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0. Introduction

We work over an algebraically closed field K of characteristic 0. We denote the
multiplicative group of K by K∗.

0.1. Statement of the main result. The purpose of this paper is to give a proof
for the following weak factorization conjecture of birational maps. We note that
another proof of this theorem was given by the fourth author in [82]. See section
0.13 for a brief comparison of the two approaches.

Theorem 0.1.1 (Weak Factorization). Let φ : X1 99K X2 be a birational map
between complete nonsingular algebraic varieties X1 and X2 over an algebraically
closed field K of characteristic zero, and let U ⊂ X1 be an open set where φ is an
isomorphism. Then φ can be factored into a sequence of blowings up and blowings
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down with nonsingular irreducible centers disjoint from U , namely, there exists a
sequence of birational maps between complete nonsingular algebraic varieties

X1 = V0
ϕ199K V1

ϕ299K · · ·
ϕi−199K Vi−1

ϕi99K Vi
ϕi+199K · · ·

ϕl−199K Vl−1
ϕl99K Vl = X2

where
(1) φ = ϕl ◦ ϕl−1 ◦ · · ·ϕ2 ◦ ϕ1,
(2) ϕi are isomorphisms on U , and
(3) either ϕi : Vi−1 99K Vi or ϕ−1

i : Vi 99K Vi−1 is a morphism obtained by
blowing up a nonsingular irreducible center disjoint from U .

Furthermore, there is an index i0 such that for all i ≤ i0 the map Vi 99K X1 is a
projective morphism, and for all i ≥ i0 the map Vi 99K X2 is a projective morphism.
In particular, if X1 and X2 are projective, then all the Vi are projective.

0.2. Strong factorization. If we insist in the assertion above that ϕ−1
1 , . . . , ϕ−1

i0
and ϕi0+1, . . . , ϕl be morphisms for some i0, we obtain the following strong factor-
ization conjecture.

Conjecture 0.2.1 (Strong Factorization). Let the situation be as in Theorem 0.1.1.
Then there exists a diagram

Y
ψ1 ↙ ↘ ψ2

X1
φ99K X2

where the morphisms ψ1 and ψ2 are composites of blowings up of nonsingular cen-
ters disjoint from U .

See section 6.1 for further discussion.

0.3. Generalizations of the main theorem. We consider the following cate-
gories, in which we denote the morphisms by “broken arrows”:

(1) the objects are complete nonsingular algebraic spaces over an arbitrary field
L of characteristic 0, and broken arrows X 99K Y denote birational L-maps,
and

(2) the objects are compact complex manifolds, and broken arrows X 99K Y
denote bimeromorphic maps.

Given two broken arrows φ : X 99K Y and φ′ : X ′ 99K Y ′ we define an absolute
isomorphism g : φ→ φ′ as follows:
• In the case X and Y are algebraic spaces over L, and X ′, Y ′ are over L′,

then g consists of an isomorphism σ : SpecL → SpecL′, together with a
pair of biregular σ-isomorphisms gX : X → X ′ and gY : Y → Y ′, such that
φ′ ◦ gX = gY ◦ φ.
• In the analytic case, g simply consists of a pair of biregular isomorphisms
gX : X → X ′ and gY : Y → Y ′, such that φ′ ◦ gX = gY ◦ φ.

Theorem 0.3.1. Let φ : X1 99K X2 be as in case (1) or (2) above. Let U ⊂ X1 be
an open set where φ is an isomorphism. Then φ can be factored, functorially with
respect to absolute isomorphisms, into a sequence of blowings up and blowings down
with nonsingular centers disjoint from U . Namely, to any such φ we associate a
diagram in the corresponding category

X1 = V0
ϕ199K V1

ϕ299K · · ·
ϕi−199K Vi−1

ϕi99K Vi
ϕi+199K · · ·

ϕl−199K Vl−1
ϕl99K Vl = X2
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where
(1) φ = ϕl ◦ ϕl−1 ◦ · · ·ϕ2 ◦ ϕ1,
(2) ϕi are isomorphisms on U , and
(3) either ϕi : Vi−1 99K Vi or ϕ−1

i : Vi 99K Vi−1 is a morphism obtained by
blowing up a nonsingular center disjoint from U .

(4) Functoriality: if g : φ → φ′ is an absolute isomorphism, carrying U to U ′,
and ϕ′i : V ′i−1 99K V ′i is the factorization of φ′, then the resulting rational
maps gi : Vi 99K V ′i give absolute isomorphisms.

(5) Moreover, there is an index i0 such that for all i ≤ i0 the map Vi 99K X1 is
a projective morphism, and for all i ≥ i0 the map Vi 99K X2 is a projective
morphism.

(6) Let Ei ⊂ Vi be the exceptional divisor of Vi → X1 (respectively, Vi → X2) in
case i ≤ i0 (respectively, i ≥ i0). Then the above centers of blowing up in Vi
have normal crossings with Ei. If, moreover, X1 U (respectively, X2 U)
is a normal crossings divisor, then the centers of blowing up have normal
crossings with the inverse images of this divisor.

Remarks. (1) Note that, in order to achieve functoriality, we cannot require the
centers of blowing up to be irreducible.

(2) Functoriality implies, as immediate corollaries, the existence of factorization
over any field of characteristic 0, as well as factorization, equivariant under
the action of a groupG, of aG-equivariant birational map. If one assumes the
axiom of choice, then a standard argument shows that equivariance implies
functoriality. In our proofs we do not use the axiom of choice, with the
exceptions of (1) existence of an algebraic closure, and (2) section 5.6, where
showing functoriality without the assumption of the axiom of choice would
require revising some of the arguments of [56]. We hope that the interested
reader will be able to rework our arguments without the assumption of the
axiom of choice if this becomes desirable.

(3) The same theorem holds true for varieties or algebraic spaces of dimension
d over a perfect field of characteristic p > 0 assuming that canonical embed-
ded resolution of singularities holds true for varieties or algebraic spaces of
dimension d + 1 in characteristic p. The proof for varieties goes through
word for word as in this paper, while for the algebraic space case one needs
to recast some of our steps from the Zariski topology to the étale topology
(see [38], [53]).

(4) While this theorem clearly implies the main theorem as a special case, we
prefer to carry out the proof of the main theorem throughout the text, and
to indicate the changes one needs to perform for proving Theorem 0.3.1 in
section 5.

0.4. Applying the theorem. Suppose one is given a biregular invariant of non-
singular projective varieties and one is interested in the behavior of this invariant
under birational transformations. Traditionally, one would (1) study the behavior
of the invariant under blowings up with nonsingular centers, (2) form a conjec-
ture according to this study, and finally (3) attempt to prove the conjecture using
additional ideas.

Sometimes such additional ideas turn out to be fairly simple (e.g. birational
invariance of spaces of differential forms). Sometimes they use known but deep
results (e.g. Hodge theory for showing the birational invariance of Hi(X,OX) in
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characteristic 0; abelian varieties for the birational invariance of H1(X,OX) in
general; or Deligne’s work on the Weil conjectures for the results of [47]). Sometimes
they lead to the development of beautiful new theories (e.g. Motivic integration for
the invariance of Hodge numbers of birational Calabi-Yau varieties, [45], [7], [8],
[22], [50]; see also [10] where our theorem is applied).

Our theorem implies that, in characteristic 0, step (3) above is no longer nec-
essary: once such a conjecture is compatible with blowings up with nonsingular
centers, it holds for any birational map. At the time of the revision of this paper
we know of two announced applications for which no alternative methods of proof
are known: (a) construction of elliptic genera of singular varieties by L. Borisov
and A. Libgober [11], and (b) showing that the algebraic cobordism ring of a field
is the Lazard ring, by M. Levine and F. Morel ([48], Théorème 1.1, [49]).

When we set out to write this paper, we attempted to give a statement detailed
enough and general enough to apply in all applications we had imagined. As soon
as the paper was circulated, it became clear that there are applications not covered
by Theorem 0.3.1, even though the methods apply. In the preprint [27] of H. Gillet
and Ch. Soulé, the authors use the behavior of localized Todd classes under proper
birational maps of schemes which are projective over a discrete valuation ring of
residue characteristic 0. In their proof they rely on deep (and yet unpublished
in complete form) results of J. Franke [25]; alternatively, they could have used
weak factorization for such maps. While proving this case may be a straightfor-
ward exercise using our methods, this would still leave a plethora of other possible
applications (more general base schemes, real analytic geometry, p-adic analytic
geometry, to name a few).

One could imagine a statement of a general “weak factorization – type” result
relying on a minimal set of axioms needed to carry out our line of proof of weak
factorization. We decided to spare ourselves and the reader such formalism in this
paper.

0.5. Early origins of the problem. The history of the factorization problem
of birational maps could be traced back to the Italian school of algebraic geome-
ters, who already knew that the operation of blowing up points on surfaces is a
fundamental source of richness for surface geometry: the importance of the strong
factorization theorem in dimension 2 (see [83]) cannot be overestimated in the
analysis of the birational geometry of algebraic surfaces. We can only guess that
Zariski, possibly even members of the Italian school, contemplated the problem in
higher dimension early on, but refrained from stating it before results on resolution
of singularities were available. The question of strong factorization was explicitly
stated by Hironaka as “Question (F′)” in [30], Chapter 0, §6, and the question of
weak factorization was raised in [61]. The problem remained largely open in higher
dimensions despite the efforts and interesting results of many (see e.g. Crauder
[15], Kulikov [46], Moishezon [55], Schaps [72], Teicher [76]). Many of these were
summarized by Pinkham [64], where the weak factorization conjecture is explicitly
stated.

0.6. The toric case. For toric birational maps, the equivariant versions of the
weak and strong factorization conjectures were posed in [61] and came to be known
as Oda’s weak and strong conjectures. While the toric version can be viewed as a
special case of the general factorization conjectures, many of the examples demon-
strating the difficulties in higher dimensions are in fact toric (see Hironaka [29],
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Sally [70], Shannon [73]). Thus Oda’s conjecture presented a substantial challenge
and combinatorial difficulty. In dimension 3, Danilov’s proof of Oda’s weak conjec-
ture [21] was later supplemented by Ewald [24]. Oda’s weak conjecture was solved
in arbitrary dimension by J. W lodarczyk in [80], and another proof was given by
R. Morelli in [56] (see also [57], and [4], where the result is generalized to the
toroidal situation). An important combinatorial notion which Morelli introduced
into this study is that of a cobordism between fans. The algebro-geometric real-
ization of Morelli’s combinatorial cobordism is the notion of a birational cobordism
introduced in [81].

Our proof of the main theorem relies on toric weak factorization. This remains
as one of the most difficult theorems leading to our result.

In [56], R. Morelli also proposed a proof of Oda’s strong conjecture. A gap in
this proof, which was not noticed in [4], was recently discovered by K. Karu. As far
as we know, Oda’s strong conjecture stands unproven at present even in dimension
3.

0.7. A local version. There is a local version of the factorization conjecture, for-
mulated and proved in dimension 2 by Abhyankar ([1], Theorem 3). Christensen
[13] posed the problem in general and solved it for some special cases in dimension
3. Here the varieties X1 and X2 are replaced by appropriate birational local rings
dominated by a fixed valuation, and blowings up are replaced by monoidal trans-
forms subordinate to the valuation. The weak form of this local conjecture, as well
as the strong version in the threefold case, was recently solved by S. D. Cutkosky
in a series of papers [16, 17]. Cutkosky also shows that the strong version of the
conjecture follows from Oda’s strong factorization conjecture for toric morphisms.
In a sense, Cutkosky’s result says that the only local obstructions to solving the
global strong factorization conjecture lie in the toric case.

0.8. Birational cobordisms. Our method is based upon the theory of birational
cobordisms [81]. As mentioned above, this theory was inspired by the combinatorial
notion of polyhedral cobordisms of R. Morelli [56], which was used in his proof of
weak factorization for toric birational maps.

Given a birational map φ : X1 99K X2, a birational cobordism Bφ(X1, X2) is a
variety of dimension dim(X1)+1 with an action of the multiplicative groupK∗. It is
analogous to the usual cobordism B(M1,M2) between differentiable manifolds M1

and M2 given by a Morse function f (and in fact in the Kähler case the momentum
map of C∗ is a Morse function, making the analogy more direct). In the differential
setting one can construct an action of the additive real group R, where the “time”
t ∈ R acts as a diffeomorphism induced by integrating the vector field grad(f);
hence the multiplicative group (R>0,×) = exp(R,+) acts as well. The critical
points of f are precisely the fixed points of the action of the multiplicative group,
and the homotopy type of fibers of f changes when we pass through these critical
points (see [54]). Analogously, in the algebraic setting “passing through” the fixed
points of the K∗-action induces a birational transformation. Looking at the action
on the tangent space at each fixed point, we obtain a locally toric description of
the transformation. This already gives the main result of [81]: a factorization of
φ into certain locally toric birational transformations among varieties with locally
toric structures. More precisely, it is shown in [81] that the intermediate varieties
have abelian quotient singularities, and the locally toric birational transformations
can be factored in terms of weighted blowings up. Such birational transformations

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



536 D. ABRAMOVICH, K. KARU, K. MATSUKI, AND J. W LODARCZYK

can also be interpreted using the work of Brion-Procesi, Thaddeus, Dolgachev-Hu
and others (see [12, 77, 78, 23]), which describes the change of Geometric Invariant
Theory quotients associated to a change of linearization. We use such methods
in section 2.5 in showing that the intermediate varieties are projective over X1 or
X2. A variant of our construction using Geometric Invariant Theory, in terms of
Thaddeus’s “Master Space”, is given by Hu and Keel in [34].

0.9. Locally toric versus toroidal structures. Considering the fact that weak
factorization has been proven for toroidal birational maps ([80], [56], [4]), one might
näıvely think that a locally toric factorization, as indicated in the previous para-
graph, would already provide a proof for Theorem 0.1.1.

However, in the locally toric structure obtained from a cobordism, the embedded
tori chosen may vary from point to point, while a toroidal structure (see Definition
1.5.1) requires the embedded tori to be induced from one fixed open set. Thus there
is still a gap between the notion of locally toric birational transformations and that
of toroidal birational maps. Developing a method for bridging over this gap is the
main contribution of this paper.

0.10. Torification. In order to bridge over this gap, we follow ideas introduced by
Abramovich and de Jong in [2], and blow up suitable open subsets, called quasi-
elementary cobordisms, of the birational cobordism Bφ(X1, X2) along torific ideals.
This operation induces a toroidal structure in a neighborhood of each connected
component F of the fixed point set, on which the action of K∗ is a toroidal action
(we say that the blowing up torifies the action of K∗). Now the birational transfor-
mation “passing through F” is toroidal. We use canonical resolution of singularities
to desingularize the resulting varieties, bringing ourselves to a situation where we
can apply the factorization theorem for toroidal birational maps. This completes
the proof of Theorem 0.1.1.

0.11. Relation with the minimal model program. It is worthwhile to note
the relation of the factorization problem to the development of Mori’s program.
Hironaka [28] used the cone of effective curves to study the properties of birational
morphisms. This direction was further developed and given a decisive impact by
Mori [58], who introduced the notion of extremal rays and systematically used it in
an attempt to construct minimal models in higher dimension, called the minimal
model program. Danilov [21] introduced the notion of canonical and terminal sin-
gularities in conjunction with the toric factorization problem. This was developed
by Reid into a general theory of these singularities [66, 67], which appear in an
essential way in the minimal model program. The minimal model program is so far
proven up to dimension 3 ([59], see also [39, 40, 41, 44, 74]), and for toric varieties
in arbitrary dimension (see [68]). In the steps of the minimal model program one
is only allowed to contract a divisor into a variety with terminal singularities, or to
perform a flip, modifying some codimension ≥ 2 loci. This allows a factorization
of a given birational morphism into such “elementary operations”. An algorithm
to factor birational maps among uniruled varieties, known as Sarkisov’s program,
has been developed and carried out in dimension 3 (see [71, 69, 14], and see [52] for
the toric case in arbitrary dimension). Still, we do not know of a way to solve the
classical factorization problem using such a factorization.
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0.12. Relation with the toroidalization problem. In [3], Theorem 2.1, it is
proven that given a morphism of projective varietiesX → B, there are modifications
mX : X ′ → X and mB : B′ → B, with a lifting X ′ → B′ which has a toroidal
structure. The toroidalization problem (see [3], [4], [43]) is that of obtaining such
mX and mB which are composites of blowings up with nonsingular centers (maybe
even with centers supported only over the locus where X → B is not toroidal).

The proof in [3] relies on the work of de Jong [36] and methods of [2]. The authors
of the present paper have tried to use these methods to approach the factorization
conjectures, so far without success; one notion we do use in this paper is the torific
ideal of [2]. It would be interesting if one could turn this approach on its head and
prove a result on toroidalization using factorization.

More on this in section 6.2.

0.13. Relation with the proof in [82]. Another proof of the weak factorization
theorem was given independently by the fourth author in [82]. The main difference
between the two approaches is the following: in the current paper we are using
objects such as torific ideals defined locally on each quasi-elementary piece of a
cobordism. The blowing up of a torific ideal gives the quasi-elementary cobordism
a toroidal structure. These toroidal modifications are then pieced together using
canonical resolution of singularities. In contrast, in [82] one works globally: a
new combinatorial theory of stratified toroidal varieties and appropriate morphisms
between them is developed, which allows one to apply Morelli’s π-desingularization
algorithm directly to the entire birational cobordism. This stratified toroidal variety
structure on the cobordism is somewhere in between our notions of locally toric and
toroidal structures.

0.14. Outline of the paper. In section 1 we discuss locally toric and toroidal
structures. We also use elimination of indeterminacies of a rational map to reduce
the proof of Theorem 0.1.1 to the case where φ is a projective birational morphism.

Suppose now we have a projective birational morphism φ : X1 → X2. In section
2 we apply the theory of birational cobordisms to obtain a slightly refined version of
factorization into locally toric birational maps, first proven in [81]. Our cobordism
B is relatively projective over X2, and using a geometric invariant theory analysis,
inspired by Thaddeus’s work, we show that the intermediate varieties can be chosen
to be projective over X2.

In section 3 we utilize a factorization of the cobordism B into quasi-elementary
pieces Bai , and for each piece construct an ideal sheaf I (Definition 3.1.4) whose
blowing up torifies the action of K∗ on Bai (Proposition 3.2.5). In other words,
K∗ acts toroidally on the variety obtained by blowing up Bai along I.

In section 4 we prove the weak factorization theorem by putting together the
toroidal birational maps obtained from the torification of the quasi-elementary
cobordisms (Proposition 4.2.1), and applying toroidal weak factorization. The main
tool in this step is canonical resolution of singularities.

In section 5 we prove Theorem 0.3.1. We then discuss some problems related to
strong factorization in section 6.

1. Preliminaries

1.1. Quotients. We use the following definitions for quotients. Suppose a reduc-
tive group G acts on an algebraic variety X . We denote by X/G the space of orbits,
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and by X//G the space of equivalence classes of orbits, where the equivalence re-
lation is generated by the condition that two orbits are equivalent if their closures
intersect; such a space is endowed with a scheme structure which satisfies the usual
universal property, if such a structure exists. In such a case, the space X//G is
called a categorical quotient and the space X/G is called a geometric quotient.

A special case where X//G exists as a scheme is the following: suppose there is an
affine G-invariant morphism π : X → Y . Then we have X//G = SpecY

(
(π∗OX)G

)
.

When this condition holds we say that the action of G on X is relatively affine.
A particular case of this occurs in geometric invariant theory (discussed in section

2.5), where the action of G on the open set of points which are semistable with
respect to a fixed linearization is relatively affine.

1.2. Canonical resolution of singularities and canonical principalization.
In the following (especially Lemma 1.3.1, section 4.2, section 5), we will use canon-
ical versions of Hironaka’s theorems on resolution of singularities and principaliza-
tion of an ideal, proved in [9, 79].

1.2.1. Canonical resolution. Following Hironaka, by a canonical embedded resolu-
tion of singularities W̃ → W we mean a desingularization procedure uniquely
associating to W a composite of blowings up with nonsingular centers, satisfying a
number of conditions. In particular:

(1) “Embedded” means the following: assume the sequence of blowings up is
applied when W ⊂ U is a closed embedding with U nonsingular. Denote
by Ei the exceptional divisor at some stage of the blowing up. Then (a) Ei
is a normal crossings divisor, and has normal crossings with the center of
blowing up, and (b) at the last stage W̃ has normal crossings with Ei.

(2) “Canonical” means “functorial with respect to smooth morphisms and field
extensions”, namely, if θ : V → W is either a smooth morphism or a field
extension, then the formation of the ideals blown up commutes with pulling
back by θ; hence θ can be lifted to a smooth morphism θ̃ : Ṽ → W̃ .

In particular: (a) if θ : W → W is an automorphism (of schemes, not necessarily
over K), then it can be lifted to an automorphism W̃ → W̃ , and (b) the canonical
resolution behaves well with respect to étale morphisms: if V →W is étale, we get
an étale morphism of canonical resolutions Ṽ → W̃ .

An important consequence of these conditions is that all the centers of blowing
up lie over the singular locus of W .

We note that the resolution processes in the work of Bierstone and Milman and
of Villamayor commute with arbitrary formally smooth morphisms (in particular
smooth morphisms, field extensions, and formal completions), though the treatment
in any of the published works does not seem to state that explicitly.

1.2.2. Compatibility with a normal crossings divisor. If W ⊂ U is embedded in a
nonsingular variety, and D ⊂ U is a normal crossings divisor, then a variant of the
resolution procedure allows one to choose the centers of blowing up to have normal
crossings with Di + Ei, where Di is the inverse image of D. This follows since the
resolution setup, as in [9], allows including such a divisor in “year 0”.

1.2.3. Principalization. By canonical principalization of an ideal sheaf in a nonsin-
gular variety we mean “the canonical embedded resolution of singularities of the
subscheme defined by the ideal sheaf making it a divisor with normal crossings”;
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i.e., a composite of blowings up with nonsingular centers such that the total trans-
form of the ideal is a divisor with simple normal crossings. Canonical embedded
resolution of singularities of an arbitrary subscheme, not necessarily reduced or irre-
ducible, is discussed in section 11 of [9], and this implies canonical principalization,
as one simply needs to blow up W̃ at the last step.

1.2.4. Elimination of indeterminacies. Now let φ : W1 99KW2 be a birational map
and U ⊂ W1 an open set on which φ restricts to a morphism. By elimination of
indeterminacies of φ we mean a morphism e : W ′1 → W1, obtained by a sequence
of blowings up with nonsingular centers disjoint from U , such that the birational
map φ ◦ e is a morphism.

Elimination of indeterminacies can be reduced to principalization of an ideal
sheaf: if one is given an ideal sheaf I on W1 with blowing up W ′′1 = BlI(W1) such
that the birational map W ′′1 →W2 is a morphism, and if W ′1 →W1 is the result of
principalization of I, then the birational map W ′1 → W ′′1 is a morphism, therefore
the same is true for W ′1 →W2. If the support of the ideal I is disjoint from the open
set U where φ is an morphism, then the centers of blowing up giving W ′1 →W1 are
disjoint from U .

Proving that such an ideal I exists (say, in the nonprojective case), and in a
sufficiently natural manner for proving functoriality (even if Wi are projective), is
nontrivial. We make use of Hironaka’s version of Chow’s lemma, as follows.

We may assume that φ−1 is a morphism; otherwise we replace W2 by the closure
of the graph of φ. Now we use Chow’s lemma, proven by Hironaka in general in
[31], Corollary 2, p. 504, as a consequence of his flattening procedure: there exists
an ideal sheaf I on W1 such that the blowing up of W1 along I factors through W2.
Hence the canonical principalization of I also factors through W2.

Although it is not explicitly stated by Hironaka, the ideal I is the unit ideal in
the complement of the open set U : the blowing up of I consists of a sequence of
permissible blowings up ([31], Definition 4.4.3, p. 537), each of which is supported
in the complement of U . Another important fact is that the ideal I is invariant,
namely, it is functorial under absolute isomorphisms: if φ′ : W ′1 99KW ′2 is another
proper birational map, with corresponding ideal I ′, and θi : Wi → W ′i are isomor-
phisms such that φ′ ◦ θ1 = θ2 ◦ φ, then θ∗1I ′ = I. This follows simply because at no
point in Hironaka’s flattening procedure is there a need for any choice.

It must be pointed out that Hironaka’s flattening procedure, and therefore the
choice of the ideal I, does not commute with smooth morphisms in general — in
fact Hironaka gives an example where it does not commute with localization.

The same results hold for analytic and algebraic spaces. While Hironaka states
his result only in the analytic setting, the arguments hold in the algebraic setting
as well. See [65] for an earlier treatment of the case of varieties.

We emphasize again that Chow’s lemma in the analytic setting, and its delicate
properties in both the algebraic and analytic settings, rely on Hironaka’s difficult
flattening theorem (see [31], or the algebraic counterpart [65]).

1.3. Reduction to projective morphisms. We start with a birational map

φ : X1 99K X2

between complete nonsingular algebraic varieties X1 and X2 defined over K and
restricting to an isomorphism on an open set U .
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Lemma 1.3.1 (Hironaka). There is a commutative diagram

X ′1
φ′→ X ′2

g1 ↓ ↓ g2

X1
φ99K X2

such that g1 and g2 are composites of blowings up with nonsingular centers disjoint
from U , and φ′ is a projective birational morphism.

Proof. By Hironaka’s theorem on elimination of indeterminacies (see 1.2.4 above),
there is a morphism g2 : X ′2 → X2 which is a composite of blowings up with
nonsingular centers disjoint from U , such that the birational map h := φ−1 ◦ g2 :
X ′2 → X1 is a morphism:

X ′2
h↙ ↓ g2

X1
φ99K X2

By the same theorem, there is a morphism g1 : X ′1 → X1 which is a composite of
blowings up with nonsingular centers disjoint from U , such that φ′ := h−1 ◦ g1 :
X ′1 → X ′2 is a morphism. Since the composite h ◦ φ′ = g1 is projective, it follows
that φ′ is projective.

Thus we may replace X1 99K X2 by X ′1 → X ′2 and assume from now on that φ
is a projective morphism.

Note that, by the properties of canonical principalization and Hironaka’s flat-
tening, the formation of φ′ : X ′1 → X ′2 is functorial under absolute isomorphisms,
and the blowings up have normal crossings with the appropriate divisors. This will
be used in the proof of Theorem 0.3.1 (see section 5).

1.4. Toric varieties. Let N ∼= Zn be a lattice and σ ⊂ NR a strictly convex
rational polyhedral cone. We denote the dual lattice by M and the dual cone by
σ∨ ⊂MR. The affine toric variety X = X(N, σ) is defined as

X = SpecK[M ∩ σ∨].

For m ∈M ∩ σ∨ we denote its image in the semigroup algebra K[M ∩ σ∨] by zm.
More generally, the toric variety corresponding to a fan Σ in NR is denoted by

X(N,Σ); see [26], [62].
If X1 = X(N,Σ1) and X2 = X(N,Σ2) are two toric varieties, the embeddings

of the torus T = SpecK[M ] in both of them define a toric (i.e., T -equivariant)
birational map X1 99K X2.

Suppose K∗ acts effectively on an affine toric variety X = X(N, σ) as a one-
parameter subgroup of the torus T , corresponding to a primitive lattice point a ∈ N .
If t ∈ K∗ and m ∈M , the action on the monomial zm is given by

t∗(zm) = t(a,m) · zm,
where (·, ·) is the natural pairing on N ×M . The K∗-invariant monomials corre-
spond to the lattice points M ∩ a⊥, hence

X//K∗ ∼= SpecK[M ∩ σ∨ ∩ a⊥].

If a /∈ ±σ, then σ∨ ∩a⊥ is a full-dimensional cone in a⊥, and it follows that X//K∗

is again an affine toric variety, defined by the lattice π(N) and cone π(σ), where
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π : NR → NR/R ·a is the projection. This quotient is a geometric quotient precisely
when π : σ → π(σ) is a bijection.

1.5. Locally toric and toroidal structures. There is some confusion in the
literature between the notion of toroidal embeddings and toroidal morphisms ([42],
[3]) and that of toroidal varieties (see [20]), which we prefer to call locally toric
varieties. A crucial issue in this paper is the distinction between the two notions.

Definition 1.5.1. (1) A varietyW is locally toric if for every closed point p ∈W
there exists an open neighborhood Vp ⊂ W of p and an étale morphism
ηp : Vp → Xp to a toric variety Xp. Such a morphism ηp is called a toric
chart at p.

(2) An open embedding U ⊂W is a toroidal embedding if for every closed point
p ∈W there exists a toric chart ηp : Vp → Xp at p such that U∩Vp = η−1

p (T ),
where T ⊂ Xp is the torus. We call such charts toroidal. Sometimes we omit
the open set U from the notation and simply say that a variety is toroidal.

(3) We say that a locally toric (respectively, toroidal) chart on a variety is com-
patible with a divisor D ⊂ W if η−1

p (T ) ∩ D = ∅, i.e., D corresponds to a
toric divisor on Xp.

A toroidal embedding U ⊂ X can equivalently be specified by the pair (X,DX),
where DX is the reduced Weil divisor supported on X U . We will sometimes
interchange between U ⊂ X and (X,DX) for denoting a toroidal structure on X .
A divisor D′ is compatible with the toroidal structure (X,DX) if it is supported in
DX .

For example, the affine line A1 is clearly locally toric, A1 {0} ⊂ A1 is a toroidal
embedding, and A1 ⊂ A1 is a different toroidal embedding, where a chart at the
point 0 can be obtained by translation from the point 1.

Toroidal embeddings can be naturally made into a category:

Definition 1.5.2. Let Ui ⊂ Wi (i = 1, 2) be toroidal embeddings. A proper
birational morphism f : W1 → W2 is said to be toroidal if, for every closed point
q ∈W2 and any p ∈ f−1q, there is a diagram of fiber squares

Xp ← Vp ⊂ W1

φ ↓ ↓ ↓ f
Xq ← Vq ⊂ W2

where
• ηp : Vp → Xp is a toroidal chart at p,
• ηq : Vq → Xq is a toroidal chart at q, and
• φ : Xp → Xq is a toric morphism.

Remarks. (1) A toroidal embedding as defined above is a toroidal embedding
without self-intersection according to the definition in [42], and a birational
toroidal morphism satisfies the condition of allowability in [42].

(2) To a toroidal embedding (UW ⊂W ) one can associate a polyhedral complex
∆W , such that proper birational toroidal morphisms to W , up to isomor-
phisms, are in one-to-one correspondence with certain subdivisions of the
complex (see [42]). It follows from this that the composition of two proper
birational toroidal morphisms W1 → W2 and W2 → W3 is again toroidal:
the first morphism corresponds to a subdivision of ∆W2 , the second one to a
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subdivision of ∆W3 , hence their composition is the unique toroidal morphism
corresponding to the subdivision ∆W1 of ∆W3 .

(3) Some of the many issues surrounding these definitions we avoided discussing
here are addressed in the third author’s lecture notes [53].

We now turn to birational maps:

Definition 1.5.3 ([30], [35]). Let ψ : W1 99K W2 be a rational map defined on a
dense open subset U . Denote by Γψ the closure of the graph of ψU in W1 ×W2.
We say that ψ is proper if the projections Γψ →W1 and Γψ →W2 are both proper.

Definition 1.5.4. Let Ui ⊂Wi be toroidal embeddings. A proper birational map
ψ : W1 99K W2 is said to be toroidal if there exists a toroidal embedding UZ ⊂ Z
and a commutative diagram

Z
↙ ↘

W1
ψ99K W2

where Z →Wi (i = 1, 2) are proper birational toroidal morphisms. In particular, a
proper birational toroidal map induces an isomorphism between the open sets U1

and U2.

Remarks. (1) It follows from the correspondence between proper birational to-
roidal morphisms and subdivisions of polyhedral complexes that the com-
position of toroidal birational maps given by W1 ← Z1 → W2 and W2 ←
Z2 →W3 is again toroidal. Indeed, if Z1 →W2 and Z2 →W2 correspond to
two subdivisions of ∆W2 , then a common refinement of the two subdivisions
corresponds to a toroidal embedding Z such that Z → Z1 and Z → Z2 are
toroidal morphisms. For example, the coarsest refinement corresponds to
taking for Z the normalization of the closure of the graph of the birational
map Z1 99K Z2. The composite maps Z → Wi are all toroidal birational
morphisms.

(2) It can be shown that a morphism between toroidal embeddings which is a
toroidal birational map in the sense of Definition 1.5.4 is a toroidal morphism
in the sense of Definition 1.5.2. In other words, Definitions 1.5.2 and 1.5.4
are compatible.

For locally toric varieties, there are no satisfactory analogues of the definitions of
toroidal morphisms and birational maps. One can define a “locally toric morphism”
to be one which is toric on suitable toric charts, but this notion is neither stable
under composition nor amenable to combinatorial manipulations. An extensive and
quite delicate theory involving stratifications of locally toric varieties is developed
in [82] in order to resolve this issue. Here we use a different remedy. We define
a restrictive class of birational transformations between locally toric and toroidal
varieties, in which all charts are “uniform” over a common base Y . These are still
not stable under composition, but their local combinatorial nature suffices for our
goals. These are the only transformations we will need in the considerations of the
current paper.
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Definition 1.5.5. (1) A tightly locally toric birational transformation is a proper
birational map ψ : W1 99KW2 together with a diagram of birational maps

W1
ψ99K W2

↘ ↙
Y

between locally toric varieties W1 and W2 satisfying the following condition:
For every closed point q ∈ Y there exist a toric chart ηq : Vq → Xq at q,

and a diagram of fibered squares

W1 → Y ← W2

∪ ∪ ∪
V1 → Vq ← V2

↓ ↓ ↓
X1 → Xq ← X2

such that
(a) Vi → Xi are toric charts for Wi, i = 1, 2, and
(b) Xi → Xq are toric morphisms

(2) Analogously, let Ui ⊂ Wi be toroidal embeddings. A tightly toroidal bi-
rational transformation between them is a tightly locally toric birational
transformation ψ : W1 99K W2 where the toric charts above can be chosen
to be toroidal.

Remark. While tightly locally toric birational transformations are essential in our
arguments, tightly toroidal transformations are not: the argument used before to
show that a composition of toroidal birational maps is toroidal shows that a tightly
toroidal birational transformation gives a toroidal birational map. This is the only
property of such transformations we will use.

1.6. Weak factorization for toroidal birational maps. The weak factoriza-
tion theorem for proper birational toric maps can be extended to the case of proper
birational toroidal maps. This is proved in [4] for toroidal morphisms, using the
correspondence between birational toroidal morphisms and subdivisions of polyhe-
dral complexes. The general case of a toroidal birational map W1 ← Z → W2 can
be deduced from this, as follows. By toroidal resolution of singularities we may
assume Z is nonsingular. We apply toroidal weak factorization to the morphisms
Z →Wi, to get a sequence of toroidal birational maps

W1 =V1 99K V2 99K · · · 99K Vl−1 99K Vl = Z 99K Vl+1 99K · · · 99K Vk−1 99K Vk=W2

consisting of toroidal blowings up and down with nonsingular centers.
We state this result for later reference:

Theorem 1.6.1. Let U1 ⊂ W1 and U2 ⊂ W2 be nonsingular toroidal embeddings.
Let ψ : W1 99KW2 be a proper toroidal birational map. Then φ can be factored into
a sequence of toroidal birational maps consisting of toroidal blowings up and down
of nonsingular centers in nonsingular toroidal embeddings.

This does not immediately imply that one can choose a factorization satisfying a
projectivity statement as in the main theorem, or in a functorial manner. We will
show these facts in sections 2.7 and 5, respectively. It should be mentioned that if
toric strong factorization is true, then the toroidal case follows.
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1.7. Locally toric and toroidal actions.

Definition 1.7.1 (see [60], p. 198). Let V and X be varieties with relatively affine
K∗-actions, and let η : V → X be a K∗-equivariant étale morphism. Then η is said
to be strongly étale if

(i) the quotient map V//K∗ → X//K∗ is étale, and
(ii) the natural map

V → X ×
X//K∗

V//K∗

is an isomorphism.

Definition 1.7.2. (1) Let W be a locally toric variety with a K∗-action, such
that W//K∗ exists. We say that the action is locally toric if for any closed
point p ∈ W we have a toric chart ηp : Vp → Xp at p and a one-parameter
subgroup K∗ ⊂ Tp of the torus in Xp, satisfying
• Vp = π−1πVp, where π : W →W//K∗ is the projection;
• ηp is K∗-equivariant and strongly étale.

(2) If U ⊂ W is a toroidal embedding, we say that K∗ acts toroidally on W if
the charts above can be chosen toroidal.

The definition above is equivalent to the existence of the following diagram of
fiber squares:

Xp ← Vp ⊂ W
↓ ↓ ↓ f

X//K∗ ← Vp//K
∗ ⊂ W//K∗

where the horizontal maps provide toric (resp. toroidal) charts in W and W//K∗.
It follows that the quotient of a locally toric variety by a locally toric action is again
locally toric; the same holds in the toroidal case.

Remark. If we do not insist on the charts being strongly étale, then the mor-
phism of quotients may fail to be étale. Consider, for instance, the space X =
Spec K[x, x−1, y] with the action t(x, y) = (t2x, t−1y). The quotient is X/K∗ =
Spec K[xy2]. There is an equivariant étale cover V = Spec K[u, u−1, y] with the
action t(u, y) = (tu, t−1y), where the map is defined by x = u2. The quotient is
V/K∗ = Spec K[uy], which is a branched cover of X/K∗, since xy2 = (uy)2.

The following lemma shows that locally toric K∗-actions are ubiquitous. We
note that it can be proven with fewer assumptions; see [81], [53].

Lemma 1.7.3. Let W be a nonsingular variety with a relatively affine K∗-action,
that is, the scheme W//K∗ exists and the morphism W → W//K∗ is an affine
morphism. Then the action of K∗ on W is locally toric.

Proof. Taking an affine open set in W//K∗, we may assume that W is affine. We
embed W equivariantly into a projective space and take its completion (see, e.g.,
[75]). After applying equivariant resolution of singularities to this completion (see
section 1.2) we may also assume that W is a nonsingular projective variety with a
K∗-action, and W ⊂W is an affine invariant open subset.

Let p ∈ W be a closed point. Since W is complete, the orbit of p has a limit
point q = limt→0 t(p) in W . Now q is fixed by K∗, hence K∗ acts on the cotangent
space mq/m

2
q at q. Since K∗ is reductive, we can lift a set of eigenvectors of this
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action to semi-invariant local parameters x1, . . . , xn at q. These local parameters
define a K∗-equivariant étale morphism ηq : Vq → Xq from an affine K∗ invariant
open neighborhood Vq of q to the tangent space Xq = Spec(Sym mq/m

2
q) at q. The

latter has a structure of a toric variety, where the torus is the complement of the
zero set of

∏
xi.

Separating the parameters xi into K∗-invariants and noninvariants, we get a
factorization Xq = X0

q × X1
q , where the action of K∗ on X1

q is trivial and the
action on X0

q has 0 as its unique fixed point. Thus we get a product decomposition
Xq//K

∗ = X0
q //K

∗ ×X1
q .

By Luna’s Fundamental Lemma ([51], Lemme 3), there exist affine K∗-invariant
neighborhoods V ′q of q andX ′q of 0, such that the restriction η′q : V ′q → X ′q is strongly
étale. Consider first the case q ∈ W , in which case we may replace p by q. Denote
Z = XK∗

q ∩X ′q. Then Z ⊂ XK∗

q ' X1
q is affine open, and, using the direct product

decomposition above, X0
q × Z ⊂ Xq is affine open. Denote X ′′q = X ′q ∩ X0

q × Z.
This is affine open in Xq, and it is easy to see that X ′′q //K∗ → Xq//K

∗ is an
open embedding: an orbit in X ′′q is closed if and only if it is closed in Xq. Writing
V ′′q = η′q

−1
X ′′q , it follows that V ′′q → Xq is a strongly étale toric chart.

In the case q /∈ W , replace Vq by V ′′q . Now ηq is injective on any orbit, and
therefore it is injective on the orbit of p. Let Xp ⊂ Xq be the affine open toric
subvariety in which the torus orbit of ηq(p) is closed, and let Vp = η−1

q Xp ∩W .
Now consider the restriction η : Vp → Xp, where the K∗-orbits of p and η(p)
are closed. By Luna’s Fundamental Lemma there exist affine open K∗-invariant
neighborhoods V ′p ⊂ Vp and X ′p ⊂ Xp of ηp(p) such that the restriction η : V ′p → X ′p
is a strongly étale morphism. Since Xp/K

∗ is a geometric quotient, we have an open
embedding X ′p/K

∗ ⊂ Xp/K
∗ and we have a strongly étale toric chart Vp → Xp.

It remains to show that the charts can be chosen saturated with respect to the
projection π : W → W//K∗. If the orbit of p has a limit point q = limt→0 t · p or
q = limt→∞ t ·p in W , which is necessarily unique as π is affine, then an equivariant
toric chart at q also covers p. So we may replace p by q and assume that the orbit
of p is closed. Now π(W Vp) is closed and does not contain π(p), so we can choose
an affine neighborhood Y in its complement, and replace Vp by π−1Y .

2. Birational cobordisms

2.1. Definitions.

Definition 2.1.1 ([81]). Let φ : X1 99K X2 be a birational map between two
algebraic varieties X1 and X2 over K, isomorphic on an open set U . A normal
algebraic variety B is called a birational cobordism for φ and denoted by Bφ(X1, X2)
if it satisfies the following conditions:

(1) The multiplicative group K∗ acts effectively on B = Bφ(X1, X2).
(2) The sets

B− := {x ∈ B : limt→0 t(x) does not exist in B}
and B+ := {x ∈ B : limt→∞ t(x) does not exist in B}

are nonempty Zariski open subsets of B.
(3) There are isomorphisms

B−/K
∗ ∼→ X1 and B+/K

∗ ∼→ X2.
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(4) Considering the rational map ψ : B− 99K B+ induced by the inclusions
(B− ∩B+) ⊂ B− and (B− ∩B+) ⊂ B+, the following diagram commutes:

B−
ψ99K B+

↓ ↓
X1

φ99K X2

We say that B respects the open set U if U is contained in the image of
(B− ∩B+)/K∗.

Definition 2.1.2 ([81]). Let B = Bφ(X1, X2) be a birational cobordism, and let
F ⊂ BK∗ be a subset of the fixed-point set. We define

F+ = {x ∈ B| limt→0 t(x) ∈ F},
F− = {x ∈ B| limt→∞ t(x) ∈ F},
F± = F+ ∪ F−.

Definition 2.1.3 ([81]). Let B = Bφ(X1, X2) be a birational cobordism. We de-
fine a relation ≺ among connected components of BK

∗
as follows: let F1, F2 ⊂ BK

∗

be two connected components, and set F1 ≺ F2 if there is a point x /∈ BK∗ such
that limt→0 t(x) ∈ F1 and limt→∞ t(x) ∈ F2.

Definition 2.1.4. A birational cobordism B = Bφ(X1, X2) is said to be quasi-
elementary if any two connected components F1, F2 ⊂ BK

∗
are incomparable with

respect to ≺.

Note that this condition prohibits, in particular, the existence of a “loop”, namely
a connected component F and a point y /∈ F such that both limt→0 t(x) ∈ F and
limt→∞ t(x) ∈ F .

Definition 2.1.5 ([81]). A quasi-elementary cobordism B is said to be elementary
if the fixed point set BK

∗
is connected.

Definition 2.1.6 (cf. [56], [81]). We say that a birational cobordism

B = Bφ(X1, X2)

is collapsible if the relation ≺ is a strict pre-order, namely, there is no cyclic chain
of fixed point components

F1 ≺ F2 ≺ . . . ≺ Fm ≺ F1.

2.2. The main example. We now recall a fundamental example of an elementary
birational cobordism in the toric setting, discussed in [81]:

Example 2.2.1. Let B = An = SpecK[z1, . . . , zn] and let t ∈ K∗ act by

t(z1, . . . , zi, . . . , zn) = (tα1z1, . . . , t
αizi, . . . , t

αnzn).

We assume K∗ acts effectively, namely gcd(α1, . . . , αn) = 1. We regard An as a
toric variety defined by a lattice N ∼= Zn and a nonsingular cone σ ∈ NR generated
by the standard basis

σ = 〈v1, . . . , vn〉.

The dual cone σ∨ is generated by the dual basis v∗1 , . . . , v
∗
n, and we identify zv

∗
i = zi.

The K∗-action then corresponds to a one-parameter subgroup

a = (α1, . . . , αn) ∈ N.
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We assume that a /∈ ±σ. We have the obvious description of the sets B+ and B−:

B− = {(z1, . . . , zn); zi 6= 0 for some i with αi = (v∗i , a) < 0},
B+ = {(z1, . . . , zn); zi 6= 0 for some i with αi = (v∗i , a) > 0}.

We define the upper boundary and lower boundary fans of σ to be

∂−σ = {x ∈ σ;x+ ε · a 6∈ σ for all ε > 0},
∂+σ = {x ∈ σ;x+ ε · (−a) 6∈ σ for all ε > 0}.

Then we obtain the description of B+ and B− as the toric varieties corresponding
to the fans ∂+σ and ∂−σ in NR.

Let π : NR → NR/R · a be the projection. Then B//K∗ is again an affine toric
variety defined by the lattice π(N) and cone π(σ). Similarly, one can check that the
geometric quotients B−/K∗ and B+/K

∗ are toric varieties defined by fans π(∂+σ)
and π(∂−σ). Since both π(∂+σ) and π(∂−σ) are subdivisions of π(σ), we get a
diagram of birational toric maps

B−/K
∗ ϕ99K B+/K

∗

↘ ↙
B//K∗

It is easy to see (see, e.g., [81]) that the varieties B±/K∗ have only abelian
quotient singularities. Moreover, the map φ can be factored as a weighted blowing
up followed by a weighted blowing down.

More generally, one can prove that if Σ is a subdivision of a convex polyhedral
cone in NR with lower boundary ∂−Σ and upper boundary ∂+Σ relative to an
element a ∈ N ±Σ, then the toric variety corresponding to Σ, with the K∗-action
given by the one-parameter subgroup a ∈ N , is a birational cobordism between the
two toric varieties corresponding to π(∂−Σ) and π(∂+Σ) as fans in NR/R · a.

For the details, we refer the reader to [56], [81] and [4].

2.3. Construction of a cobordism. It was shown in [81] that birational cobor-
disms exist for a large class of birational maps X1 99K X2. Here we deal with a
very special case.

Theorem 2.3.1. Let φ : X1 → X2 be a projective birational morphism between
complete nonsingular algebraic varieties, which is an isomorphism on an open set
U . Then there is a complete nonsingular algebraic variety B with an effective K∗-
action, satisfying the following properties:

(1) There exist closed embeddings ι1 : X1 ↪→ B
K∗

and ι2 : X2 ↪→ B
K∗

with
disjoint images.

(2) The open subvariety B = B (ι1(X1) ∪ ι2(X2)) is a birational cobordism
between X1 and X2 respecting the open set U .

(3) There is a coherent sheaf E on X2, with a K∗-action, and a closed K∗-
equivariant embedding B ⊂ P(E) := ProjX2 SymE.

Proof. Let J ⊂ OX2 be an ideal sheaf such that φ : X1 → X2 is the blowing up
morphism of X2 along J and JU = OU . Let I0 be the ideal of the point 0 ∈ P1.
Consider W0 = X2 × P1 and let p : W0 → X2 and q : W0 → P1 be the projections.
Let I = (p−1J + q−1I0)OW0 . Let W be the blowing up of W0 along I. (Paolo
Aluffi has pointed out that this W is used when constructing the deformation to
the normal cone of J .)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



548 D. ABRAMOVICH, K. KARU, K. MATSUKI, AND J. W LODARCZYK

We claim that X1 and X2 lie in the nonsingular locus of W . For X2
∼= X2 ×

{∞} ⊂ X2×A1 ⊂W this is clear. Since X1 is nonsingular, embedded in W as the
strict transform of X2×{0} ⊂ X2×P1, to prove that X1 lies in the nonsingular locus
it suffices to prove that X1 is a Cartier divisor in W . We look at local coordinates.
Let A = Γ(V,OV ) for some affine open subset V ⊂ X2, and let y1, . . . , ym be a set
of generators of J on V . Then on the affine open subset V × A1 ⊂ X2 × P1 with
coordinate ring A[x], the ideal I is generated by y1, . . . , ym, x. The charts of the
blowing up containing the strict transform of {x = 0} are of the form

SpecA
[
y1

yi
, . . . ,

ym
yi
,
x

yi

]
= SpecA

[
y1

yi
, . . . ,

ym
yi

]
× SpecK

[
x

yi

]
,

where K∗ acts on the second factor. The strict transform of {x = 0} is defined by
x
yi

, hence it is Cartier.
Let B → W be a canonical resolution of singularities. Then conditions (1)

and (2) are clearly satisfied. For condition (3), note that B → X2 × P1, being a
composition of blowings up of invariant ideals, admits an equivariant ample line
bundle. Twisting by the pullback of OP1(n) we obtain an equivariant line bundle
which is ample for B → X2. Replacing this by a sufficiently high power and pushing
forward we get E.

We refer the reader to [81] for more details.
We call a variety B as in the theorem a compactified, relatively projective cobor-

dism.

2.4. Collapsibility and projectivity. LetB = Bφ(X1, X2) be a birational cobor-
dism. We seek a criterion for collapsibility of B.

Let C be the set of connected components of Bφ(X1, X2)K
∗
, and let χ : C → Z

be a function. We say that χ is strictly increasing if F ≺ F ′ ⇒ χ(F ) < χ(F ′). The
following lemma is obvious:

Lemma 2.4.1. Assume there exists a strictly increasing function χ. Then ≺ is a
strict pre-order, and B is collapsible. Conversely, suppose B is collapsible. Then
there exists a strictly increasing function χ.

Remark. It is evident that every strictly increasing function can be replaced by one
which induces a strict total order. However, it will be convenient for us to consider
arbitrary strictly increasing functions.

Let χ be a strictly increasing function, and let a1 < a2 < · · · < am ∈ Z be the
values of χ.

Definition 2.4.2. We denote
(1) Fai =

⋃
{F |χ(F ) = ai}.

(2) F+
ai =

⋃
{F+|χ(F ) = ai}.

(3) F−ai =
⋃
{F−|χ(F ) = ai}.

(4) F±ai =
⋃
{F±|χ(F ) = ai}.

(5) Bai = B (
⋃
{F−|χ(F ) < ai} ∪

⋃
{F+|χ(F ) > ai} ).

The following is an immediate extension of Proposition 1 of [81].

Proposition 2.4.3. (1) Bai is a quasi-elementary cobordism.
(2) For i = 1, . . . ,m− 1 we have (Bai)+ = (Bai+1)−.
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The following is an analogue of Lemma 1 of [81] in the case of the cobordisms
we have constructed.

Proposition 2.4.4. Let E be a coherent sheaf on X2 with a K∗-action, and let
B ⊂ P(E) be a compactified, relatively projective cobordism embedded K∗-equi-
variantly. Then there exists a strictly increasing function χ for the cobordism B =
B (X1 ∪X2). In particular, the cobordism is collapsible.

Proof. Since K∗ acts trivially on X2, and since K∗ is reductive, there exists a direct
sum decomposition

E =
⊕
b∈Z

Eb

where Eb is the subsheaf on which the action of K∗ is given by the character t 7→ tb.
Denote by b0, . . . , bk the characters which figure in this representation. Note that
there are disjoint embeddings P(Ebj ) ⊂ P(E).

Let p ∈ B be a fixed point lying in the fiber P(Eq) over q ∈ X2. We choose a
basis

(xb0,1, . . . , xb0,d0 , . . . , xbk,1, . . . , xbk,dk)

of Eq where xbj ,ν ∈ Ebj and use the following lemma:

Lemma 2.4.5. Suppose p ∈ P(Eq)K
∗

is a fixed point with homogeneous coordinates

(pb0,1, . . . , pb0,d0, . . . , pbk,1, . . . , pbk,dk).

Then there is a jp such that pbj ,ν = 0 whenever j 6= jp. In particular, p ∈ P(Ebjp ) ⊂
P(E).

If F ⊂ BK∗ is a connected component of the fixed point set, then it follows from
the lemma that F ⊂ P(Ebj ) for some j. We define

χ(F ) = bj .

To check that χ is strictly increasing, consider a point p ∈ B such that limt→0 t(p) ∈
F1 and limt→∞ t(p) ∈ F2 for some fixed point components F1 and F2. Let the
coordinates of p in the fiber over q ∈ X2 be (pb0,1, . . . , pb0,d0 , . . . , pbk,1, . . . , pbk,dk).
Now

lim
t→0

t(p) ∈ P(Ebmin),

lim
t→∞

t(p) ∈ P(Ebmax),

where

bmin = min{bj : pbj ,ν 6= 0 for some ν},
bmax = max{bj : pbj ,ν 6= 0 for some ν}.

Thus, if p is not fixed by K∗, then

χ(F1) = bmin < bmax = χ(F2).
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2.5. Geometric invariant theory and projectivity. In this section we use geo-
metric invariant theory and ideas (originating in symplectic geometry) developed
by M. Thaddeus and others (see, e.g., [78]), in order to obtain a result about relative
projectivity of quotients.

We continue with the notation of the last section. Consider the sheaf E and its
decomposition according to the character. Let {bj} be the characters of the action
of K∗ on E and {ai} the subset of those bj that are in the image of χ. If we use the
Veronese embedding B ⊂ P(Sym2(E)) and replace E by Sym2(E), we may assume
that ai are even, in particular ai+1 > ai + 1 (this is a technical condition which
comes in handy in what follows).

Denote by ρ0(t) the action of t ∈ K∗ on E. For any r ∈ Z consider the “twisted”
action ρr(t) = t−r · ρ0(t). Note that the induced action on P(E) does not depend
on the “twist” r. Considering the decomposition E =

⊕
Ebj , we see that ρr(t) acts

on Ebj by multiplication by tbj−r.
We can apply geometric invariant theory in its relative form (see, e.g., [63], [33])

to the action ρr(t) of K∗. Recall that a point p ∈ P(E) is said to be semistable
with respect to ρr, written p ∈ (P(E), ρr)ss, if there is a positive integer n and a
ρr-invariant local section s ∈ (Symn(E))ρr , such that s(p) 6= 0. The main result of
geometric invariant theory implies that

Proj
X2

∞⊕
n≥0

(Symn(E))ρr = (P(E), ρr)ss//K∗;

moreover, the quotient map (P(E), ρr)ss → (P(E), ρr)ss//K∗ is affine. We can
define (B, ρr)ss analogously, and we automatically have (B, ρr)ss = B∩(P(E), ρr)ss.

The numerical criterion of semistability (see [60]) immediately implies the fol-
lowing:

Lemma 2.5.1. For 0 ≤ i ≤ m we have
(1) (B, ρai)ss = Bai .
(2) (B, ρai+1)ss = (Bai)+.
(3) (B, ρai−1)ss = (Bai)−.

In other words, the triangle of birational maps

(Bai)−/K∗
ϕi99K (Bai)+/K

∗

↘ ↙
Bai//K

∗

is induced by a change of linearization of the action of K∗.
In particular we obtain:

Proposition 2.5.2. The morphisms (Bai)+/K
∗ → X2, (Bai)−/K∗ → X2 and

Bai//K
∗ → X2 are projective.

2.6. The main result of [81]. Let B be a collapsible nonsingular birational cobor-
dism. Then we can write B as a union of quasi-elementary cobordisms B =

⋃
iBai ,

with (Bai)+ = (Bai+1)−. By Lemma 1.7.3 each Bai has a locally toric structure
such that the action of K∗ is locally toric.

Lemma 2.6.1. Let Bai be a quasi-elementary cobordism, with a relatively affine
locally toric K∗-action. Then Bai//K

∗, (Bai)−/K
∗, (Bai)+/K

∗ are locally toric
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varieties and we have a diagram of locally toric maps

(Bai)−/K∗
ϕi99K (Bai)+/K

∗

↘ ↙
Bai//K

∗

where ϕi is a tightly locally toric birational transformation.
In case Bai is nonsingular, the diagram above can be described in toric charts by

the main example in section 2.2.
If the action of K∗ on Bai is toroidal, then all these varieties and maps are also

toroidal, and ϕi is a toroidal birational map.

Proof. Let ηp : Vp → Xp be a strongly étale K∗-equivariant toric chart in Bai giving
a locally toric structure to the action of K∗. Then (Vp)− = (Bai)− ∩ Vp and the
morphism (Vp)− → (Xp)− is again strongly étale, providing locally toric structures
on the variety (Bai)−/K∗ and the morphism (Bai)−/K∗ → Bai//K

∗. Similarly for
(Bai)+.

Now we assume B ⊂ B is open in a compactified, relatively projective cobordism.
When we compose the birational transformations obtained from each Bai we get a
slight refinement of the main result of [81].

Theorem 2.6.2. Let φ : X1 99K X2 be a birational map between complete nonsin-
gular algebraic varieties X1 and X2 over an algebraically closed field K of char-
acteristic zero, and let U ⊂ X1 be an open set where φ is an isomorphism. Then
there exists a sequence of birational maps between complete locally toric algebraic
varieties

X1 = W0
ϕ199KW1

ϕ299K · · ·
ϕi−199K Wi−1

ϕi99KWi

ϕi+199K · · ·
ϕm−199K Wm−1

ϕm99KWm = X2

where
(1) φ = ϕm ◦ ϕm−1 ◦ · · · ◦ ϕ2 ◦ ϕ1,
(2) ϕi are isomorphisms on U , and
(3) for each i, the birational transformation ϕi is tightly locally toric and étale

locally equivalent to a map ϕ described in 2.2. In particular Wi have finite
abelian quotient singularities, and ϕi can be obtained as a weighted blowing
up followed by a weighted blowing down.

Furthermore, there is an index i0 such that for all i ≤ i0 the map Wi 99K X1 is a
projective morphism, and for all i ≥ i0 the map Wi 99K X2 is a projective morphism.
In particular, if X1 and X2 are projective, then all the Wi are projective.

Remark. For the projectivity claim (2), we take the first i0 terms in the factorization
to come from Hironaka’s elimination of indeterminacies in Lemma 1.3.1, which is
projective over X1, whereas the last terms come from B, which is projective over
X2, and the geometric invariant theory considerations as in Proposition 2.5.2.

2.7. Projectivity of toroidal weak factorization. The following is a refinement
of Theorem 1.6.1, in which a projectivity statement is added:

Theorem 2.7.1. Let U1 ⊂ W1 and U2 ⊂ W2 be nonsingular toroidal embeddings.
Let ψ : W1 99KW2 be a proper toroidal birational map. Then φ can be factored into
a sequence of toroidal birational maps consisting of toroidal blowings up and down
of nonsingular centers, namely:

W1 = V0
ϕ199K V1

ϕ299K · · ·
ϕi−199K Vi−1

ϕi99K Vi
ϕi+199K · · ·

ϕl−199K Vl−1
ϕl99K Vl = W2
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where
(1) φ = ϕl ◦ ϕl−1 ◦ · · · ◦ ϕ2 ◦ ϕ1,
(2) ϕi are isomorphisms on U , the embeddings U ⊂ Vi are toroidal, and ϕi are

toroidal birational maps, and
(3) either ϕi : Vi−1 99K Vi or ϕ−1

i : Vi 99K Vi−1 is a toroidal morphism obtained
by blowing up a nonsingular irreducible toroidal center.

Furthermore, there is an index i0 such that for all i ≤ i0 the map Vi 99K W1 is a
projective morphism, and for all i ≥ i0 the map Vi 99KW2 is a projective morphism.
In particular, if W1 and W2 are projective, then all the Vi are projective.

Proof. As in [4], Lemma 8.7, we reduce to the case where the polyhedral complex
of W2 is embeddable as a quasi-projective toric fan ∆2 in a space NR. Indeed
that lemma gives an embedding preserving the Q-structure for the barycentric
subdivision of any simplicial complex, and since ∆2 is nonsingular this embedding
preserves integral structures as well. A further subdivision ensures that the fan is
quasi-projective. (We note that this embedding is introduced for the sole purpose
of applying Morelli’s π-desingularization lemma directly, rather than observing that
the proof works word for word in the toroidal case.)

As in 1.3.1 we may assume W1 99KW2 is a projective morphism. Thus the com-
plex ∆1 of W1 is a projective subdivision of ∆2. Our construction of a compactified
relatively projective cobordism B for the morphism φ yields a toroidal embedding
B whose complex ∆B is a quasi-projective polyhedral cobordism lying in (N ⊕Z)R
such that π(∂+∆B) = ∆2 and π(∂−∆B) = ∆1, where π is the projection onto NR.
Moreover, the toroidal morphism B →W2 gives a polyhedral morphism ∆B → ∆2

induced by the projection π. Morelli’s π-desingularization lemma gives a projec-
tive subdivision ∆′B → ∆B, isomorphic on the upper and lower boundaries ∂±∆B,
such that ∆′B is π-nonsingular. We still have a polyhedral morphism ∆′B → ∆2.
The complex ∆′B corresponds to a toroidal birational cobordism B′ between W1

and W2. Since ∆′B is π-nonsingular, any elementary piece B′F ⊂ B′ corresponds
to a toroidal blowing up followed by a toroidal blowing down between nonsingular
toroidal embeddings, with nonsingular centers. It follows that the same holds for
every quasi-elementary piece of B′ (here the centers may be reducible, but blowing
up a reducible center is the composition of blowings up of its connected compo-
nents one at a time). As in Theorem 2.6.2 above, these toroidal embeddings can
be chosen to be projective over W2.

3. Torification

We wish to replace the locally toric factorization of Theorem 2.6.2 by a toroidal
factorization. This amounts to replacing B with a locally toric K∗-action by some
B′ with a toroidal K∗-action. We call such a procedure torification. The basic
idea, which goes back at least to Hironaka, is that if one blows up an ideal, the
exceptional divisors provide the resulting variety with useful extra structure. The
ideal we construct, called a torific ideal, is closely related to the torific ideal of [2].

3.1. Construction of a torific ideal. Let B be a normal variety with a relatively
affine K∗-action. We denote by π : B → B//K∗ the quotient morphism, which by
assumption is affine.

Consider the quasi-coherent sheaf of algebras A = π∗OB together with a K∗-
action on it. For an integer α we denote by Aα ⊂ A the subsheaf of semi-invariant
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sections f ∈ A of K∗-character α:

t∗(f) = tαf.

Definition 3.1.1. The K∗-equivariant ideal sheaf IBα on B, generated by Aα, is
called the α-torific ideal sheaf of the action of K∗.

We sometimes omit the superscript B and write Iα if there is no risk of confusion.
Let B be a locally toric, quasi-elementary cobordism with a relatively affine,

locally toric K∗-action; B = Bai for some i according to our previous notation. We
continue to denote by π : B → B//K∗ the quotient morphism.

Recall that by Definition 1.7.2 of a locally toric action, the birational cobordism
B is covered with locally toric charts of the form

Xp
ηp← Vp ⊂ B

↓ ↓ ↓ π
X//K∗ ← Vp//K

∗ ⊂ B//K∗

with both squares Cartesian and the horizontal maps étale. For a chart as above,
let IXpα be the α-torific ideal sheaf on Xp.

Lemma 3.1.2. We have

IBα |Vp = η−1
p IXpα .

Moreover, the ideal sheaf IXpα is generated by monomials of K∗-character α.

Proof. Assume that f ∈ Aα is regular at p ∈ B. Replacing Vp by a smaller open
set if necessary, we may assume that f is regular on Vp. We have

f ∈ O(Vp) = O(Xp)⊗O(Xp//K∗) O(Vp//K∗).

Now K∗ acts trivially on sections of OVp//K∗ , hence f lies in the ideal generated by
pullbacks of sections of OXp of K∗-character α. The second statement is clear.

Note that the zero function lies in every Ac, and it is conceivable that some Ic
is the zero ideal. This does not happen for a cobordism:

Lemma 3.1.3. For any c ∈ Z, the ideal IBc is nonzero.

Proof. By Lemma 3.1.2 it suffices to prove this for the ideals IXpc on the toric charts
Xp. Let X = X(N, σ) be an affine toric variety, with an effective K∗-action on X
given by a primitive lattice point a ∈ N . Since X−∩X+ is a nonempty open subset,
it follows that a /∈ ±σ. This implies that the set of points m ∈ M ∩ σ∨ such that
(m, a) = c is nonempty. Thus the set of nonzero f ∈ OXp of K∗-character α is
nonempty. Hence the ideal IXc is nonzero.

Assume further that the locally toric quasi-elementary cobordism B is nonsin-
gular, covered with a finite number of locally toric charts as above. For each chart
ηp : Vp → Xp we choose monomial coordinates z1, . . . , zn generating OXp . Let
C = {c1, . . . , cµ} be a finite set of integers containing the characters of K∗-action
on the coordinates zi for all charts. Let

I = IB = IBc1 · · · I
B
cµ

be the product of the ci-torific ideals, and let Btor → B be the normalized blowing
up of B along I. Since I is K∗-equivariant, the action of K∗ lifts to Btor. Denote
by D ⊂ Btor the total transform of the zero set of I, and UBtor = Btor D.
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Definition 3.1.4. We call IB a torific ideal and Btor → B a torific blowing up.

It follows that Btor, being the normalized blowing up of the product Ic1 · · · Icµ ,
satisfies a universal property: it is the minimal normal modification of B such that
the inverse image of Ici is principal for all i. This implies that Btor is canonically
isomorphic to the normalization of the variety obtained from B by first blowing up
Ic1 , then the inverse image of Ic2 , and so on.

3.2. The torifying property of the torific ideal. To justify the terminology of
Definition 3.1.4 we are going to show that UBtor ⊂ Btor is a toroidal embedding on
which K∗ acts toroidally. It clearly suffices to prove this for the toric varieties Xtor

p

obtained by blowing up the locally toric charts Xp along monomial ideals IXp . We
are thus led to the following problem: given a toric variety X with a K∗-action and
a divisor D ⊂ X T , when are the embedding X D ⊂ X and the K∗-action on
it toroidal?

In this situation we find it useful to keep in mind the pair (X,D) instead of
the open embedding X D ⊂ X . Denote by DX the reduced Weil divisor X T ,
and write DX = D ∪D′. Following [3], section 3, we say that (X,D) is obtained
by removing the divisor D′ from the toroidal structure (X,DX). Therefore the
question above can be rephrased as follows: which reduced Weil divisors D′ ⊂ DX

can be removed from the toroidal structure so that the resulting pair is toroidal,
with toroidal K∗-action?

Example 3.2.1. Consider the affine line X = SpecK[x], a toric variety with the
standard K∗-action x 7→ tx, t ∈ K∗, and toric divisor D = DX = {x = 0}. The
pair (X,D) is toroidal and the action of K∗ is toroidal. The pair (X, ∅) is also
toroidal, but the action on this pair is not toroidal.

Example 3.2.2. Consider the affine plane X = SpecK[x, y], a toric variety with
toric divisor DX = {xy = 0}. Consider the K∗-action (x, y) 7→ (tx, y), t ∈ K∗. If
we denote D = {x = 0}, D′ = {y = 0}, the pair (X,D) is toroidal and the action
of K∗ is toroidal. Thus the divisor D′ can be removed from the standard toroidal
structure (X,DX) keeping the action toroidal.

We start with some combinatorics. Let X = X(N, σ) be an affine toric variety.
If ρ ⊂ σ∨ is a face of σ∨, we say that ρ splits off from σ∨ with complement τ if we
have

σ∨ ∼= τ × ρ,
M ∼= Mτ ×Mρ,

where τ ⊂ σ∨ is a subcone, not necessarily a face, and Mτ (resp. Mρ) is the
sublattice of M generated by M ∩ τ (resp. M ∩ ρ).

Lemma 3.2.3. Let ρ1, . . . , ρk be a subset of the codimension 1 faces of σ∨, and
let w1, . . . , wk ∈M ∩ σ∨. The following are equivalent:

(1) For each i = 1, . . . , k the face ρi splits off from σ∨ with complement 〈wi〉:

σ∨ ∼= 〈wi〉 × ρi,
M ∼= Zwi ×Mρi .
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(2) w1, . . . , wk are linearly independent, generating a unimodular sublattice of
M , and the face ρ1∩. . .∩ρk splits off from σ∨ with complement 〈w1, . . . , wk〉:

σ∨ ∼= 〈w1, . . . , wk〉 × ρ1 ∩ . . . ∩ ρk,
M ∼= Zw1 × · · · × Zwk ×Mρ1∩...∩ρk .

Proof. The implication (1) ⇐ (2) is trivial. The converse follows by induction on
k. One writes σ∨ ∼= 〈w1〉 × ρ1 and shows that for all i = 2, . . . , k the face ρ1 ∩ ρi
splits off from ρ1 with complement 〈wi〉.

The geometric content of the lemma is the following:

Lemma 3.2.4. Let X be an affine toric variety with D1, . . . , Dk, E1, . . . , El the ir-
reducible toric divisors of X. Assume that D1, . . . , Dk are Cartier and let zw1 , . . . ,
zwk be a set of monomials defining these divisors. The following are equivalent:

(1) For each i = 1, . . . , k we can write X as a product of toric varieties

X ∼= SpecK[zwi]×Xi
∼= A1 ×Xi,

Di
∼= {0} ×Xi.

(2) We can write X as a product of toric varieties

X ∼= SpecK[zw1, . . . , zwk ]×X ′ ∼= Ak ×X ′,
Di
∼= D′i ×X ′,

where D′i are the irreducible toric divisors in Ak defined by zwi .
If these conditions are satisfied, then (X,

⋃
iEi) is a toroidal pair, i.e.,

(X
⋃
i

Ei) ⊂ X

is a toroidal embedding. If, moreover, K∗ acts on X as a subgroup of the torus and
zwi are invariant for all i = 1, . . . , k, then K∗ acts toroidally on this embedding.

Proof. The equivalence of the two conditions follows from the previous lemma.
(Note that because zwi define distinct divisors Di, the complementary faces ρi of
σ∨ are distinct.) For the last statements it suffices to cover X ∼= Ak × X ′ with
charts of the form Gkm ×X ′.

Note that (X,
⋃
iEi) in the lemma is the toroidal pair obtained from X by

removing the divisorsD1, . . . , Dk from the toroidal structure (X, (
⋃
iEi)∪(

⋃
j Dj)).

We are now ready to prove the main result of this section. Recall that B is a
nonsingular quasi-elementary birational cobordism, with relatively affineK∗-action,
and p : Btor → B is the torifying blowup constructed in section 3.1.

Proposition 3.2.5. (1) The variety Btor is a quasi-elementary cobordism, with
(Btor)+ = Btor ×B B+ and (Btor)− = Btor ×B B−.

(2) The embedding UBtor ⊂ Btor is toroidal and K∗ acts toroidally on this em-
bedding.

Proof. Let us first see that the action of K∗ on Btor is relatively affine, which
also implies that Btor is quasi-elementary: otherwise the closure of a K∗-orbit
is a complete rational curve, which cannot be contained in the fiber of an affine
morphism.
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The ideal I is defined as Ic1 · · · Icµ for some finite set of characters {c1, . . . , cµ}.
Each Ici is the ideal generated by Aci , the subsheaf of π∗OB of functions with K∗-
character ci. Therefore I is generated by J := Ac1 · · ·Acµ , which is a coherent sheaf
on B//K∗. We thus have a surjective sheaf homomorphism J ⊗OB//K∗ OB → I,
inducing a closed embedding

Proj
B

⊕
k≥0

Ik

 ⊂ B ×
B//K∗

Proj
B//K∗

⊕
k≥0

J⊗k

 .

Since the normalization morphism is finite and the quotient morphism B → B//K∗

is affine, it follows that Btor → ProjB//K∗
(⊕

k≥0 J
⊗k
)

is an affine invariant mor-
phism, showing that the action is relatively affine.

We note that (Btor)K
∗

is the inverse image of BK
∗
. For this it suffices to show

that the fiber of Btor → B over a fixed point consists of fixed points. This follows
since the coordinate ring of an affine chart in a K∗-invariant fiber of the morphism
Btor → B is generated by fractions f = f1/f2 where fi are generators of the ideal
I, hence K∗ acts trivially on f .

Combining this with the fact that Btor → B is proper, we get that x ∈ (Btor)+

if and only if its image is in B+, and similarly for (Btor)−. This proves the first
part of the proposition. For the same reason, if an open set V ⊂ B is saturated
(i.e., V = π−1π(V )), then the same holds for its inverse image V tor ⊂ Btor.

To prove that UBtor ⊂ Btor is toroidal and K∗ acts toroidally on this embedding,
we consider toric charts ηp : Vp → Xp in B giving the action of K∗ on B a locally
toric structure. For simplicity we write V = Vp, X = Xp. By Lemma 3.1.2 the
ideal I = IB restricted to V is the inverse image of the ideal IX = IXc1 · · · IXcµ in
X . It follows that the normalization Xtor of the blowing up of IX in X provides a
toric chart ηtor : V tor → Xtor for Btor such that the action of K∗ on Btor is again
locally toric. Let Dtor ⊂ Xtor be the support of the divisor defined by the total
transform of IX . Then

UBtor ∩ V tor = ηtor
−1 (

Xtor Dtor
)
,

and we are reduced to proving that (Xtor Dtor) ⊂ Xtor is a toroidal embedding
on which K∗ acts toroidally. In other words, we have to show that the irreducible
toric divisors D ⊂ Xtor that do not lie in Dtor can be removed from the standard
toroidal structure given by the toric structure, keeping the K∗-action toroidal. By
Lemma 3.2.4 we can remove them one at a time.

Write X=X(N, σ) where σ= 〈v1, . . . , vm〉, σ∨= 〈v∗1 , . . . , v∗m,±v∗m+1, . . . ,±v∗n〉,
and let K∗ act on zi = zv

∗
i by character ci. The only irreducible toric divisors in

Xtor that do not lie in the total transform of IX are among the strict transforms of
the divisors {zi = 0} ⊂ X . Consider the divisor {z1 = 0}. The ideal IXc1 contains z1.
If IXc1 is principal, then the strict transform of {z1 = 0} is a component of Dtor and
there is nothing to prove. Assume that this is not the case and choose monomial
generators for IXc1 corresponding to lattice points v∗1 ,m1, . . . ,ml in M ∩ σ∨. We
may assume that zmi are not divisible by z1. To study the strict transform of
{z1 = 0} in Xtor we first blow up IXc1 , then the rest of the IXci , and then normalize.

Let Y be an affine chart of the blowing up of X along IXc1 (which is not necessarily
normal), obtained by inverting one of the generators of IXc1 , and let D be the strict
transform of {z1 = 0} in Y . Then D is nonempty if and only if Y is the chart of
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the blowing up where we invert one of the zmi , say zm1 . We have

Y = SpecK
[
z1

zm1
,
zm2

zm1
, . . . ,

zml

zm1
, z2, . . . , zm, z

±1
m+1, . . . , z

±1
n

]
= SpecK

[ z1

zm1

]
× SpecK

[
zm2

zm1
, . . . ,

zml

zm1
, z2, . . . , zm, z

±1
m+1, . . . , z

±1
n

]
= A1 × Y ′,

where the second equality follows since z1 does not divide zmi . Here the strict
transform D of {z1 = 0} is defined by z1/z

m1, on which K∗ acts trivially.
It remains to be shown that if we blow up the ideals IXci for i 6= 1 pulled back

to Y and normalize, this product structure is preserved. We define the ideals IYci
on Y generated by all monomials on which K∗ acts by character ci. The lemma
below shows that IYci is equal to the inverse image of IXci . Hence we may blow up
IYci instead of the inverse image of IXci . Since K∗ acts trivially on z1/z

m1 , the ideals
IYci are generated by monomials in the second term of the product. Thus, blowing
up IYci preserves the product, and so does normalization.

Lemma 3.2.6. For an affine toric variety X with an action of K∗ as a one-
parameter subgroup of the torus, let IXα be the ideal generated by all monomials
on which K∗ acts by character α. If φ : Y → X is a chart of the blowing up of IXα ,
then

IYβ = IXβ OY
for all β.

Proof. Clearly IXβ OY ⊂ IYβ . For the converse, let the monomial generators of the
coordinate ring of Y be z1/zm1, z

m2/zm1, . . . , zml/zm1, z1, . . . , zm, z
±1
m+1, . . . , z

±1
n

for some generators zmi of Iα. Thus a regular monomial on Y can be written as a
product

zm = (
z1

zm1
)b1(

zm2

zm1
)b2 · · · ( z

ml

zm1
)bl · zd1

1 · · · zdnn

for some integers bi, dj , where bi, dj ≥ 0 for i = 1, . . . , l, j = 1, . . . ,m. If zm

happens to be a generator of IYβ , i.e., K∗ acts on zm by character β, then also K∗

acts on zm
′

= zd1
1 · · · zdnn by character β, and zm

′
is in IXβ OY .

Corollary 3.2.7. The embeddings UBtor± /K∗ ⊂ Btor± /K∗ are toroidal embeddings,
and the birational transformation Btor− /K∗ 99K Btor+ /K∗ is toroidal.

Proof. This is immediate from the proposition and Lemma 2.6.1.

In fact, as the following lemma, in conjunction with 3.2.6, shows, the map
Btor− /K∗ 99K Btor+ /K∗ is an isomorphism if the set {c1, . . . , cµ} in the definition of
the torific ideal I = IBc1 · · · IBcµ is chosen large enough. Since we do not need this
result, we only give a sketch of the proof.

Lemma 3.2.8. Let B = X(N, σ) = SpecK[z1, . . . , zm, z
±1
m+1, . . . , z

±1
n ] be a non-

singular affine toric variety, and assume that K∗ acts on zi by character ci. Let
α ∈ Z be divisible by all ci, and let Iα and I−α be the ideals generated by all mono-
mials of K∗-character α and −α, respectively. If B̃ is the normalization of the
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blowing up of Iα · I−α, then the birational map

B̃−/K
∗ 99K B̃+/K

∗

is an isomorphism. The same holds for any torific ideal corresponding to a set of
characters containing α and −α.

Sketch of the proof. Let σ = 〈v1, . . . , vm〉, and let π : NR → NR/R · a be the
projection from a. If π maps σ isomorphically to π(σ), then B− and B+ are
isomorphic already. Otherwise, there exist unique rays r+ ⊂ ∂+σ and r− ⊂ ∂−σ
such that the star subdivision of π(∂+σ) at π(r+) is equal to the star subdivision
of π(∂−σ) at π(r−). Now the normalized blowings up of Iα and I−α turn out to
correspond to star subdivisions of σ at r+ and r−. The resulting subdivision Σ
clearly satisfies π(∂−Σ) = π(∂+Σ).

In our arguments in the next section we will use a more detailed description of
the coordinate ring of some affine toric charts of Btor. If K∗ acts on the variable
zi via tci , and if the ideal Ici is not principal, then the strict transform of the
divisor Di = {zi = 0} is removed from the toroidal structure in (Btor, Dtor), i.e.,
it is not contained in Dtor. Assume τ is a cone in the subdivision associated to
the normalization of the blowing up of a torific ideal, and denote the rays in τ
corresponding to the divisors Di which are removed from the toroidal structure
by vi. After renumbering, we may assume that these are v1, . . . , vk. We have seen
above that for each i = 1, . . . , k the corresponding affine toric variety Y decomposes
as

Y = SpecK[zi/zmi]× Y ′i .

Here the strict transform of Di is the zero locus of zi/zmi. Since vj ∈ τ , we have
that (v∗i −mi, vj) ≥ 0 for i, j = 1, . . . , k. Since mi is positive on τ , we have

(mi, vj) = 0, i, j = 1, . . . , k,

which means that zj does not divide zmi for i, j = 1, . . . , k. We also have that zi
does not appear in any monomial in the ring of Y ′i for i = 1, . . . , k.

Applying Lemma 3.2.4 with wi = v∗i −mi, we obtain the following:

Corollary 3.2.9. Let B = X(N, σ) = SpecK[z1, . . . , zm, z
±1
m+1, . . . , z

±1
n ] be a non-

singular affine toric variety, and assume that K∗ acts on zi by character ci. Let
Y ⊂ Btor be an affine toric chart corresponding to a cone τ , and assume that the
rays in τ corresponding to divisors which are removed from the toroidal structure
are v1, . . . , vk. Then there exist mi ∈ σ∨ and a toric variety Y ′, such that

(1) (mi, vj) = 0 for i, j = 1, . . . , k,
(2) zi/z

mi are K∗-invariant,
(3) zi does not appear in any monomial in the ring of Y ′, and
(4)

Y = SpecK
[ z1

zm1
, . . . ,

zk
zmk

]
× Y ′.

Example 3.2.10. Consider B = A3 = SpecK[z1, z2, z3], where t ∈ K∗ acts as

t · (z1, z2, z3) = (t2z1, t
3z2, t

−1z3).
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We have the following generators of the torific ideals Iα:

I2 = (z1, z2z3),

I3 = (z2, z
2
1z3),

I−1 = (z3).

To illustrate Lemma 3.2.8 we also consider

I6 = (z3
1 , z

2
2 , z

2
1z2z3).

The ideal I−6 = (z6
3) is unnecessary here, being principal. Let I = I2I3I6I−1. If we

regard B = X(N, σ) as the toric variety corresponding to the cone

σ = 〈v1, v2, v3〉 ⊂ NR,
then Btor is described by the fan covered by the following four maximal cones:

σ1 = 〈v1, v1 + v3, v1 + v2〉,
σ2 = 〈v1 + v2, v1 + v3, 2v1 + 3v2, v3〉,
σ3 = 〈2v1 + 3v2, v3, 2v2 + v1, v1 + v2, v2 + v3〉,
σ4 = 〈2v2 + v1, v2 + v3, v2〉.

If we do not include the factor I6 in I, then the cones σ2 and σ3 are combined
to one nonsimplicial cone. Including I6 has the effect that Btor− /K∗ 99K Btor+ /K∗

becomes an isomorphism.

v1

v3

v2

v1 + v3
v2 + v3

v1 + v2
2v1 + 3v2

v1 + 2v2

I2

I6

I3

The torifying property can be illustrated on the affine toric variety corresponding
to σ1. The dual cone σ∨1 has the product description

σ∨1 = 〈v∗1 − (v∗2 + v∗3), v∗2 , v
∗
3〉

= 〈v∗1 − (v∗2 + v∗3)〉 × 〈v∗2 , v∗3〉.
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Thus, even if we remove the divisor {z1/z2z3 = 0} from the original toric structure
of

X(N, σ1) = Spec k[z1/z2z3, z2, z3],

we still have the toroidal embedding structure

X(N, σ1) ({z2 = 0} ∪ {z3 = 0}) ⊂ X(N, σ1).

As z1/z2z3 is invariant, the action of K∗ is toroidal. For example, at 0 ∈ X(N, σ1)
we have a toric chart

K∗ ×K2 → K ×K2 ∼= X(N, σ1),

(x1, x2, x3) 7→ (x1 − 1, x2, x3).

Globally, the divisors corresponding to the new rays

D〈v1+v2〉, D〈v1+v3〉, D〈2v1+3v2〉, D〈v1+2v2〉, D〈v2+v3〉

together with D〈v3〉 coming from I−1, are obtained through the blowing up of the
torific ideals. Considering

UBtor = Btor (D〈v1+v2〉 ∪D〈v1+v3〉 ∪D〈2v1+3v2〉 ∪D〈v1+2v2〉 ∪D〈v2+v3〉 ∪D〈v3〉)

we obtain a toroidal structure UBtor ⊂ Btor with a toroidal K∗-action.

4. A proof of the weak factorization theorem

4.1. The situation. In Theorem 2.6.2 we have constructed a factorization of the
given birational map φ into tightly locally toric birational transformations
X1 = W1− 99K W1+

∼= W2− 99K W2+ . . . Wm− 99K Wm+ = X2,
↘ ↙ ↘ ↙ ↘ ↙

Ba1//K
∗ Ba2//K

∗ Bam//K
∗

where Wi± = (Bai)±/K∗ (here Wi− is Wi−1 in the notation of Theorem 2.6.2, and
Wi+ is Wi). Since B is nonsingular, we can apply the results of section 3.

For a choice of a torific ideal I = Ic1 · · · Icµ on Bai , denote by Btorai → Bai the
corresponding torific blowing up. Write W tor

i± = Btorai±/K
∗, and U tori± = UBtorai±

/K∗.
We have a natural diagram of birational maps

W tor
i− 99K W tor

i+

↓ fi− ↘ ↙ ↓ fi+
Wi− Btorai //K

∗ Wi+

↘ ↓ ↙
Bai//K

∗

By Corollary 3.2.7 the embeddings U tori± ⊂ W tor
i± are toroidal, and the birational

transformation ϕtori : W tor
i− 99KW tor

i+ is toroidal.
We say that the ideal I = Ic1 · · · Icµ is balanced if

∑
cj = 0. It follows from

Lemma 3.1.3 that we can always enlarge the set {c1, . . . , cµ} to get a balanced
torific ideal I.

As in section 3 we denote by π : Bai → Bai//K
∗ the quotient morphism.

Lemma 4.1.1. Suppose the torific ideal I is balanced. Then the morphism fi± is
the normalized blowing up of the ideal sheaf Ii± defined as the pullback to Wi± of
π∗I ∩OBai//K∗ .
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Proof. By Lemma 3.1.2, the ideal I is generated by K∗-invariant sections, and we
can identify I as the inverse image of an ideal sheaf in Bai//K

∗ generated by the
same sections — which we can take to be π∗I ∩OBai//K∗ . Let Ii± be the pullback
of this ideal sheaf to (Bai)±/K∗ via the map (Bai)±/K∗ → Bai//K

∗. Then fi±
is the normalized blowing up of Ii± because taking the quotient by K∗ commutes
with blowing up the sheaf I.

From now on we assume that the torific ideals are chosen to be balanced. The
proof of the main theorem can be carried out without this assumption, but it would
make the presentation more complicated.

Note that if the varieties Wi± were nonsingular and the morphisms fi± were
composites of blowings up of nonsingular centers, we would get the weak factor-
ization by applying Theorem 1.6.1 to each ϕtori . This is not the case in general.
In this section we replace Wi± by nonsingular varieties and fi± by composites of
blowings up with nonsingular centers.

4.2. Lifting toroidal structures. Let W res
i± → Wi± be the canonical resolution

of singularities. Note that, since Wi+ = W(i+1)−, we have W res
i+ = W res

(i+1)−.
Denote Iresi± = Ii±OW res

i± . Let W can
i± → W res

i± be the canonical principalization
of the ideal Iresi± , and let hi± : W can

i± →W tor
i± be the induced morphism.

W can
i−

hi−→ W tor
i− 99K W tor

i+

hi+← W can
i+

↓ ↓ fi− ↘ ↙ ↓ fi+ ↓
W res
i− → Wi− Btorai //K

∗ Wi+ ← W res
i+

↘ ↓ ↙
Bai//K

∗

Denote U cani± = h−1
i±U

tor
i± . The crucial point now is to show:

Proposition 4.2.1. The embedding U cani± ⊂W can
i± is a toroidal embedding, and the

morphism W can
i± →W tor

i± is toroidal.

Proof. For simplicity of notation we drop the subscripts i and ai, as we treat
each quasi-elementary piece separately. We may assume that all the varieties
B,W±,W

tor
± ,W res

± ,W can
± and the morphisms between them are toric. Indeed, if

Vp → Xp is a toric chart at some point p ∈ W±, obtained from a toric chart in B,
we get a toric chart for W tor

± by blowing up a torific ideal in Xp, which is a toric
ideal since it is generated by monomials. Similarly, resolution of singularities and
principalization over the toric variety Xp provide toric charts for W res

± and W can
± .

The canonicity of resolution and principalization implies that the maps are toric
(i.e., torus equivariant).

Consider now the diagram of toric morphisms between toric varieties and the
corresponding diagram of fans:

W can
± → W tor

± Σcan± → Σtor±
↘ ↓ ↘ ↓

W± Σ±

Let Xτ ⊂W tor
± be an affine open toric subvariety corresponding to a cone τ ∈ Σtor± ,

and write

Xτ
∼= Ak ×Xτ ′,
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where the toric divisors D1, . . . , Dk pulled back from Ak are the ones removed in
order to define the toroidal structure on W tor

± . Let Xcan
τ be the inverse image of

Xτ in W can
± . We need to show that we have a decomposition Xcan

τ
∼= Ak ×Xcan

τ ′ ,

such that the resulting map Ak × Xcan
τ ′ → Ak × Xτ ′ is a product, with the first

factor being the identity map.
Write Xτ = Bτ/K

∗, where Bτ ⊂ Btor± is the affine open toric subvariety lying
over Xτ .

By Corollary 3.2.9, the coordinate rings of Bτ and Xτ can be written as

AXτ
∼= K[

z1

zm1
, . . . ,

zk
zmk

]⊗AXτ′ ,

ABτ
∼= K[

z1

zm1
, . . . ,

zk
zmk

]⊗ABτ′ ,

where Xτ ′ = Bτ ′/K
∗, and where zmj are monomials on which K∗ acts with the

same character as on zj , such that zi - zmj for i, j = 1, . . . , k.

Lemma 4.2.2. For each y = (y1, . . . , yk) ∈ Kk consider the automorphism θy of

B = SpecK[z1, . . . , zm, z
±1
m+1, . . . , z

±1
n ]

defined by

θy(zi) = zi + yi · zmi , i ≤ k,
θy(zi) = zi, i > k.

Then:
(1) θy defines an action of the additive group Kk on B.
(2) The action of θy commutes with the given K∗-action.
(3) The ideals Ic are invariant under this action.
(4) The action leaves B± invariant, and descends to W±.
(5) The action lifts to Btor.
(6) This action on Btor leaves the open set Bτ invariant.
(7) The induced action on Bτ descends to a fixed-point-free action of Kk on Xτ .
(8) The resulting action on Xτ is given by

θ̄y(zi/zmi) = zi/z
mi + yi; θy(f) = f for f ∈ AXτ′ .

Proof. Since zi - mj for i, j = 1, . . . , k, we have that the θy commute with each
other, and θy ◦ θy′ = θy+y′ thus defining a Kk-action. Since K∗ acts on zi and mi

through the same character, it commutes with θy. For the same reason the ideals Ic
are invariant: zα =

∏
zαii has K∗-character c if and only if θy(zα) does, therefore

θ∗yIc = Ic. Since B− = B V (
∑

c<0 Ic), we have that B− is invariant, and similarly
for B+; since the Kk-action commutes with K∗, it descends to W±. Since I =

∏
Ici ,

we have that I is Kk-invariant (i.e., θ∗yI = I) and therefore the Kk-action lifts to
Btor. Since zj - mi for i, j = 1, . . . , k, we have θy(zi/zmi) = zi/z

mi + yi. Also
since zj does not appear in monomials in ABτ′ , the action on ABτ′ is trivial, which
implies the rest of the statement.

Back to the proposition. Since W res
± → W± is the canonical resolution of sin-

gularities, the action of Kk lifts to W res
± . Since the ideal I± is generated by K∗-

invariants in I, and since the action of K∗ commutes with θy, we have that I±
is invariant under Kk, and therefore Ires± is invariant under Kk as well. Since
W can
± → W res

± is the canonical principalization of Ires± , the action of Kk lifts to
W can
± . In particular, the map W can

± →W tor
± is Kk-equivariant. By the lemma, the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TORIFICATION AND FACTORIZATION OF BIRATIONAL MAPS 563

action of Kk on the invariant open set Xτ ⊂W tor
± is fixed-point free, therefore the

action on the inverse image Xcan
τ is fixed-point free. Writing Xcan

τ ′ for the inverse
image of the Kk-slice (0, . . . , 0) × Xτ ′ , we have that Xcan

τ ′ is a Kk-slice of Xcan
τ ,

giving a decomposition W can
±
∼= Ak ×Xcan

τ ′ as needed.

4.3. Conclusion of the proof of Theorem 0.1.1. Since X1 = W1− and X2 =
Wm+ are nonsingular, we have W res

1− = W1− and W res
m+ = Wm+. For each i =

1, . . . ,m we have obtained a diagram

W can
i−

ϕcani99KW can
i+

ri− ↙
yhi− yhi+ ↘ ri+

W res
i− W tor

i−
ϕtori99KW tor

i+ W res
i+y fi− ↙ ↘ fi+

y
Wi−

ϕi99K Wi+

where

(1) the canonical principalizations ri− and ri+ are composites of blowings up
with nonsingular centers,

(2) ϕcani is a toroidal birational map.

Applying Theorem 2.7.1 to the toroidal map ϕcani we see that ϕcani is a compos-
ite of toroidal blowings up and blowings down, with nonsingular centers, between
nonsingular toroidal embeddings. Thus we get a factorization

φ : X1 = W res
1− 99KW res

1+ = W res
2− 99K · · · 99KW res

m−99KW res
m+ = X2,

where all W res
i are nonsingular, and the birational maps are composed of a sequence

of blowings up and blowings down. We do not touch the open subset U ⊂ X1 on
which φ is an isomorphism. Projectivity over X2 follows from the projectivity
statement in Theorem 2.6.2, the projectivity of W can

±i → W±i, and the projectiv-
ity statement in Theorem 2.7.1. Finally, blowing up a nonsingular center can be
factored as a sequence of blowings up of irreducible centers, simply blowing up one
connected component at a time; since blowing up is a projective operation, this
preserves projectivity. This completes the proof of Theorem 0.1.1.

5. Generalizations

5.1. Reduction to an algebraically closed overfield. We begin our proof
of Theorem 0.3.1. We claim that, in case (1) of algebraic spaces, it suffices to
prove the result in case L is algebraically closed. Let L̄ be an algebraically closed
field containing L. Given φ : X1 99K X2, isomorphic on U , consider the map
φL̄ : (X1)L̄ 99K (X2)L̄. Assuming the generalized factorization theorem applies
over such a field, we get ϕiL̄ : V̄i−1 99K V̄i. The functoriality of this factoriza-
tion guarantees that the Galois group acts on V̄i, and ϕiL̄ are Galois equivariant.
Therefore, denoting Vi = V̄i/Gal(L̄/L), we get ϕi : Vi−1 99K Vi as required.
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5.2. Reduction to an algebraically closed subfield. Still considering case (1),
suppose L ⊂ K are algebraically closed fields, and suppose we have the theorem
for algebraic spaces over fields isomorphic to L. If φ : X1 99K X2 is a birational
map over L, with factorization given by ϕi : Vi−1 99K Vi, then we claim that the
induced map ϕiK : Vi−1K 99K ViK is functorial over K. Indeed, any isomorphism
K → K ′ carries L to an isomorphic field, and the functoriality over L induces the
desired morphisms ViK → Vi

′
K′ .

5.3. Reduction to L = C. Still considering case (1), let K be algebraically closed
and let φ : X1 99K X2 be a birational map of complete algebraic spaces over K.
Then, by definition, Xi are given by étale equivalence relations Ri ⊂ Y 2

i , where Ri
and Yi are varieties over K, and φ is defined by suitable correspondences between
Yi. Also the open set U corresponds to a Zariski open set in Yi. All these varieties
can be defined over a finitely generated subfield L0 ⊂ K, and therefore over its
algebraic closure L ⊂ K. But any such L can be embedded in C. Therefore, by the
previous reductions, it suffices to consider the case of algebraic spaces over a field
L isomorphic to C.

By considering the associated analytic spaces, the GAGA principle allows us
to use structures (e.g. locally toric, toroidal) defined in the analytic category, as
long as we note that the constructions (e.g. birational cobordism, torific ideals) are
algebraic, and ensure that the resulting blowings up are functorial in the algebraic
sense, namely, independent of a choice of isomorphism L→ C.

5.4. Reduction to a projective morphism. Now we consider both cases (1)
and (2). To simplify the terminology, we use the term “birational map” to indicate
also a bimeromorphic map. Given φ : X1 99K X2 isomorphic on U , let X ′i → Xi be
the canonical principalizations of Xi U (endowed with reduced structure). It is
convenient to replace Xi by X ′i and assume from now on that Xi U is a simple
normal crossings divisor.

We note that Lemma 1.3.1 works word for word in the cases of algebraic spaces
or analytic spaces. As we have already remarked, this procedure is functorial. Also,
the centers of blowing up have normal crossings with the inverse image of Xi U .

It is also easy to see that the resulting morphism X ′1 → X ′2 is endowed with
a relatively ample line bundle which is functorial under absolute isomorphisms.
Indeed, the Proj construction of a blowing up gives a functorial relatively ample
line bundle for each blowing up. Furthermore, if f1 : Y1 → Y2 and Y2 → Y3 are given
relatively ample line bundles L1 and L2, then there is a minimal positive integer k
such that L1⊗f∗1L⊗k2 is relatively ample for Y1 → Y3; thus we can form a functorial
relatively ample line bundle for a sequence of blowings up. In an analogous manner
we can form a functorial ideal sheaf I on X ′2 such that X ′1 is the blowing up of I.

From now on we assume Xi U is a simple normal crossings divisor and φ is a
projective morphism.

5.5. Analytic locally toric structures. There are various settings in which one
can generalize locally toric and toroidal structures to algebraic and analytic spaces,
either using formal completions (see [42]), or étale charts (see [53]), or logarithmic
structures (see [38]). Here we try to keep things simple, by sticking to the analytic
situation, and modifying our earlier definitions slightly.
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An analytic toric chart Vp ⊂W , ηp : Vp → Xp is defined to be a neighborhood of
p in the euclidean topology, with ηp an open immersion in the euclidean topology.
The fact that we use open immersions simplifies our work significantly.

The notions of analytic locally toric structures, analytic toroidal embeddings,
modifications, toroidal birational maps and tightly locally toric birational transfor-
mations are defined as in the case of varieties, using analytic toric charts.

We note that in an analytic toroidal embedding, the toroidal divisors may have
self-intersections. If U ⊂ X is an analytic toroidal embedding, and if X ′ → X is
the canonical embedded resolution of singularities of X U , then X ′ U is a strict
toroidal embedding, namely one without self-intersections.

For strict toroidal embeddings, the arguments of [42] regarding rational conical
polyhedral complexes, modifications and subdivisions go through, essentially word
for word. The divisorial description of the cones (see [42], page 61) shows that the
association (U ⊂ X) 7→ ∆X of a polyhedral complex to a toroidal embedding is
functorial under absolute isomorphisms in both the analytic and algebraic sense,
and similarly for the modification associated to a subdivision.

5.6. Functorial toroidal factorization. Consider an analytic toroidal birational
map φ : W1 99K W2 of complete nonsingular toroidal embeddings U ⊂ Wi. By
the resolution of singularities argument above, we may assume U ⊂ Wi are strict
toroidal embeddings. Theorem 2.7.1 applies in this situation, but we need to make
the construction functorial. It may be appropriate to rewrite Morelli’s proof in
a functorial manner, but this would take us beyond the intended scope of this
paper. Instead we show here that the result can be made equivariant under the
automorphism group of a fan cobordism, which, assuming the axiom of choice,
implies functoriality.

Let ∆i be the polyhedral complex of U ⊂Wi. Denote by Gi the automorphism
group of ∆i. Since an automorphism of ∆i is determined by its action on the
primitive points of the rays in ∆i, these groups are finite.

Consider the barycentric subdivision B∆i → ∆i (see [42], III 2.1, or [5]). It
corresponds to a composition of blowings up BWi → Wi, which is functorial. The
group Gi acts on B∆i. The subdivision B∆i → ∆i has the following property:
given a cone σ in B∆i, an element g ∈ Gi, and a ray τ in σ such that gτ is also in
σ, we have gτ = τ . This means, in particular, that for any subgroup H ⊂ Gi and
any H-equivariant subdivision ∆ → B∆i the quotient ∆/H is also a polyhedral
complex (see [5]).

Let Z be the canonical resolution of singularities of the graph of BW1 99K BW2.
This is clearly functorial in φ. Now Z → BWi are toroidal birational morphisms,
corresponding to subdivisions ∆Z → B∆i. Let H ⊂ G1 be the subgroup stabilizing
the subdivision ∆Z → B∆1.

Fix a representative in the isomorphism class of ∆Z → B∆1, and, using the
axiom of choice, fix an isomorphism of any element of the isomorphism class with
this representative. Note that the absolute automorphism group of Z → W1 maps
to H .

We claim that in order to construct a functorial factorization of Z →W1 it suf-
fices to construct an H-equivariant combinatorial factorization of our representative
of the isomorphism class, which by abuse of notation we call ∆Z → B∆1. Indeed,
such a combinatorial H-equivariant factorization corresponds to a sequence of H-
equivariant subdivisions Σi → B∆1 such that either Σi → Σi+1 or its inverse is a
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nonsingular star subdivision on each cone, such that ∆Z → B∆1 factors through
an isomorphism ∆Z → Σ0, and such that Σm = B∆1. Pulling back by the chosen
isomorphism, we get an equivariant combinatorial factorization for every element
in the isomorphism class, which fit together to give a functorial combinatorial fac-
torization. According to the construction of [42], this functorially corresponds to a
sequence of modifications Vi → BW1 which fit together as a functorial factorization
of Z → BW1.

Now ∆Z/H → B∆1/H is a subdivision of nonsingular polyhedral complexes,
and the toroidal weak factorization theorem says that it admits a combinatorial
factorization, as a sequence composed of nonsingular star subdivisions and inverse
nonsingular star subdivisions. Lifting these subdivisions to ∆Z → B∆1, we get
an H-equivariant factorization, which in turn corresponds to a functorial toroidal
factorization of Z 99K BW1. We now apply the same procedure to Z ′ → BW2.
This gives the desired functorial toroidal factorization of φ.

5.7. Analytic toroidal C∗-actions. The nature of C∗-actions on analytic spaces
differ significantly from the case of varieties. However, the situation is almost the
same if one restricts to relatively algebraic actions.

Definition 5.7.1. Let X → S be a morphism of analytic spaces and L a relatively
ample line bundle for X → S. An action of C∗ on X,L over S is relatively algebraic
if there is an open covering S =

⋃
Si, an algebraic action of C∗ on a projective space

PNi, and a Zariski-locally-closed C∗-equivariant embedding Si ×S X ⊂ Si × PNi,
such that for some integer li we have that LliX×SSi is C∗-isomorphic to the pullback
of OPNi (1).

It is easy to see that if X → S is a projective morphism, L a line bundle, with a
relatively algebraicC∗-action, then X ⊂ ProjSSymE, where the sheaf E =

⊕k
i=1Ei

is a completely reducible C∗ sheaf.
In the analytic category we use embedded charts rather than étale ones. Ac-

cordingly, we say that a C∗-equivariant open set V ⊂ X is strongly embedded if
for any orbit O ⊂ V , the closure of O in X is contained in V . This implies that
V//C∗ → X//C∗ is an open embedding. We define an analytic locally toric C∗-
action on W using strongly embedded toric charts ηp : Vp → Xp (we still have the
requirement that Vp = π−1πVp, where π : W → W//K∗ is the projection, which
means that Vp ⊂W is also strongly embedded).

It is not difficult to show that a strongly embedded toric chart exists for each
point p ∈ B, the analogue of Luna’s fundamental lemma.

With these modifications, Lemma 1.7.3 is proven in the same manner in the
analytic setting. We also note that, if D =

∑l
i=1Di ⊂ W is a simple normal

crossings divisor, then toric charts can be chosen compatible with D. Indeed, we
only need to choose semi-invariant parameters x1, . . . , xn so that xi is a defining
equation for Di, for i = 1, . . . , l.

5.8. Analytic birational cobordisms. Analytic birational cobordisms are de-
fined the same way as in the case of varieties, with the extra assumption that the
C∗-action is relatively algebraic.

Given a projective birational morphism φ : X1 → X2 we construct a compacti-
fied, relatively projective cobordism B → X2 as in the algebraic situation, with the
following modification: using canonical resolution of singularities we make the in-
verse image of X2 U in B into a simple normal crossings divisor, crossing X1 and
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X2 normally. Note that these operations are functorial in absolute isomorphisms
of φ.

As indicated before, this construction endows B → X2 with a functorial rela-
tively ample line bundle. Since this bundle is obtained from the Proj construction
of the blowing up of an invariant ideal, it comes with a functorial C∗-action as well.

The considerations of collapsibility and geometric invariant theory work as in the
algebraic setting, leading to Theorem 2.6.2. We note that the resulting locally toric
factorization is functorial, and the toric charts on Wi can be chosen compatible
with the divisor coming from X1 U or X2 U .

5.9. Functoriality of torification and compatibility with divisors. We note
that the definition of the α-torific ideals is clearly functorial, and it is easy to make
a functorial choice of a balanced set of characters in the construction of a torific
ideal (Definition 3.1.4). The proof of its existence works as in the case of varieties.
The same is true for its torifying property. In order to make this construction
compatible with divisors, we replace the total transform D of I by adding the
inverse image of X2 U . This guarantees that the resulting toroidal structure on
Btor is compatible with the divisors coming from X2 U .

5.10. Conclusion of the proof of Theorem 0.3.1. Canonical resolution of sin-
gularities is functorial, therefore the construction of W res

± →W± is functorial. We
can now replace W res

± by the canonical principalization of the inverse image of
X2 U , making the latter a simple normal crossings divisor. Since the ideal I is
functorial, the construction of W can

± →W± is functorial, and the locally toric struc-
ture implies that the centers of blowing up in W can

± →W res
± have normal crossings

with the inverse image of X2 U . We can now apply functorial toroidal factor-
ization to the toroidal birational map W can

− 99K W can
+ . Note that the centers of

blowing up, being toroidal, automatically have normal crossings with W can
± U can± .

The theorem follows.

6. Problems related to weak factorization

6.1. Strong factorization. Despite our attempts, we have not been able to use
the methods of this paper to prove the strong factorization conjecture, even assum-
ing the toroidal case holds true.

In the construction of the torific ideal in 3.1 and the analysis of its blowing
up in 3.2 and 4.2, the assumption of the cobordism Bai being quasi-elementary
is essential. It is easy to give examples where the formation of the torific ideal
does not commute with taking affine open sets, therefore we cannot glue together
the ideals defined on the individual quasi-elementary pieces into one ideal over the
entire birational cobordism B.

One can extend each of these ideals separately, for instance by taking the Zariski
closure of its zero scheme, but the behavior of this extension (as well as others we
have considered) along B Bai is problematic.

The weak factorization theorem reduces the strong factorization conjecture to
the following problem:

Problem 6.1.1. Let X1 → X2 → · · · → Xn be a sequence of blowings up with
nonsingular centers, with Xn nonsingular, and such that the center of blowing up
of Xi → Xi+1 has normal crossings with the exceptional divisor of Xi+1 → Xn.
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Let Y → Xn be a blowing up with nonsingular center. Find a strong factorization
of the birational map X1 99K Y .

We believe that at least the threefold case of this problem is tractable.

6.2. Toroidalization.

Problem 6.2.1 (Toroidalization). Let φ : X → Y be a surjective proper mor-
phism between complete nonsingular varieties over an algebraically closed field of
characteristic 0. Do there exist sequences of blowings up with nonsingular centers
νX : X̃ → X and νY : Ỹ → Y so that the induced map φ̃ : X̃ 99K Ỹ is a toroidal
morphism? Can such maps be chosen in a functorial manner, and in such a way
that they preserve any open set where φ admits a toroidal structure?

This can be viewed as a problem of finding a Hironaka-type logarithmic desin-
gularization of a morphism. The result of [3], Theorem 2.1, gives a logarithmic
desingularization of a morphism, but not using blowings up with nonsingular cen-
ters.

A similar conjecture was proposed in [43]. We note that the toroidalization con-
jecture concerns not only birational morphisms φ but also generically finite mor-
phisms or morphisms with dimX > dim Y . The solution to the above conjecture
would reduce the strong factorization conjecture to the toroidal case, simply by con-
sidering the case of a birational morphism φ and then applying the toroidal case to
φ̃. Until recently the authors knew of a complete proof only if either dimX = 2 (see
below), or dimY = 1 (which follows immediately from resolution of singularities;
see [42], II §3). Recently, S. D. Cutkosky worked out a highly nontrivial solution
of the case dimX = 3, dim Y = 2 [18].

The conjecture is false in positive characteristics due to wild ramifications. See,
e.g., [19].

One general result which we do know is the following.

Theorem 6.2.2. Let φ : X → Y be a surjective morphism between complete va-
rieties over an algebraically closed field of characteristic 0. Then there exists a
modification νX : X̃ → X and a sequence of blowings up with nonsingular centers
νY : Ỹ → Y so that the induced map φ̃ : X̃ 99K Ỹ is a toroidal morphism.

Proof. In [3], Theorem 2.1, it is shown that modifications νX and νY such that
φ̃ is toroidal exist, assuming X and Y are projective and the generic fiber of φ is
geometrically integral. We can reduce to the projective case using Chow’s lemma.
The case where the generic fiber is not geometrically integral is resolved in the
second author’s thesis [37]. Since the latter is not widely available we give a similar
argument here. The inductive proof of [3], Theorem 2.1, reduces the problem to
the case where φ is generically finite. By Hironaka’s flattening (or by taking a
resolution of the graph of Y 99K HilbY (X)), we may assume that X → Y is finite.
Using resolution of singularities, we may assume Y is nonsingular and the branch
locus is a normal crossings divisor. By normalizing X we may assume X normal.
Denoting the complement of the branch locus by UY and its inverse image in X by
UX , Abhyankar’s lemma says that UX ⊂ X is a toroidal embedding and X → Y is
toroidal, which is what we needed.

It remains to be shown that νY can be chosen to be a sequence of blowings up
with nonsingular centers. Let Y ← Y ′ → Ỹ be an elimination of indeterminacies of
Y 99K Ỹ and let Y ′′ → Y ′ be the canonical principalization of the pullback of the
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ideal of the toroidal divisor of Ỹ . Let X ′′ → Y ′′ ×Ỹ X̃ be the normalization of the
dominant component. Then Y ′′ → Y is a sequence of blowings up with nonsingular
centers. Applying [3], Lemma 6.2, we see that X ′′ → Y ′′ is still toroidal, which is
what we needed.

Since every proper birational morphism of nonsingular surfaces factors as a se-
quence of point blowings up, we get:

Corollary 6.2.3. The toroidalization conjecture holds for a generically finite mor-
phism φ : X → Y of surfaces.

In this case, it is not difficult to deduce that there exists a minimal toroidalization
(since the configuration of intermediate blowings up in X̃ → X or Ỹ → Y forms
a tree). This result has been proven in an algorithmic manner by Cutkosky and
Piltant [19]. Similar statements can be found in [6].
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