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Abstract This paper invents the notion of torified varieties: A torification of a scheme is a
decomposition of the scheme into split tori. A torified variety is a reduced scheme of finite type
over Z that admits a torification. Toric varieties, split Chevalley schemes and flag varieties
are examples of this type of scheme. Given a torified variety whose torification is compatible
with an affine open covering, we construct a gadget in the sense of Connes–Consani and an
object in the sense of Soulé and show that both are varieties over F1 in the corresponding
notion. Since toric varieties and split Chevalley schemes satisfy the compatibility condition,
we shed new light on all examples of varieties over F1 in the literature so far. Furthermore,
we compare Connes–Consani’s geometry, Soulé’s geometry and Deitmar’s geometry, and
we discuss to what extent Chevalley groups can be realized as group objects over F1 in the
given categories.
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0 Introduction

A study seminar on F1, which was held at the Max Planck Institute for Mathematics in Bonn
in fall 2008, led to several discussions about the possibilities and limitations of the vari-
ous notions of geometries over F1 that were produced in recent years. This paper subsumes
the most relevant thoughts of those discussions. It was possible to establish a good part of
varieties over F1 in the notion of Soulé, which was further developed by Connes and Consani.
While the philosopher’s stone regarding F1-geometries is not found yet, there will be many
examples and remarks disclosing problems of the recent theories and hinting at directions
one might try to go.

The idea of constructing objects over a “field with one element” goes back to Tits in
[24], where the question about the interpretation of Weyl groups as “Chevalley groups over
F1” is posed. In recent years, a number of papers ([2–7,19–21,23,25], …) on the topic have
appeared, dealing mostly with the problem of defining a suitable notion of algebraic geometry
over such an elusive object. Several non equivalent approaches have been tried, for instance
Durov (cf. [9]) and Shai-Haran (cf. [22]) enlarged the category of schemes to obtain the
spectrum of F1 in place of Spec Z as final object, Deitmar mimicked scheme theory using
monoids (i.e. commutative semi-groups with 1) in the place of commutative rings (cf. [5–7]),
whereas Toën and Vaquié (cf. [25]) described a categorical approach in terms of functors on
monoids. There is also a more recent approach by Connes and Consani (cf. [4]) combining
these viewpoints.

Soulé proposed in [23] that varieties over F1 should be functors that admit a base extension
to Z. He gave a precise realization by considering functors from the category of flat rings
of finite type over Z to the category of finite sets together with an evaluation, i.e. a natural
transformation from this functor to the functor of homomorphisms from a fixed complex
algebra to the complexification of the given ring. Soulé showed that smooth toric varieties
admit a model over F1 in his notion. This approach was further developed by Connes and
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Consani in [3] by exchanging flat finite rings by finite abelian groups and doing some further
refinements. They mention that Soulé’s method of establishing smooth toric varieties over
F1 still works and they demonstrate this in the case of the multiplicative group scheme, affine
space and projective space. However, their focus is on Chevalley schemes. To be precise,
Connes and Consani establish split Chevalley schemes as varieties over F12 .

In the present work, we generalize methods to show that all reduced schemes of finite type
over Z that admit a decomposition by algebraic tori, dubbed torified varieties, have a model
over F1 in both Soulé’s and Connes–Consani’s notion–provided they admit an open affine
cover compatible with the decomposition. This class of schemes includes toric varieties and
split Chevalley schemes, which covers all examples in the literature so far. Grassmannians
and flag varieties are torified varieties as well, but in general, they lack the extra condition
of having a compatible atlas, which is necessary to define the base extension to Z in the
given notions. However, the class of torified varieties could be a leading example for the
development of new notions of geometries over F1.

Furthermore, we connect Deitmar’s viewpoint [5] with the previous. Namely, we construct
an embedding of Deitmar’s category of schemes over F1 that base extend to integral schemes
of finite type over Z into the category of varieties over F1. We also compare the two notions
of varieties over F1, which seem to produce similar theories except for one remarkable differ-
ence: Chevalley groups are more likely to be a variety over F1 after Soulé than they are after
Connes–Consani (see Remark 6.1.2). We show, however, that Sl(2) cannot be established as
a group object in either notion.

The paper is organized as follows. In Sect. 1, we introduce the notion of torification of a
scheme X as a finite family of immersions {ϕi : Ti ↪→ X} such that every Ti is a split torus
over Z and every geometric point of X factorizes through exactly one of such immersions.
We consider schemes with torification together with morphisms that respect the torifications,
called torified morphisms. We describe the zeta function of a torified variety over F1 and
provide a list of examples of torified varieties.

In Sect. 2, we recall the notion of Connes–Consani’s gadgets and varieties over F1,
and show how to associate a gadget L(X, T ) to every torified variety X endowed with a
torification T . We prove in Theorem 2.10 that this gadget is actually a variety providing an
F1-model for X whenever the torification is compatible with an affine open cover. In partic-
ular, this result extends the one by Connes and Consani by realizing split Chevalley schemes
over F1 (and not only over F12 ).

In Sect. 3, we recall Soulé’s approach to F1-geometry. We show in Theorem 3.11 that the
previous result (Theorem 2.10), mutatis mutandis, also holds in this case.

In Sect. 4, we recall the notion of Deitmar’s schemes over F1, and refine the equivalence
between the category of toric varieties and the category of schemes over F1 that base extend
to connected integral schemes of finite type over Z.

In Sect. 5, we compare the three aforementioned notions of geometries over the field with
one element by establishing functors between them. Deitmar’s theory can be embedded into
both the theory of Soulé and the theory of Connes and Consani. There are further several
ways to go from Connes–Consani’s world to Soulé’s world and back, but it is not clear if they
compare one-to-one as we discuss in Sect. 5.3. We summarize these results in the diagram
of Theorem 5.11.

We conclude the paper with remarks showing the boundaries of Soulé’s and Connes–Con-
sani’s geometries, mainly the impossibility of obtaining the group operation of Chevalley
schemes as a morphism over F1. Further we recollect some thoughts that might eventually
lead to new approaches to F1-geometries in future works.
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1 Torified varieties

1.1 The category of torified schemes

In this section, we will establish the definition of torified schemes and show some basic
properties. If X and S are schemes over Z, we will denote by X (S) := Hom(S, X) the set of
S-points of X . The underlying topological space of X will be denoted by Xtop , its structure
sheaf by OX , and the stalk at a point x ∈ Xtop by OX,x . Following [15, Sect. I-4.2.1] by an
immersion of schemes f : Y → X we will mean a morphism of schemes that factorizes as

Y
g→ Z ↪→ X , where Z is a locally closed subscheme of X and g is an isomorphism.

Definition 1.1 Given a scheme X , a decomposition of X consists of a family {Yi }i∈I of
locally closed (nonempty) subschemes Yi of X such that for every algebraically closed field
� one has

∐

i∈I

Yi (�) = X (�),

or equivalently as a family of locally closed subschemes such that one has the equality
∐

i∈I

|Yi | = |X | .

If this is the case, we will write for short X =
◦∐

Yi . This property implies the following
result:

Lemma 1.2 Let X =
◦∐

Yi be a decomposition of the scheme X, and let S be a scheme over
Z; then the map

∐
Yi (S) → X (S) is injective. Moreover, if S = Spec k for a field k, it is a

bijection.

Proof Denote by τi the natural immersion of Yi inside X . Assume there are α ∈ Yi (S)
and β ∈ Y j (S) mapping to the same element of X (S). Is S �= ∅, pick a geometric point
p : Spec� → S of S. One has the commutative diagram

Yi τi

��������

Spec�
p �� S

α ��������

β �������� X.

Y j
τ j

��������

By the definition of a decomposition, the commutativity of the diagram implies i = j .
Since τi = τ j is an immersion, it follows that α = β, and so the injectivity of the map∐

Yi (S) → X (S).
If k is a field and α : Spec k → X a morphism, choose an algebraic closure � of k.

The induced map Spec� factors uniquely over one Yi . As Yi → X is an immersion, α also
factors uniquely over Yi . ��

If X =
◦∐

i∈I Yi is a decomposition of X , we will consider the subset

I o := {i ∈ I | ϕi is an open immersion}.

Lemma 1.3 Let X =
◦∐

i∈I Yi . The following properties hold true:
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(1) The map
∐

i∈I Y top
i −→ Xtop is a continuous bijection.

(2) The cardinality of I o is bounded by the number of irreducible components of X. If Yi is
irreducible for every i ∈ I o, then I o stays in bijection with the irreducible components
of X.

Proof (1) This follows from the universal property of the decomposition, taking into
account that every point of Xtop is the image of some geometric point Spec� → X .

(2) If Yi → X is an open immersion, then its image contains at least one generic point
of X . It contains precisely one generic point when Yi is irreducible. Since the generic
points of X characterize the irreducible components of X , the lemma follows. ��

Corollary 1.4 If X =
◦∐

i∈I Yi is a scheme of finite type over Z, then I is a finite set.

Proof The proof is by induction on the dimension n of X . If n = 0, then X top is a discrete
space consisting of a finite number of points, and the claim of the lemma is immediate.

If n > 0, then X has a finite number of irreducible components. By the previous lemma,
I o is a finite set, and the image of (

∐
i∈I o Yi )

top in X top is a dense open subset. Thus the
image of

∐
i∈(I−I o) Yi in X defines a closed subscheme of X , which is of dimension smaller

than n. By the induction hypothesis, I − I o is finite and therefore I is so. ��

Definition 1.5 A scheme X is torifiable if it has a decomposition X =
◦∐

i∈I Ti , where for

each i ∈ I we have Ti isomorphic to G
di
m (as algebraic groups) for di ∈ N. In this case we

will say that T = {ϕi : Ti ↪→ X} is a torification of X , and call the couple (X, T ) a torified
scheme. A torified variety is a torified scheme that is reduced and of finite type over Z. A

torification X =
◦∐

i∈I Ti is affine if there is an affine open cover {U j } of X respecting the

torification, i.e. for each j there is a subset I j ⊆ I satisfying that U j =
◦∐

i∈I j
Ti .

We will denote by (X, T ) the scheme X with a fixed torification T when needed, though
often we will denote (X, T ) simply by X when there is no risk of confusion.

Definition 1.6 A torified morphism � : (X, T ) −→ (Y, S) between torified schemes X

and Y with torifications T = {Ti
τi
↪→ X}i∈I and S = {S j

σ j
↪→ Y } j∈J , respectively, is a triple

� = (ϕ, ϕ̃, {ϕi }i∈I ) where

• ϕ : X → Y is a morphism of schemes,
• ϕ̃ : I → J is a set map, and
• ϕi : Ti → Sϕ̃(i) are morphisms of algebraic groups such that for all i ∈ I the diagram

X
ϕ �� Y

Ti

τi

��

ϕi �� Sϕ̃(i)

σϕ̃(i)

��

commutes.

An affinely torified morphism is a torified morphism� : (X, T ) −→ (Y, S) between affinely
torified schemes (X, T ) and (Y, S) such that there is an affine open cover {U j } of X respect-
ing the torification T such that for every j , the image of U j under � is an affine subscheme
of Y .
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The category of torified schemes consists of torified schemes together with torified mor-
phisms. The category of torified varieties is defined as the full subcategory of the category
of torified schemes. The category of affinely torified varieties is defined as the category of
affinely torified varieties together with affinely torified morphisms.

Lemma 1.7 Let X, Y be (affinely) torified schemes over Z, then the cartesian product X ×Y
is also (affinely) torified.

Proof If X =
◦∐

i∈I Ti and Y =
◦∐

j∈J S j are (affine) torifications of X and Y , then we have

that X × Y =
◦∐
(i, j)∈I×J Ti × S j is an (affine) torification of X × Y . ��

Lemma 1.8 If X =
◦∐

i∈I Xi is a decomposition of X into torified schemes Xi , then X is
also torified.

Proof If for each Xi we have Xi =
◦∐

j∈Ji
Tj , then

◦∐
j∈∐

i∈I Ji
Tj is a torification of X . ��

1.2 Zeta functions over F1

One expects a certain zeta function ζX of a geometric object X over F1 that actually does
not depend on the particular geometry, but is the “limit q goes to 1” of the zeta functions of
the base extensions XFq = X ⊗F1 Fq . We recall the precise notion of a zeta function over F1

and calculate it in the case that X ⊗F1 Z is a torified variety.
Assume that there is a polynomial N (T ) ∈ Z[T ] such that N (q) = #XFq (Fq) whenever

q is a prime power. This polynomial is called the counting function of X . Using the formal
power series

Z(q, T ) := exp

⎛

⎝
∑

r≥1

N (qr )T r/r

⎞

⎠ ,

we define the zeta function of X as

ζX (s) := lim
q→1

Z(q, q−s)(q − 1)N (1).

We have the following result.

Theorem 1.9 (Soulé) The function ζX (s) is a rational function with integral coefficients.
Moreover, if N (x) = a0 + a1x + · · · + ad xd , then we have

ζX (s) =
d∏

i=0

(s − i)−ai .

Proposition 1.10 Let X =
◦∐

Ti be a torified variety. Put I (l) := {i ∈ I | dim Ti = l} and
δl := #I (l). Then X has a counting function, which is given by

N (q) =
dim X∑

l=0

δl(q − 1)l ∈ Z[q] .

In particular, the numbers δl are independent from the chosen torification of X.
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Proof The form of the counting function follows from #G
l
m(Fq) = (q −1)l and from Lemma

1.2. The independence of the δl from the torification can be seen as follows. Let T and S be
two torifications of X , and denote by NT (q) and NS(q) the corresponding counting functions.
For every finite field Fq we have

NT (q) = #
(∐

Ti (Fq)
)

= #
(
X (Fq)

) = #
(∐

S j (Fq)
)

= NS(q),

so NT (q) and NS(q) coincide in an infinite number of values, and henceforth they must be
equal as polynomials. ��

With this, we can calculate the zeta function for a model X of a torified variety over F1.
Let the numbers δl be defined as in the proposition. Then

N (q) =
dim X∑

l=0

δl (q − 1)l =
dim X∑

l=0

(
dim X∑

k=l

(−1)k−l
(

k

l

)
δk

)
ql ,

from where we can compute the zeta function of a torified variety by applying Theorem 1.9.
It is possible to recover all examples of zeta functions in [17] by this method since all these
examples concern torified varieties as explained in the following example section.

1.3 Examples of torified varieties

1.3.1 Tori and the multiplicative group

If X = G
d
m is a product of multiplicative groups, it admits the obvious torification given by

the identity map G
d
m → X .

1.3.2 The affine spaces A
n

The affine line admits a torification A
1 = G

0
m � G

1
m , obtained by choosing any point as the

image of G
0
m and identifying its complement with G

1
m .

By applying Lemma 1.7, and taking into account that G
r
m × G

s
m

∼= G
r+s
m we obtain a

torification of the affine spaces by

A
n = G

0
m � nG

1
m � · · · �

(
n

d

)
G

d
m � · · · � G

n
m,

where by rG
d
m we mean that we get r different copies of the torus G

d
m .

1.3.3 Toric varieties

As a general reference for toric varieties consider [11,18]. We introduce the notation for
toric varieties that is frequently used in this paper. Let � be a fan, i.e. a family of pairwise
distinct cones ordered by inclusion such that the faces of a cone in � are in � and such that
the intersection of two cones in � is a face of each of the cones (cones are always assumed
to be embedded in R

n and to be strictly convex and rational). To a cone τ ⊂ R
n of �, we

associate the semi-group Aτ = τ∨ ∩ (Zn)∨, where τ∨ ⊂ (Rn)∨ is the dual cone of τ and
(Zn)∨ is the dual lattice to Z

n in the standard basis of R
n . We put Uτ = Spec Z[Aτ ]. An

inclusion τ ⊂ τ ′ defines an inclusion of semi-groups Aτ ′ ⊂ Aτ and an open immersion of
schemes Uτ ↪→ Uτ ′ . Then the toric variety X associated to� is the direct limit of the family
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{Uτ }τ∈� relative to the immersions Uτ ↪→ Uτ ′ . In the following, we will always consider
toric varieties X together with a fixed fan �.

A morphism� → �′ of fans of toric varieties X and X ′, respectively, is map ψ̃ between
ordered sets together with a direct system of semi-group morphisms ψτ : τ → ψ̃(τ ) (with
respect to inclusion of cones) whose dual morphisms restrict to ψ∨

τ : Aψ̃(τ ) → Aτ , where τ
ranges through�. Taking the direct limit over the system of scheme morphisms Spec Z[ψ∨

τ ] :
Uτ → Uψ̃(τ ) yields a morphism ψ : X → X ′ between toric varieties. A triple (ψ, ψ̃, {ψτ })
like this is called a toric morphism. The category of toric varieties consists of toric varieties
over Z together with toric morphisms.

Let X be a toric variety with fan �. Let A×
τ be the group of invertible elements of Aτ ,

then the algebra morphism

Z[Aτ ] −→ Z[A×
τ ]

a �−→
{

a if a ∈ A×
τ ,

0 if a ∈ Aτ\A×
τ

defines an immersion of the torus Tτ = Spec Z[A×
τ ] into Uτ ⊆ X , and we obtain the well-

known decomposition of X into tori Tτ (cf. [8, §4, Prop. 2], [11, §3.1] or [18, Proposition
2,2,14]), that in our formulation reads as follows:

Proposition 1.11 The family T� = {Tτ ↪→ X}τ∈� is a torification of X.

Given a toric morphism (ψ, ψ̃, {ψτ }) : (X,�) → (X ′,�′), we obtain a torified morphism
(ϕ, ϕ̃, {ϕτ }) : (X, T�) −→ (X ′, T�′) as follows:

• ϕ = ψ : X → X ′,
• ϕ̃ = ψ̃ : � → �′,
• since the map ψτ : Aψ̃(τ ) → Aτ preserves units, it restricts to a map A×

ψ̃(τ )
→ A×

τ , and

therefore it induces a homomorphism of tori ϕτ := Spec Z[ψτ ] : Tτ → Tψ̃(τ ) = Tϕ̃(τ ).

Remark 1.12 The triple (ϕ, ϕ̃, {ϕτ }) : (X, T�) −→ (X ′, T�′) is indeed a torified morphism:
the diagram

X
ϕ �� X ′

Tτ

��

ϕτ
�� Tϕ̃(τ )

��

commutes because

X
ψ �� X ′

Uτ

��

Spec Z[ψ∨
τ ]

�� Uϕ̃(τ )

��

does.

Since {Uτ } is an affine open cover that is compatible with the torification that we have
constructed and since every toric morphism is covered by morphisms between affine open
toric subvarieties, we have the following result.
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Proposition 1.13 The torifications associated to toric varieties are affine, and the morphisms
associated to toric morphisms are affinely torified.

1.3.4 Grassmannians and their Schubert varieties

For a couple of positive integers 0 ≤ k ≤ n, the Grassmann variety Gr(k, n) = Grk(A
n) is

defined as the variety of k-planes in the affine space A
n (cf. [13, Chap. 14]).

The Grassmann varieties admit a nice decomposition in Schubert cells (cf. [14, Chap. 1.
Sect. 5] and [13, Chap. 14, Sect. 6]) indexed by the set of multi-indices

Ik,n := {i = (i1, i2, . . . , ik)| 1 ≤ i1 < i2 < · · · < ik ≤ n},
partially ordered by (i1, i2, . . . , ik) ≤ ( j1, j2, . . . , jk) if and only if il ≤ jl for l = 1, . . . , k.
To each element i of Ik,n we can associate the Schubert variety Xi and the Schubert cell Ci .
The Schubert varieties give a stratification of the Grassmannian, with Xi ⊆ X j if and only
if i ≤ j , we have Gr(k, n) = Xim , where im = (n − k + 1, . . . , n). Moreover, we have the
following result (see [14, Chap. 1, Sect. 5] for details):

Theorem 1.14 (Schubert decomposition) Each Schubert cell Ci is an affine space of dimen-

sion dim Ci = ∑k
t=1(it − t), and we have the cell decomposition

X j =
◦∐

i≤ j
Ci .

As an immediate consequence, applying Lemma 1.8 and the previous example, we obtain
a torification for all Schubert varieties, and in particular for the Grassmann varieties.

Example 1.15 Let us illustrate this example in the particular case of the Grassmannian
Gr(2, 4). This example is of particular interest in connection with the open problem of
realizing Gr(2, 4) as a variety over F1, which was posed by Soulé in [23, section 5.4]. For
the set I2,4 we get, with its partial ordering

I2,4 =
(1, 4)

��������

(1, 2) �� (1, 3)

		������

�������� (2, 4) �� (3, 4)

(2, 3)

		������

generating the corresponding Schubert cells

C1,2 ∼= A
0, C1,3 ∼= A

1, C1,4 ∼= C2,3 ∼= A
2, C2,4 ∼= A

3, C3,4 ∼= A
4,

that lead to the torification

Gr(2, 4) = C1,2 � C1,3 � C1,4 � C2,3 � C2,4 � C3,4

= A
0 � A

1 � 2A
2 � A

3 � A
4

= 6G
0
m � 12G

1
m � 11G

2
m � 5G

3
m � G

4
m .

It is worth noting that the above torification is not compatible with the usual affine open
cover of Gr(2, 4) by six 4-dimensional affine spaces, which comes from embedding Gr(2, 4)
into P

5 via the Plücker map and intersecting the image with the canonical atlas of P
5. Namely,

all 6 opens are needed to cover Gr(2, 4), but the intersection of all opens does not contain a
4-dimensional torus as a subvariety. This shows that in general we cannot expect the Grass-
mann varieties to be affinely torified.
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1.3.5 Flag varieties

Let V be a linear bundle (over a point) of rank n. For each m-tuple (d1, . . . , dm) of positive
integers, with d1 + · · · + dm = n, a flag of type (d1, . . . , dm) consists of an increasing
sequence of linear sub-bundles

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm

such that rk(Vj/Vj−1) = d j for all j = 1, . . . ,m. The set X (d1, . . . , dm) of all flags of type
(d1, . . . , dm) is a scheme, known as the flag variety of type (d1, . . . , dm). For instance, the
flag variety X (d, n − d) coincides with the Grassmannian Gr(d, n).

As in the case of the Grassmann varieties, flag varieties admit a decomposition in
Schubert cells, though their description is in general more complicated. The underlying
idea to this approach is the realization of the flag variety X (d1, . . . , dm) as the quo-
tient GLn/P(d1, . . . , dm), where P = P(d1, . . . , dm) is the standard parabolic sub-
group of GLn consisting of block upper-triangular invertible matrices with blocks of sizes
d1, . . . , dm . The Schubert cells and varieties are then parametrized by the coset space
Sn/(Sd1 × Sd2 × · · · × Sdm ) = W/WP . Each right coset modulo WP contains a unique
representative w such that we have

w(1) < w(2) < · · · < w(d1),

w(d1 + 1) < w(d1 + 2) < · · · < w(d1 + d2)

...

w(d1 + · · · + dm−1 + 1) < · · · < w(d1 + · · · + dm).

This defines the set W P of minimal representatives of W/WP . The Schubert cells in GLn/P
are the orbits CwP := (BwP)/P , where B denotes again the Borel group consisting of all the
upper triangular matrices, and the Schubert varieties XwP are defined as the closures of the
Schubert cells. A detailed description of this decomposition can be found in [12, Sect. 10.2].

Exactly as it happened with the Grassmannians, Lemma 1.8 applied to the Schubert cell
decomposition provides a torification of the flag varieties and their Schubert subvarieties.

Example 1.16 (Complete flag varieties) Consider the flag variety X = X (1, . . . , 1), that
can be identified with the quotient GLn/B. In this case, P(1, . . . , 1) = B the group of
upper-triangular matrices, and we have WP = {e} the trivial group, and thus Schubert cells
are parametrized by elements of the Weyl group W = Sn . Associated to each permutation
w ∈ Sn we construct the complete flag

Fw := 0 ⊂ 〈ew(1)〉 ⊂ · · · ⊂ 〈ew(1), . . . , ew(k)〉 ⊂ · · · .
Schubert cells are given by Cw = B Fw, we can explicitly compute the dimension as
dim Cw = l(w), the length of the permutation w, and we have the decomposition

X (1, . . . , 1) =
◦∐
w∈Sn

A
l(w),

that we can turn into a torification in the same way we did for the Grassmannian Gr(2, 4).
As it happened for the Grassmann varieties, in general it is not clear whether the above
torification is affine.
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1.3.6 Chevalley schemes

We establish an affine torification for split Chevalley schemes. As general reference, see
[10, Expose XXI and XXII] or the survey in [3, Sect. 4].

Let G be a split Chevalley scheme over Z with maximal split torus T . Let N be the nor-
malizer of T in G and W = N (C)/T (C) be the Weyl group. Let B be a Borel subgroup of G
that contains T and has unipotent radical U . Let� be the set of roots and let�+ ⊂ � be the
set of positive roots corresponding to B. Let Xr denote the additive 1-parameter subgroup
of G defined by r ∈ �. Put �w = {r ∈ �+ | w(r) < 0} and let Uw be the subgroup of U
that is generated by {Xr }r∈�w . Choose a set of representatives {nw}w∈W for W in N (Z). We
restate the Bruhat decomposition of G in the language of the present paper.

Theorem 1.17 (Bruhat decomposition) The family of inclusions of subschemes {UwnwT U
↪→ G}w∈W is a decomposition of G.

We refer to SGA3 ([10, Expose XXII, Theorem 5.7.4 and Remark 5.7.5]) for a proof.

Proposition 1.18 Let G be a split Chevalley scheme. Then there exists an affine torification
S of G.

Proof Let r be the dimension of T , let s be the dimension of U and for every w ∈ W , let sw
be the dimension of Uw , which equals the cardinality of �w. Then, as a scheme, UwnwT U
is isomorphic to A

sw × G
r
m × A

s for every w ∈ W . Since affine space and the multiplicative
group scheme are torified, Lemma 1.7 implies that UwnwT U is torified, and Theorem 1.17
together with Lemma 1.8 implies that G is torified. Since G is an affine scheme, G is affinely
torified. ��
Example 1.19 Let G = Sl(2). Let T be the diagonal torus, N its normalizer in G and B the
subgroup of upper triangular matrices. Let e = (

1 0
0 1

)
and w = (

0 1−1 0

)
, then {e, w} ⊂ N (Z)

represents the Weyl group W . In the notation of the proof of Theorem 1.18, we have r = s =
se = 1 and sw = 0, and thus we have decompositions

N = Gm � Gm ⊂ G = Gm × A
2 � Gm × A = 2Gm � 3G

2
m � G

3
m .

Remark 1.20 As established in Proposition 1.10, the counting function N (q) for every torifi-
able variety is a polynomial with non-negative integral coefficients in q −1. Thus, any variety
which counting function does not satisfy this condition cannot be torified. For instance, the
variety P

1\{0, 1,∞}, the projective line minus three points, has counting function N (q) =
q − 2 = (q − 1)− 1 and thus is not torifiable.

Another property of an irreducible torified variety is that it is rational because it contains a
dense open subscheme that is isomorphic to a split torus and split tori themselves are rational
varieties. For instance, elliptic curves cannot be torified.

It is worth noting that there are examples of rational varieties whose counting function
is a polynomial in q − 1 with nonnegative integral coefficients that cannot be torified. For
instance, one might consider the complex cone K (C) = {(x, y, z) | z2 = xy} in A

3(C),
which is already defined over Z. It has counting function NK (q) = q2. The complement
Y (C) = A

3(C) \ K (C) is also defined over Z and has counting function NY (q) = q3 −q2 =
(q − 1)3 + 2(q − 1)2 + (q − 1). Since it is dense and open in A

3 ⊂ P
3, it is a rational

variety. If Y was torifiable, it would yield an embedding G
3
m(C) ↪→ Y (C), which extends to

an automorphism of P
3(C), and the inverse map would establish an embedding of K into P

2,
which does not exist.
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2 Connes and Consani’s geometry

2.1 CC-gadgets and CC-varieties

Let us start this section by recalling some definitions from [3].

Definition 2.1 A (Connes–Consani) gadget over F1 (CC-gadget for short) is a triple X =
(X , XC, evX ) where

• X : Fab → Sets is a functor from the category of finite abelian groups to the category of
sets,

• XC is a variety over C and
• evX : X �⇒ Hom(Spec C[−], XC) = XC(C[−]) is a natural transformation.

We say that a gadget X is finite if X(D) is finite for all finite abelian groups D, and that it is
graded if X = ∐

l≥0 X (l) is a graded functor.
A morphism of CC-gadgets ϕ : (X , XC, evX ) −→ (Y , YC, evY ) consists of a pair (ϕ, ϕC)

where

• ϕ : X �⇒ Y is a natural transformation and
• ϕC : XC −→ YC is a morphism over C

such that for all finite abelian groups D the diagram

X(D)
ϕ(D)

��

evX (D)





Y (D)

evY (D)




XC(C[D])

ϕC(C[D])
�� YC(C[D])

commutes.
A morphism of gadgets ϕ is an immersion if for every finite abelian group D the map

ϕ(D) is injective, and ϕC is an immersion of schemes.

We will say that a CC-gadget is affine, projective, irreducible, et-cetera, if XC is so.

Definition 2.2 Given a reduced scheme X of finite type over Z, we define the CC-gadget
G(X) associated to X by G(X) := (X , XC, evX ), where

• X(D) := Hom(Spec Z[D], X) = X (Z[D]) for every D,
• XC := X ⊗Z C and
• evX : X (Z[−]) �⇒ XC(C[−]) is given by extension of scalars.

A morphism of schemes ϕ : X → Y induces a morphism of CC-gadgets G(ϕ) : G(X) →
G(Y ) defined by G(ϕ) := (ϕ, ϕC), where

• ϕ = ϕ∗ is the pullback by ϕ, i.e. for all f : Spec Z[D] → X we set ϕ( f ) := ϕ ◦ f .
• ϕC := ϕ ⊗Z C is the complexification of ϕ.

A finite graded CC-gadget X = (X , XC, evX ) is an affine variety over F1 in the sense of
Connes–Consani if there is a reduced affine scheme XZ of finite type over Z and an immer-
sion i : X → G(XZ) such that for all affine reduced schemes V of finite type over Z and
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all morphisms of CC-gadgets ψ : X → G(V ), there is a unique morphism ϕ : XZ → V of
schemes such that the diagram

X
i ��

ψ ����
��

��
��

� G(XZ)

G(ϕ)


�
�
�

G(V )

commutes. If X = (X , XC, evX ) is an affine variety over F1, we say that XZ is the extension
of scalars of X to Z, and we write XZ =: X ⊗F1 Z. By Yoneda’s lemma, XZ is unique up to
unique isomorphism.

Note that we have substituted “variety over Z” of the original definition in [3] by “reduced
scheme of finite type over Z”. It is however not an issue to abandon the restraint of reducibility
(in accordance with Soulé’s convention), also cf. Remark 5.9.

If we have a morphism of CC-gadgets ϕ = (ϕ, ϕC) : X → Y , and X and Y are affine
varieties over F1, then the universal property of Y yields an immersion iY : Y → G(YZ).
Hence, we get a morphism iY ◦ϕ : X → G(YZ). By the universal property of X , we obtain a
morphism ϕZ : XZ → YZ of schemes. We will write ϕZ =: ϕ ⊗F1 Z, and say that ϕZ is the
extension of scalars of ϕ to Z.

We shall restrict in this work to the class of varieties over F1 whose functor represents the
counting function of the base extension to Z, as explained below.

Definition 2.3 An affine variety X = (X , XC, evX ) over F1 is called an affine CC-vari-
ety if for every prime power q and every abelian group D of cardinality q − 1, we have
#X(D) = #XZ(Fq); when this latest property is satisfied, we say that the functor X repre-
sents the counting function of XZ, by what we simply mean that it counts the right number
of points.

We transfer Connes and Consani’s definition of a variety over F1 (cf. [3, para. 3.4] for
an explanation on how to go from the affine to the general case) to this restricted class.
This yields a class of F1-varieties whose functor represents its counting function (in the
same sense as for affine F1-vaieties). It was suggested by Connes and Consani themselves
([3, Sect. 3]) that this would be a meaningful restriction. We need this restriction to construct
in Sect. 5.3 the functor FCC→S from Connes–Consani’s F1-geometry to Soulé’s F1-geometry.
We will see, however, that this restricted class contains a large class of interesting examples.

Definition 2.4 Let X = (X , XC, evX ) and U = (U ,UC, evU ) be finite graded CC-gadgets
over F1. A graded morphism is a morphism (ϕ, ϕC) : U → X such that ϕ(D) restricts

to a map ϕ(l)(D) : U (l)(D) → X (l)(D) for every l ≥ 0 and every finite abelian group D.
A morphism (ϕ, ϕC) : U → X of finite graded CC-gadgets is called an open immersion if
it is a graded immersion such that ϕC : UC → XC is an open immersion and if

ϕ(U (D)) = {x ∈ X(D)| Im(evX (x)) ⊆ UC} .
If such an open immersion is fixed, U is called an open CC-subgadget of X .

An open affine cover of X is a family {Ui }i∈I of open affine CC-subgadgets such that⋃
i∈I Ui (D) = X(D) and {Ui,C} is an open affine cover of XC. A CC-variety is a finite

graded CC-gadget X that has an open affine cover by affine CC-varieties.
If U is an open CC-subgadget of a CC-variety X that is a CC-variety itself, we call U

an open CC-subvariety of X . Let {U j } be the family of all open CC-subvarieties of X . The
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extension of scalars (or the base extension) of X from F1 to Z is the direct limit over the
family {U j,Z} relative to all canonical inclusions, and it is denoted by XZ = X ⊗F1 Z.

A morphism of CC-varieties ϕ : X → Y is a gadget morphism between CC-varieties
X and Y such that the family {X j } j∈J of all open affine CC-subvarieties whose images Y j

under ϕ is affine covers X .

Note that in Sect. 5.3, we will restrict the morphisms between CC-varieties in order to
compare Connes–Consani’s notion with the one of Soulé.

Further note that the intersection of two open CC-subvarieties of a given CC-variety X is
again a CC-subvariety. This implies that the functor of X represents the counting function
of XZ. Further, we have a base extension to Z for morphisms between CC-varieties. More
precisely, Lemma 3.5 holds, mutatis mutandis, for CC-varieties.

2.2 Affinely torified varieties as CC-varieties

Let (X, T ) be a torified variety. We define a CC-gadget L(X, T ) := (X , XC, evX ) over F1

consisting of the following data:

• The graded functor X = {X (l)}l≥0 defined by

X (l) : Fab −→ Sets

D �−→
∐

i∈I (l)

Hom(Ai , D)

for every l ≥ 0, where I (l) = {i ∈ I | dim Ti = l} and Ai := Homalg−gr (Ti ,Gm).
• The complex variety XC := X ⊗Z C.
• For every i ∈ I , the evaluation

evX (D) : Hom(Ai , D) ↪→ Hom(C[Ai ],C[D]) ⊂ Hom(Spec C[D], XC).

The following is a well known result in the theory of algebraic groups (cf. [1, Sect. 1.5]
or [26, Sect. 1.4]).

Proposition 2.5 Let G = Spec R and T = Spec S be affine algebraic groups. The coordi-
nate rings R and S are Hopf algebras, and we have the equality

Homalg−gr (G, T ) = HomHop f (S, R).

In our particular situation if R = Z[D] and S = Z[A] are group rings for some abelian
groups A and D, with Hopf algebra structure given in the usual way, since group-like elements
in the Hopf algebra Z[A] are precisely the elements of A, we have

HomHop f (Z[A],Z[D]) = Hom(A, D),

and we obtain the following consequence:

Corollary 2.6 Let A be a free abelian group of rank d, Z[A] its group ring with the usual
Hopf algebra structure, and T = Spec Z[A] the torus of A. Then the homomorphism

A −→ Homalg−gr (T,Gm),

mapping a ∈ A to the morphism ϕa : T → Gm = Spec Z[t, t−1] defined by ϕ#
a (t) = a, is

an isomorphism of algebraic groups.
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Using this, the CC-gadget L(X, T ) := (X , XC, evX ) can also be defined in an equivalent
way by

• X(D) := ∐
i∈I Homalg−gr (G, Ti ), where G = Spec Z[D],

• XC := X ⊗Z C,
• for every i ∈ I ,

evX (D) : Hom(G, Ti ) ↪→ Hom(G ⊗Z C, Ti ⊗Z C) ⊆ Hom(G ⊗Z C, XC).

Furthermore, it follows that for every i ∈ I , we have Ai � Z
dim Ti . Fixing these isomor-

phisms yields

X(D) =
∐

i∈I

Hom(Ai , D) =
∐

i∈I

Ddim Ti .

Remark 2.7 We recover Connes–Consani’s construction for the CC-gadgets base extending
to the multiplicative group Gm and affine space A

n by the use of the obvious torification Gm =
Gm for the multiplicative group and A

1 = {0}� (
A

1\{0}) for the affine line, respectively, the
product torification for higher dimensional affine space (cf. Sects. 1.3.1 and 1.3.2). Indeed,
let X be the multiplicative group or affine space and Ti = Spec Z[Ai ] be a torus in the torifi-
cation as described above. Let g ∈ Hom(Ai , D), then evX (D)(g) ∈ Hom(Spec C[D], XC)

is determined by ψ : (Spec C[D]) (C) → XC(C). For a character

χ ∈ Hom(D,C×) � Hom(Spec C,Spec C[D]) = (Spec C[D])(C),
we have ψ(χ) := (τi ⊗Z C)

(
(χ(g j ) j=1,...,dim Ti

)
as in Connes–Consani’s description.

Proposition 2.8 Let � = (ϕ, ϕ̃, {ϕi }) : (X, T ) → (X ′, T ′) be a torified morphism. The
mapping L(�) : L(X, T ) → L(X ′, T ′) given by L(�) = (ϕ, ϕC) where

• for every finite abelian group D, we write G for the group scheme Spec Z[D] and for
each i ∈ I , we set

ϕ(D) : Homalg−gr (G, Ti ) −→ Homalg−gr (G, T ′
ϕ̃(i)),

ψ �−→ ϕi ◦ ψ
• ϕC := ϕ ⊗Z C : XC → X ′

C

is a morphism of gadgets.

Proof The pair (ϕ, ϕC) is indeed a morphism of CC-gadgets: the diagram

Hom(G, Ti )
ϕ(D)

��

evX (D)





Hom(G, T ′
ϕ̃(i))

evX ′ (D)




Hom(GC, XC) ϕC

�� Hom(GC, X ′
C
)

commutes since

X �� X ′

Ti

��

�� T ′
ϕ̃(i)

��

commutes. ��
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Remark 2.9 (1) The CC-gadget L(X, T ) := (X , XC, evX ) is finite and graded.
(2) L(X, T ) depends in a strong way on the torification, as explained in the following.

If S is a second torification of X and L(X, S) = (X ′, X ′
C
, ev′

X ), we know by Proposition
1.10 that there is a bijection between I and I ′ that respects the grading, so we can assume
I = I ′. It is also clear that X ′

C
= XC. An isomorphism of gadgets ϕ : L(X, S) → L(X, T )

consists of a pair (ϕ, ϕC) where ϕ : X ′ ⇒ X is a natural transformation and ϕC : XC → XC

is a morphism of complex varieties such that for all finite abelian groups D the following
diagram commutes:

X ′(D) = ∐
i∈I Ddim Si

ϕ(D)
��

ev′
X (D)





∐
i∈I Ddim Ti = X(D)

evX (D)




Hom(Spec(C[D]), XC)

ϕC(C[D]) �� Hom(Spec(C[D]), XC).

(2.1)

The morphism ϕ can only be an isomorphism if X ′(D) → X(D) is a bijection for every
finite abelian group D. In particular, considering the trivial group D = {e} yields a bijection

ϕ({e}) :
∐

i∈I

{e}dim Si −→
∐

i∈I

{e}dim Ti ,

which is merely a bijection ψ : I → I . The trivial group homomorphism D → {e} induces,
by the naturality of ϕ, the commutative diagram

X ′(D)
ϕ(D)

��





X(D)




X ′({e}) ∼= I

ψ �� I ∼= X({e})
and a cardinality argument shows that ψ must respect the grading and that ϕ(D) maps

Ddim Ti into Ddim Sψ(i) . Consequently, commutativity of (2.1) implies that there are maps
Ti (C) → Sψ(i)(C) such that the diagrams

Ti (C)

τi





�� Sψ(i)(C)

σψ(i)




XC(C)

ϕC �� XC(C)

commute for all i .
For instance,

• 	 	 	 	�
�
�
�

�
�
�
�	 	 	 	

= A
2 =

•	 	 	 	�
�
�
�

�
�
�
�	 	 	 	

are two torifications of the affine plane A
2 that give rise to CC-gadgets that by the above

reasoning cannot be isomorphic. This illustrates (2).
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Theorem 2.10 Given an affinely torified variety (X, T ), the corresponding CC-gadget
L(X, T ) = (X , XC, evX ) is a CC-variety over F1 such that X ⊗F1 Z ∼= X. If f : (X, T ) →
(X ′, T ) is an affinely torified morphism then L( f ) is a morphism of CC-varieties. More
precisely, the composition of the functors L and − ⊗F1 Z is isomorphic to the functor from
affinely torified varieties to schemes that forgets the torification.

Proof Start assuming that X is affine. Let G(X) be the gadget defined by X as in Definition
2.2, and define the immersion

i : L(X, T ) −→ G(X)

as follows:

1. For every finite abelian group D, the map

i(D) : X(D) =
∐

i∈I

Ddim Ti −→ Hom(Spec Z[D], X)

is defined in the same way as the evaluation map evX , using the fact that this map is
obtained by extension of scalars. In other words, we have the commutative diagram

X
evX ��

i ����������� Hom(Spec C[−], XC).

Hom(Spec Z[−], X)
−⊗ZC

��








(2.2)

It is clear that i(D) is injective for every D.
2. The morphism of varieties iC : XC → XC is the identity.
3. By the commutativity of (2.2), the diagram

X(D)
i(D) ��

evX





Hom(Spec Z(D], X)

−⊗ZC




Hom(Spec C[D], XC)

Id
�� Hom(Spec C[D], XC)

commutes for every finite abelian group D.

To verify the universal property, let V be an affine reduced scheme of finite type over Z, and
(ϕ, ϕC) : L(X, T ) → G(V ) a morphism of gadgets. We need to find a morphism ϕ : X → V
of schemes such that the diagram

L(X, T )
i ��

(ϕ,ϕC) 

��������� G(X)

G(ϕ)




G(V )

commutes. Since ϕC : XC → VC = V ⊗Z C is already given, it suffices to prove that there
is a morphism ϕ : X → V such that ϕC = ϕ ⊗Z C, or in other words: we have to show that
ϕC is already defined over Z.

The map ϕC is defined over Z if ϕC|Y is defined over Z for every irreducible component
Y of X . To each irreducible component of X corresponds a unique open torus Ti ⊆ Y , which
is the torus that contains the generic point of Y (see Lemma 1.3, (2)). Since Ti = G

dim Ti
m

is a CC-variety over F1 (cf. [3, Sect. 3.1]), the map ϕC|Ti
is defined over Z, and thus ϕC is
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a rational function with ϕ|Y : Y → V defined over Z. Consequently, ϕ : X ��			 V is a
rational function defined over Z.

In order to show thatϕ is indeed a morphism, we have to show that for all affine open Z ⊆ X
and U ⊆ V such that ϕC : ZC → UC, and for all h ∈ OU (U ), we have ϕ#(h) ∈ OZ (Z).

We know that ϕ#(h) ∈ OZ
(
Z ∩ (⋃

i∈I o Ti
))

, where I o = {i ∈ I | Ti is open in X}. If we
denote by I cl := I\I o, there is some δ ∈ OY (Y ) such that Z ∩ (⋃

i∈I cl Ti
)

is contained in
the vanishing set of δ, and thus ϕ#(h) ∈ OZ (Z)[δ−1].

But we also know that ϕ#
C
(h) ∈ OZC

(ZC) = OZ (Z)⊗Z C. Since

OZ (Z)[δ−1] ∩ (OZ (Z)⊗Z C) = OZ (Z),

where we can consider all sets as subsets of the function field F(ZC), we obtain ϕ#(h) ∈
OZ (Z), proving the desired result. Note that Proposition 1.10 implies that X represents the
counting function of X .

For the general case, let {Ui } be the collection of all affine open subschemes of X such
that T restricts to a torification Ti of Ui . Then Xi = L(Ui , Ti ) is an affine CC-variety, and
by the definition of a general CC-variety, X is a CC-variety. Furthermore, {Xi } is the family
of all affine open subschemes of L(X, T ), thus L(X, T )Z is defined as the direct limit over
the family of the Xi,Z � Ui , which is nothing else than X itself.

Note that the defining property of a morphism between CC-varieties follows directly from
the condition that describes a torified morphism as affinely torified. Concerning functoriality,
it is clear that for all torified morphisms f : (X, T ) → (X ′, T ′) between torified varieties,
the diagram

X
f ��

∼




X ′

∼




L(X, T )Z
L( f ) �� L(X ′, T ′)Z

commutes. This establishes an isomorphism between the composition of L and −⊗F1 Z and
the forgetful functor from affinely torified varieties to schemes. ��

Remark 2.11 In the proof of this theorem, we made only use of the highest degree term
X (dim X) of the functor X = {X (l)} in the proof that G

dim X
m is an affine CC-variety. This

has the following consequence: Let X be a reduced scheme of finite type over Z with an
open affine cover {Ui } and with an open subscheme T that is isomorphic to G

dim X
m such that

T ⊂ Ui for all i . Define X(D) = Y i (D) = Ddim X , and XC = X ⊗Z C and Yi,C = Ui ⊗Z C

for all i . Define the evaluations evX and evi in the same way as for L. Then the same proof
as above shows that (X , XC, evX ) is a variety over F1 (in the sense of Connes and Consani,
cf. [3, section 3.4]) covered by the affine varieties (Y i , Yi,C, evi ) over F1.

3 Soulé’s geometry

3.1 S-objects and S-varieties

In this section we recall some notions of F1-geometry introduced by Soulé in [23], reformu-
lated as in [3, Sect. 2.2].
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Torified varieties and their geometries over F1 623

Definition 3.1 Let R the category of commutative rings which are finite and flat as Z-mod-
ules. A (Soulé’) gadget (S-gadget for short) over F1 is a triple X = (X ,AX , eX ) consisting
of

• a functor X : R → Sets,
• a complex algebra AX ,
• a natural transformation eX : X �⇒ Hom(AX ,− ⊗Z C).

An S-gadget X is finite if for all R ∈ R the set X(R) is finite. A morphism ϕ : X → Y of
S-gadgets is a couple (ϕ, ϕ∗), where ϕ : X ⇒ Y is a natural transformation and ϕ∗ : AY →
AX is morphism of algebras such that

X(R)
ϕ(R)

��

eX (R)





Y (R)

eY (R)




Hom(AX , R ⊗Z C)

ϕ∗(R⊗ZC) �� Hom(AY , R ⊗Z C)

commutes for all R ∈ R. If ϕ∗ is injective and ϕ(R) is injective for all R ∈ R, we say that
ϕ is an immersion.

We can associate a gadget T (V ) = (V ,OVC
(VC), eV ) to any scheme of finite type V

over Z, where V (R) := Hom(Spec R, V ) is the functor of points, OVC
(VC) the algebra of

global sections of the complexification of V , and eV is the extension of scalars to C. For
a morphism f : U → V , we define T ( f ) : T (U ) → T (V ) as the pair ( f , f #

C
) where

f (R) : U (R) → V (R) is the induced morphism on sets of points and f #
C

: AV → AU is
the complexification of the morphism between global sections. It is immediate that T ( f ) is
a morphism. Thus T is a functor from schemes of finite type over Z to S-gadgets.

Definition 3.2 An affine (Soulé) variety over F1 (affine S-variety for short) is a finite S-gad-
get X such that there is an affine scheme XZ of finite type over Z and an immersion of gadgets
iX : X → T (XZ) satisfying the following universal property: For every affine scheme V
of finite type over Z and every morphism of S-gadgets ϕ : X → T (V ) there is a unique
morphism of schemes ϕZ : XZ → V such that ϕ = T (ϕZ) ◦ iX .

We define the category of affine S-varieties as the full subcategory of S-gadgets whose
objects are affine S-varieties. The universal property defines the base extension functor from
affine S-varieties to affine schemes over Z. Namely, it sends X to XZ and a morphism
ϕ : X → Y to (iY ◦ ϕ)Z : XZ → YZ (cf. Lemma 3.5 below).

By [23, Proposition 2], the functor R �→ T (Spec(R)) is a fully faithful embedding of the
category Rop into the category of affine S-varieties.

Definition 3.3 An (Soulé) object over F1 (S-object) is a triple X = (X ,AX , eX ) consisting

of

• a contravariant functor X : {Affine S-varieties} → Sets,

• a complex algebra AX ,
• a natural transformation eX : X �⇒ Hom(AX ,A(−)).

An S-object is finite if X(T (Spec R)) is finite for all R ∈ R. A morphism of objects

ϕ : X → Y is given by a natural transformation ϕ : X ⇒ Y and a morphism of algebras

ϕ∗ : AY → AX such that
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624 J. López Peña, O. Lorscheid

X(V )
ϕ(V )

��

eX (V )





Y (V )

eY (V )




Hom(AX ,AV )

ϕ∗(V ⊗ZC) �� Hom(AY ,AV )

commutes for all V ∈ A. If ϕ∗ and ϕ(V ) are injective for all V ∈ A, then we say that ϕ is

an immersion of objects.

We can associate an object Ob(S) = (S,OSC
(SC), eS) to any scheme S of finite type over

Z via S(V ) := Hom(VZ, S) and evaluation eS(x) defined by the composition

OSC
(SC)

x∗
�� OVC

(VC)
i∗ �� AV .

Definition 3.4 A (Soulé) variety over F1 (S-variety) is a finite S-object X for which there
exists a scheme XZ of finite type over Z and an immersion i : X → Ob(XZ) such that for
every scheme V of finite type over Z and every morphism of objects ϕ : X → Ob(V ), there
is a unique morphism of schemes ϕZ : XZ → Ob(V ) such that ϕ = Ob(ϕZ) ◦ i .

We define the category of S-varieties as the full subcategory of S-objects whose objects
are S-varieties. An S-gadget can be considered as an S-object in the following way. If X =
(X ,AX , eX ) is an S-gadget, then the associated S-object is (X ,AX , e′

X ), where for an affine

S-variety A,

X(A) = Hom(A, X)

and e′
X sends ϕ = (ϕ, ϕ∗) ∈ X(A) to ϕ∗ : AX → AA. This defines a fully faithful functor

from S-gadgets to S-objects. The essential image of the category of affine S-varieties is the
full subcategory of S-varieties whose objects base extend to an affine scheme over Z (cf. [23,
section 4.2, Prop. 3].

An immediate observation following from the definition of an S-variety is the following.

Lemma 3.5 Let X be an S-variety and V a scheme of finite type over Z.

(1) The map ϕ �→ ϕZ given by the universal property of X defines a bijection

Hom(X,Ob(V )) −→ Hom(XZ, V ).

(2) If ι : Y ↪→ Ob(V ) is an immersion of S-objects, then ϕ �→ (ι ◦ ϕ)Z defines an
embedding

Hom(X, Y ) −→ Hom(XZ, V ).

In particular, if X and Y are both S-varieties, then Hom(X, Y ) ↪→ Hom(XZ, YZ).

3.2 Smooth toric varieties as S-varieties

Soulé describes in [23, section 5.1] an S-object S(X) associated to a toric variety X . Note
that this association works for arbitrary toric varieties, though Soulé proves only for smooth
toric varieties X that S(X) is an S-variety. Further note that we are working with an different
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Torified varieties and their geometries over F1 625

complex algebra than Soulé does, but that results transfer by [23, Prop. 4]. Given a toric
variety X with fan �, we define the S-object S(X) in two steps.

In the first step, we define for every cone τ ∈ � the S-gadget Xτ = (X τ ,AXτ , eXτ ) as
follows. Let Aτ = τ∨ ∩ (Zn)∨ be as in paragraph 1.3.3. Let μ(R) be the roots of unity of the
ring R. For every R ∈ R, put X τ (R) = Hom(Aτ , μ(R)0), the set of semi-group homomor-
phisms from Aτ to the multiplicative semi-group μ(R)0 = {0} ∪ μ(R). Put AXτ = C[Aτ ]
and let

eXτ (R) : X τ (R) = Hom(Aτ , μ(R)0) −→ Hom(C[Aτ ], R ⊗Z C)

be the natural map.
For Uτ = Spec Z[Aτ ] ⊂ X , we have a canonical morphism of S-gadgets ιτ : Xτ ↪→

T (Uτ ), which is an immersion since the complex algebras are the same and since for every
R ∈ R, we have

X τ (R) = Hom(Aτ , μ(R)0) ⊂ Hom(Z[Aτ ], R) = U τ (R).

Consequently, the universal property of an affine S-variety V with immersion ιV : V →
T (VZ) implies that given a morphism ϕ : V → Xτ of S-gadgets there is a unique morphism
ϕZ such that ιτ ◦ ϕ = T (ϕZ) ◦ ιV . By Lemma 3.5, we obtain inclusions

Hom(V, Xτ ) ⊂ Hom(VZ,Uτ ) ⊂ Hom(VZ, X).

In the second step, we define the S-object S(X) = (X ,AX , eX ) as follows. For every

affine S-variety V , put

X(V ) =
⋃

τ∈�
Hom(V, Xτ ),

where the union is taken in Hom(VZ, X). Put AX = OXC
(XC), where XC = X ⊗Z C, and

let eX (V ) : X(V ) ⊂ Hom(VZ, X) → Hom(AX ,AV ) be the natural map.

In a natural way, S extends to a functor from toric varieties to S-objects. Given a toric mor-
phism f : X → X ′ that is induced by a morphism of cones δ : � → �′ (see Sect. 1.3.3), then
following the constructions of the first step yields morphisms of S-gadgets fτ : Xτ → X ′

δ(τ )

for every τ ∈ �. In the second step, taking the union over all cones τ ∈ � defines a morphism
S( f ) : S(X) → S(X ′).

As a consequence of [23, Theorem 1(i)] and [23, Prop. 4], we obtain the following result.

Theorem 3.6 (Soulé) Let X be a smooth toric variety. Then the S-object S(X) is an S-variety
such that X � S(X)⊗F1 Z.

Remark 3.7 In particular, [23, Prop. 3] implies that the S-gadgets Xτ are affine S-varieties
with Uτ � Xτ ⊗F1 Z for all τ ∈ �,

3.3 Affinely torified varieties as S-varieties

In this section, we define a functor S∼ from the category of affinely torified varieties to the
category of S-objects, prove that S∼ extends S, which allows us to drop the superscript “∼”,
and show that Soulé’s result (Theorem 3.6) extends to this class of S-objects.

Let X be torified variety with an affine torification T = {Ti ↪→ X}i∈I . Put Ai =
Homalg−gr (Ti ,Gm) for i ∈ I . Let {U j } j∈J be the maximal torified atlas, i.e. the family
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of all affine open subschemes U j of X such that U j =
◦∐

i∈I j
Ti for a subset I j of I . We

define an S-object S∼(X, T ) in two steps.
In the first step, we define an S-gadget X∼

j = (X∼
j ,A∼

j , e∼
j ) for every j ∈ J as follows.

For R ∈ R, put X∼
j (R) = ∐

i∈I j
Hom(Ai , μ(R)). Put A∼

j = OU j,C(U j,C) and let

e∼
j (R) :

∐

i∈I j

Hom(Ai , μ(R)) −→
∐

i∈I j

Hom(C[Ai ], R ⊗ C) ↪→ Hom(A∼
j , R ⊗ C),

be the composition of the natural maps Hom(Ai , μ(R)) → Hom(C[Ai ], R ⊗ C) with the
inclusion induced by the restriction maps

A∼
j = OU j,C(U j,C) −→ OU j,C(Ti,C) = C[Ai ] .

For every i ∈ I , there is a canonical morphism of S-gadgets ι j : X∼
j ↪→ T (U j ), which is

an immersion since the complex algebras are the same and since for every R ∈ R, we have

X∼
j (R) =

∐

i∈I j

Hom(Ai , μ(R)) ⊂
∐

i∈I j

Hom(Z[Ai ], R) = U j (R).

Consequently, we obtain inclusions

Hom(V, X∼
j ) ⊂ Hom(VZ,U j ) ⊂ Hom(VZ, X)

for every affine S-variety (cf. Lemma 3.5).
In the second step, we define the S-object S∼(X, T ) = (X ,AX , eX ) as follows. For every

affine S-variety V , put

X(V ) =
⋃

j∈J

Hom(V, X∼
j ),

where the union is taken in Hom(VZ, X). Put AX = OXC
(XC), and let

eX (V ) : X(V ) ⊂ Hom(VZ, X) → Hom(AX ,AV )

be the natural map.
By following through the construction of S∼, we can associate to every affinely torified

morphism a morphism of S-objects. Note that in the second step, we have to make use of
the defining property of affinely torified morphisms: Let f : X → X ′ be an affinely torified
morphism. Then the family of all opens U of X in the maximal torified atlas of X whose
image under f is affine covers X . This allows to define S∼( f ) as the union of the restrictions
S∼( f|U ) to affine opens. Thus we defined S∼ as a functor from the category of affinely
torified varieties to the category of S-objects.

Remark 3.8 A discussion similar to the one in Remark 2.9 shows that different affine
torifications of the same torified variety X can lead to non-isomorphic S-objects. The two
torifications of A

2 given in Remark 2.9 provide an example.

We show that S∼ extends indeed Soulé’s functor S. Let X be a toric variety with fan �.
Let T� be the torification of X as defined in Sect. 1.3.3. We put S∼(X) = S∼(X, T�).

Lemma 3.9 For every τ ∈ �, there are isomorphisms

∐
σ⊂τ

Hom(A×
σ , μ(R))

α(R) �� Hom(Aτ , μ(R)0)
β(R)

��

that are functorial in R ∈ R.
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Proof We construct the maps α = α(R) and β = β(R) as follows. Let ϕ : A×
σ → μ(R) be

an element of Hom(A×
σ , μ(R)). Since Aτ ⊂ Aσ , we can define ψ = α(ϕ) by

ψ : Aτ −→ μ(R)0.

a �−→
{
ϕ(a) if a ∈ A×

σ ∩ Aτ
0 otherwise

Let ψ : Aτ → μ(R)0 be an element of Hom(Aτ , μ(R)0). We claim that there is a
smallest cone for ψ , i.e. a smallest subcone σ of τ such that ψ extends to a morphism
ψ ′ : Aσ → μ(R)0 of semi-groups. Indeed, assume that ψ extends to ψ1 : Aτ1 → μ(R)0
and ψ2 : Aτ2 → μ(R)0 for two cones τ1, τ2 ⊂ τ . Then ψ extends also to a morphism from
the semi-group generated by Aτ1 and Aτ2 . But this semi-group is nothing else than Aτ1∩τ2 .
This proves the claim.

If σ is the smallest cone for ψ , then define ϕ = β(ψ) as the restriction of ψ ′ : Aσ →
μ(R)0 to A×

σ .
We show that α and β are mutually inverse. Let ϕ : A×

σ → μ(R) be an element of
Hom(A×

σ , μ(R)) and ψ = α(ϕ) : Aτ → μ(R)0. Then σ is the smallest cone for ψ since for
every σ ′

� σ , the larger semi-group Aσ ′ is still generated by Aσ and consequently A×
σ � A×

σ ′ ,
but we know that (ψ#

Z )
−1(μ(B)) = A×

σ . Thus β(ψ) equals ϕ by definition of ψ .
Let conversely ψ : Aτ → μ(R)0 be an element of Hom(Aτ , μ(R)0) and ϕ = β(ψ) ∈

Hom(A×
σ , μ(R)), where σ is the smallest cone forψ . It is clear by definition that α(ϕ) equals

ψ restricted to A×
σ ∩ Aτ . We have to show that ψ(Aσ \A×

σ ) = {0}, where we extended ψ to
ψ : Aσ → μ(R)0. If there is an a ∈ Aσ \A×

σ such that ψ#
Z
(a) �= 0, i.e. ψ#

Z
(a) ∈ μ(B), we

derive a contradiction to the minimality of σ as follows.
Choose a basis (λi )i∈N of R

n , where N = {1, . . . , n} and n is the dimension of X , such
that σ = 〈λi R≥0〉i∈S for some S ⊂ N and 〈λi R〉i∈N\S is orthogonal to σ (here “〈−〉”
denotes the generated semi-group in R

n). Let (λ∗
i )i∈N be the dual basis of (λi )i∈N , then

σ∨ = 〈li R≥0〉i∈S + 〈li R〉i∈N\S . The set {σ ′ ∈ � | σ ′ ⊂ σ } is the set of cones of the form
σJ = 〈λi R≥0〉i∈J , where J is a subset of S. For every i ∈ N , define li as the smallest
multiple of λ∗

i such that li ∈ Aσ . Then σ∨
J = 〈li R≥0〉i∈J + 〈li R〉i∈N\J for every J ⊂ S,

and the semi-group L J = 〈li 〉i∈J + 〈li Z〉i∈N\J is of finite index in AσJ . This implies that
for the chosen a ∈ Aσ \A×

σ , a positive multiple m · a is in L S , i.e. m · a = ∑
i∈S ci li

for certain non-negative integers ci . Since we assume that ψ#
Z
(a) ∈ μ(B), we have that∑

i∈S ciψ
#
Z
(li ) = ψ#

Z
(m · a) = ψ#

Z
(a)m �= 0 and thus already ψ#

Z
(li ) �= 0 for some i ∈ S.

Put J = S\{i}. Then ψ#
Z

can be extended to a semi-group morphism ψ̃#
Z

: AσJ → μ(B)0,
which yields the desired contradiction to the minimality of σ . This completes the proof that
α and β are mutually inverse.

It is clear thatα(R) andβ(R) are functorial in R, i.e. that for every morphism f : R1 → R2

in R, the diagram

∐
σ⊂τ

Hom(A×
σ , μ(R1))

f∗ ��

α(R1)





∐
σ⊂τ

Hom(A×
σ , μ(R2))

α(R2)




Hom(Aτ , μ(R1)0)

f∗ �� Hom(Aτ , μ(R2)0)

commutes. ��
Proposition 3.10 The functors S and S∼ from the category of toric varieties to the category
of S-objects are isomorphic.
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Proof Let X be a toric variety with fan �. Then the maximal torified atlas of (X, T�) is
{Uτ }τ∈�. We first show that for every τ ∈ �, the corresponding S-gadgets Xτ and X∼

τ are
isomorphic. We define maps

X∼
τ = (X∼,A∼

X , e∼
X )

ατ=(ατ ,ατ,C) �� Xτ = (X ,AX , eX ).
βτ=(βτ ,βτ,C)

��

as follows. For every R ∈ R, define ατ (R) as the map α(R) of the previous lemma. Define
ατ,C as the identity map of A∼

τ = OXτ,C = AC. Concerning βτ , defineβ
τ
(R) as the map

β(R) of the previous lemma for every R ∈ R. Define βτ,C like ατ,C as the identity map. It
is easily verified that ατ and βτ are indeed morphisms of S-gadgets. The previous lemma
implies that ατ and βτ are inverse to each other.

Since the second steps in the constructions of S(X) and S∼(X) coincide, the families
{ατ }τ∈� and {βτ }τ∈� define mutually inverse morphisms αX : S∼(X) → S(X) and βX :
S(X) → S∼(X) of S-objects. It is straightforward to verify that αX and βX are functorial in
X , i.e. that the diagram

S(X1)
S( f ) ��

βX1





S(X2)

βX2




S∼(X1)

S∼( f ) �� S∼(X2)

commutes for every toric morphism f : X1 → X2. Thus we established an isomorphism of
functors. ��

The proposition justifies that we can write S(X, T ) = S∼(X, T ) for an affinely torified
variety (X, T ).

Theorem 3.11 If (X, T ) is an affinely torified variety, then S(X, T ) is an S-variety such that
S(X, T )Z � X. More precisely, the composition of the functors S and −⊗F1 Z is isomorphic
to the functor from affinely torified varieties to schemes that forgets the torification.

Proof Define the morphism of S-objects ι = (ι, ιC) : S(X, T ) → T (X) as follows. Write

S(X, T ) = (X ,AX , eX ). For every affine S-variety V , let ι(V ) : X(V ) ↪→ Hom(VZ, X) be

the extension of scalars, which is an injective map (cf. Lemma 3.5). Let ιC be the identity
map of AX = OXC

(XC). It is clear that ι defines a morphism and that it is an immersion of
S-objects.

We raise in three steps the generality of X . In the first step, let X be G
n
m for an n ≥ 0. Then

there exists up to isomorphism only one torification of G
n
m , namely T = {Gn

m → G
n
m} given

by the identity map. Then T is the same as the torification T� if we consider G
n
m as toric

variety with fan� = {0}. Proposition 3.10 states that S(Gn
m, T ) � S(Gn

m) and Theorem 3.6
says that S(Gn

m) is an S-variety such that S(Gn
m)Z � G

n
m .

In the second step, let X be affine with torification T . In this case, X itself appears in the
maximal torified atlas {Ui }i∈I of X , say X = U0. Then S(X, T ) = (X ,AX , eX ) has the fol-

lowing simple description. Let X0 = (X0,A0, e0) be the S-gadget defined by U0. For every
affine S-variety V , we have X(V ) = Hom(V, X0), we have AX = A0 and eX (V ) sends

a morphism ϕ = (ϕ, ϕ∗
C
) ∈ Hom(V, X0) to ϕ∗

C
∈ Hom(A0,AV ). From this description it

follows that we can apply [23, Prop. 3] to derive that S(X, T ) is an S-variety if and only if X0

is an affine S-variety, and if this is the case then S(X, T )Z � (X0)Z. The same idea as used
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in the proof of Theorem 2.10 applies to this situation. Namely, let V be an affine S-variety
and let (ϕ, ϕ∗

C
) : X0 → V be a morphism of S-gadgets. Every irreducible component of X

has a unique open subtorus isomorphic to G
n
m for some n ≥ 0 in the torification T . In the first

step, we showed that S(Gn
m) is an S-variety. Thus the S-gadget (Gn

m)0 defined by G
n
m is an

affine S-variety. Using the universal property of (Gn
m)0 defines a rational map ϕZ : X → VZ.

For the same reasons as in the proof of Theorem 2.10 we see that ϕZ is indeed a morphism
of schemes that verifies the universal property of an affine S-variety for X .

In the third and last step, we let (X, T ) be a general affinely torified variety with maximal
torified atlas {Ui }i∈I . Then Ui is affine and T restricts to a torification Ti of Ui for every
i ∈ I . By the previous step S(Ui , Ti ) is an S-variety such that S(Ui , Ti )Z � Ui . The family
{S(Ui , Ti )}i∈I satisfies the conditions of [23, Prop. 5], and thus S(X, T ) is an S-variety with
S(X, T )Z � ⋃

i∈I Ui � X .
Concerning functoriality, it is clear that for all affinely torified morphisms f : (X, T ) →

(X ′, T ′) between affinely torified varieties, the diagram

X
f ��

∼




X ′

∼




S(X, T )Z
S( f ) �� S(X ′, T ′)Z

commutes. This establishes an isomorphism between the composition of S and −⊗F1 Z and
the forgetful functor from affinely torified varieties to schemes. ��

4 Deitmar’s geometry

4.1 D-schemes

First let us recall the theory of schemes over F1 in Deitmar’s sense. The main idea is to
substitute commutative rings with 1 (called rings in the latter) by commutative semi-groups
with 1 (called monoids in the latter) and to mimic scheme theory for monoids. It turns out
that to a far extent, it is possible to obtain a theory that looks formally the same as usual
algebraic geometry. Since definitions are lengthy, we only name the notions we make use of
and give the reference to the proper definition in Deitmar’s paper [5].

There is the notion of prime ideals and the spectrum spec A of a monoid A ([5, Sect. 1]),
schemes X over F1 with underlying topological space X top and morphisms of schemes
([5, section 2.3]), the structure sheaf OX and local monoids OX,x for x ∈ X top ([5, sections
2.1–2.2]).

There is a base extension functor − ⊗F1 Z that sends spec A to Spec Z[A], where Z[A] is
the semi-group ring of A. The right-adjoint of − ⊗F1 Z is the forgetful functor from rings
to monoids ([5, Theorem 1.1]). Both functors extend to functors between schemes over F1

and Z ([5, section 2.3]). We will often write XZ for X ⊗F1 Z. We denote by D-schemes the
category of schemes over F1 together with morphism of schemes in Deitmar’s sense.

A D-scheme X is connected if it is connected as topological space. A D–scheme X is
separated if XZ is separated. A monoid A is integral if for every a ∈ A, the multiplication
by a defines an injective map A → A. A monoid A is integral if for every a ∈ A, the
multiplication by a defines an injective map A → A. A D-scheme X is integral (resp. of
finite type resp. of exponent 1) if for all affine opens spec A of X , A is integral (resp. Z[A] is
of finite type (cf. [6, Lemma 2]) resp. 1 is the only element of finite multiplicative order in A).
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4.2 Toric varieties as D-schemes

In [7, Sect. 4], Deitmar describes a functor D that associates to a toric variety X with fan
� the following scheme over F1. Let X be a toric variety with fan �. We use the notation
from Sect. 1.3.3. An inclusion τ ⊂ τ ′ of cones gives an inclusion of monoids Aτ ′ ⊂ Aτ and
thus we obtain a directed system of affine D-schemes {spec Aτ }τ∈�. The D-scheme D(X) is
defined as the limit over this system.

Let (ψ, ψ̃, {ψτ }) be a toric morphism. The directed system of morphisms ψ∨
τ : Aψ̃(τ ) →

Aτ describes a morphism D( f ) : D(X) → D(X ′) of D-schemes. This establishes D as a
functor.

Every monoid A has a unique maximal subgroup, namely the group A× of invertible
elements, and a unique maximal ideal, namely m = A\A×. We define the rank rk τ of a
cone τ as the rank of A×

τ and the rank rk x of a point x in X top as the rank of O×
X,x . For

every cone τ ∈ �, we have the canonical inclusion ιτ : spec Aτ ↪→ D(X). We define

� : � −→ D(X)top,

τ �−→ ιτ (mτ )

where mτ is the maximal ideal of Aτ .
The following is a refinement of Deitmar’s Theorem 4.1 in [7].

Theorem 4.1

(1) The functor D induces an equivalence of categories

D : {
toric varieties

} ∼−→
{

connected separated D-schemes
of finite type and of exponent 1

}

with − ⊗F1 Z being its inverse.
(2) Let X be a toric variety with fan �. Then � : � → D(X)top is a bijection such

that τ ⊂ τ ′ if and only if �(τ ′) is contained in the closure of �(τ). Furthermore,
Aτ � OD(X),�(τ) and rk�(τ) = rk τ for all τ ∈ �.

Proof From the proof of [7, Theorem 4.1] it becomes clear that Y ⊗F1 Z is connected if Y
is a separated integral D-scheme of finite type that is connected and of exponent 1. The rest
of part 1 of the theorem follows from [7, Sect. 4].

We proceed with part 2 of the theorem. First note that the assignment

�1 : τ �→ (Spec Z[τ∨] ↪→ X)

defines a bijection between� and the family of the affine opens U of X such that the inclusion
U ↪→ X is a toric morphism. If τ ⊂ τ ′ then Spec Z[τ∨] ⊂ Spec Z[τ ′∨].

By the part 1 of the theorem, the functor D puts this family in one-to-one correspondence
with the affine opens of D(X) and respects inclusions.

Since Ospec A,m = A if A is a monoid with maximal ideal m = A\A× (cf. [5, Sect. 1.2]),
the assignment

x �→ (spec OD(X),x ↪→ D(X))

defines a bijection between D(X)top and the affine opens of D(X). Note that x is the image of
the maximal ideal of OD(X),x under the canonical inclusion spec OD(X),x ↪→ D(X), which
describes the inverse �2 of the latter bijection. If x ′ is contained in the closure of x , then we
have a inclusion spec OD(X),x → spec OD(X),x ′ . Since � = �2 ◦ D ◦ �1, we established
that � is a bijection and that τ ⊂ τ ′ if and only if �(τ ′) is contained in the closure of �(τ).
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By definition, the rank of τ and the rank of�(τ) equal the rank of the maximal subgroups
of the monoids Aτ and OD(X),�(τ), respectively. The canonical inclusion spec Aτ ↪→ D(X)
induces the isomorphism OD(X),�(τ) � Ospec Aτ ,mτ � Aτ , and consequently we obtain
equality of ranks. ��

5 Comparison between the different geometries over F1

In this section, we establish certain functors between the categories of D-schemes, S-objects
and CC-gadgets and investigate to what extent they commute with base extension to Z and
with the realizations of classes of varieties over F1 from the previous sections. Finally, we
put together the results of the paper in Theorem 5.11.

5.1 From D-schemes to CC-gadgets

In this section, we construct a functor FD→CC from the category of integral D-schemes of
finite type to the category of CC-gadgets.

Let X be an integral D-scheme of finite type. We define the CC-gadget FD→CC (X) =
(X , XC, evX ) as follows. For a finite abelian group D, we define D0 to be the monoid D∪{0}
that extends the multiplication of D by 0 · a = 0 for every a ∈ D. Put

X(D) = Hom(spec D0, X) =
⋃

x∈X top

Hom(O×
X,x , D),

where the latter equality is explained in the proof of Theorem 1 in [6]. Put XC = X ⊗F1 C,
which is indeed a complex variety since the base extension of X to C is a disjoint union of
a toric varieties (cf. [7, Theorem 4.1]). Note that the immersion spec OX,x ↪→ X induces
Spec C[OX,x ] ↪→ XC and define evX (D) as the composition of the natural maps

⋃

x∈X top

Hom(O×
X,x , D) −→

⋃

x∈X top

Hom(C[OX,x ],C[D]) −→ Hom(Spec C[D], XC).

Given a morphism f : X → X ′ between integral D-schemes of finite type and expo-
nent 1, we define FD→CC ( f ) = ( f , fC), where f (D) = f∗ : Hom(spec D0, X) →
Hom(spec D0, X ′) and fC = f ⊗F1 C : XC → X ′

C
. It is immediate that FD→CC ( f ) is

a morphism of CC-gadgets.
Note that for a finite abelian group D, the set X(D) is finite. Putting

X (l)(D) =
⋃

x∈X top

rk x=l

Hom(O×
X,x , D)

defines a grading X = ⋃
l≥0 X (l). Thus we can consider FD→CC (X) as a finite graded

CC-gadget.

Proposition 5.1 The functors L and FD→CC ◦ D from the category of toric varieties to the
category of finite graded CC-varieties are isomorphic.

Proof Let X be a toric variety with fan � and put Y = D(X). Then we obtain the finite
graded CC-gadgets L(X) = (X , XC, evX ) and FD→CC (Y ) = (Y , YC, evY ). By part 2 of
Theorem 4.1, there is a bijection� : � → Y top such that rk τ = rk�(τ) and Aτ � OY,�(τ)

123



632 J. López Peña, O. Lorscheid

for every τ ∈ �. Thus we obtain for every l ≥ 0 and every finite abelian group D a bijection

X (l)(D) =
⋃

τ∈�
rk τ=l

Hom(A×
τ , D)

∼−→
⋃

y∈Y top

rk y=l

Hom(O×
Y,y, D) = Y (l)(D).

Further, YC = Y ⊗F1 C � X ⊗Z C = XC. It is immediate that these isomorphisms com-
mute with the evaluation maps evX and evY , and we thus obtain the desired isomorphism of
CC-gadgets ϕX : L(X) → FD→CC (Y ).

It follows from the naturality of definitions that given a toric morphism f : X → X ′, the
diagram

L(X)
L( f ) ��

ϕX





L(X ′)

ϕX ′




FD→CC (Y )
FD→CC (g) �� FD→CC (Y ′)

commutes, where Y = D(X), Y ′ = D(Y ′) and g = D( f ). Thus we established an isomor-
phism of functors. ��

This proposition together with Theorems 2.10 and 4.1 implies:

Corollary 5.2 If X is a connected integral D-scheme of finite type and exponent 1, then
FD→CC (X) is a CC-variety and FD→CC (X)⊗F1 Z � X ⊗F1 Z.

5.2 From D-schemes to S-objects

In this section, we construct a functor FD→S from the category of D-schemes of finite type
to the category of S-objects. Let X be a D-scheme of finite type. We proceed in two steps,
similarly to Sect. 3.2.

In the first step, we define for every point x ∈ X top an S-gadget Xx = (X x ,Ax , ex ) as
follows. For every R ∈ R, we put X x (R) = Hom(OX,x , μ(R)0), the set of monoid homo-
morphisms from the local monoid OX,x to the multiplicative monoid μ(R)0 = {0} ∪ μ(R),
we put Ax = C[OX,x ], the semi-group ring of OX,x over C, and we define

ex (R) : Hom(OX,x , μ(R)0) −→ Hom(C[OX,x ], R ⊗Z C)

as the natural map.
In the second step, we define the object FD→S(X) = (X ,AX , eX ) as follows. For every

affine S-variety V , we put

X(V ) =
⋃

x∈X top

Hom(V, Xx ),

where the union is taken in Hom(VZ, XZ). We put AX = OXC
(XC), where XC is the com-

plexification of XZ, and we define

eX (V ) :
⋃

x∈X top

Hom(V, Xx ) −→ Hom(VC, XC) −→ Hom(AX ,AV )

as the composition of the natural maps.

123



Torified varieties and their geometries over F1 633

Given a morphism f : X → X ′ between D-schemes of finite type, there is a natural way
to define a morphism FD→S( f ) : FD→S(X) → FD→S(X ′) going through the steps of the
construction of FD→S , similarly to the definition in Sect. 3.2.

Proposition 5.3 The functors S and FD→S ◦ D from the category of toric varieties to the
category of S-objects are isomorphic.

Proof Let X be a toric variety with fan� and Y = D(X). We will construct an isomorphism
ϕX : S(X) → FD→S(Y ) by going through the steps of construction of the objects.

In the first step, let τ ∈ � and y = �(τ), where� : � → Y top is the bijection from The-
orem 4.1. Let Xτ and Yy be the associated S-gadgets. By Theorem 4.1, part 2, we have that
Aτ � OY,y and consequently X τ (R) = Hom(Aτ , μ(R)0) � Hom(OY,y, μ(R)0) = Y y(R)
for all R ∈ R. Further, Aτ = C[Aτ ] � C[OY,y] = Ay . It is immediate that these isomor-
phisms commute with the evaluation maps eτ and ey , and thus we obtain an isomorphism of
S-gadgets ϕτ : Xτ → Yy .

In the second step, we note that for τ ′ ⊂ τ , the image of the inclusion Aτ ↪→ Aτ ′ under
the functor D is the generalization map OY,�(τ) ↪→ OY,�(τ ′). Thus the directed systems
{Aτ }τ∈� and {OY,y}y∈Y top are isomorphic and we have that for all affine S-varieties V ,

X(V ) =
⋃

τ∈�
Hom(V, Xτ ) �

⋃

y∈Y top

Hom(V, Yy) = Y (V ).

Further, AX = OXC
(XC) � OYC

(YC) = AY by Theorem 4.1, part 1. It is immediate that
these isomorphisms commute with the evaluation maps eX and eY , and we thus obtain the
desired isomorphism of S-objects ϕX : (X) → FD→S(Y ).

By the analogy of the constructions of S and FD→S , it is clear that given a toric morphism
f : X → X ′, the diagram

S(X)
S( f ) ��

ϕX





S(X ′)

ϕX ′




FD→S(Y )
FD→S(g) �� FD→S(Y ′)

commutes, where Y = D(X), Y ′ = D(Y ′) and g = D( f ). Thus we established an isomor-
phism of functors. ��

This proposition together with Theorems 3.6 and 4.1 implies:

Corollary 5.4 If X is a connected separated D-scheme of finite type and exponent 1, then
FD→S(X) is an S-variety and FD→S(X)⊗F1 Z � X ⊗F1 Z.

5.3 From CC-varieties to S-objects

In this section, we construct a functor FCC→S from the category of CC-varieties to the cat-
egory of S-objects. For this purpose, we have to restrict the class of morphisms between
CC-varieties to those that satisfy property S described below.

Let X = (X , X ′
C
, evX ) be a CC-variety and let {X j } j∈J be the family of all open affine

CC-subvarieties X j = (X j , X j,C, ev j ) of X . Note that a priori, X ′
C

does not need to be equal
to XC = X ⊗F1 C. We define the S-object FCC→S(X) in two steps.
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In the first step, we define S-gadgets X∼
j = F∼

CC→S(X j ) = (X∼
j ,A∼

j , e∼
j ) for every

j ∈ J as follows. For every R ∈ R, put X∼
j (R) = X j (μ(R)). Put A∼

j = OX j,C(X j,C) and
put

e∼
j (R) : X j (μ(R))

ev j (μ(R))−→ Hom(A∼
j ,C[μ(R)]) −→ Hom(A∼

j , R ⊗Z C).

In the second step, we define the S-object FCC→S(X) = (X ,AX , eX ) as follows. For

every j ∈ J and every R ∈ R, there is a morphism τ j (R) given as the composition of
canonical maps

X∼
j (R) = X j (μ(R)) ⊂ Hom(Spec Z[μ(R)], X j,Z) −→ Hom(Spec R, XZ).

We do not know a priori whether τ j (R) is an inclusion. But the morphism (ϕ j , id) : X∼
j →

T (X j,Z) yields—for the same reason as in Lemma 3.5—that we have for every affine S-vari-
ety V an (a priori not injective) map

ψX j (V ) : Hom(V, X∼
j ) −→ Hom(VZ, X j,Z) ⊂ Hom(VZ, XZ).

Define X(V ) = ⋃
j∈J ImψX j (V ) ⊂ Hom(VZ, XZ) and AX = OXC

(XC). Define

eX (V ) : X(V ) ⊂ Hom(VZ, XZ) −→ Hom(AX ,OVC
(VC)) −→ Hom(AX ,AV )

as the composition of taking complex global sections of a morphism VZ → XZ and the push
forward along the map ιC : OVC

(VC) ↪→ AV given by the universal property of V .
Next we will define FCC→S on morphisms. If ϕ j : X j → Y j is a morphism between

affine CC-varieties, then following through the definitions of the first step describes in a
natural manner a morphism ϕ∼

j = F∼
CC→S(ϕ j ) : X∼

j → Y ∼
j of S-gadgets. In order to define

a morphism FCC→S(ϕ) : FCC→S(X) → FCC→S(Y ) of S-objects associated to a gadget
morphism ϕ : X → Y between CC-varieties X and Y , we need ϕ to obey the following
property.

S: Let {X j } j∈J be the family of all open affine CC-subvarieties whose images Y j under
ϕ is affine. Denote the corresponding restrictions of ϕ by ϕ j : X j → Y j and let
ϕ∼

j : X∼
j → Y ∼

j be the associated morphism of S-gadgets. Let V be an affine S-variety
and let ψX j (V ) be the morphism as defined above. Then there is a unique morphism ϕ j
such that the diagram

Hom(V, X∼
j )

(ϕ∼
j )∗ ��

ψX j (V )





Hom(V, Y ∼
j )

ψY j (V )




ImψX j

ϕ j �� ImψY j

commutes.

Given a morphism ϕ : X → Y of CC-varieties, we define FCC→S(ϕ) = (ϕ, ϕ∗) as

follows. Let V be an affine S-variety. With ϕ j as in the definition, we define

ϕ(V ) =
⋃

j∈J

ϕ j : X(V ) =
⋃

j∈J

ImψX j (V ) −→
⋃

j∈J

ImψX j (V ) = Y (V ).

Put ϕ∗ = ϕ#
C

: OYC
(YC) → OXC

(XC).
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Remark 5.5 Property S is satisfied if for every j ∈ J , the map ψX j (V ) is injective, or if X j

is an affine S-variety by applying the universal property of an S-variety. From the following
proposition and from Sect. 3.3, both the injectivity and the universal property is fulfilled if ϕ
is of the form ϕ = L(ϕZ) for an affinely torified morphism ϕZ : (XZ, T ) → (YZ, S) between
affinely torified varieties. This means that the functor L is well-defined as functor from the
category of affinely torified morphisms to the category of CC-varieties considered with the
class of morphism from Definition 2.4. Note further that the essential image of FD→CC

is contained in the category of CC-varieties since FD→CC is essentially isomorphic to the
composition of the base extension to toric varieties, considered as affinely torified varieties,
and L.

Proposition 5.6 The functors S and FCC→S◦L from the category of affinely torified varieties
to the category of S-objects are isomorphic.

Proof Let (X, T ) be an affinely torified variety with maximal torified atlas {U j } j∈J . Let Tj

be the restriction of T to U j , which is a torification of U j . Put Y = (Y , YC, evY ) = L(X, T ).
Then {Y j } j∈J with Y j = (Y j , Y j,C, ev j ) = L(U j , Tj ) is the family of all open affine CC-
subvarieties of Y since they are precisely those open CC-subgadgets whose functors represent
the right counting function. We show in two steps that S(X, T ) � FCC→S ◦ L(X, T ).

In the first step, we show that X j = (X j ,A j , e j ) as defined in Sect. 3.3 is isomorphic to
F∼

CC→S(Y j ) = (Y ∼
j ,A∼

j , e∼
j ) for every j ∈ J . For all R ∈ R, we have equalities

X j (R) =
∐

j∈Tj

Hom(A×
i , μ(R)) = Y j (μ(R)) = Y ∼

j (R)

and A j = OU j,C(U j,C) = A∼
j . This defines the desired isomorphism.

In the second step, we show that S(X, T ) = (X ,AX , eX ) is isomorphic to the S-object

FCC→S(Y ) = (Y ,AY , eY ). For all affine S-varieties V , we have equalities

X(V ) =
⋃

j∈J

Hom(V, X j ) =
⋃

j∈J

Hom(V, Y j ) = Y (V )

and AX = OXC
(XC) = AY . This defines the desired isomorphism, which we denote by

ϕX,T : S(X, T ) → FCC→S ◦ L(X, T ).
By similarity of definition it follows that ϕX,T is functorial in (X, T ), i.e. that for every

affinely torified morphism f : (X, T ) → (X ′, T ′), the diagram

S(X, T )
S( f ) ��

ϕX,T





S(X ′, T ′)

ϕX ′,T ′




FCC→S ◦ L(X, T )
FCC→S◦L( f ) �� FCC→S ◦ L(X ′, T ′)

commutes. Thus we established an isomorphism of functors. ��

Remark 5.7 As consequence of Proposition 5.6 and Theorem 3.11, we see that for every
CC-variety X in the essential image of L, the S-object FCC→S(X) is an S-variety such that
FCC→S(X)Z � XZ. It is, however, not clear if this holds true if X is an arbitrary CC-variety.

Namely, there are two problems. For simplicity, we assume that X is an affine CC-variety
with canonical immersion ι : X → G(XZ).

123



636 J. López Peña, O. Lorscheid

The first problem is the following. We have XZ = Spec B for some ring B. Put X∼ =
F∼

CC→S(X). Then there is a canonical morphism ι∼ : X∼ → T (XZ), but it is not clear if the
map

ι∼(R) : X∼(R) = X(μ(R)) �
� ι(μ(R)) �� Hom(B,Z[(μ(R)]) �� Hom(B, R)

is injective for all R ∈ R (here X , X∼, ι and ι∼ denote the usual functors and natural
transformations).

The second problem is verifying the universal property of an S-variety. This is, given a
scheme V of finite type over Z and a morphism of S-gadgets ϕ : X∼ → T (V ), we seek
a morphism of schemes ϕZ : XZ → V such that ϕ = T (ϕZ) ◦ ι∼. This would be implied
by the universal property for X if we could extend the functor FCC→S to a functor F ′

CC→S
from CC-gadgets to S-objects such that

F ′
CC→S

⎛

⎜⎝
X

ι ��

ψ ����
��

� G(XZ)

G(ψZ)


G(V )

⎞

⎟⎠ =
⎛

⎜⎝
X∼ ι∼ ��

ϕ ��







G(XZ)

T (ψZ)


T (V )

⎞

⎟⎠

for some morphismψ : X → G(VZ). The uniqueness ofψZ would follow from the existence
of a left inverse functor to F ′

CC→S .
However, the definition of FCC→S relies strongly on the defining property of a CC-variety

and we do not see whether there is a way to extend FCC→S to all CC-gadgets with the desired
property. We will discuss two attempts in this direction in the following two Sects. 5.3.1 and
5.3.2.

5.3.1 From CC-gadgets to S-objects

There is a natural definition for a functor F ′
CC→S from CC-gadgets to S-objects, which,

however, does not meet the requirements of Remark 5.7.
Let X = (X , XC, evX ) be a CC-gadget. We define the S-object F ′

CC→S(X) =
(X ,AX , eX ) as follows. If V is an affine S-variety, where VZ � Spec B and (ι, ι∗

C
) : V →

T (VZ) is the canonical immersion, then put X(V ) = X(μ(B)). Put AX = OXC
(XC) and

define for ψ ∈ X(μ(B)),

eX (V )(ψ) : AX
evx (V )(ψ)# �� C[μ(B)] �� B ⊗Z C

ι∗
C �� AV .

If ϕ = (ϕ, ϕC) : X → X ′ is a morphism of CC-gadgets, define the morphism of S-objects

F ′
CC→S(ϕ) = (ϕ, ϕ#

C
) as follows. For V as above, put ϕ(V ) = ϕ(μ(B)) and let ϕ#

C
be the

morphism between global sections. One easily verifies that (ϕ, ϕ#
C
) is indeed a morphism

using that (ϕ, ϕC) is one.

Remark 5.8 One can show that for a torified variety (X, T ) that is affine and has maxi-
mal torified atlas {Ui }i∈I with U0 = X , the S-gadgets X0 (as defined in Sect. 3.3) and
F∼

CC→S ◦ L(X, T ) are isomorphic. Further, one can show that there is a natural inclusion of
functors F ′

CC→S ⇒ FCC→S , when restricted to the category of CC-varieties.
The most basic example of X = Gm , however, shows that F ′

CC→S is not isomorphic to
FCC→S if restricted to the category of CC-varieties. Consider Gm as a toric variety with fan
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� = {0}. In the usual notation (cf. Sects. 1.3.3 and 3.2), A0 is an infinite cyclic group and
X0 = (X0,AX , eX ) is an affine S-variety with (X0)Z � Gm . Let Y and X be the functors of

F ′
CC→S ◦ L(X) and FCC→S ◦ L(X) � S(X) (cf. Proposition 5.6), respectively. Then

Y (X0) = Hom(A0, μ(Z[A0])) = Hom(A0, {±1}) = {±1}.
On the other hand,

X(X0) = Hom(X0, X0) ↪→ Hom(Gm,Gm) = Hom(Z[A0],Z[A0]) = {±am}m∈Z,

where the inclusion is given by extension of scalars to Z (cf. Lemma 3.5). One sees that
Y (X0) ⊂ X(X0). We will show that this inclusion is proper.

Let m be an integer and let ϕm : A0 → A0 map a to am . We define a morphism ψm =
(ψ

m
, ψm,C) : X0 → X0 as follows. For R ∈ R, we have X0(R) = Hom(A0, μ(R)). Put

ψ
m
(R) : Hom(A0, μ(R)) −→ Hom(A0, μ(R))

χ �−→ χ ◦ ϕm

and letψm,C : C[A0] → C[A0] be the C-linear homomorphism that restricts to ϕm . It is clear
thatψm is indeed a morphism of S-gadgets for every m ∈ Z and that (ψm)

#
Z

: Z[A0] → Z[A0]
is the restriction of ψm,C to Z[A0]. Concerning our question, we see now that (ψm)

#
Z
(A0) �⊂

μ(Z[A0]) = {±1} unless m = 0.
Thus we have shown that F ′

CC→S does not extend FCC→S . From [23, Prop. 4] it follows
that F ′

CC→S(Gm) cannot be an S-variety. Regarding the second problem of Remark 5.7, note
that it holds neither true that for a scheme X of finite type over Z, the S-objects F ′

CC→S(G(X))
and Ob(X) are isomorphic. Namely, their functors X ′ and X , respectively, differ. If V is an

affine S-variety with VZ � Spec B, then in general

X ′(V ) = Hom(Spec Z[μ(B)], X) �= Hom(Spec B, X) = X(V ).

5.3.2 From S-objects to CC-gadgets

There is also a natural way to define a functor FS→CC from the category of S-objects to the
category of CC-gadgets.

Let X = (X ,AX , eX ) be an S-object. Then we define the CC-gadget FS→CC (X) =
(X , XC, evX ) as follows. For a finite abelian group D, put VD = T (Spec Z[D]), which is an
affine S-variety by [23, Prop. 2] and since Z[D] ∈ R. Put X(D) = X(VD). Let NX be the

nilradical of AX . Put XC = Spec(AX/NX ), which is a complex variety. The evaluation map
is defined as

evX : X(VD) −→ Hom(AX ,C[D]) = Hom(Spec C[D], XC).

ψ �−→ eX (D)(ψ)

Remark 5.9 There are several remarks in order concerning the “naturality” of definition.
Since we stay with the original definition of a CC-gadget in [3], we only allow complex vari-
eties, i.e. reduced schemes of finite type over C, in the definition of a CC-gadget. Therefore,
we have to divide out the nilradical. One can, however, extend Connes–Consani’s definition
by allowing arbitrary schemes of finite type over C and simply define XC as the spectrum
of AX .
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If X is an S-variety representing a scheme that is not affine, we obtain a complex variety
XC which is affine. One could, however, exchange the complex algebra by a scheme of finite
type over C in the definitions of an S-gadget and an S-object, and try to recover the results
of Soulé’s paper [23]. Then one could simply define to take the same complex scheme for
FS→CC (X).

Remark 5.10 Unfortunately, the different nature of Soulé’s and Connes–Consani’s geome-
tries over F1 leads to a misbehavior of FS→CC even if the suggested changes are made, as
can be seen in the example of X = Gm .

In the same notation as in Remark 5.8, let A0 be the infinite cyclic group and X0

the affine S-variety associated to X . Let X be the functor of S(X) and let X be the

functor of FS→CC ◦ S(X). For a finite cyclic group D and VD as above, we have
X(D) = X(VD) = Hom(VD, X0). Base extension from F1 to Z defines the inclusion

Hom(VD, X0) ↪→ Hom(Z[A0],Z[D]) (cf. Lemma 3.5). Using that μ(Z[D]) = Z[D]× for
finite abelian groups, one can show that conversely every morphism Z[A0] → Z[D] defines
a morphism VD → X0. Thus we see that

X(D) = Hom(A0, μ(Z[D])) = μ(Z[D]) = D � −D.

This differs from the CC-variety L(Gm) = (Gm,Gm,C, evGm ) since Gm(D) = D, and we see
that L and FS→CC ◦S are not isomorphic. Furthermore, the counting function of FS→CC (X)
differs from the counting function of L(Gm), so FS→CC (X) is not even a candidate for a
CC-variety representing Gm that produces the right counting function.

In particular, one verifies now easily that neither F ′
CC→S ◦FS→CC nor FS→CC ◦F ′

CC→S
nor FS→CC ◦ FCC→S is isomorphic to the identity functor of the category of S-objects or
the category of CC-gadgets, respectively–even if the changes are considered as suggested in
the previous remark.

5.4 Putting pieces together

Finally, we subsume the results of this section in a diagram. In this section we consider only
morphisms that satisfy property S from Sect. 5.3 in the category of CC-varieties.

Theorem 5.11 The following diagram commutes up to natural isomorphism of functors
(arrows with label “i” are the canonical inclusion as subcategories and the arrow with label
“ f ” is the forgetful functor).

S–objectsSchemes over

Connected separated integral D–schemes
of finite type and exponent 1

Toric varieties

S–varietiesAffinely torified varieties

CC–varieties
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Proof We label the subdiagrams as follows.

A B

C D
E

The functors D and − ⊗F1 Z are mutually inverse by Theorem 4.1. Subdiagram A com-
mutes (up to isomorphism, as all the commutations mentioned below) by Proposition 5.1 and
Corollary 5.2. Subdiagram B commutes by Proposition 5.3 and Corollary 5.4. Subdiagram
C commutes by Theorem 2.10. Subdiagram D commutes by Theorem 3.6. Subdiagram E
commutes with the rest of the diagram by Theorem 5.6. ��

6 Concluding remarks

6.1 On Chevalley schemes over F1

Among other reasons, Tits’ suggestion of realizing Chevalley schemes as group objects over
F1 ([24, section 13]) was a main motivation in looking for concepts of geometries that have
a base extension functor to Z and that somehow capture the aspects of usual geometry that
can be “expressed by roots of unity”. We discuss in various examples in how far Tits’ sug-
gestion becomes realized by the different concepts of Connes–Consani, Soulé and Deitmar,
respectively.

To realize a Chevalley scheme G as a group object in one of the discussed notions of
geometries over F1 means that there is a CC-variety, an S-variety or a D-scheme X , respec-
tively, representing G and a multiplication map m : X × X → X such that XZ together with
mZ is an algebraic group isomorphic to G. In this case we say that X together with m is a
group object over F1.

Proposition 6.1 For every n ≥ 0, the Chevalley schemes G
n
m can be realized as group objects

over F1 in all three notions of geometry over F1.

Proof The crucial observation is that the multiplication G
n
m ×G

n
m → G

n
m is a toric morphism.

With this, Theorem 2.10 implies that L(Gn
m) together with L(m) is a group object over F1.

Theorem 3.11 implies that S(Gn
m) together with S(m) is a group object over F1. Theorem

4.1 implies that D(Gn
m) together with D(m) is a group object over F1. ��

Proposition 6.2 For every n > 0, the algebraic group G
n
a cannot be realized as group object

in any of the three notions of geometries over F1.

Proof First, we consider Connes–Consani’s concept. Assume there was a group object X =
(X , XC, evX )with multiplication m representing G

n
a . We first want to exclude the possibility

that the image of evX (D) : X(D) → Hom(Spec C[D],Gn
a) consists of only one element for

all finite abelian groups D. If this was the case, then the image of evX (D) would consist of
the same point x ∈ G

n
a(C) for all finite abelian groups D by the functoriality of X . But then

the composition ι ◦ ϕ of an automorphism ϕ : X → X given by a morphism XC → XC that
leaves x fixed but is not defined over Z followed by the canonical immersion ι : X → G(Gn

a)

would be a morphism of CC-gadgets that does not base extend to Z.
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Thus assume that D is a group such that the image of evX (D) has more than one element.
Then the commutative diagram

X(D)× X(D)
m(D) ��

evX (D)×evX (D)





X(D)

evX (D)




G

n
a(C[D])× G

n
a(C[D]) mC(C[D]) �� Gn

a(C[D])
would establish the image of evX (D) as a non-trivial finite subgroup of the torsion free group
A

n(C[D]) � C
nd where d = #D, which does not exist. Thus we showed that X and m as

assumed cannot exist.
A similar argument shows that G

n
a cannot be realized in Soulé’s geometry over F1.

Since, up to isomorphism, the only D-scheme representing A
n is Y = D(Gn

a), the exis-
tence of a multiplication of Y would imply by Theorem 4.1, that the multiplication of G

n
a is

a toric morphism, which is not the case. ��

6.1.1 Chevalley groups as CC-varieties

In their paper [3], Connes and Consani show that a split Chevalley scheme G over Z is “a
variety over F12 ” ([3, Theorem 4.10]) and they remark that the normalizer N of a maximal
split torus T in G is a group object over F12 , but that the multiplication of G is “more mys-
terious” (ibid. 25). The following example shows that neither the multiplication of G nor the
multiplication of N has to be defined over F1.

Let G = Sl(2). Let T be the diagonal torus, N its normalizer in G and B the subgroup of
upper triangular matrices. We saw in Example 1.19 that we have torifications

N = 2Gm ⊂ G = 2Gm � 3G
2
m � G

3
m .

Write S for the torification of G and by S′ the restriction of S to N . Let X = (X , XC, evX )

be L(G, S) and let Y = (Y , YC, evY ) be L(N , S′). Then

Y (D) = 2D ⊂ X(D) = 2D � 3D2 � D3

for a finite abelian group D. Note that a multiplication of X restricts to a multiplication of Y ,
and thus we only have to show the non-existence of a multiplication for Y . Assume there is
a multiplication m : Y × Y → Y , then for the trivial group D = {0}, we can identify Y ({0})
with W , and ev({0}) : W → YC(C) = N (C) defines a section to

1 �� T (C) �� N (C) �� W �� 1 .

Moreover, the commutative diagram

W × W
m({0}) ��

evY ({0})×evY ({0})




W

evY ({0})




N (C)× N (C)
mC �� N (C)

that we obtain from the definition of a morphism between CC-gadgets implies that the section
W → N (C) must be a group homomorphism. But this is not possible in the case of Sl(2).
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6.1.2 Chevalley groups as S-varieties

The situation in Soulé’s geometry behaves similarly except for one remarkable difference.
Since all rings R ∈ R are by definition flat over Z, their additive groups are torsionfree
and the group morphism μ(Z) → μ(R) is thus injective. This means that μ(R) has a dis-
tinguished element of order 2, namely, the image of −1 ∈ μ(Z). This allows us to transfer
the idea of Connes–Consani, which is to consider Chevalley schemes over F12 (see previous
remark and [3, section 4]), to show that the normalizer N of a maximal split torus T in a split
Chevalley scheme G is a group object in Soulé’s notion of a geometry over F1.

But there is no larger subgroup of G than N that can be realized as a group object in
Soulé’s geometry since this would involve additive structure. The argument of Proposition
6.2 shows that this is not possible as it is not in the situation of Connes–Consani’s paper
(loc. cit.).

Remark 6.3 A possible way out of the dilemma could be to broaden the notion of a morphism
in Connes–Consani’s or Soulé’s geometry over F1. This could possibly be done by a motivic
theory over F1 as already motivated in [19].

6.1.3 Chevalley groups as D-schemes

A Chevalley scheme can be realized in Deitmar’s notion of a geometry over F1 if and only if
the Chevalley scheme is a toric variety and the multiplication is a toric morphism. This class
of Chevalley schemes is precisely the class of split tori.

6.2 Odds and ends

As we have noted in Remarks 2.9 and 3.8, different (affine) torification can lead to non-
isomorphic CC-gadgets or S-objects, respectively. One may put the question: shall it be an
essential feature of a geometry over F1 to obtain different forms of a torified variety by choos-
ing different torifications? There are two possible approaches to avoid the ambiguity of a
torification: weakening the notion of morphism to gain isomorphic CC-varieties by different

choices of torifications or using the following notion. We call a decomposition X =
◦∐

i∈I Yi

regular if for every i ∈ I there exists Ji ⊆ I such that Yi =
◦∐

j∈Ji
Y j . In other words,

the Zariski closure of each of the schemes in the decomposition decomposes through the
same decomposition. Whenever a torified variety X has a regular torification and any two
regular torifications lead to isomorphic CC-varieties, then one can declare the corresponding
isomorphism class of CC-varieties as the canonical model of X over F1. Note that split tori,
affine space, projective space and flag varieties have a unique isomorphism class of regular
torifications. We do not know whether this is the case for all torified varieties.

A second matter is the problem of the realization of the Grassmannian Gr(2, 4) over F1

as posed by Soulé ([23, Question 3]), which stays open. It is not at all clear to us what this
should be in Soulé’s geometry over F1. Concerning Connes–Consani’s notion, we present in
this paper the candidate L(Gr(2, 4), T ), where T is a torification given by a Schubert cell
decomposition. Since, however, T is not an affine torification, this CC-gadget fails to be a
CC-variety. A possible solution could be searched in relaxing the notion of a CC-variety in
an appropriate way.

Note that the idea of establishing affinely torified varieties (X, T ) as varieties over
F1 is quite flexible. We showed that it works in both Soulé’s definition and Connes–
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Consani’s definition. It further works with the modifications recently suggested by Connes
and Consani in the end of their paper [3]: There is a natural extension of the functors
from finite abelian groups to monoids with distinguished elements 0 and 1 since the
CC-gadgets of torified varieties is defined in terms of homomorphism sets Hom(Ai ,−),
where the Ai are free abelian groups. First note that it is not essential for our con-
struction that we restrict X to finite abelian groups, but we can allow arbitrary abelian
groups. Secondly, every homomorphism from a group into a monoid factorizes through
the group of invertible elements of the monoid. Further, one might exchange the com-
plex variety by a functor on rings that yields a reduced scheme of finite type over any
ring. Namely, the result [3, Theorem 5.1] holds true for affinely torified varieties due
to Lemma 1.2: there is a natural definition of evaluations evX,A : X ⇒ X A(A[−])
for every ring A and X A = X ⊗Z A. If A is a field and M its multiplicative monoid,
then

X(M)
evX,A(M)−→ X A(A[M]) −→ X A(A)

is a bijection, where the latter morphism is induced by the A-linear map A[M] → A iden-
tifying M with A.
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