1 ^ p2 � q.

Example 1.10. If T is the free monoid on one element t , then A ^ T is the analogue
of a polynomial ring over A, and kŒA ^ T � D kŒA�Œt �. For any prime ideal p of A there are
exactly two primes of A ^ T over p: the extended prime p ^ T and the prime generated by p

and t (i.e., p ^ T [ A ^ ¹tn W n � 1º/. The map MSpec.A ^ T /! MSpec.A/ induced by the
canonical inclusionA! A ^ T is both open and closed, because the image ofD.atn/ isD.a/
and the image of V.I / is V.I \ A/.

Proposition 1.11. Given a pushout diagram (1.8), every prime ideal of A1 ^C A2 has

the form p1 ^ A2 [ A1 ^ p2 for unique prime ideals p1 in A1, p2 in A2.

Moreover, the ideal p1 ^ A2 [ A1 ^ p2 of A1 ^C A2 is prime if and only if p1 and p2

have a common inverse image in C .

Proof. If p is a prime in A1 ^C A2, its inverse image in A1 ^ A2 is prime; by Lem-
ma 1.9 it has the form p1 ^ A2 [ A1 ^ p2, where pi � Ai are the inverse images of p. Since
A1 ^C A2 is a quotient, this proves the first assertion; because (1.8) commutes, p1 and p2 have
a common inverse image in C .

Conversely, suppose that p1 and p2 have a common inverse image q in C , and set

S1 D A1np1; S2 D A2np2 and I D p1 ^ A2 [ A1 ^ p2 � A1 ^C A2:

To see that the ideal I is prime, it suffices to show that the image of S1 � S2 in A1 ^C A2

is disjoint from I . Since p1 and p2 are prime, a1f .c/ 2 S1 if and only if a1 2 S1 and c 62 q,
while g.c/a2 2 S2 if and only if a2 2 S2 and c 62 q. It follows that .a1f .c/; a2/ is in S1 � S2

if and only if .a1; g.c/a2/ is. Thus S1 � S2 is closed under the equivalence relation defining
A1 ^C A2, and its image in A1 ^C A2 is disjoint from I .
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2. Monoid schemes

We will need to consider monoid schemes, sometimes known as “schemes over the field
with one element”. These are the objects which result by gluing together spectra of pointed
monoids along open subsets, and will be related to classical schemes in Section 5. The theory of
monoid schemes was developed by Kato [25], Deitmar [8], Connes–Consani–Marcolli [4–6],
etc. The survey [26] by López Peña and Lorscheid gives a nice overview of this notion and
related ideas (but see Remark 4.4.1 below).

A monoid space is a pair .X;AX / consisting of a topological space X and a sheaf AX

of pointed abelian monoids on X . A morphism of monoid spaces from .X;AX / to .Y;AY / is
given by a continuous map f W X ! Y together with a morphism of sheaves

f# W f
�1AY ! AX

on X (or, equivalently, a morphism f # W AY ! f�AX of sheaves on Y ) that is local in the
sense that the maps on stalks AY;f .x/ ! AX;x are local morphisms of monoids, for all x 2 X .
By abuse of notation, we will often simply write X for the monoid space .X;AX /.

The association A 7! MSpec.A/ extends to a fully faithful contravariant functor from
monoids to monoid spaces, which we will call MSpec by abuse of notation. An affine monoid

scheme is a monoid space isomorphic to MSpec.A/ for some monoid A. A monoid scheme is a
monoid space .X;A/ such that every point has an open neighborhood U such that .U;AjU / is
isomorphic to an affine monoid scheme. If .U;AjU / Š MSpecA, we shall often abuse notation
and writeU D MSpecA. A morphism of monoid schemes is just a morphism of the underlying
monoid spaces. The dimension of a monoid scheme is the largest dimension of its affine open
neighborhoods.

Lemma 2.1. Let .X;A/ be a monoid scheme. For any open U � X , the monoid space

.U;AjU / is a monoid scheme.

The scheme .U;AjU / is called the open subscheme of X associated to U .

Proof. If x 2 U and V D MSpec.A/ is an affine open neighborhood of x in X , U \ V
is also open. Since U \ V is the union of basic open subschemes D.s/ of V, x has a neighbor-
hood of the form D.s/, and D.s/ D MSpec.AŒ1=s�/ is affine.

We say that a monoid scheme is cancellative (resp., reduced, normal, . . . ) if its stalks are
cancellative monoids (resp., reduced, normal, . . . monoids), or equivalently, if its monoids of
sections are cancellative (resp., . . . ).

Example 2.2. The projective line P1 is obtained by gluing MSpec.¹tn; n � 0º�/ and
MSpec.¹tn; n � 0º�/ along MSpec.¹tn; n 2 Zº�/. This monoid scheme is connected, torsion-
free and normal.

Partial order, maximal and minimal points. Recall that the points of any topological
space may be partially ordered by the relation that x � y if and only if y is in the closure of ¹xº.
In this way we can speak of maximal and minimal points. The maximal points are the closed
points; minimal points are also called generic points. For the topological space MSpec.A/ of
a monoid A, we have p � q if and only if p � q. Minimal points exist in any monoid scheme
because, as noted before Lemma 1.1, every prime ideal contains a minimal prime ideal.
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Lemma 2.3. Each cancellative monoid scheme X decomposes as the disjoint union of

(closed and open) monoid subschemes X�, each the closure of a unique minimal point � of X .

In particular, if X is connected, then it has a unique minimal point.

Proof. For each minimal point � 2 X , letX� denote the closure of � inX . Given x 2 X ,
choose an affine neighborhood Ux D MSpec.A/ of x. If y is the point of X corresponding
to mA, then A D Ay . Since A is cancellative, Ux has a unique minimal point �, so Ux � X�.
It follows that X� D

S
Ux is open (and closed) in X , and that X is the disjoint union of the

subschemes X�.

Lemma 2.4. Let X be a monoid scheme and U � X an open subscheme. Then the

following are equivalent.

(i) U is an affine monoid scheme.

(ii) U has a unique maximal point.

If X D MSpec.A/, every affine open subscheme is MSpec.Ap/ for some p.

Proof. Since monoids have unique maximal ideals, (i) implies (ii). Conversely, suppose
that U has a unique maximal point x. Note that U D ¹y W y � xº by definition of the order
relation. If MSpec.A/ is an affine open neighborhood of x, then U � MSpec.A/, so we may
assume that X D MSpec.A/. In this case U D MSpec.Ax/ by Lemma 1.3.

Definition 2.5. Let f W Y ! X be a map of monoid schemes. We say that f is a closed

immersion if it induces a homeomorphism of Y onto its image (equipped with the subspace
topology), and for every affine open subscheme U D MSpec.A/ of X :

(i) the open subscheme V D U �X Y of Y is affine (possibly empty),

(ii) the map AX .U /! AY .V / is surjective.

A closed subscheme of a monoid scheme X is an isomorphism class of closed immersions
into X . Each closed subscheme is represented by a monoid scheme .Z;AZ/ such that f is a
subspace inclusion Z � X .

A closed immersion f W Y ! X is called equivariant if in addition each such map
AX .U /! AY .V / is the quotient by an ideal.

The terminology “equivariant closed immersion” comes from the theory of toric varieties:
the equivariant closed subschemes of a toric variety are precisely those closed subschemes that
are equivariant for the action of the underlying torus. We will see in Section 4 that a toric
variety has an associated toric monoid scheme, and that the equivariant closed subschemes of
the monoid scheme determine equivariant closed subschemes of the toric variety.

Example 2.6. Given a closed subset Z of a monoid scheme X , there is an equivariant
reduced closed subscheme Zred associated to Z, defined by patching; if X D MSpec.A/ and
Z D V.I /, then Zred D MSpec.A=I /red.

Lemma 2.7. Any surjection of monoids A
�
�! B determines a closed immersion

MSpec.B/ � MSpec.A/:

If B D A=I , then it is an equivariant closed subscheme.
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Proof. Set Y D MSpec.B/ and X D MSpec.A/. The map �� W Y ! X of underlying
spaces is injective, since if q1 ¤ q2, then ��1.q1/ ¤ �

�1.q2/. If a 2 A, the image of the
basic open D.�.a// � Y is D.a/ \ ��.Y /. Thus Y is homeomorphic to ��.Y /.

Let U � MSpec.A/ be an affine open subscheme. By Lemma 2.4 there is a prime p of A
such that U D MSpec.Ap/; by Lemma 1.3, U D D.s/ for some s. Hence

U \ Y D D.�.s// D MSpec.BŒ1=s�/;

which is affine or empty. Since AŒ1=s�! BŒ1=s� is onto, Y ! X is a closed immersion.

Remark 2.7.1. A closed subscheme Y � X need not determine a closed subset of the
underlying topological space. For example, the diagonal embedding A1 ! A2 is a closed im-
mersion by Lemma 2.7, but it is not topologically closed, because it takes the generic point
of A1 to the generic point of A2 and the maximal point to the maximal point; the intermediate
points are not in the image.

Definition 2.8. If .X;A/ is a monoid scheme, a sheaf of ideals I is said to be quasi-

coherent if its restriction to any affine open subscheme U of X is the sheaf associated to
the ideal I.U / of the monoid A.U /. Given any closed immersion i W Y ! X , the inverse
image I of 0 under AX ! i�AY is quasi-coherent. Lemma 2.7 shows that conversely any
quasi-coherent sheaf I defines an equivariant closed immersion.

Lemma 2.9. For any monoid schemeX and any subsetZ of the underlying poset, there

is an equivariant closed subscheme NZeq of X that contains Z and is contained in every other

equivariant closed subscheme of X containing Z. We call NZeq the equivariant closure of Z

in X .

If U is an open subscheme of X , then NZeq \ U is Z \ U eq.

Proof. We saw in Section 1 that if Z is any subset of MSpec.A/, there is an equivari-
ant closed subscheme NZeq D MSpec.A=I / which contains Z (and its closure), and which is
minimal with this property. Indeed, if the closure of Z is V.I0/, then A=I D .A=I0/red. Since

S�1.A=I / D .S�1A=S�1I0/red;

this construction patches to give a general construction.

Remark 2.9.1. If every point in Z has height at least i in X , then every point in NZeq

has height at least i in X . This follows from the local description of NZeq.

Finite type. We say that a monoid scheme has finite type if it admits a finite open cover
by affine monoid schemes associated to finitely generated monoids. These monoid schemes are
the analogues of noetherian schemes, just as finitely generated monoids are the analogues of
commutative noetherian rings: if A is a finitely generated monoid, then every ideal is finitely
generated, and A has the ascending chain condition on ideals. (The usual proof of the Hilbert
Basis Theorem works.)

By Lemma 1.5, if .X;A/ is a monoid scheme of finite type, then X is a finite poset, with
the poset topology. The sheaf of monoids A of a monoid schemeX determines a (contravariant)
functor A from the poset X to monoids, called the stalk functor of .X;A/, sending x to Ax .
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It is useful to introduce the notion of a monoid poset as a context for thinking about a stalk
functor A.

A monoid poset is a pair .Y; B/ consisting of a poset Y and a contravariant functor B
from Y to monoids. There is a category of monoid posets; a morphism f W .X;A/! .Y; B/

of monoid posets is a poset map g W X ! Y and a natural transformation B ı f ) A such
that B.f .x//! A.x/ is a local monoid morphism for every x 2 X . With this terminology,
the stalk functor induces a functor F from the category of monoid schemes to the category of
monoid posets, sending .X;A/ to .X;A/.

If .X;A/ is a monoid poset and x 2 X , then we can restrict A to the downward-closed
subset W.x/ D ¹y 2 X W y � xº. There is a morphism of monoid posets

(2.10) �x W .W.x/; AjW.x//! F.MSpecA.x//

whose poset map sends a point y of W.x/ to the inverse image py 2 MSpecA.x/ of the maxi-
mal ideal of A.y/ under A.x/! A.y/; the maps A.x/py

! A.y/ determine the natural trans-
formation A ı �x ) AjW.x/. If the morphism (2.10) is an isomorphism for all x 2 X , we will
say that the monoid poset .X;A/ is scheme-like and (by abuse of notation) we will call A a
stalk functor.

We say that a monoid poset .X;A/ is of finite type if X is a finite poset and each A.x/
is a finitely generated monoid. If X is a monoid scheme of finite type, then F.X/ is a monoid
poset of finite type. The following proposition shows that the stalk functor is always enough to
determine a monoid scheme of finite type.

Proposition 2.11. The functor F.X;A/ D .X;A/ induces an equivalence between the

full subcategory of monoid schemes of finite type and the full subcategory of scheme-like

monoid posets .X;A/ of finite type.

Proof. If .X;A/ is a monoid poset, we may equipX with the poset topology, and define
the sheaf A on X by the formula

A.U / D lim
 �
x2U

A.x/:

Thus G.X;A/ D .X;A/ is a monoid space. It is clear from the formula for A.U / that a mor-
phism .Y; B/! .X;A/ of monoid posets induces a morphismG.Y;B/! G.X;A/ of monoid
spaces. ThusG is a functor. Because eachW.x/ has x as its maximal point, A.W.x// D A.x/.
Thus F.G.X;A/ is isomorphic to .X;A/.

If .X;A/ is scheme-like of finite type, then G.X;A/ is a monoid scheme of finite type.
Conversely, if X is a monoid scheme of finite type and U is an affine open in X , we know by
Lemma 2.4 that there is a unique x 2X such thatU DMSpec.A.x// and henceA.x/DA.U /.
Given an open U in X , any point y in U lies in an affine open V � U , and V D MSpec.A.x//
for some x 2 U with y � x by Lemma 2.4. It follows that GF.X/ Š X .

A monoid scheme .X;A/ of finite type will often be specified by its monoid poset, viz.,
.X;A/. To avoid confusion, we shall use roman letters for stalk functors and script letters for
sheaves.

Remark 2.12. The proof of Proposition 2.11 shows that any scheme-like monoid poset
.X;A/ can be recovered from the monoid space G.X;A/ because FG.X;A/ Š .X;A/. If
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.X;A/ is an arbitrary monoid scheme with stalk functor A, then the topology of X may be
coarser than the poset topology. However the argument of the proof of the proposition shows
that we can recover A from A and the topological space underlying X , using the formula
A.U / D lim

 �x2U
A.x/.

3. Basechange and separated morphisms

It is useful to simplify constructions using base-change. For this, we need pullback
squares in the category of monoid schemes.

There is a canonical morphism � W X ! MSpec.A.X//which is universal for maps from
X to affine monoid schemes. It sends a point x to the preimage �x of the maximal ideal of Ax .
The sheaf homomorphism �# is that induced by the canonical maps

A.X/Œ1=s�! A.��1.D.s///:

The universal property shows that the (contravariant) functor

X 7! AX .X/

from monoid schemes to monoids is left adjoint to the functor MSpec, i.e., that affine monoid
schemes are a reflective subcategory of all monoid schemes. It follows that MSpec converts
pushouts of diagrams of monoids to pullbacks of diagrams in the category of all monoid
schemes. In particular, for any pushout diagram of monoids (1.8), the induced diagram is carte-
sian:

MSpec.A1 ^C A2/

��

// MSpecA2

��

MSpecA1
// MSpecC .

Proposition 3.1. The pullback X �S Y of a diagram of monoid schemes

X �S Y //

��

X

��

Y // S

exists in the category of all monoid schemes. Its underlying topological space is the pullback

X �S Y in the category of topological spaces.

Proof. Existence of the pullback X �S Y is derived from the existence of pullbacks of
affine monoid schemes, just as for usual schemes ([20, Theorem 3.3]).

To prove the assertion about underlying topological spaces, it suffices to consider the
affine case. Using the notation of (1.8), writeP for the pullback of MSpec.A1/ and MSpec.A2/

over MSpec.C / in Top. The canonical map f W MSpec.A1 ^C A2/! P is a continuous bi-
jection by Proposition 1.11. To show that f is a homeomorphism, it suffices to show that it
takes any basic open set D.s/ to an open set of P . Write s D s1 ^ s2; then we have s 62 p

if and only if s1 ^ 1; 1 ^ s2 62 p. We saw in Proposition 1.11 that if p maps to .p1;p2/, then
p D p1 ^ A2 [ A1 ^ p2, and that s1 ^ 1 62 p (resp., 1 ^ s2 62 p) is equivalent to s1 62 p1 (resp.,
s2 62 p2). This shows that f takes D.s/ to the open set .D.s1/ �D.s2// \ P , as required.
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Example 3.1.1. The product X � Y is just the pullback when S is the terminal monoid
scheme MSpec.S0/.

Remark 3.1.2. LetX and Y be monoid schemes of finite type, over a common S . Then
the pullback X �S Y has finite type. Indeed, it has a finite cover by affine opens of the form
MSpec.A1 ^C A2/, and in each case A1 ^C A2 is finitely generated because A1 and A2 are.

Example 3.2. Proposition 3.1 shows that given two closed subschemes Z1; Z2 of X ,
the pullback Z1 �X Z2 is a subscheme whose underlying topological space is the intersection
of the two subspaces of X . More generally, given any family of closed immersions Zi ,! X ,
we can form the inverse limit limZi ,! X by patching the inverse limits on each affine open
MSpec.A/, because the colimit of a family of surjections A � Bi exists and is a surjection.

Separated morphisms. An important hypothesis in many theorems about monoid
schemes, often overlooked in the literature, is that they be separated.

Definition 3.3. A morphism f W X ! S of monoid schemes is separated if the diago-
nal map� W X ! X �S X is a closed immersion. We say that X is separated if it is separated
over MSpec.S0/ where we recall S0 D ¹0; 1º.

Being separated is local on the base: if S has an open cover ¹U º, then f is separated if
and only if each f �1.U /! U is separated.

Lemma 3.4. If A! B is a morphism of monoids, then MSpec.B/! MSpec.A/ is a

separated morphism of monoid schemes.

In particular, closed immersions are separated.

Proof. By Proposition 3.1, the diagonal map � corresponds to the multiplication map
B ^A B ! B , which is surjective. By Lemma 2.7, � is a closed immersion.

Remark 3.4.1. Example 1.10 shows that X �A1 ! X is separated and universally
closed for every monoid schemeX . This shows that “separated and universally closed” does not
provide a good notion of proper morphism of monoid schemes; we will discuss an appropriate
definition in Section 8.

Example 3.5. Here is an example of a monoid scheme which is non-separated. Let A
and B each be the free abelian monoid with two generators, F2 (see Example 1.2). Let U be
the open subset of each of MSpec.A/ and MSpec.B/ given by removing the unique closed
point (associated to the maximal ideal in each monoid); explicitly

U D ¹ht1i; ht2i; ¹0ºº:

Then we may glue MSpec.A/ and MSpec.B/ along U to form a monoid scheme X of finite
type. As a poset, X has five elements, two of which are maximal – the two copies of ht1; t2i –
and the rest are in U .

The k-realization of X (defined in Definition 5.3 below) is the non-separated scheme
given by the affine plane with the origin doubled.
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Lemma 3.6. A map f W .X;A/! .S;B/ of monoid schemes is separated if and only if

for every x1; x2 in X such that f .x1/ D f .x2/ and such that MSpec.Ax1
/ and MSpec.Ax2

/

are open, either there is no lower bound for ¹x1; x2º in the poset X or else there is a unique

maximal lower bound x0 D x1 \ x2, and Ax1
^Bf .x1/

Ax2
! Ax0

is onto.

Proof. By Proposition 3.1 and Lemma 2.4, an affine open subset of X �S X has the
form U D .U1 � U2/ \ .X �S X/, where the maximal point .x1; x2/ of U determines the
affine open subsets Ui D MSpec.Axi

/ of X . Since ��1.U / D U1 \ U2, Proposition 3.1 im-
plies thatX ! �.X/ is a homeomorphism and that the poset underlying U1 \ U2 is the subset
¹z 2 X W z � x1; z � x2º of lower bounds for ¹x1; x2º. If U1 \ U2 D ;, ¹x1; x2º has no lower
bound.

By Lemma 2.4, U1 \ U2 is nonempty affine if and only if it has a unique maximal ele-
ment. Thus � is a closed immersion if and only if, in the above situation, whenever U1 \ U2

is nonempty it is affine (and hence has a unique maximal lower bound x0), and

Ax1
^C Ax2

! Ax0

is onto, where s D f .x1/ D f .x2/ and C D Bs .

Corollary 3.7. If X is a monoid scheme of finite type with stalk functor A, then X

is separated if and only if whenever two points x1; x2 of X have a lower bound they have

a greatest lower bound x1 \ x2, and A.x1/ ^ A.x2/! A.x1 \ x2/ is onto.

Proof. Combine Lemma 3.6 and Proposition 2.11.

Corollary 3.8. The intersection of two affine open subschemes of a separated monoid

scheme is affine.

Proof. SupposeX is a separated monoid scheme, with U1; U2 affine and open inX . Let
x1; x2 be the unique closed points of U1; U2. If x1 and x2 do not have a common lower bound
in X , then U1 \ U2 D ;. Otherwise, by Lemma 3.6, they have a greatest lower bound, which
is the unique maximal point of U0 D U1 \ U2. By Lemma 2.4, U0 is affine.

4. Toric monoid schemes

As observed by Kato [25] and Deitmar [8], the fan associated to a toric variety produces
a monoid scheme. In this section we clarify this correspondence, using the following definition.

Definition 4.1. A toric monoid scheme is a separated, connected, torsionfree, normal
monoid scheme of finite type.

Recall that a fan consists of a free abelian group N of finite rank (written additively)
together with a finite collection � of strongly convex rational polyhedral cones � in NR (here-
after referred to as just cones), satisfying the following conditions:

(1) every face of a member of � is also a member of �,

(2) the intersection of any two members of � is a face of each.

Here a strongly convex rational polyhedral cone is a cone with apex at the origin, generated by
finitely many elements of N , that contains no lines through the origin.
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Note that� is a finite poset under containment; we now construct a monoid poset .�;A/
and use Proposition 2.11 to define the associated monoid scheme.

Construction 4.2. Given a fan .N;�/, setM D HomZ.N;Z/ andMR DM ˝R. We
define a contravariant functor A from � to monoids (written additively) by

A.�/ D .�_ \M/�; �_ D ¹m 2MR W m.�/ � 0º:

Each such monoid is torsionfree, normal and finitely generated (Gordon’s lemma). If � is a face
of � , then there is an m 2 A.�/ such that A.�/ D A.�/Œ�m�. Hence by Lemma 1.1 there is a
prime ideal P� .�/ of A.�/ such that A.�/ D A.�/P.�/. By Proposition 2.11 and Corollary 3.7,
A is the stalk functor of a toric monoid scheme X.N;�/, which by abuse of notation we write
as

X.�/ D .�;A/:

Thus any fan � determines a toric monoid scheme in the sense of Definition 4.1.
A morphism of fans, from .N;�/ to .N 0; �0/, is given by a group homomorphism

� W N ! N 0 such that the image of each cone in � under the induced map NR ! N 0
R

is
contained in a cone in �0. Such a map of fans induces a poset map �! �0, sending � to the
smallest cone � 0 in �0 that contains �.�/, and precomposition with � yields a natural trans-
formation ..� 0/_ \M 0/� ! .�_ \M/� of stalk functors. According to Proposition 2.11, this
data determines a morphism of monoid schemes:

X.�/ W X.�/! X.�0/:

If �1 ¤ �2, then X.�1/ ¤ X.�2/, as ��
1 ¤ �

�
2 on some A.�/. Thus we have a faithful functor

X from fans to toric monoid schemes.

Example 4.3. For the cone � in the plane spanned by .0; 1/ and .1;�2/,A.�/D �_\M

is the submonoid of Z2 spanned by ¹.1; 0/; .1; 1/; .1; 2/º. If � is the fan spanned by � and its
faces, then .�;A/ D MSpecA.�/.

If .X;A/ is a toric monoid scheme and x 2 X , we will writeMx for the group completion
of the unpointed monoid A.x/ n ¹0º. EachMx is a torsionfree abelian group of finite rank. The
groups Mx are all isomorphic, because X has a unique minimal point � by Lemma 2.3, and
Mx !M� D A.�/ n ¹0º is an isomorphism for all x.

Theorem 4.4. The faithful functor � 7! X.�/ from fans to toric monoid schemes de-

fined by Construction 4.2 has the following properties:

(1) Every toric monoid scheme .X;A/ is isomorphic to X.N;�/, where:

(a) The lattice N is the Z-linear dual of M DM�, where � is the unique minimal point

of X .

(b) The poset � of cones in NR is isomorphic to the poset underlying X . For each

x 2 X , the cone �x in NR is the dual cone of the convex hull of A.x/ n ¹0º in MR.

(2) For fans .N;�/ and .N 0; �0/, a morphism f W X.�/! X.�0/ of monoid schemes is

given by a (necessarily unique) morphism of fans if and only if f maps the generic (i.e.,

minimal) point � of X.�/ to the generic point �0 of X.�0/. In this case, the map of fans

.N;�/! .N 0; �0/ is given by the Z-linear dual of the group homomorphism

f #
� WM

0 D .A0.�0/ n ¹0º/! .A.�/ n ¹0º/ DM:
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Proof. Throughout this proof, for a cancellative monoid A, we write Ao for the un-
pointed monoid A n ¹0º, written additively, and we identify each Ao.x/ with a submonoid
of M . Let .X;A/ be a toric monoid scheme. We first show that .N;�/ as defined in the state-
ment is a fan. For x 2 X , let �_

x �MR denote the convex hull of Ao.x/ in MR. Note that this
defines a cone �x D .�

_
x /

_ in N via the identification N D N ��. The cone �_
x is a rational

polyhedral cone because it is spanned by a finite set ¹aiº of generators of Ao.x/; the cone �x

is thus also a rational polyhedral cone, and it is strongly convex since Ao.x/C DM .
To see that A.x/ D .�_

x \M/�, let

b D
X

i

qiai

be an element of �_
x \M , written as a positive Q-linear combination of the ai . Clearing de-

nominators, nb is a positive Z-linear combination of the ai for some positive integer n and
hence is in Ao.x/. Because A.x/ is normal, b is in Ao.x/, as required.

If � is a face of �x , it is defined by the vanishing of somem 2 �_
x . Clearing denominators

and using again that A.x/ is normal, we may assume m 2 Ao.x/. By definition, � is the set
of linear functionals on MR that are non-negative on Ao.x/Œ�m�. By Lemma 1.1, A.x/Œ�m�
coincides with A.y/ for some y � x, and thus the face � is the element �y of �.

If x; y 2 X , we claim that the intersection �x \ �y is a cone in of �. Since X is sep-
arated, x and y have a unique greatest common lower bound, written x \ y, and the map
A.x/o � A.y/o ! Ao.x \ y/ is surjective, by the additive version of Corollary 3.7; moreover
because X is cancellative, it is an isomorphism. A linear functional on MR is non-negative on
Ao.x/ � Ao.y/ if and only if it is non-negative on Ao.x/ and Ao.y/, and thus we have the
required identity:

�x \ �y D �x\y :

Moreover, �x\y is a face of both �x and �y , because by Lemmas 1.3 and 1.5 there are m1; m2

such that
Ao.�x\y/ D A

o.�x/Œ�m1� D A
o.�y/Œ�m2�:

This proves that � is a fan.
By Construction 4.2, the fan .N;�/ determines a monoid scheme .�;B/. The bijection

� W X ! � (x 7! �x) is order preserving, because if x < y in X , then Ao.y/ � Ao.x/ �M .
By construction, we have a natural isomorphism A.x/ D .�_

x \M/� D B.�x/. This proves
that � determines an isomorphism of monoid schemes, completing the proof of property (1).

Construction 4.2 shows that the condition in property (2) is necessary, since a mor-
phism of fans sends the zero cone to the zero cone. Conversely, if f .�/ D �0, then f #

� induces
a monoid mapA0.�0/ DM 0

� !M� D A.�/; since any such map sends units to units, it induces
a group homomorphism M 0 !M . Let � W N ! N 0 be the Z-linear dual of this map. Since
for each x 2 X , the map f #

x is the restriction of f #
� , it follows that f D X.�/, as desired.

Remark 4.4.1. There are differing assertions in the literature related to Theorem 4.4.
Using a different definition of ‘toric variety’ it is claimed in [8, Theorem 4.1] that any connected
cancellative monoid scheme of finite type yields a toric variety, but not every such “toric vari-
ety” is associated to a fan. For example, MSpec of the cusp monoid C D ¹t2; t3; : : : º� yields
the cusp. In [26, Section 2.1], the flawed [8, Theorem 4.1] is used to claim that the functor of
Theorem 4.4 is an equivalence, under the weaker hypothesis that A has no torsion; the cusp
monoid is also a counterexample to the assertion in loc. cit.
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We conclude this section with a description of separated normal monoid schemes. If X
is connected and cancellative, with minimal prime �, then M� is a finitely generated abel-
ian group. Therefore there is a non-canonical isomorphism M� ŠM � T , where M is a free
abelian group and T is a finite torsion group.

Proposition 4.5. Any separated, connected, normal monoid scheme of finite type de-

composes as a cartesian product of monoid schemes

X Š .X;A/ �MSpec.T�/;

where .X;A/ is a toric monoid scheme and T is a finite abelian group.

Proof. If MSpec.A/ is an affine open of X , then A is a submonoid of A� D .M � T /�;
since A is normal, T� is a submonoid of A. Every element of A�n¹0º can be written uniquely
as a product mt with m 2M and t 2 T ; since t 2 A, if mt 2 A, then m 2 A \M . Thus if we
set B D A \M�, there is a decomposition A Š B ^ T�. In other words,

MSpec.A/ Š MSpec.B/ �MSpec.T�/:

Since every localization of A has the form Ap D B
0 ^ T�, the affine open subsets of

MSpec.A/ are all of the form MSpec.B 0/ �MSpec.T�/. Gluing these together gives the de-
composition of X .

Note that the factorization in Proposition 4.5 is not unique; it depends upon the choice of
isomorphism A� Š .M � T /�.

Corollary 4.6. If f W X ! X 0 is a morphism between separated and connected normal

monoid schemes of finite type, inducing an isomorphism f � W A0
�0 ! A� of group completions,

then f is isomorphic to the product of a morphism X.�/! X.�0/ of toric monoid schemes

and an isomorphism MSpec.T�/! MSpec.T 0
�/.

Proof. By assumption, f maps the generic point � of X to the generic point �0 of X 0.
Choosing a decomposition A� Š .M � T /�, we have an implicitly defined decomposition

A0
�0 Š .M � T /�:

Then for each x 2 X the decompositions Ax Š Bx ^ T�, A0
f .x/
Š B 0

f .x/
^ T� of Proposi-

tion 4.5 satisfy

f �.B 0
f .x// � Bx �M�:

Therefore the map A0
f .x/
! Ax factors as a product of f �.B 0

f .x/
/ � Bx and T� Š T�, for

each x. The result follows.

Remark 4.6.1. Not every morphism .X;A/ � MSpec.T�/ ! .X 0; A0/ � MSpec.T 0
�/

between connected normal monoid schemes of finite type will factor as a cartesian product
of maps .X;A/! .X 0; A0/ and MSpec.T�/! MSpec.T 0

�/. For example, this fails for the
canonical MSpec..Z=n/�/! MSpec.Z�/. However, such a map determines both a toric map
.X;A/! .X 0; A0/ and a map MSpec.T�/! MSpec.T 0

�/.
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5. Realizations of monoid schemes

In this section we fix a commutative ring k. If A is a monoid, the ring kŒA� gives rise
to a scheme Spec.kŒA�/, which is called the k-realization of MSpec.A/. The affine spaces
An

k
D Spec.kŒt1; : : : ; tn�/ of Example 1.2 are useful examples. The k-realization is a faithful

functor from monoids to affine k-schemes; a monoid morphism A! B naturally gives rise to
a morphism Spec.kŒB�/! Spec.kŒA�/.

If X is an affine monoid scheme, we write Xk for its realization:

MSpec.A/k D Spec.kŒA�/:

We saw in (1.8) that the k-realization functor commutes with pullback for affine monoid
schemes, because it has a left adjoint (defined on the category of affine k-schemes) sending
Spec.R/ to MSpec.R;�/, where .R;�/ is the multiplicative monoid whose underlying pointed
set is R. Thus if X D MSpec.A/ is an affine monoid, the adjunction

Hom.Spec.R/;Xk/ Š HomMSch.MSpec.R;�/; X/

means that Xk represents the functor sending Spec R to HomMSch.MSpec.R;�/; X/.

Definition 5.1. Let X be a monoid scheme and k be a ring. Define a contravariant
functor FX from the category of affine k-schemes to sets to be the Zariski sheafification of the
presheaf

SpecR 7! HomMSch.MSpec.R;�/; X/:

If X is affine, the presheaf is already a sheaf since it is represented by Xk .

Recall from [9, Theorem VI-14] that a contravariant functor F from affine k-schemes to
sets is represented by a unique k-scheme X if and only if F is a Zariski sheaf and F admits a
covering by open subfunctors F˛, each of which is represented by an affine scheme U˛. If so,
the representing scheme X is obtained by gluing the U˛ together. Here, a subfunctor F˛ � F

is open if for every k-algebra R and every morphism Hom.�;SpecR/! F , i.e., for every
element of F.SpecR/, the pullback functor F˛ �F Hom.�;SpecR/ is represented by an open
subscheme of SpecR. A collection of subfunctors ¹F˛º of F covers F if for every k-algebra L
which is a field, we have F.SpecL/ D

S
˛ F˛.SpecL/.

Theorem 5.2. The functor FX is represented by a scheme Xk .

Proof. Suppose that U D MSpec.A/ is any affine monoid subscheme of X . As sheafi-
fication preserves monomorphisms such as Hom.�; U / � Hom.�; X/, FU is a subfunctor
of FX . If ƒ is a local k-algebra and L D Spec.ƒ/, then

(5.2a) FX .L/ D HomMSch.MSpec.ƒ;�/; X/:

Since MSpec.ƒ;�/ has a unique point, each map MSpec.ƒ;�/! X factors through an affine
open submonoid U . Therefore FX is covered by the collection of subfunctors FU , as U ranges
over all affine open monoid subschemes of X . We will show that the FU are open subfunc-
tors of FX ; we have seen that each FU is represented by the affine scheme Uk . By [9, The-
orem VI-14], this will prove that FX is representable by the k-scheme which is obtained by
gluing the affine schemes Uk .
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Fix an affine open monoid subscheme U D MSpec.A/. To prove that FU is open, fix a
k-algebra R and consider a morphism Hom.�;SpecR/! FX and its corresponding element
� 2 FX .SpecR/. We have to show that the pullback G D FU �FX

Hom.�;SpecR/ is repre-
sented by an open subscheme V of Spec.R/. Since FX is a sheaf, Spec.R/ has an affine open
covering ¹SpecRŒ1=s� j s 2 Sº such that the restriction of � to FX .SpecRŒ1=s�/ is represented
by a morphism �s W MSpec.RŒ1=s�;�/! X of monoid schemes. By Observation 5.2.1 below,
there are continuous maps

Spec.RŒ1=s�/ ,�! MSpec.RŒ1=s�;�/
�s
��! X:

Let V 0
s denote the inverse image of U under �s and let Vs denote the open subspace

V 0
s\Spec.RŒ1=s�/; we regard Vs as an open subscheme of Spec.RŒ1=s�/ and hence of Spec.R/.

We claim that G is represented by the open subscheme V D [Vs of SpecR. To prove our
claim, it suffices to consider a local k-scheme L D Spec.ƒ/ and prove that

G.L/ D Hom.L; V /

as subsets of Hom.L;SpecR/. SinceL is local, we haveFU .L/ D Hom.A; .ƒ;�//, and (5.2a)
holds for X . Thus G.L/ is the set of all f W L! SpecR such that

MSpec.ƒ;�/
f �

��! MSpec.R;�/
�
��! X

maps the closed point m ofL intoU . If the image of f lies in V , m lands in some Vs and hence
f � maps the closed point .m;�/ of MSpec.ƒ;�/ into V 0

s . It follows that �f �.m;�/ 2 U , i.e.,
f 2 G.L/. Thus Hom.L; V / � G.L/.

Conversely, if f W L! Spec.R/ is in G.L/, then f factors through some

fs W L! Spec.RŒ1=s�/

and �sf
�

s maps the closed point .m;�/ of MSpec.ƒ;�/ to a point in the subset U of X , so
fs.m/ 2 Vs . But since L is local, this implies that fs.L/ � Vs . The desired equality

G.L/ D Hom.L; V /

follows.

Observation 5.2.1. Let R be any commutative ring, and .R;�/ be its underlying mul-
tiplicative monoid. If p is a prime ideal of the ringR, then .p;�/ is a prime ideal of the monoid
.R;�/. The resulting inclusion Spec.R/ ,! MSpec.R;�/ is continuous because if s 2 R, the
open subspaceD.s/ of MSpec.R/ intersects Spec.R/ in the open subspace ¹p � R W s 62 pº. If
R is local, the maximal ideal m of R maps to the maximal prime .m;�/ of MSpec.R;�/.

Definition 5.3. Given a commutative ring k and a scheme .X;A/, we define its k-real-

ization Xk to be the scheme representing FX .

Remark 5.3.1. Observe that Xk D XZ �Spec Z Spec k for any monoid scheme X and
commutative ring k. Those preferring the notion of a field with one element (F1) might prefer
writing Xk as X �Spec F1

Spec k or just X �F1
k.
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Corollary 5.4. The k-realization functor X 7! Xk preserves arbitrary limits (when

they exist). In particular, it preserves pullbacks.

Proof. Suppose that ¹Xi W i 2 I º is a diagram of monoid schemes and that its limit X
exists in the category of monoid schemes. It suffices to prove the canonical map

FX ! F D lim
 �

FXi

is an isomorphism of sheaves on the category of affine k-schemes. Recall that the limit of
a diagram of sheaves exists and coincides with the limit as presheaves. That is, we have

F.SpecR/ D lim
 �

FXi
.SpecR/:

When R is local, we have FX .SpecR/ D Hom.MSpec.R;�/; X/ and also

F.SpecR/ D lim
 �

Hom.MSpec.R;�/; Xi / Š Hom.MSpec.R;�/; X/;

where the second isomorphism holds since X D lim
 �i

Xi . Since the sheaf map FX ! F is an
isomorphism on all local rings, it is an isomorphism of sheaves.

In Proposition 5.7 below we shall give an explicit construction of Xk for separated X .
We need some preliminaries.

Lemma 5.5. If S is multiplicatively closed in A, S�1kŒA� Š kŒS�1A�.

Proof. The monoid map A! S�1A is initial among monoid maps A! B that
take S to units. Similarly, the map kŒA�! S�1kŒA� is initial among k-algebra homomor-
phisms kŒA�! C that take S to units. Being a left adjoint, the functor kŒ�� preserves initial
objects.

Remark 5.6. Let A be a monoid. Any affine open monoid subscheme of MSpec.A/
has the form MSpec.Ap/ for some prime ideal p of A, by Lemma 2.4, and Ap D AŒ1=s� by
Lemma 1.3. Hence Spec.kŒAp�/! Spec.kŒA�/ is an open immersion, by Lemma 5.5.

For the next proposition, let us say that a point x in a monoid scheme X is nice if the
canonical map U D MSpec.Ax/! X is an open immersion. Every closed point is nice by
Lemma 2.4, but the points of Example 1.4 are not nice. If X is of finite type, then every point
is nice by Lemma 1.5. The nice points x 2 X are a cofinal subset of the poset underlying X by
Lemmas 1.3 and 2.4, because the closed points in any open subscheme are nice. If x < y are
two nice points, then Spec.kŒAx�/! Spec.kŒAy �/ is an open immersion by Lemma 5.5. The
criterion for separatedness in Lemma 3.6 uses nice points.

Proposition 5.7. Let k be a commutative ring and .X;A/ a separated monoid scheme.

Then the k-realization of X is

Xk D lim
�!
x2X

Spec.kŒAx�/:

Proof. Put Ux D MSpec.Ax/. Because nice points are cofinal in the poset underly-
ing X , the limit can be taken over the nice points. If x is nice, then Ux � X is an open
immersion; set Vx D .Ux/k . If y is also nice, then Ux \ Uy is an affine open, because the
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intersection of two affine open subschemes of a separated monoid scheme is affine open by
Corollary 3.8. By Corollary 5.4 we have .Ux \ Uy/k D Vx �Xk

Vy . Let Vx;y be the image of
the projection �x W Vx �Xk

Vy ! Vx . Then Vx;y is open in Vx and we have an isomorphism
 x;y D �y.�x/

�1 W Vx;y ! Vy;x . Hence the family of schemes Vx indexed by the nice points
of X together with the open subschemes Vx;y � Vx and the isomorphisms  x;y satisfy the
hypothesis of [17, Chapitre 0, (4.1.7)] (or [20, Example II.2.12]). Therefore the limit of the
proposition exists, and is the scheme obtained by gluing the realizations of the open affine
subschemes of X . Since this is also the definition of Xk , the proposition follows.

The k-realization functor from monoid schemes to k-schemes is faithful, because it is
so locally: MSpec.A/k D Spec.kŒA�/. (This is clear if X is separated, and follows from The-
orem 5.2 if it is not separated.) It is not full because k-schemes such as A1

k
have many more

endomorphisms than their monoidal counterparts.
The realization functor loses information, because distinct monoid schemes can have

isomorphic realizations. This is a well-known phenomenon even for toric varieties, where the
additional data of a (faithful) torus action is needed to recover the fan.

Example 5.8. For a fan� and any field k, the varietyX.�/k is the usual toric k-variety
associated to �. This is clear from Construction 4.2.

Example 5.9. Let T be a finite abelian group. The k-realization of MSpec.T�/ is the
cogroup scheme Spec.kŒT �/. If jT j is a unit (or nonzerodivisor) in k, then kŒT � is reduced, but
this fails if k is a field of characteristic p > 0 and T has p-torsion.

Lemma 5.10. Let k be an integral domain and let A be a cancellative monoid. Set

X D MSpec.A/ and U D MSpec.AC/.

(1) If AC is torsionfree, then kŒA� is a domain (i.e., Xk is integral).

(2) Suppose that k is a normal domain containing a field; if char.k/ D p > 0, assume also

that AC has no p-torsion. Then kŒAC� is normal and its subalgebra kŒA� is reduced.

That is, Uk is normal and Xk is reduced.

(3) Suppose that char.k/ D p > 0 and AC has p-torsion. Then kŒA� is not reduced, and we

have kŒA�red D kŒB�, where the monoidB is the quotient ofA by the congruence relation

that a1 � a2 if and only if a
pe

1 D a
pe

2 for some e � 0.

Proof. Since A is the union of its finitely generated submonoids Ai and since we have
kŒA� D

S
kŒAi �, we may assume that A is finitely generated. As noted before Proposition 4.5,

we can write AC D .M � T /� whereM is a free abelian group and T is a finite torsion group.
Since A is a submonoid of AC, it follows that kŒA� is a subalgebra of kŒAC�. If T is trivial,
kŒA� is a subring of kŒM�, which is manifestly a domain. If k � Q or if char.k/ D p and
p − jT j, then k ! kŒT � is a finite étale extension and kŒA� is a subring of kŒAC� D kŒT �ŒM �,
which is manifestly normal if k is normal. Hence kŒAC� and its subalgebra kŒA� are reduced
in this case.

Finally, suppose that char.k/ D p and that the p-torsion subgroup Tp of T is non-trivial.
Since kŒTp�red D k and kŒAC=Tp� is reduced by (2), we have

kŒAC�red D kŒA
C=Tp�:
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If B is the image of A! AC=Tp, then kŒA�red is the image kŒB� of kŒA�! kŒAC=Tp�.
Two elements a1; a2 2 A go to the same element of AC=Tp if and only if their quotient is
p-torsion, i.e., if and only if they are congruent under the relation � of the lemma. It follows
that B D A=�; this concludes the proof.

Remark 5.10.1. If .X;A/ is a cancellative monoid scheme of finite type, and k is of
characteristic p > 0, Lemma 5.10 (3) implies that .Xk/red is the k-realization of .X;B/, where
B D A=� is the quotient stalk functor of A defined as in Lemma 5.10 (3).

Proposition 5.11. If .Y;B/
f
�! .X;A/ is a closed immersion of monoid schemes, then

fk W Yk ! Xk is a closed immersion of schemes for all rings k.

Proof. If V � X is an affine open subscheme, then by Lemma 2.4 there exists an
x 2 X such that V D MSpec.Ax/. We shall abuse notation and write V \ Y for V �X Y .
If V \ Y D ;, then Vk \ Yk D .V \ Y /k D ;. Otherwise V \ Y D MSpec.By/ for some y,
and Ax ! By is onto, by Definition 2.5. Since k-realization preserves pullbacks by Corol-
lary 5.4, we have

f �1
k .Vk/ D f

�1.V /k D Spec.kŒBy �/

and the restriction
f �1

k .Vk/! Vk D Spec kŒAx�

of f is induced by the surjection kŒAx�! kŒBy �. This proves that the restriction Yk\Vk ! Vk

of fk is a closed immersion. Since V is an arbitrary affine open subscheme of X , this proves
that Yk ! Xk is a closed immersion.

A partial converse of this proposition is true.

Lemma 5.12. Suppose i W Y ! X is a morphism of monoid schemes such that the un-

derlying map of topological spaces induces a homeomorphism onto its image. For any ring k,

if ik W Yk ! Xk is a closed immersion, then i is a closed immersion of monoid schemes.

Proof. It suffices to prove that if X D MSpec.A/ is affine, then Y is also affine and the
associated map of monoids is surjective. Let B be the sheaf of monoids for the scheme Y and
set B D �.Y;B/. The map Y ! X factors as

Y ! MSpecB ! MSpecA:

Upon taking k-realizations we have Yk D Spec.R/ and the map induced by Yk ! Xk is a
surjection: kŒA� � R. Since this surjection factors through the map kŒA�! kŒB�, which is
induced by a map of monoids A! B , we see that kŒB� � R is surjection as well. Let

Y D
[

j

Wj

be a covering by open affine subschemes, withWj D MSpecBj . Then the map B !
Q

j Bj is
injective and hence so is the map

kŒB�!
Y

j

kŒBj �:
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Since the latter map factors as

kŒB�! R!
Y

J

kŒBj �;

it follows that kŒB�
Š
�! R is an isomorphism. That is, the k-realization of Y ! MSpec.B/

is an isomorphism. Moreover, since kŒA� � kŒB� is onto, so is the map A � B , and hence
MSpec.B/! X is a closed immersion. In particular, the map of underlying topological spaces
is a homeomorphism onto its image. It follows from this (and our assumption) that the map of
topological spaces underlying Y ! MSpec.B/ is a homeomorphism onto its image.

We may thus assume that the k-realization Yk ! Xk D Spec.kŒA�/ is an isomorphism.
We next claim that Y ! X is a surjection on points, and hence (by our assumption that Y is
homeomorphic to its image) a homeomorphism on underlying topological spaces. To see this,
fix a point p 2 X and consider the monoid map ip W A! S0 D ¹0; 1º sending p to 0 and A n p

to 1. Let Y 0 denote the pullback of Y ! X along the map

MSpecS0
ip

�! X:

By Corollary 5.4, the map Y 0
k
! .MSpecS0/k D Spec k is an isomorphism, so in particular

Y 0 is nonempty. By Proposition 3.1, it follows that Y ! X is onto.
Since X has a unique maximal point, so does Y . By Lemma 2.4, Y is affine. Since

Yk Š Spec.kŒA�/;

we conclude that Y Š X .

Proposition 5.13. For any ring k and morphism of monoid schemes f W Y ! X , the

map f is a separated morphism of monoid schemes if and only if its k-realization fk W Yk!Xk

is a separated morphism of schemes.

Proof. One direction is immediate from Corollary 5.4 and Proposition 5.11.
Assume fk is separated. Since the underlying topological space of Y �X Y is given by

the pullback in the category of topological spaces, it follows that

Y
�
�! Y �X Y

is a homeomorphism onto its image. (Observe that Y ! �.Y / and �.Y /
�1
�! Y are contin-

uous, and both compositions are the identity, where �.Y / � Y �X Y is given the subspace
topology.) Since �k is a closed immersion, Lemma 5.12 applies to finish the proof.

6. Normal and smooth monoid schemes

Throughout this section, k denotes an integrally closed domain containing a field. The
normalization Anor of a cancellative monoid A is defined in Definition 1.6; since we have
.Ap/nor D .Anor/pnor , it makes sense to talk about the normalization of any cancellative monoid
scheme.

The k-realization of X cannot be normal unless Xk is reduced. Lemma 5.10 shows that
kŒA� is reduced unless p > 0 and AC has p-torsion, in which case kŒA�red is kŒB�, where B is
a particular quotient of A, described there.
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Proposition 6.1. Let X D .X;A/ be a cancellative monoid scheme of finite type such

that its k-realization Xk is a reduced scheme. Then:

(1) The normalization of Xk is the k-realization of .X;Anor/.

(2) If X is normal, connected and separated, there is a decomposition

Xk D X
0
k �k Spec kŒT �

where X 0
k

is a toric k-variety and kŒT � is finite étale over k.

As in Remark 4.6.1, the decomposition in Proposition 6.1 (2) is not natural in X .

Proof. Part (2) is immediate from Proposition 4.5 and Corollary 5.4.
Since the normalization of a reduced scheme is the scheme constructed by patching to-

gether the normalizations of an affine cover, we may assume that X is affine, i.e., assume
X D MSpec.A/. Since kŒAnor� is integral over kŒA�, we may assume that A D Anor. In this
situation, where A is a normal monoid of finite type, Proposition 4.5 states that A Š A0 ^ T�

where A0 is torsionfree and T is a finite abelian group. Since Xk is reduced, we know from
Lemma 5.10 (3) and Example 5.9 that T has no p-torsion and kŒT � is finite étale over k.
Since kŒA� D kŒT �ŒA0�, we are reduced to the case in which A is normal and torsionfree, i.e.,
X D MSpec.A/ is an affine toric monoid scheme. By Theorem 4.4, X is associated to a fan�;
by Example 5.8, Xk is the toric variety associated to �, and in particular Xk is normal.

Remark 6.1.1. It is possible to give an elementary proof of this result using that if A is
a torsionfree normal monoid, then kŒA� is integrally closed; see [14, Corollary 12.6].

Finite morphisms. We will need to know that the normalization of a monoid scheme
is a finite morphism, at least when X is of finite type.

We say that a morphism of monoid schemes f W Y ! X is affine if X can be covered
by affine open subschemes Ui D MSpec.Ai / such that f �1.Ui / is affine. Equivalently, f is
affine if f �1.U / is affine for every affine open subscheme U � X .

Definition 6.2. Let f W Y ! X be a morphism of monoid schemes. We say that f is
finite if it is affine and AX .U /! AY .f

�1.U // is finite for every affine subscheme U � X .
We say that f is integral if it is affine and AX .U /! AY .f

�1.U // is integral for every affine
subscheme U � X .

If X is cancellative, its normalization Xnor ! X is an integral morphism. To see this,
we may assume X D MSpec.A/ is affine so that Xnor ! X is given by A ,! Anor, where the
normalization Anor is integral by Definition 1.6. We now show that if X is also of finite type,
then Xnor ! X is finite.

Proposition 6.3. If X is a cancellative monoid scheme of finite type, the normalization

Xnor ! X is a finite morphism.

Proof. It suffices to show that ifA is a cancellative monoid of finite type, thenA! Anor

is finite. Since Anor is integral over A, it suffices by Lemma 1.7 (i) to show that Anor is of finite
type. Because the group completion AC is finitely generated, it has the form .M � T /� where



Cortiñas, Haesemeyer, Walker and Weibel, Toric varieties, monoid schemes and cdh descent 25

T is a finite abelian group and M is free abelian. Since AŒT � D
S
At is finite over A, we may

replace A by AŒT � to assume that T � A. As in the proof of Proposition 4.5, this implies that
A D B ^ T� where B D A \M� is a finitely generated submonoid of M . If ˇ is the rational
convex polyhedral cone ofMR spanned by the generators ofB ,Bnor is .ˇ \M/�. By Gordon’s
lemma [10], Bnor is finitely generated. A fortiori, Anor D Bnor ^ T� is finitely generated.

Smoothness. We start with the following definition.

Definition 6.4. Let p be a prime. A separated monoid scheme of finite type is p-

smooth if each stalk (equivalently, each maximal stalk) is the smash product S ^ T�, where
S D G� ^ F is the smash product of a free abelian group with a point adjoined and a free
abelian monoid, and T is a finite abelian group having no p-torsion. A separated monoid
scheme is 0-smooth if each stalk has the form S ^ T� with T an arbitrary finite abelian group.

We will say that X is smooth if it is p-smooth for all p, i.e., if each stalk is the product
of a free group of finite rank and a free monoid of finite rank.

A cone in a fan .N;�/ is said to be nonsingular if it is spanned by part of a Z-basis for
the lattice N , in which case each monoid �_ \M is the product of a free abelian group and a
free abelian monoid. A fan is said to be nonsingular if all its cones are nonsingular.

Proposition 6.5. Let X D .X;A/ be a separated cancellative monoid scheme of finite

type. Its k-realization Xk is smooth over a field k of characteristic p � 0 if and only if X is

p-smooth. If X is connected and p-smooth then, under the decomposition

X D .X;A0/ �MSpec.T /

of Proposition 6.1, the fan underlying .X;A0/ is nonsingular.

Proof. Recall from [10, Section 2.1] that the toric variety associated to a fan is smooth if
and only if each of its cones is nonsingular. Therefore the proposition is an immediate corollary
of Proposition 6.1 and Lemma 5.10.

Example 6.5.1. The hypothesis in Proposition 6.5 that X be cancellative is necessary.
For example, consider the monoidA D ht; e j e D e2 D tei, which has kŒA� Š kŒx� � k. Thus
X D MSpec.A/ is not p-smooth but Xk is smooth for every k.

7. MProj and blow-ups

An N-grading of a monoid A is a pointed set decomposition

A D

1_

iD0

Ai

such that Ai � Aj � AiCj ; Z-gradings are defined similarly. For each nonzero a in A, let jaj
denote the unique i such that a 2 Ai . For every multiplicative set S , the localization S�1A is
Z-graded by ja=sj D jaj � jsj. For example, if s 2 Ai is nonzero, we have

A
�

1
s

�
0
D

²
a

sn
W jaj D jsnj D ni; n � 0

³
[ ¹0º:
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Let A�1 denote the ideal _

i�1

Ai D ¹a W jaj > 0º [ ¹0º;

so that A=A�1 Š A0; the image of the corresponding map MSpec.A0/! MSpec.A/ consists
of the prime ideals of A containing A�1.

Definition 7.1. If A is an N-graded monoid, we define MProj.A/ D .X;B/ to be the
following monoid scheme. The underlying topological space is X D MSpec.A/ nMSpec.A0/

– i.e., the open subspace of those prime ideals of A that do not contain A�1. The stalks of B

on X are defined by sending p 2 MSpec.A/ nMSpec.A0/ to Bp D .Ap/0, the degree 0 part
of Ap. If MSpec.Ap/ � X is open, that is, if Ap D AŒ1=s� for some s 2 A�1, then the map
MSpec.Ap/! MSpec.Ap/0 is a homeomorphism. Indeed, this follows from the fact that
a prime ideal q of AŒ1=s� contains an element a=sn if and only if q \ .AŒ1=s�/0 contains
anjsj=snjaj. Thus MProj.A/ is covered by the affine open subschemesDC.s/DMSpec.A

�
1
s

�
0
/

where s 2 A�1, and moreover, every affine open subscheme is of this form. Hence MProj.A/
is a monoid scheme of finite type whenever A is a finitely generated monoid. The maps
A0 ! .Ap/0 induce a structure morphism MProj.A/! MSpec.A0/.

Remark 7.1.1. The k-realization of A is the graded ring kŒA�, and kŒA
�

1
s

�
0
� is the

degree 0 part of the ring kŒA�
�

1
s

�
, so the k-realization of MProj.A/ is Proj.kŒA�/.

Observation 7.1.2. The construction is natural in A for maps A! A0 of graded mon-
oids such that A0 D A � A0

0. For such maps there is a canonical morphism

MProj.A0/! MProj.A/

induced by the restriction of
MSpec.A0/! MSpec.A/:

If s 2 A�1, the affine open MSpec.A0
�

1
s

�
0
/ maps to the affine open MSpec.A

�
1
s

�
0
/.

If S � A0 is multiplicatively closed, S�1A is graded and

MProj.S�1A/ D MProj.A/ �MSpec.A0/ MSpec.S�1A0/:

It follows that this construction may be sheafified: for any monoid scheme .X;A0/ and any
sheaf A of graded monoids onX with .Ax/0 D .A0/x for all x 2 X , there is a monoid scheme
MProj.A/ over X whose stalk at each x is MProj.Ax/. Moreover, if f W .X 0;A0

0/! .X;A0/

is a morphism of monoid schemes, equipped with sheaves A0 and A of graded monoids as
above, any graded extension f �1A! A0 of f �1A0 ! A0

0 such that A0 D f �1A �A0
0 in-

duces a canonical morphism MProj.A0/! MProj.A/ over f .

Lemma 7.2. If f W A! B is a surjective homomorphism of graded monoids, then the

induced map MProj.B/! MProj.A/ is a closed immersion.

Proof. As noted above, any affine open subscheme U � MProj.A/ is of the form

U D MSpec.A
�

1
s

�
0
/

for some s 2 A�1. But U \MProj.B/ D MSpec.B
�

1
f .s/

�
0
/ is affine, so we are in the case of

Lemma 2.7.
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Projective monoid schemes. For a monoid A and indeterminates T0; : : : ; Tn, let
AŒT0; : : : ; Tn� denote the monoid freely generated by A and the Ti . It is a graded monoid,
where each element of A has degree 0 and each Ti has degree 1, and we define Pn

A to be
MProj.AŒT0; : : : ; Tn�/. More generally, for any monoid scheme X D .X;A/, define Pn

X to be
MProj.B/ where B is the sheaf of graded monoids on X defined by sending an open subset U
to A.U /ŒT0; : : : ; Tn�. In other words, Pn

X is defined by patching together the monoid schemes
of the form Pn

A as MSpec.A/ ranges over affine open subschemes of X . If X has finite type,
so does Pn

X .
A morphism of monoid schemes Y ! X is projective if, locally on X , it factors as a

closed immersion Y ! Pn
X for some n followed by the projection Pn

X ! X .

Lemma 7.3. Projective morphisms are separated.

Although this follows from Proposition 5.13, we give an elementary proof here.

Proof. Since closed immersions are separated by Lemma 3.4, it suffices to show that
the morphisms Pn

X ! X are separated. We may assume that X D MSpec.A/, so that

Pn
X D MProj.AŒT0; : : : ; Tn�/:

By Definition 7.1, points of Pn
X correspond to prime ideals in AŒT0; : : : ; Tn� not containing

¹T0; : : : ; Tnº. By Lemma 1.9 and Example 1.2, every such prime ideal has the form

PS;p D A ^ hSi [ pŒT0; : : : ; Tn�

where p is a prime ideal of A and hSi is the prime ideal generated by a proper subset S of
¹T0; : : : ; Tnº; moreover p and S are unique and the projection to MSpec.A/ sends the point
PS;p to p. According to Lemma 3.6, it suffices to observe that for every PS;p and PS 0;p the
prime PS\S 0;p is a unique lower bound. (The surjectivity condition of Lemma 3.6 is easy, and
left to the reader.)

Example 7.3.1. If B is a finitely generated graded monoid, then

MProj.B/! MSpec.B0/

is projective and hence separated by Lemma 7.3. Indeed, this is a particular case of Lemma 7.2,
since B is a quotient of some B0ŒT0; : : : ; Tn�.

Blow-ups. Given a monoid A and an ideal I , we shall consider the graded monoid
A _ I _ I 2 _ � � �, where In has degree n. It is useful to introduce a variable t , and rewrite this
as

AŒI t� D
_

n�0

Intn � A ^ F1:

If S is multiplicatively closed in A, then S�1.AŒI t �/ Š .S�1A/ŒS�1I t �. It follows that if I

is a quasi-coherent sheaf of ideals in a monoid scheme .X;A/, then there is a monoid scheme
MProj.AŒIt �/ over .X;A/ obtained by patching the MProj.AŒI t �/ in the evident manner.

Definition 7.4. If X D .X;A/ is a monoid scheme and Z � X is an equivariant closed
subscheme, given by a quasi-coherent sheaf of ideals I, we define the blow-up of X along Z
to be the monoid scheme XZ D MProj.AŒIt �/.
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Remark 7.4.1. If X D MSpec.A/ is affine and Z D MSpec.A=I /, then

XZ D MProj.AŒI t �/;

together with the structure morphism MProj.AŒI t �/! MSpec.A/. Since

MProj.AŒt �/ Š MSpec.A/;

it follows that for U D X nZ we have XZ �X U Š U .
The blow-up construction is natural in the pair .A; I / in the following sense. IfA! B is

a morphism of monoids, I is an ideal of A and J D IB , there is a canonical graded morphism
AŒI t�! BŒJ t� satisfying the hypotheses of Observation 7.1.2. Hence there is a morphism
MProj.BŒJ t�/! MProj.AŒI t �/ of the blow-ups over MSpec.B/! MSpec.A/. More gener-
ally, if f W X 0 ! X is a morphism of monoid schemes, I is a quasi-coherent sheaf of ideals
on X and J D f �1I �A0, then the morphism f �1AŒIt �! A0ŒJt � induces a canonical mor-
phism MProj.A0ŒJt �/! MProj.AŒIt �/ over f , described in Observation 7.1.2.

Remark 7.4.2. The blow-up of X along a quasi-coherent sheaf of ideals I is projective
provided I is given locally onX by finitely generated ideals, by Example 7.3.1. For example, if
X has finite type, then the blowup of X along any quasi-coherent sheaf of ideals is projective.

Example 7.5. Suppose N is a free abelian group with basis ¹v1; : : : ; vnº, and suppose
¹x1; : : : ; xnº is the dual basis ofM . Let � be the cone inNR generated by ¹v1; : : : ; vd º, the cor-
responding affine monoid scheme is X.�/ D MSpec.A/, where A is generated by x1; : : : ; xn

and x�1
dC1

; : : : ; x�1
n subject to xix

�1
i D 1 for d < i � n. The blow-up of X.�/ along the ideal

generated by x1; : : : ; xd is the toric monoid scheme X.�/, where � is the subdivision of the
fan ¹�º given by insertion of the ray spanned by v0 D v1 C � � � C vd . To see this, it suffices to
copy the corresponding argument for toric varieties given in [10, p. 41].

Example 7.5.1. If Z is an equivariant closed subscheme of X , defined by a quasi-
coherent sheaf of ideals I, and f W X 0 ! X is a morphism, then by naturality of the blow-up
construction, discussed above, there is a canonical morphism over f , from the blow-up X 0

Z0

of X 0 along the pullback Z0 D Z �X X 0 to the blow-up XZ .

Lemma 7.6. Let f W X 0 ! X be a finite morphism of monoid schemes (6.2). Let Z be

an equivariant closed subscheme of X , XZ the blow-up along Z, and X 0
Z0 the blow-up of X 0

along the pullback Z0 D Z �X X 0. Then Qf W X 0
Z0 ! XZ is a finite morphism.

Proof. We may assume that X , and hence X 0, is affine. Then f is induced by a map
A! A0, Z is defined by an ideal I � A and Z0 is defined by J D I A0. Moreover because
f is assumed finite, there are elements c1; : : : ; cr 2 B such that B D

S
i Aci . If a0; : : : ; an

generate I , and b0; : : : ; bn are their images in B , then Qf restricts to maps DC.bi /! DC.ai /

induced by the monoid mapsAi D AŒa0=ai ; : : : ; an=ai �! Bi D BŒb0=bi ; : : : ; bn=bi �. By in-
spection, Bi D

Sn
j D1Aicj .

Proposition 7.7. Let Z be an equivariant closed subscheme of a monoid scheme X

of finite type. Then for any commutative ring k the blow-up of Xk along Zk is canonically

isomorphic to the k-realization of the blow-up of X along Z.
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Proof. It suffices to consider the case

X D MSpec.A/; Z D MSpec.A=I /:

In this case S D kŒAŒI t �� is the usual Rees ring kŒA�ŒJ t �, J D kŒI �. Since the blowing-up of
Xk D Spec.kŒA�/ along Zk D Spec.kŒA=I �/ is Proj.S/, we have the desired identification

Proj.S/ D Proj.kŒAŒI t ��/ D MProj.AŒI t �/k :

We conclude this section by observing that blow-ups of monoid schemes satisfy a uni-
versal property analogous to that for blow-ups of usual schemes. To state it, we need some
notation. We define a principal invertible ideal of A to be an ideal I such that there is an x 2 I
such that the map

A
x
�! I .a 7! ax/

is a bijection. If I is a principal invertible ideal of A, then the canonical map

MProj.AŒI t �/! MSpec.A/

is an isomorphism.
A quasi-coherent sheaf of ideals of a monoid scheme X is said to be invertible if X

can be covered by affine open subschemes U such that I.U / is a principal invertible ideal
of AX .U /. If .X;A/ is a monoid scheme and I � A is a quasi-coherent sheaf of ideals (see
Definition 2.8), we say that a morphism f W Y ! X inverts I if f �1I �B is an invertible sheaf
on Y .

Proposition 7.8. Let X be a monoid scheme of finite type, Z be an equivariant closed

subscheme defined by a quasi-coherent sheaf of ideals I, and � W eX ! X be the blow-up of

X along Z. Then � inverts I and is universal with this property in the sense that if Y is of

finite type and f W Y ! X inverts I, then the dotted arrow in the diagram below exists and is

unique.

Y //

f ��
❄

❄

❄

❄

❄

❄

❄

❄

eX
�

��

X

Proof. We may assume that X D MSpec.A/ for some finitely generated monoid A,
that I corresponds to an ideal I of A, and that eX D MProj.AŒI t �/. The map � inverts I
because the restriction of ��1I to DC.s/ is generated by s for each s 2 I . Let B be the
structure sheaf of Y , and write J for the sheaf of ideals f �1I �B. By Example 7.5.1, there is a
unique morphism from the blow-up eY D MProj.BŒJt �/ to eX over f . By assumption, J is an
invertible sheaf. Hence eY ! Y is an isomorphism, because locally J is a principal invertible
ideal J of B and MProj.BŒJ t�/ Š MSpec.B/.

8. Proper morphisms

A monoid V is called a valuation monoid if V is cancellative and for every nonzero ele-
ment ˛ 2 V C, at least one of ˛ or 1

˛
belongs to V . For example, ifR is a valuation ring, then the

underlying multiplicative monoid .R;�/ is a valuation monoid. Also, the free pointed monoid
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on one generator is a valuation monoid. Given a valuation monoid V , the monoid V ^M� is
also a valuation monoid for any abelian group M . For example, the monoid

˝
y˙1

1 ; : : : ; y˙1
n ; x

˛

is a valuation monoid.
Given a valuation monoid V , the units U.V / are a subgroup of V C n 0 and the quotient

group .V C n 0/=U.V / is a totally ordered abelian group with the total ordering defined by
x � y if and only if x

y
belongs to the image of V n 0. To conform to usual custom, we convert

the group law for .V C n 0/=U.V / into C. We also adjoin a base point, written 1, to obtain
the totally ordered pointed (additive) monoid

� WD
�
.V C n 0/=U.V /

�
�
:

We extend the total ordering to � by declaring that 
 � 1 for all 
 2 � . We call � the value

monoid of the valuation monoid V . The canonical surjection

(8.1) ord W V C � �

is called the valuation map of V . The monoid V is then identified with the set of x 2 V C

such that ord.x/ � 0 (where, recall 0 is the identity of �), and the maximal ideal m of V is
¹x W ord.x/ > 0º (since ord.x/ D 0 just in case x is a unit of V ).

Note that the surjection in (8.1) satisfies ord.x/ � 1, ord.xy/ D ord.x/C ord.y/ and
ord.x/ D1 if and only if x D 0. Conversely, given an abelian group M and a surjective mor-
phism ord WM� ! � onto a totally ordered monoid .�;C; 0;1/ that satisfies these conditions,
the set C D ¹a 2M W ord.a/ � 0º is a valuation monoid whose pointed group completion is
M� and whose associated valuation map is ord.

Lemma 8.2. A valuation monoid V has no finite extensions contained in V C.

Proof. Suppose that V � B � V C with B finite over V . By Lemma 1.7 (ii), B is inte-
gral over V . For every nonzero b 2 B there is an n � 1 so that bn 2 V and hence n ord.b/ � 0,
which implies that ord.b/ � 0 and thus b 2 V .

Example 8.3. A discrete valuation monoid is a valuation monoid whose value monoid
is isomorphic to Z [ ¹1º with its canonical ordering. In this case, a lifting of the generator
1 2 Z to an element � in the discrete valuation monoid V is a generator of the maximal ideal
of V and every nonzero element of V C may written uniquely as u�n for n 2 Z and u 2 U.V /.
Let us call such an element a uniformizing parameter.

Observe that if R is a discrete valuation ring, then .R;�/ is a discrete valuation monoid
and the notion of a uniformizing parameter has its usual meaning.

If V is a discrete valuation monoid, its valuation map induces a surjection

� W V C n 0 � ZI

write M D ker� . A choice of uniformizing parameter t is equivalent to a section of � and
identifies

V C n 0 DM �
˝
t˙1

˛
:

Under this identification, � is the evident projection. Thus, every discrete valuation monoid V
is isomorphic to U.V /� ^ hti, where hti is the free abelian monoid on one generator and U.V /
is the group of units of V . Any element of the form u ^ t with u 2 U.M/ is a uniformizing
parameter.
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Remark 8.3.1. It is well known that a valuation ring is noetherian if and only if it is a
discrete valuation ring; see [34, Section VI.10, Theorem 16] for a proof. The same argument
shows that a valuation monoid is finitely generated if and only if it is a discrete valuation
monoid with a finitely generated group of units.

Definition 8.4. A map f W Y ! X of monoid schemes satisfies the valuative criterion

for properness if for every valuation monoid V and commutative square

(8.4a) MSpec.V C/ //

��

Y

f

��

MSpec.V / //

99

X

there is a unique map MSpec.V /! Y causing both triangles to commute.
We say f satisfies the valuative criterion of separatedness if each such square has at

most one completion.
A map Y ! X of monoid schemes of finite type is said to be proper if it satisfies the

valuative criterion for properness.

Remark 8.4.1. We are not certain what the correct definition of “proper” is for monoid
schemes not of finite type. (Recall from Remark 3.4.1 that “separated and universally closed”
is clearly not the correct definition.)

Given any morphism f W MSpec.V /! X , any affine open U � X containing f .m/
(where m is the unique closed point of MSpec.V /) will contain the image of MSpec.V /. Hence
the valuative criterion of properness and separatedness are local on the base: if Y jU ! U

satisfies one of these criteria for every U in a covering of X , then so does Y ! X .
It is immediate from Definition 8.4 that the class of maps satisfying the valuative criterion

of properness (resp., separatedness) is closed under composition and pullback.

Proposition 8.5. A finite morphism between monoid schemes satisfies the valuative cri-

terion of properness.

Proof. Suppose Y ! X is finite and consider a commutative square (8.4a) with V a val-
uation monoid. We may assume Y ! X is a map of affine schemes, say given by a map of
monoids A! B . Then the square (8.4a) is associated to the square

V C Boo

V

OO

Aoo

OO

of monoids. The image of B in V C is finite over V , but V is closed under finite extensions
in V C, by Lemma 8.2. It follows that the map B ! V C actually lands in V , which gives the
diagonal map we seek.

Corollary 8.6. Closed immersions satisfy the valuative criterion of properness.

Construction 8.7. To prove Theorem 8.9 below, we need a technical construction: Let
V be a valuation monoid with group completion V C and value monoid .�;C/. Recall that
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totally ordered groups are necessarily torsionfree, and hence, for any field k, the ring kŒ�� is
an integral domain by Lemma 5.10.

For an element
˛ D

X




a



of kŒ�� (where for this ring we have rewritten � using � instead ofC notation), define

ord.˛/ D min¹
 2 � W a
 ¤ 0º:

(For ˛ D 0, set ord.0/ D1.) It is easily verified that ord W .kŒ��;�/! � is a monoid map
such that ord.˛/ D1 if and only if ˛ D 0.

It follows that we get an induced map of pointed group completions

ord W .k.�/;�/! �

where k.�/ denotes the field of fractions of kŒ��. Moreover, the composition

V C �! .k.�/;�/
ord
�! �

coincides with the original valuation map ord W V C ! � .
Finally, the pair .k.�/; ord/ is a valuation in the usual ring-theoretic sense. To prove this,

it remains to show

ord.˛ C ˇ/ � min¹ord.˛/; ord.ˇ/º for all ˛; ˇ 2 k.�/.

One easily reduces to the case when ˛; ˇ 2 kŒ��, where it is obvious from the definition of ord.

Proposition 8.8. Given a valuation monoid V , with pointed group completion V C and

value monoid � , let ord be the valuation map on the field k.�/ given in Construction 8.7, and

let R � k.�/ denote the associated valuation ring. Then the square of affine monoid schemes

MSpec.k.�/;�/ //

��

MSpec.V C/

��

MSpec.R;�/ // MSpec.V /

is a pushout square in the category of monoid schemes.

Proof. For any monoid scheme T , suppose two morphisms f W MSpec.V C/! T and
g W MSpec.R;�/! T are given causing the evident square to commute. Let t 2 T be the im-
age of the unique closed point of MSpec.R;�/ under g, and let U � T be any affine open sub-
scheme of T containing t . Then g factors through U . Since MSpec.k.�/;�/! MSpec.V C/

is a bijection on underlying sets (each is a one-point set), the unique point of MSpec.V C/ also
lands in U and hence f too factors through U . We may thus assume T D U is affine. That is,
it suffices to prove

V //

��

.R;�/

��

V C // .k.�/;�/
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is a pullback square in the category of pointed monoids. But this is evident since

V C //

ord
��

.k.�/;�/

ord
��

�
D // �

commutes, V D ¹˛ 2 V C W ord.˛/ � 0º and R D ¹ˇ 2 k.�/ W ord.ˇ/ � 0º.

Recall that a map of (classical) k-schemes Yk ! Xk , where k is a field, is said to satisfy
the valuative criterion of properness (resp., separatedness) if every solid arrow square

Spec.F / //

��

Yk

��

Spec.R/

::

// Xk

has a unique (resp., at most one) completion making both triangles commute whenever R is
a valuation ring (which is necessarily a k-algebra) and F is its field of factions.

Theorem 8.9. Let f W X ! Y be a morphism of monoid schemes and let k be a field.

The morphism fk W Xk ! Yk satisfies the valuative criterion of properness (resp., separated-

ness) if and only if f satisfies the valuative criterion of properness (resp., separatedness).

Proof. By Theorem 5.2, for any local k-algebra R, there is a natural adjunction isomor-
phism

Homk.Spec.R/;Xk/ Š FX .SpecR/ D HomMSch.MSpec.R;�/; X/:

Now suppose R is a valuation ring with field of fractions F . Then V D .R;�/ is a valuation
monoid with V C D .F;�/. Since R and F are local, a commutative square of the form

SpecF //

��

Yk

��

SpecR // Xk

corresponds via adjunction to a commutative square of monoid schemes given by the solid
arrows in the diagram

(8.10) MSpec.V C/ //

��

Y

��

MSpec.V /

99

// X .

If Y ! X satisfies the valuative criterion of properness (resp., separatedness), there exists
a unique (resp., at most one) morphism of monoid schemes MSpec.V /! Y represented by
the dotted arrow above that causes both triangles to commute. Again by adjunction, this gives
a unique map Spec.R/! Yk causing both triangles to commute in the first square.
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Conversely, say a square (8.10) is given. By Construction 8.7, there is a valuation ring R
with field of fractions F D k.�/ and morphisms

MSpec.R;�/! MSpecV and MSpec.F;�/! MSpecV C

fitting into a commutative diagram

(8.11) MSpec.F;�/ //

��

MSpec.V C/ //

��

Y

��

MSpec.R;�/

33

// MSpec.V / // X .

By Proposition 8.8, the left-hand square is a pushout square in the category of monoid schemes.
Using adjunction as above, if Yk ! Xk satisfies the valuative criterion of properness (resp.,
separatedness), there exists a unique (resp., at most one) map represented by the dotted arrow
in (8.11) that causes the outer two triangles to commute. Since the left-hand square is a pushout,
it follows immediately that there exists a unique (resp., at most one) arrow MSpec.V /! Y

causing both triangles in (8.11) to commute.

Corollary 8.12. For any field k, a morphism between monoid schemes of finite type

Y ! X is proper if and only if Yk ! Xk is proper.

Proof. Merely observe that Yk and Xk are noetherian, and apply the valuative criterion
of the properness theorem [20, Theorem II.4.7].

Remark 8.12.1. Say f W Y ! X satisfies the valuative criterion of properness. If Yk is
quasi-compact, [15, Proposition 7.2.1] implies that fk is proper.

Corollary 8.13. A morphism between monoid schemes of finite type is proper if and

only if it satisfies the valuative criterion of properness of Definition 8.4 for all discrete valuation

monoids.

Proof. If f W X ! Y satisfies the criterion of Definition 8.4 for all discrete valuation
monoids, then, for any field k, its k-realization fk W Xk ! Yk satisfies the valuative criterion
of properness for all DVRs. This follows, using adjunction, from the fact that MSpec.R;�/
is a discrete valuation monoid if R is a DVR. Since Xk and Yk are noetherian and fk has
finite type, it follows that fk is proper (see [20, Example II.4.11]). The result now follows from
Corollary 8.12.

Corollary 8.14. A projective morphism Y ! X between monoid schemes of finite type

is proper. In particular, if X is a monoid scheme of finite type and XZ is the blow-up along an

equivariant closed subscheme Z, then the map XZ ! X is proper.

Proof. Using Proposition 5.11 and Remark 7.1.1, we see that if k is a field, then the map
Yk ! Xk is a projective morphism of k-schemes and hence is proper. For the second assertion,
recall that XZ ! X is projective and XZ has finite type.

Remark 8.15. In fact, a projective morphism of arbitrary monoid schemes satisfies the
valuative criterion of properness. We sketch the proof of this fact. First one observes that,
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by Corollary 8.6, it suffices to check that for any monoid scheme X and n � 1 the pro-
jection Pn

X ! X satisfies the criterion. Second, one reduces further to showing that if V is
a valuation monoid, then any section MSpec.V C/! Pn

V C of the canonical projection ex-
tends to a section MSpec.V /! Pn

V of Pn
V ! MSpec.V /. Third, one observes that for an

affine scheme MSpecA a section of Pn
A ! MSpecA is determined by an equivalence class

of n-tuples .b0; : : : ; bn/ of elements of A such that at least one of the bi is nonzero, modulo
the coordinate-wise action of U.A/. Finally, one proves that if b D .b0; : : : ; bn/ determines
a section MSpec.V C/! Pn

V C as above, then multiplying the bi by an appropriate power of
a uniformizing parameter we obtain an equivalent tuple b0 with b0

i 2 V for all i . Thus the
section extends to MSpec.V /.

Recall from Definition 4.1 that a monoid scheme of finite type is toric if it is separated,
connected, torsionfree and normal. By Theorem 4.4, there is a faithful functor from fans to
toric monoid schemes.

Corollary 8.16. Let � W .N 0; �0/! .N;�/ be a morphism of fans. Then the associated

morphism of toric monoid schemes X 0 ! X is proper if and only if � has the property that for

each � 2 �, ��1
R
.�/ is a union of cones in �0.

Proof. This follows from the well-known fact that if k is a field, then X 0
k
! Xk is

proper if and only if � has the stated property (see [10, p. 39]).

Corollary 8.17. Every proper map between monoid schemes of finite type is separated.

Proof. From Theorem 8.9 and the Valuative Criterion of Separatedness Theorem for
noetherian schemes, it follows that the k-realization of a proper map between monoid schemes
of finite type is separated if k is a field. Now use Proposition 5.13.

9. Partially cancellative torsion free monoid schemes

A monoid A is pctf if it is isomorphic to a monoid of the form B=I where B is a can-
cellative torsion free monoid (i.e., a cancellative monoid whose group completion is torsion
free) and I is an ideal. A monoid scheme is pctf if all of its stalks are.

Proposition 9.1. We have:

(1) If a pctf monoid is finitely generated, then it is isomorphic to A=I where A is a finitely

generated torsion free cancellative monoid.

(2) All submonoids and localizations of a pctf monoid are pctf. In particular, for a monoidA,

MSpec.A/ is pctf if and only if A is pctf.

(3) If A is a pctf monoid and p is a prime ideal, then A=p is a cancellative torsionfree

monoid.

(4) An open subscheme of a pctf monoid scheme is pctf.

(5) An equivariant closed subscheme of a pctf monoid scheme is pctf.
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Proof. Say A D B=I with B cancellative and torsion free. Pick elements b1; : : : ; bm in
B that map to a generating set of A and let B 0 be the submonoid of B they generate. Then
A D B 0=.I \ B 0/, proving the first assertion.

For the second, say A D C=I with C cancellative and torsion free. If B is a submonoid
of A, let B 0 denote the inverse image of B in C and set I 0 D I \ B 0. Then B D B 0=I 0, and so
B is pctf. The assertion concerning localizations holds since S�1.C=I / Š S�1C=S�1I . The
remaining assertion of part (2) is clear.

If A D B=I , then A=p D B=p0 for some prime ideal of B , so (3) follows from the ele-
mentary observation that if A is cancellative and torsionfree then so is A=p.

Assertion (4) is local and follows from (2); hence (5) is local, and is then easy.

Proposition 9.2. The blow-up of a pctf monoid scheme along an equivariant closed

subscheme is pctf.

Proof. Let Y ! X be the blow-up of a pctf monoid scheme X along an equivariant
closed subscheme. Since the question is local on X , we may assume that X is affine, say
X D MSpec.A/ with A pctf. Then Y is MProj.AŒI t �/ for an ideal I . For each s 2 I , we get
an affine open subset of Y given by the monoid

²
f

sn
W f 2 In; n � 0

³
:

This is a submonoid of AŒ1
s
� and hence is pctf. The collection of such open subsets as s varies

over all elements of I forms an open cover of Y . Thus Y is pctf.

Proposition 9.3. Let X D .X;A/ and Y D .Y;B/ be monoid schemes and suppose

f W Y ! X is a morphism. There is a unique closed subscheme Z of X which is minimal with

respect to the property that f factors through Z � X .

If U � X is an affine open subscheme of X , thenZ \ U is the affine scheme MSpec.C /,
where the monoid C is the image of B.U /! A.U �X Y /. In particular, if X is of finite type,

then so is Z.

Proof. If f factors through two different closed subschemes W1 and W2 of X , then it
factors throughW1 �X W2, which is (canonically isomorphic to) a closed subscheme ofX (see
Example 3.2). So, we define Z to be the inverse limit taken over the partially ordered set of
closed subschemes W of X such that f factors through W .

For the local description of Z, we may assume that X D U D MSpec.B/ is affine. Any
closed subscheme of X has the form W D MSpec.D/ with B ! D a surjection of monoids.
Then f factors through W if and only if B ! A.Y / factors through D, that is, if and only if
B ! C factors as B ! D ! C ; in other words, if and only if Z � W .

Definition 9.4. The subscheme Z of Proposition 9.3 is called the scheme-theoretic im-

age of f . If f is an open immersion, we write Y for Z and (by abuse) call it the closure

of Y .

Proposition 9.5. Let Y be a monoid scheme and suppose U � Y is an open subscheme

that is pctf. Then the scheme-theoretic image U of U in Y is pctf. Moreover, if Y is separated,

then U is separated.
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Proof. The first assertion is local on Y and so we may assume Y D MSpec.B/ for a
monoid B and U D MSpec.S�1B/ for a multiplicative subset S . Then U is the affine scheme
associated to the imageB ofB ! S�1B . The monoid S�1B is pctf by assumption and Propo-
sition 9.1 (4), and hence so is B by Proposition 9.1 (2).

The second assertion is just the observation that a closed subscheme of a separated
scheme is also separated by Lemma 3.4.

10. Birational morphisms

A morphism p W Y ! X of monoid schemes is birational if there is an open dense sub-
scheme U of X such that p�1.U / is dense in Y and p induces an isomorphism from p�1.U /

to U .

Proposition 10.1 (Birational maps). Let p W .Y; B/! .X;A/ be a map between monoid

schemes of finite type. Then p is birational if and only if the following conditions hold:

(1) p maps the generic points of Y bijectively onto the generic points of X .

(2) A point y 2 Y is generic if (and only if) p.y/ 2 X is generic.

(3) For each generic point y 2 Y the induced map A.p.y//! B.y) on stalks is an isomor-

phism.

Proof. If p is birational and U is as in the definition above, then U contains all of the
generic points ofX and p�1.U / contains all the generic points of Y as well as every point of y
that maps to a generic point of X . The conditions are then clearly satisfied.

Conversely, take U to be the (dense open) set of generic points of X . By hypothesis,
p�1.U / is the set of generic points of Y and the map p W p�1.U /! U is bijective. Hence
p�1.U / is open and dense. Since the map p�1.U /! U is bijective and induces an isomor-
phism on all stalks, it is an isomorphism.

Corollary 10.2. If p W X 0 ! X is a proper map of toric monoid schemes that is bira-

tional, then p is given by a map of fans � W .N 0; �0/! .N;�/ such that

� W N 0 Š
�! N

and the image of �0 under the isomorphism �R is a subdivision of �. Conversely, any such

map � induces a proper birational map of monoid schemes.

Proof. From Theorem 4.4 (2), p comes from a morphism of fans such that � W N 0 Š
�! N ,

and such a morphism is a subdivision by Corollary 8.16. Conversely, if p is induced by a
morphism of fans � W .N 0; �0/! .N;�/ such that �R is a subdivision of�, then pk is proper
by [10, Section 2.4]; hence p is proper by Theorem 8.9.

Example 10.3. If X is a monoid scheme of finite type, let X� denote the equivariant
closure of a generic point � (in the sense of Lemma 2.9). Then each X� has a unique generic
point, namely �. IfX is pctf, then eachX� is cancellative and torsionfree by Proposition 9.1 (3),
and hence pctf. If X is reduced, the morphism

`
� X� ! X is birational.
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Proposition 10.4. If Y ! X is a birational map and X 0 ! X is a morphism such that

X 0 is of finite type and every generic point ofX 0 maps to a generic point ofX , then the pullback

Y �X X 0 ! X 0 is birational.

Proof. The poset underlying Y �X X 0 is given by the pullback of the underlying posets
(by Proposition 3.1). Since Y ! X is birational, a point .y; x0/ in Y �X X 0 is generic if and
only if x0 is a generic point ofX 0, and in this case y and x0 map to the same point x ofX , which
is generic. Hence the map Y �X X 0 ! X 0 is a bijection on sets of generic points. WritingA0; A

and B for the stalk functors of X 0; X and Y , the map on generic stalks is of the form

A0.x0/! A0.x0/ ^A.x/ B.y/:

This is an isomorphism, since the map A.x/! B.y/ is an isomorphism.

Define the height of a point x in a monoid scheme X to be the dimension of Ax , i.e., it
is the largest integer n such that there exists a strictly decreasing chain x D xn > � � � > x0 in
the poset underlying X . We write this as ht.x/ or htX .x/.

For example, if X D X.N;�/ is the monoid scheme associated to a fan, then

ht.�/ D dim.�/

for each cone � 2 �. Here dim.�/ refers to the dimension of the real vector subspace of NR

spanned by � .

Lemma 10.5. Suppose p W Y !X is a proper, birational map of separated pctf schemes

of finite type. Then for any y 2 Y , we have

htY .y/ � htX
�
p.y/

�
:

Proof. Suppose htY .y/ D m, so that we have a chain of points y D ym > � � � > y0

in Y . Clearly y0 must be minimal, and thus generic. Let � D p.y0/, and define X� to be
the equivariant closure of ¹�º in X . As pointed out in Example 10.3, X� is cancellative and
torsionfree. The pullback Y� D X� �X Y is an equivariant closed subscheme of Y containing
y0 as its unique generic point, and hence each yi . By Proposition 9.1 (5), Y� is also pctf, and
Y� ! X� is birational by Proposition 10.4.

Let Y 0 denote the equivariant closure of y0 in Y�. By Example 10.3, Y 0 ! Y� is bira-
tional, Y 0 contains all the yi and Y 0 is cancellative and torsionfree. Replacing X and Y by
X� and Y 0, we may assume that both X and Y are connected, cancellative and torsionfree.
Hence the normalization maps Xnor ! X and Ynor ! Y exist and are homeomorphisms (by
Remark 1.6.1), and both Xnor and Ynor are torsionfree. Since Y ! X is birational, it induces a
birational morphism Ynor ! Xnor. The map Ynor ! Y is finite by Lemma 1.7 and hence proper
by Proposition 8.5. Thus Ynor ! X and hence Ynor ! Xnor are proper. Thus we may assume
that X and Y are separated, normal and torsionfree.

By Proposition 4.5 and Corollary 4.6, we have reduced to the case where Y ! X is a
proper birational map of toric monoid schemes, given by a map of fans � W .N 0; �0/! .N;�/.
The birational hypothesis means that � W N 0 ! N is an isomorphism. By Corollary 10.2, the
proper hypothesis means that �0 is a subdivision of �. Since �.�/ is the smallest cone in �
containing the image of � under �R and since height corresponds to dimension of cones, the
result is now clear.
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11. Resolutions of singularities for toric varieties

The purpose of this section is to establish some properties for monoid schemes that are
analogous to those known to hold for arbitrary varieties in characteristic zero. These properties
will be used in Section 12 to prove that certain presheaves of spectra satisfy the analogue of
“smooth cdh descent” for monoid schemes.

Theorem 11.1. Let X be a separated cancellative pctf monoid scheme of finite type.

Then there is a birational proper morphism Y ! X such that Y is smooth.

Proof. We may assume that X is connected. Since the normalization map is proper
birational by Propositions 6.3 and 8.5, we may assume that X is normal. Since X is pctf,
it is torsionfree by Proposition 9.1 (3). By Proposition 4.5, X is toric and X Š X.�/ for some
fan �. There exists a subdivision �0 of � such that X.�0/ is smooth, and it follows from
Corollary 10.2 that the morphism X.�0/! X.�/ is proper birational.

Let N be a free abelian group of finite rank. Recall (from [10, p. 34], e.g.) that a cone
in NR is called simplicial if it is generated by linearly independent vectors, and that a fan is
simplicial if every cone in it is simplicial. We will need the notion of the barycentric subdivision
of a simplicial fan � in NR: For a simplicial cone � in NR of dimension d , let v1; : : : ; vd be
the minimal lattice points along the one-dimensional faces of � , also called the rays of � . For
each nonempty subset S of ¹1; : : : ; dº, let

vS D
X

i2S

vi :

The barycentric subdivision of � , which we write as � .1/, is defined as the collection of 2d

cones given as the span of vectors of the form vS1
; : : : vSe

, where 0 � e � d and S1 � � � � � Se

is a chain of proper subsets of ¹1; : : : ; dº. It is clear that if � is a face of � , then the set of cones
in � .1/ that are contained in � form the fan � .1/. It follows that

�.1/ WD ¹� .1/ W � 2 �º

is again a simplicial fan. We inductively define

�.i/ D .�.i�1//.1/

for i � 2.

Lemma 11.2. If �0 is any subdivision of a simplicial fan � in NR, then for i � 0, the

fan �.i/ is a subdivision of �0.

Proof. It suffices to show that any ray of �0, that is, any 1-dimensional cone of �0, is
a ray of some�.i/. Given a positive integer combination v D

P
nivi of the vertices in a cone,

we may reorder the vertices to assume the ni are in decreasing order. Then v is in the cone of
�.1/ spanned by the vSi

, where Si D ¹1; : : : ; iº, and (if v ¤ v1) we can write

v D
X

i

n0
ivSi

with
P
n0

i <
P
ni . The result follows by induction on

P
ni .
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Lemma 11.3. If� is a smooth fan, then for all i � 1, the toric monoid scheme X.�.i//

is obtained from X.�/ via a sequence of blow-ups along smooth centers.

Proof. We may assume i D 1. If � is smooth already, then �.1/ is also smooth. In
general, the fan �.1/ is obtained from � via a series of steps of the following sort: starting
with a smooth fan �, we form a subdivision �0 by picking a cone � , letting v1; : : : ; vd be
the minimal lattice points along its rays, and defining �0 to be the subdivision of � given by
insertion of the ray spanned by v1 C � � � C vd . By Example 7.5,X.�0/! X.�/ is the blow-up
along the smooth, closed equivariant subscheme defined by x1 D � � � D xd D 0.

Theorem 11.4. For a morphism � W Y ! X between separated cancellative pctf mon-

oid schemes of finite type, assume X is smooth and � W Y ! X is proper and birational. Then

there exists a sequence of blow-ups along smooth closed equivariant centers,

Xn ! � � � ! X1 ! X0 D X;

such that Xn ! X factors through � W Y ! X .

Proof. By Theorem 11.1, there is a proper birational morphismZ ! Y withZ smooth.
We may therefore assume that Y is smooth. We may also assume that X and Y are connected,
so that they have unique generic points.

Thus, by Corollary 10.2, Y ! X is given by a morphism .N 0; �0/! .N;�/ of fans that
is an isomorphism of lattices and such that �0 is a subdivision of �. Lemmas 11.2 and 11.3
complete the proof.

12. cd-structures on monoid schemes.

Let Mpctf denote the category of monoid schemes of finite type that are separated and
pctf. In this section, we will be concerned with cartesian squares of the form

(12.1) D //

��

Y

p

��

C
e // X .

Definition 12.2. An abstract blow-up is a cartesian square of monoid schemes of finite
type of the form (12.1) such that p is proper, e is an equivariant closed immersion, and p
maps the open complement Y nD isomorphically onto X n C . The square with Y D ; and
C D Xred is such a square.

Proposition 12.3. If X is of finite type, C is an equivariant closed subscheme of X and

p W Y ! X is the blow-up of X along C , then the resulting cartesian square is an abstract

blow-up. If X belongs to Mpctf, so do Y , C and D.

Proof. By Corollary 8.14, p is proper. As noted in Definition 7.4, p maps Y nD iso-
morphically to X n C (because D D C �X Y ). The second assertion follows from Proposi-
tions 9.1 and 9.2.
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Proposition 12.4. Suppose an abstract blow-up square (12.1) is given with X in Mpctf.

Let NY be the scheme-theoretic image of Y nD in Y , and define ND D C �X
NY . Then

D //

��

Y

p

��

C
e // X

is an abstract blow-up square in Mpctf.

Proof. By Proposition 9.1, X n C and hence Y nD is pctf, and so by Proposition 9.5,
Y is pctf as well. Since equivariant closed subschemes of pctf schemes are pctf, C and D
also belong to Mpctf. The map Y ! X is a composition of proper maps and hence is proper.
Finally, NY n ND D Y nD.

Recall from [30, Definition 2.1] that a cd-structure on a category C is a collection of
distinguished commutative squares in C . If C has an initial object ;, any cd-structure defines
a topology: the smallest Grothendieck topology such that for each distinguished square (12.1)
the sieve generated by ¹p; eº is a covering sieve (and the empty sieve is a covering of the initial
object). The coverings ¹p; eº are called elementary.

Definition 12.5. The blow-up cd-structure on Mpctf is given by the collection of all
abstract blow-up squares with X; Y; C;D all belonging to Mpctf. The Zariski cd-structure on
Mpctf is given by all cartesian squares associated to a covering of X by two open subschemes.

The cdh topology on Mpctf is the topology generated by the union of these two cd-struc-
tures.

Following [30, Definition 2.3 and Lemma 2.4], we say that a cd-structure is complete

if C has an initial object ; and any pullback of an elementary covering contains a sieve which
can be obtained by iterating elementary coverings. We say that a cd-structure is regular (see
[30, Definition 2.10]) if each distinguished square (12.1) is a pullback, e is a monomorphism
and the morphism of sheaves

(12.6) �.D/ ��.C / �.D/q �.Y /! �.Y / ��.X/ �.Y /

is onto, where �.T / denotes the sheafification of the presheaf represented by T .

Theorem 12.7. The blow-up and Zariski cd-structures on Mpctf are complete and reg-

ular.

Proof. The completeness property for Zariski squares is clear since they are preserved
by pullback, and the regularity property is even clearer. For the blow-up cd-structure, consider
an abstract blow-up square

D //

��

Y

p

��

C
e // X .

Let X 0 ! X be any morphism in Mpctf and consider the square involving X 0; C 0; Y 0 and D0

formed by pullback. The scheme Y 0 might not belong to Mpctf, but the scheme-theoretic image
Y 00 of Y 0 nD0 in Y 0 does by Proposition 12.4. The resulting square involving C 0; X 0; Y 00 and
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D00 WD C 0 �X 0 Y 00 is an abstract blow-up by the same result, and hence by [30, Lemma 2.4]
the blow-up cd-structure is complete.

For the regularity property, we need to show that (12.6) is onto. Every object admits a
covering in this topology by affine, cancellative monoids, and it suffices to prove surjectivity of
the map given by the underlying presheaves evaluated at such an affine cancellative U . That is,
say f W U ! Y , g W U ! Y are given with p ı f D p ı g. We need to prove either f D g or
they both factor throughD and coincide as maps to C . Let u be the unique generic point of U .
If either f .u/ or g.u/ lands in Y nD, then they both must land there. Since Y nD Š X n C ,
it follows that f and g coincide generically. But since U is cancellative, it follows f D g on
all of U . (To see this, one may work locally: If h; l W A! B are two maps of monoids with B
cancellative and the compositions of h; l with the inclusion B ,! BC coincide, then h D l .)
Otherwise, we have that the generic point, and hence every point, ofU is mapped by both f and
g to points in the closed subset D of Y . Again using that U is cancellative, it follows that f; g
factor through D ,! Y . (This is also proven by working locally.) Finally, the compositions of
these maps f; g W U ! D with D ! C coincide since C ! X is a closed immersion.

We define the standard density structure on Mpctf as follows: The set Di .X/ consists of
those open immersions U � X such that every point in X n U has height at least i . It is clear
that this satisfies the axioms required of a density structure of finite dimension in [30, Defini-
tion 2.20].

A cd-structure is said to be bounded for a given density structure if any distinguished
square has a refinement which is reducing for the density structure in the sense of [30, Defini-
tion 2.21].

Theorem 12.8. The blow-up and Zariski cd-structures on Mpctf are both bounded for

the standard density structure.

Proof. To see that the blow-up cd-structure is bounded, we need to show that any ab-
stract blow-up square (12.1) in Mpctf has a refinement that is reducing for D�. Consider the
square obtained by replacing Y by the monoid scheme-theoretic image of Y nD (in the sense
of Definition 9.4), andD by the pullback. This is also an abstract blow-up square, and it refines
(12.1). This refinement has the features that p�1.X n C/ is dense in Y , Y maps birationally
onto the scheme-theoretic image of X n C in X , and D does not contain any generic points of
Y .

To show that this square is reducing, we assume given C0 2 Di .C /; Y0 2 Di .Y / and
D0 2 Di�1.D/. Define X 0 to be the open subscheme X nZ of X , where Z � X is the equiv-
ariant closure (in the sense of Lemma 2.9) of the union of the images of each of C n C0,
D nD0 and Y n Y0 in X . We need to show that X 0 belongs to Di .X/ and that the pullback of
the original square (12.1) along X 0 ,! X gives an abstract blow-up square.

If y 2 Y is a point of height at least i , then p.y/ has height at least i in the scheme-
theoretic image of X n C , by Lemma 10.5. Hence p.y/ has height at least i in X itself (since
a closed immersion is an injection on underlying posets). If d 2 D has height at least i � 1,
then its height in Y is at least i (since D contains no generic points of Y ) and hence its image
in X has height at least i too. Since C is an equivariant closed subscheme, if c 2 C has height
at least i , it has height at least i in X .

Recall thatZ � X is the equivariant closure of the union of the images of each ofC n C0,
D nD0 and Y n Y0 in X . Each of these images consists of points of height at least i and hence
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every point in Z has height at least i in X by Remark 2.9.1. Therefore X 0 belongs to Di .X/

and the pullback of the above square along X 0 ,! X gives an abstract blow-up square that
proves our original square is reducing.

The argument in the previous paragraphs applies mutatis mutandis to show that every
Zariski square is reducing.

Corollary 12.9. Let S be a presheaf of abelian groups on Mpctf; let t be either the

Zariski or the cdh topology, and write atS for the sheafification with respect to t . IfX 2Mpctf

is of dimension d , then

Hn
t .X; atS / D 0 for n > d:

Proof. Immediate from Theorem 12.8 and [30, Theorem 2.26].

The category of spectra we use in this paper will not be critical. In order to minimize
technical issues, we will use the terminology that a spectrum E is a sequence En of simplicial
sets together with bonding maps bn W En ! �EnC1. We say that E is an �-spectrum if all
bonding maps are weak equivalences. A map of spectra is a strict map. We will use the model
structure on the category of spectra defined in [3]. Note that in this model structure, every
fibrant spectrum is an�-spectrum. Given a Grothendieck topology, the category of contravari-
ant functors F from Mpctf to spectra (presheaves of spectra) has a closed model structure, in
which a morphism � W F ! F 0 is a cofibration when F .X/! F 0.X/ is a cofibration for ev-
ery monoid scheme X in Mpctf; � is a weak equivalence if it induces isomorphisms between
the sheaves of stable homotopy groups (see [23, 24]). We write Hcdh.�;F / for the fibrant
replacement of F using this model structure for the cdh topology, as in [7].

A presheaf of spectra F on Mpctf satisfies the Mayer–Vietoris property for some family C

of cartesian squares if F .;/ D � and the application of F to each member of the family gives
a homotopy cartesian square of spectra.

Proposition 12.10. Let F be a presheaf of spectra on Mpctf. Then the canonical map

F .X/! Hcdh.X;F / is a weak equivalence of spectra for allX if and only if it has the Mayer–

Vietoris property for every abstract blow-up square and every Zariski square of pctf monoid

schemes.

Proof. By Theorems 12.7 and 12.8, the cdh cd-structure is complete, regular and boun-
ded. Now the assertion follows from [7, Theorem 3.4].

Given Proposition 12.10, the definition of cdh descent given in [7, Terminology 3.5]
becomes:

Definition 12.11. Let F be a presheaf of spectra on Mpctf. We say that F satisfies cdh
descent if the canonical map F .X/! Hcdh.X;F / is a weak equivalence of spectra for all X .

Remark 12.11.1. Writing Hzar.�;F / for the fibrant replacement with respect to the
model structure for the Zariski topology, we obtain the notion of Zariski descent. The proof
of Proposition 12.10 applies to show that F satisfies Zariski descent if and only if it has the
Mayer–Vietoris property for every Zariski square. It follows that cdh descent implies Zariski
descent.
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It is useful to restrict to the full subcategory S of smooth monoid schemes (see Defini-
tion 6.4). By Proposition 6.5, these are the cancellative, torsionfree, separated monoid schemes
of finite type whose k-realizations are smooth for any commutative ring k. (This condition is
independent of k, by Proposition 6.5.)

Definition 12.12. We define the smooth blow-up cd-structure on S to consist of squares
(12.1) such that X is smooth, e is the inclusion of an equivariant, smooth closed subscheme
and Y is the blow-up of X along C . (These assumptions ensure, by (7.7), that Y and D are
also smooth.)

The Zariski cd-structure is given by all cartesian squares in S associated to a covering
of X by two open subschemes.

We define the scdh topology on S to be the Grothendieck topology associated to the
union of the smooth blow-up cd-structure and the Zariski cd-structure on S . For a presheaf of
spectra on S , we define Hscdh.�;F / just as Hcdh was defined above. We say such a presheaf
F satisfies scdh descent if the canonical fibrant replacement map

F .X/! Hscdh.X;F /

is a weak equivalence for all X 2 S .

Proposition 12.13. The smooth blow-up cd-structure and the Zariski cd-structure on S

are regular, bounded, and complete. Consequently, a presheaf of spectra defined on S satisfies

scdh descent if and only if it has the Mayer–Vietoris property for each smooth blow-up square

and each Zariski square in S .

Proof. That the smooth blow-up cd-structure is complete can be proved exactly as Vo-
evodsky did for smooth k-schemes in [31, Lemma 4.3], replacing resolution of singularities
by our Theorem 11.4. Regularity is proved exactly as in Theorem 12.7 for the non-smooth
case. The proof that the smooth blow-up cd-structure is bounded works exactly as in Theo-
rem 12.8, keeping in mind that open subschemes of smooth monoid schemes are smooth. The
proof that the Zariski cd-structure is complete, regular and bounded is again the same as in
the non-smooth category. It follows that the scdh topology is generated by a complete, regular,
bounded cd-structure and so [7, Theorem 3.4] applies to prove the second assertion.

Proposition 12.14. For any X 2 S and any presheaf of spectra F defined on Mpctf, we

have a weak equivalence

Hcdh.X;F /
�
�! Hscdh.X;F jS /:

Proof. In this proof we write Fcdh for the restriction of the presheaf Hcdh.�;F / to
S . By Proposition 12.10, Fcdh satisfies the Mayer–Vietoris property for smooth blow-up and
Zariski squares. Therefore Fcdh satisfies scdh descent (Definition 12.12).

By Theorems 11.1 and 11.4, every covering sieve for the cdh topology on Mpctf has a
refinement containing a sieve generated by a cover consisting of objects of S . It follows that
F jS ! Fcdh is an scdh-local weak equivalence. Therefore

Hscdh.�;F jS /! Hscdh.�;Fcdh/

is an objectwise weak equivalence (see [7, p. 561]). Together, the two objectwise weak equiv-
alences exhibited in the proof give the assertion.
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13. Weak cdhk descent

Throughout this section, we fix a commutative ring k.

Definition 13.1. Let Xk be a scheme of finite type over k and assume Zk � Xk is
a closed subscheme. We say Zk is regularly embedded in Xk if the sheaf of ideals defining
Zk is locally generated by a regular sequence – that is, if for all x 2 Zk , the kernel Ix of
OXk ;x ! OZk ;x is generated by a OXk ;x-regular sequence of elements.

Definition 13.2. A presheaf of spectra F defined on Mpctf has weak cdhk descent if F

has the Mayer–Vietoris property for each cartesian square

D //

��

Y

p

��

C
e // X

in Mpctf satisfying one of the following conditions:

(1) It is a member of the Zariski cd-structure.

(2) It is a finite abstract blow-up – i.e., it is a member of the abstract blow up cd-structure
having the additional property that p is a finite morphism.

(3) C is an equivariant closed subscheme, Y ! X is the blow-up of X along C , and Ck is
a regularly embedded closed subscheme of Xk .

Remark 13.2.1. Theorems 13.3 and 14.3 below suggest (but do not prove) that the
definition of weak cdhk descent is actually independent of the choice of k.

Since a smooth blow-up square is an example of a blow-up along a regularly embedded
subscheme, Propositions 12.13 and 12.14 imply the following theorem.

Theorem 13.3. If F is a presheaf of spectra on Mpctf that satisfies weak cdhk descent,

then F satisfies scdh descent. That is, the canonical map

F .X/! Hcdh.X;F /

is a weak equivalence for every smooth monoid scheme X .

The main goal of this paper, realized in the next section, is to establish a partial gener-
alization of Theorem 13.3 to all schemes in Mpctf. The goal of the rest of this section is to
establish some technical properties needed in the next. We first introduce a slightly stronger
notion than that of weak cdhk descent.

Recall from [16, Section 6.10.1] that given a closed subscheme Ck of a k-scheme Xk ,
defined by an ideal sheaf I, Xk is said to be normally flat along Ck if the restriction of each
In=InC1 to Ck is flat.

Remark 13.3.1. Here is a monoid-theoretic condition on a sheaf I of ideals on a
monoid scheme .X;A/ which guarantees that, for all k, the k-realization of X is normally flat
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along the k-realization of the equivariant closed submonoid C defined by I : at each point x
ofC , under the natural action of the monoidAx=Ix on each of the pointed setsLn D I

n
x =I

nC1
x ,

each Ln is a bouquet of copies of Ax=Ix . We do not know if this condition is necessary.

We will say that a cartesian square of schemes in Mpctf,

D //

��

Y

p

��

C
e // X ,

is a nice blow-up square if C is an equivariant closed subscheme of X , Y is the blow-up of X
along C and there exists a cartesian square in Mpctf of the form

(13.4) C
e

//

��

X

��

B // Z

such that Z is cancellative, X ! Z is the normalization of Z and B is an equivariant closed
smooth subscheme of Z such that Zk is normally flat along Bk .

Definition 13.5. A presheaf of spectra on Mpctf satisfies weak+nice cdhk descent pro-
vided it satisfies weak cdhk descent and, in addition, it has the Mayer–Vietoris property for all
nice blow-up squares in Mpctf.

Proposition 13.6. If F is a presheaf of spectra on Mpctf that satisfies cdh descent, then

F satisfies weak+nice cdhk descent for any commutative ring k.

Proof. This is immediate from Proposition 12.10, since each of the squares appearing
in the definition of weak+nice cdhk descent is a member of the cdh cd-structure.

We will need the following technical result about local domains. Recall that if I is an
ideal in a commutative ring R, then an ideal J � I is called a reduction of I if JIn�1 D In

for some n > 0; a minimal reduction of I is a reduction which contains no other reduction of I .

Lemma 13.7. Let R be a noetherian local domain with infinite residue field k, let p be

a prime ideal, and assumeR is normally flat alongR=p. Let J be a minimal reduction of p that

is generated by h WD ht.p/ D ht.J / elements. (Given R and p with these properties, such a J

exists by [19, Theorem 5.2 and Lemma 5.3].) Let QR be the normalization of R and assume QR

is Cohen–Macaulay. Then J QR is a reduction of p QR generated by h elements and Spec. QR=J QR/
is regularly embedded in Spec. QR/.

Proof. We have that Jp
n�1 QR D p

n QR, and so the first assertion is clear.
Since R ,! QR is an integral extension of domains, we have h D ht.J / D ht.J QR/. For

any maximal ideal Qm of QR, we have that J QR Qm is a height h ideal generated by h elements in
the local ring QR Qm. Since QR Qm is Cohen–Macaulay by assumption, these generators necessarily
form a regular sequence.
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The following is the evident analogue of the notion of weak cdhk descent for presheaves
of spectra on the category of k-schemes.

Definition 13.8. For a commutative ring k, let Sch=k be the category of separated
schemes essentially of finite type over k. A presheaf of spectra defined on Sch=k satisfies
weak cdh descent if it has the Mayer–Vietoris property for each cartesian square

D //

��

Y

p

��

C
e // X

of schemes satisfying one of the following conditions:

(1) e and p are open immersions whose images cover X .

(2) It is a finite abstract blow-up – i.e., e is a closed immersion, p is finite, and p maps Y nD
isomorphically onto X n C

(3) e is a regular closed immersion and p is the blow-up of X along C .

Lemma 13.9. Assume k is a commutative regular noetherian domain containing an

infinite field and Gk is a presheaf of spectra on Sch=k that satisfies weak cdh descent. Let G be

the presheaf of spectra on Mpctf defined by

G .X/ WD Gk.Xk/:

Then G satisfies weak+nice cdhk descent on Mpctf.

Proof. Since the k-realizations of the squares involved in the definition of weak cdhk

descent for Mpctf (Definition 13.2) are squares involved in the definition of weak cdh descent
for Sch=k (Definition 13.8), it follows that G satisfies weak cdhk descent. Say X; Y; C;D;Z,
and B are as in the definition of a nice blow-up square. We need to prove that the square

(13.10) Gk.Xk/ //

��

Gk.Ck/

��

Gk.Yk/ // Gk.Dk/

is homotopy cartesian.
LetR be any local ring ofZk and let p be the prime ideal ofR cutting out Bk locally. Let

V D Spec. QR Qm/, where QR is the normalization of R and Qm is any of the maximal ideals of QR.
Then, since Xk is the normalization of Zk by Proposition 6.1, V is the spectrum of a local ring
of Xk , and for various choices of R and Qm, every local ring of Xk arises in this manner.

By Corollary 5.4, Ck D Xk �Zk
Bk , so the closed subscheme V �Xk

Ck of V is cut
out by q D p QR Qm. As X is the normalization of the separated cancellative, torsionfree monoid
scheme Z, Proposition 6.1 implies that Xk is a toric variety. By [22], all toric schemes over k
are Cohen–Macaulay; hence so are Xk and V .

By Lemma 13.7, q D p QR Qm admits a reduction I � q such that Spec. QR Qm=I / ,! V is a
regular embedding. Since V �Xk

Yk is the blow-up of Vk along V �Xk
Ck (by Proposition 7.7),

and the exceptional divisor is V �Xk
Dk (by Corollary 5.4), the proof of [19, Proposition 5.6]
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(with KH replaced by G ) gives that

Gk.V / //

��

Gk.V �Xk
Ck/

��

Gk.V �Xk
Yk/ // Gk.V �Xk

Dk/

is homotopy cartesian. Since Gk satisfies the Mayer–Vietoris property for Zariski covers and
the V occurring here is an arbitrary local scheme of Xk , the proof of [19, Theorem 5.7] (with
KH replaced by Gk) shows that (13.10) is homotopy cartesian.

Example 13.11. Let KH denote Weibel’s homotopy algebraicK-theory [32]. We may
view KH as a presheaf of spectra on Sch=k. By abuse of notation, we also write KH for the
presheaf of spectra on Mpctf defined by KH.X/ DKH.Xk/.

By [29], [32, Proposition 4.9] and [28], KH satisfies weak cdh descent on Sch=k (Def-
inition 13.8); by Lemma 13.9, KH satisfies weak+nice cdhk descent on Mpctf.

14. Main theorem

In this section, we prove our main theorem (Theorem 14.3), which gives a condition for
F to satisfy cdh descent on Mpctf. We will need the Bierstone–Milman Theorem, which we
extract from the embedded version [1, Theorem 1.1].

Theorem 14.1. Let X be a separated cancellative torsionfree monoid scheme of finite

type, embedded as a closed subscheme (see Definition 2.5) in a smooth toric monoid schemeM

(see Definition 4.1). For any commutative ring k containing a field, there is a sequence of blow-

ups along smooth equivariant centers Zi � Xi , 0 � i � n � 1,

Y D Xn ! � � � ! X0 D X

such that Y is smooth, and each .Xi /k is normally flat along .Zi /k .

Proof. Since normal flatness is stable under flat extension of the base, and k is flat over
a field, we may assume that k is a field. Let Nk denote the algebraic closure of k, and let T be
the torus acting onM Nk

. The Bierstone-Milman Theorem ([1, Theorem 1.1]) tells us that we can
find a sequence of blow-ups Mn ! � � � !M0 DM Nk

of smooth toric Nk-varieties, the blow-up
ofMi being taken along a smooth T -invariant centerNi , with the following properties. Setting
X 0

0 D X Nk
, we inductively define Z0

i D Ni \X
0
i ; then Z0

i is a smooth equivariant k-variety,
X 0

i is normally flat along Z0
i , and X 0

iC1 is the strict transform of X 0
i .

The Nk-realization functor from fans to (normal) toric Nk-varieties (and equivariant mor-
phisms) is well known to be an equivalence. It follows that each of the Ni and Mi and the
morphisms between them come from fans, and hence by Theorem 4.4 are Nk-realizations of
toric monoid schemes (which by abuse of notation, we will call Ni and Mi ), and morphisms
of such.

Inductively we define monoid schemes Xi and Zi , starting from

X0 D X and Z0 D N0 \X;
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to be the blow-up of the monoid scheme Xi�1 along Zi�1 in the sense of Definition 7.4. By
Proposition 7.7 and Corollary 5.4, Z0

i D .Zi / Nk
and X 0

i D .Xi / Nk
. In particular, .Xn/ Nk

D Y is
a smooth toric variety and therefore the monoid scheme Xn is smooth by Proposition 6.5.
Finally, faithfully flat descent implies that .Xi /k is normally flat along .Zi /k if and only if
.Xi / Nk

is normally flat along .Zi / Nk
.

Theorem 14.2. Suppose G is a presheaf of spectra on Mpctf satisfying weak+nice cdhk

descent for some commutative ring k containing a field. If G .X/ ' � for all X in S , then

G .X/ ' � for all X in Mpctf.

Proof. We proceed by induction on the dimension of X . Given X , let x1; : : : ; xl be its
generic points, and let Yi D ¹xiº

eq be their equivariant closures (see Lemma 2.9). We have a
cover X D Y1 [ � � � [ Yl by equivariant closed subschemes each of which is cancellative by
Example 10.3. Moreover, each Yi �X Yj is equivariant and closed, hence pctf. Since G has the
Mayer–Vietoris property for closed covers, and G vanishes on the Yi �X Yj for all i ¤ j by
the induction hypothesis, we get

G .X/ D
Y

i

G .Yi /:

We may thus assume that X is cancellative. (This also establishes the base case dim.X/ D 0,
since in that case the Yi are in S .)

Since G satisfies Mayer–Vietoris for open covers, we may assume X is affine. In par-
ticular, we may assume X can be embedded in a smooth toric monoid scheme, for example,
by choosing a surjection from a free abelian monoid onto A where X D MSpec.A/. This will
allow us to apply the Bierstone–Milman Theorem 14.1 to obtain a sequence of blow-ups along
smooth monoid schemes Zi ,

Y D Xn ! � � � ! X0 D X:

We claim that G .Xi / ' G .XiC1/ for all i . Since G .Y / ' �, this will finish the inductive
step and hence the proof of the theorem. To simplify the notation, fix i and writeZ forZi � Xi

andXZ forXiC1, the blow-up ofXi alongZ, so that our goal is to prove that G .Xi /! G .XZ/

is a weak equivalence. Let QX denote the normalization .Xi /nor of Xi and set QZ D Z �Xi
QX .

Write QX QZ
for the blow-up of QX along QZ. By naturality of blow-ups (see Definition 7.4), there

is a commutative square
QX QZ

//

��

XZ

��

QX // Xi

(that need not be cartesian). Since the map QX ! Xi is finite, the map QX QZ
! XZ is also finite,

by Lemma 7.6. Applying G gives a commutative square of spectra

G . QX QZ
/ G .XZ/oo

G . QX/

OO

G .Xi /.oo

OO

To prove that the right-hand vertical arrow is a weak equivalence, it suffices to prove the other
three are.
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The finite map QX ! Xi is an isomorphism on the generic points. Consider the equivari-
ant closure E � Xi of the finitely many height 1 points of Xi ; by Remark 2.9.1, every point
in E has height � 1 in Xi , so E is the complement of the generic point of Xi . Since E is
pctf, G .E/ ' � by our inductive assumption. Since the pullback QE WD E �Xi

QX is an equiv-
ariant closed subscheme of QX , it is pctf by Proposition 9.1, and hence G . QE/ ' � as well, by
induction. Using the finite abstract blow-up square involving Xi , QX , E and QE, we have a weak
equivalence

G .Xi /
'
�! G . QX/:

The map QX QZ
! XZ is also finite and birational, and so the same argument shows

G .XZ/
'
�! G . QX QZ

/

is a weak equivalence. Finally, observe that

QZ � QX
QX QZ

//

��

QX QZ

��

QZ // QX

is a nice blow-up square, because the bottom row may be compared with Z ! Xi and .Xi /k
is normally flat along Zk . Because G has descent for nice blow-up squares, and

G . QZ/ ' G . QZ � QX
QX QZ
/ ' �

by the induction hypothesis, we get a weak equivalence

G . QX/
'
�! G . QX QZ

/:

It follows that G .Xi / ' G .XZ/, as claimed. This completes the proof.

We now state and prove the main theorem of this paper, which gives a partial generaliza-
tion of Theorem 13.3 to all objects in the category Mpctf.

Theorem 14.3. Let Fk be a presheaf of spectra on Sch=k for some commutative regular

noetherian ring k containing an infinite field, and define F to be the presheaf of spectra on

Mpctf defined by

F .X/ D Fk.Xk/:

If Fk satisfies weak cdh descent on Sch=k, then F satisfies cdh descent on Mpctf.

Proof. Let G be the homotopy fiber of F ! Hcdh.�;F / – i.e., for all X in Mpctf,
G .X/ is the homotopy fiber of F .X/! Hcdh.X;F /. By Lemma 13.9 and Proposition 13.6,
both F and Hcdh.�;F / satisfy weak+nice cdhk descent, and hence G satisfies weak+nice cdhk

descent too. Theorem 13.3 gives that G .X/ ' � for all X 2 S . Now we apply Theorem 14.2
to conclude G .X/ ' � for all X in Mpctf.
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The following corollary is the theorem announced in the introduction.

Corollary 14.4. Assume k is a commutative regular noetherian ring containing an in-

finite field and let Fk be a presheaf of spectra on Sch=k that satisfies the Mayer–Vietoris

property for Zariski covers, finite abstract blow-up squares, and blow-ups along regularly em-

bedded subschemes. Then Fk satisfies the Mayer–Vietoris property for all abstract blow-up

squares of toric k-schemes obtained from subdividing a fan.

Proof. By Definition 13.8, Fk satisfies weak cdh descent on Sch=k. By Theorem 14.3,
F satisfies cdh descent in Mpctf. Now use Proposition 12.10.

Corollary 14.5. Let k be a commutative regular noetherian ring containing a field.

The presheaf of spectra KH on Mpctf, defined as KH.X/ DKH.Xk/, satisfies cdh descent.

Moreover, both natural maps

KH.X/! Hcdh.X;KH/ Hcdh.X;K/

are weak equivalences for all X in Mpctf.

Proof. We first reduce to the case when k is of finite type over a field. We can express
k as a filtered colimit of rings ki , all regular of finite type over a field (by Popescu’s theorem
[27, Theorem 2.5]). The functor KH is the homotopy colimit of the corresponding functors
defined by ki -realization. By Proposition 12.10, we can check descent by showing that certain
squares of monoid schemes are transformed by KH into homotopy co-cartesian squares of
spectra (a square of spectra is homotopy cartesian if and only if it is homotopy co-cartesian);
since homotopy colimits of homotopy co-cartesian squares are homotopy co-cartesian, we may
assume that k is of finite type over its field of constants.

Now if the regular ring k does not contain an infinite field, it is smooth over the (perfect)
field of constants it contains and hence stays regular under base change from its field of con-
stants to any algebraic extension. We can therefore apply the standard transfer argument and
may assume that k contains an infinite field.

By Example 13.11 and Theorem 14.3, KH satisfies cdh descent on Mpctf. For any X
in Mpctf, consider the commutative square of spectra:

K.X/ //

��

KH.X/

��

Hcdh.X;K/ // Hcdh.X;KH/,

where K is algebraicK-theory, regarded as a presheaf of spectra on Sch=k and hence on Mpctf.
Since KH satisfies cdh descent, the right-hand vertical map is a weak equivalence for all X .
This is the first assertion of the corollary.

If X is smooth, then the top horizontal map is a weak equivalence by [32] (since Xk is
smooth over k hence regular by Proposition 6.5). By fibrant replacement and Proposition 12.14,
the bottom map is also a weak equivalence for all X in S . By induction on dim.X/ and Theo-
rem 11.1, this implies that Hcdh.�;K/! Hcdh.�;KH/ is a local weak equivalence and, as
observed (for any site) in [7, p. 561], this implies that Hcdh.X;K/! Hcdh.X;KH/ is a weak
equivalence for all X in Mpctf.
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Remark 14.6. It follows from Corollaries 12.9 and 14.5 and a cdh descent argument
that ifX 2Mpctf is of dimension d and k is a commutative regular ring containing a field, then
KHn.Xk/ D 0 for n < �d (cf. [19, Theorem 8.19]). The analogous statement for K-theory is
also true, at least if X is cancellative and torsionfree. Indeed, for affine X , Kn.Xk/ D 0 for
n < 0, by [18, Theorem 1.3]; the general case follows from this by a Zariski descent argument,
using Corollary 12.9.

In order to apply Corollary 14.5 to the relation between K-theory and topological cyclic
homology, we need to recall some terms. Fix a prime p and a commutative regular ring k of
characteristic p. To each scheme X essentially of finite type over k, there is a pro-spectrum
¹TC �.X; p/º1�D0 and the cyclotomic trace is a compatible family of morphisms

tr� WK.X/! TC �.X; p/:

Define F �
k

to be the presheaf of spectra on Sch=k given as the homotopy fiber of

K.X/! TC �.X; p/:

Then Geisser and Hesselholt observe in the proof of [12, Theorem B] that each F �
k

takes
elementary Nisnevich squares and regular blow-up squares to homotopy cartesian squares of
pro-spectra.

Following Geisser–Hesselholt [12], a strict map of pro-spectra ¹X�º ! ¹Y �º is said to be
a weak equivalence if for every q the induced map ¹�q.X

�/º ! ¹�q.Y
�/º is an isomorphism

of pro-abelian groups. A square diagram of strict maps of pro-spectra is said to be homotopy

cartesian if the canonical map from the upper left pro-spectrum to the level-wise homotopy
limit of the other terms is a weak equivalence.

Given a class C of squares we will say that a pro-presheaf of spectra satisfies the pro-
analogue of C descent if it sends each square in C to a homotopy cartesian square of pro-
spectra.

Define ¹F �º to be the pro-presheaf of spectra on Mpctf given as the family of homotopy
fibers of the maps K.�/! TC �.�; p/. That is, F �.X/ D F �

k
.Xk/ is the homotopy fiber of

K.Xk/! TC �.Xk; p/ for each X and �.

Proposition 14.7. Assume k is a commutative regular noetherian ring containing an

infinite field of characteristic p > 0. Then ¹F �º satisfies cdh descent on Mpctf in the sense that

¹F �º ! ¹H.�;F �/º is a weak equivalence of pro-spectra.

Proof. Fix � and let G � be the homotopy fiber of F � ! Hcdh.�;F
�/. It suffices to

prove that for each X and q the pro-abelian group ¹�qG �.X/º is pro-zero. We will do so by
modifying the proof of Theorem 14.3.

For each �, Hcdh.�;F
�/ satisfies weak+nice cdhk descent by Proposition 13.6. By

[11, Theorem 1] and [13, Theorems B and D], ¹F �
k
º sends finite abstract blow-up squares to

homotopy cartesian squares of pro-spectra. Thus ¹F �
k
º satisfies the pro-analogue of weak cdh

descent (Definition 13.8). In the proof of Lemma 13.9, the reduction ideals used are reduction
ideals on affine neighborhoods of the maximal ideal m ofR. By the argument used in the proof
of [12, Theorem 1.1], the proof of our Lemma 13.9 now applies mutatis mutandis to show that
the pro-presheaf of spectra F � satisfies the Mayer–Vietoris property for nice blow-up squares.
It now follows that ¹G �º satisfies the pro-analogue of weak+nice cdhk descent.
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For each �, F � satisfies Zariski descent and also has the Mayer–Vietoris property for
regular blow-ups, so F � satisfies scdh descent by 12.13. By definition, this means that for
each smooth X the spectrum G �.X/ is contractible. Now the proof of Theorem 14.2 applies
verbatim to finish the proof.

Corollary 14.8. Assume k is any commutative regular noetherian ring of characteristic

p > 0. For any monoid scheme X in Mpctf, the following square of pro-spectra is homotopy

cartesian:

K.X/ //

��

KH.X/

��

¹TC �.X; p/º // ¹Hcdh.X; TC
�.�; p//º.

Proof. By a standard transfer argument as in Corollary 14.5, we may assume that k
contains an infinite field. By Proposition 14.7, the homotopy fiber ¹F �.X/º of the left vertical
map is weakly equivalent to ¹Hcdh.X;F

�/º. By Corollary 14.5, this coincides up to weak
equivalence with the homotopy fiber of the right vertical map.

Remark 14.9. As explained in Remark 14.6, if k is any commutative regular ring con-
taining a field, and X 2Mpctf is cancellative and torsionfree, then we have Kn.Xk/ D 0 for
n < � dimX . To extend this result to all X 2Mpctf it would suffice to prove that the bottom
horizontal map in the diagram in Corollary 14.8 induces an isomorphism (resp., an epimor-
phism) of homotopy groups in degrees n < � dim.X/ (resp., n D � dim.X/). Geisser and
Hesselholt proved the analogue statement for schemes essentially of finite type over a field
of positive characteristic which admits resolution of singularities ([12, Theorem C]). Adapting
their methods to our situation seems rather hard.

Acknowledgement. The authors would like to thank the referee for a careful reading,
for suggesting the notion of a monoid poset and for the current proof of Lemma 5.5.
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