
Tornado: A Distributed Spatio-Textual Stream Processing
System

∗

Ahmed R. Mahmood1, Ahmed M. Aly1, Thamir Qadah1, El Kindi Rezig1,
Anas Daghistani1, Amgad Madkour1, Ahmed S. Abdelhamid1,

Mohamed S. Hassan1, Walid G. Aref1, Saleh Basalamah2

1Purdue University, West Lafayette, IN 2Umm Al­Qura University, Makkah, KSA

1{amahmoo, aaly, erezig, amgad, samy, msaberab, aref}@cs.purdue.edu,
1{tqadah, anas}@purdue.edu, 2smbasalamah@uqu.edu.sa

ABSTRACT

The widespread use of location-aware devices together with the

increased popularity of micro-blogging applications (e.g., Twitter)

led to the creation of large streams of spatio-textual data. In order

to serve real-time applications, the processing of these large-scale

spatio-textual streams needs to be distributed. However, existing

distributed stream processing systems (e.g., Spark and Storm) are

not optimized for spatial/textual content. In this demonstration, we

introduce Tornado, a distributed in-memory spatio-textual stream

processing server that extends Storm. To efficiently process spatio-

textual streams, Tornado introduces a spatio-textual indexing layer

to the architecture of Storm. The indexing layer is adaptive, i.e.,

dynamically re-distributes the processing across the system accord-

ing to changes in the data distribution and/or query workload. In

addition to keywords, higher-level textual concepts are identified

and are semantically matched against spatio-textual queries. Tor-

nado provides data deduplication and fusion to eliminate redun-

dant textual data. We demonstrate a prototype of Tornado running

against real Twitter streams, where the users can register continu-

ous or snapshot spatio-textual queries using a map-assisted query-

interface.

1. INTRODUCTION
The widespread use of GPS-enabled cellular devices and the in-

creasing popularity of micro-blogging platforms (e.g., Twitter) has

resulted in generating large volumes of geo-tagged data (e.g., a

tweet has both spatial and textual attributes).

Consider the following scenario. A tourist is visiting a city for

the first time and wishes to know how people currently visiting

the attractions feel about them in order to choose the best attrac-

tion to visit (i.e., avoid busy, uninteresting, or closed attractions).

The tourist submits a query to a real-time spatio-textual system that

finds tweets originating in the vicinity of an attraction and that are

discussing the attraction. Tweets arrive at high rate and the data

∗This research was supported in part by National Science Founda-
tion under Grants IIS 1117766 and IIS 0964639.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this li­
cense, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain per­
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st ­ September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150­8097/15/08.

Query

Spout

Data

Spout

Final

 Output

Data Processing

Bolts

q1

q2

q3

q1

q2

q3

q1

q2

q3

q1

q2

q3

d1

d2
d4 d3

Replicated Query

Distribution

Random Data

Distribution

(a) Storm topology

Query

Spout

Data

Spout

Final

 Output

Data Processing

Bolts

q3q1q2d1

d2
d4 d3

 Adaptive Indexing Layer

Random Data

Distribution
Random Query

Distribution

Indexed Data

Distribution

(b) Tornado topology

Figure 1: A Storm topology vs. a Tornado topology.

sources containing information about attractions are large (e.g.,

OpenStreetMap is about 300 GB). Processing these spatio-textual

queries calls for a scalable and distributed real-time spatio-textual

query processing system that can efficiently process and analyze

these spatio-textual data streams in real-time.

Although being in the big data era, existing platforms are not op-

timized for spatio-textual query processing over big data streams.

Existing platforms fall into one of the following categories: (1) dis-

tributed batch systems (e.g., [1, 6, 7]) that are not optimized for

spatio-textual query processing and that suffer from high latency,

(2) distributed spatio-textual batch systems (e.g., [8]) that can han-

dle spatio-textual queries yet they suffer from high latency, (3) dis-

tributed main-memory and streaming systems (e.g., [3, 4, 12]) that

are also not optimized for spatio-textual query execution, (4) cen-

tralized stream-based spatio-textual systems (e.g., [9]) that are con-

strained by the resources of the single machine they run on.

This demonstration presents Tornado, a distributed system for

real-time processing of spatio-textual queries over data streams.

Tornado extends Storm that is a distributed and fault-tolerant

general-purpose stream processing system [4]. Stream process-

ing in Storm is implemented using three main components; spouts,

bolts, and topologies. A spout is a source of input data streams. A

bolt is a data processing unit. A topology is a directed graph that

connects spouts and bolts to form a stream processing pipeline.

Tornado extends Storm with an adaptive indexing layer that im-

proves the query processing performance of spatio-textual queries.

Figure 1 contrasts a Storm topology and a Tornado topology

when processing queries with spatio-textual predicates. As in Fig-

2020

ure 1, Storm has no notion of spatial locality, and hence queries are

replicated across all bolts. This imposes network overhead and im-

plies overloaded bolts. In contrast, Tornado uses an adaptive index-

ing layer (Figure 1(b)) that ensures that queries are not replicated

and that the data is sent only to the relevant bolts.

Tornado provides semantic search capabilities that go beyond

conventional keyword-based matching. We identify and use con-

cepts over streaming data in an online fashion in order to determine

how semantically related the identified concepts are to the spatio-

textual queries. For example, consider the query that finds all the

nearby points of interest that are related to Pollution. Assume that

there is a nearby factory that is semantically related to the concept

Pollution with a specific score. Then, the factory is reported as a

result of the query if the relatedness score is above a certain thresh-

old.

We demonstrate Tornado with its real-time spatio-textual pro-

cessing capabilities using real annotated map data from Open-

StreetMap [2], Tweets arriving from Twitter fire-hose, and syn-

thetic trajectory data from the Minnesota Traffic Generator [11].

2. OVERVIEW OF TORNADO

2.1 Features
The main features of Tornado are summarized as follows:

• Distributed Main-Memory Spatio-Textual Indexing. This

index ensures that data that is relevant to a specific query

is sent to the same processing bolt where the query resides.

Realizing this index without introducing system bottlenecks

is an important design challenge.

• Adaptivity to Skewed Query-Workload and Data Distri-

bution. Because of the dynamic nature of the spatio-textual

data, data distribution may change over time. Furthermore,

typical spatial query-workloads exhibit skewed access pat-

terns, where certain spatial regions receive queries more fre-

quently than others. To address these challenges, Tornado

realizes a novel adaptive and query-workload awar data par-

titioning mechanism. An important characteristic of this par-

titioning mechanism is that it does not assume prior knowl-

edge of the query-workload or the data distribution. Tornado

maintains statistics about the data distribution and the num-

ber of queries received at each bolt. Whenever the distri-

bution of the data or the query-workload changes, Tornado

reacts by incrementally updating the layout of the bolts in

the underlying topology.

• Support for Spatio-textual Trajectories with Limited His-

tories. Tornado is able to efficiently maintain limited his-

tories (i.e., sliding windows) of spatio-textual trajectories,

e.g., trajectories of moving objects for the past one day, three

hours, etc [10]. A spatio-textual trajectory is the history of

locations visited by a moving entity. This history of locations

is tagged with any textual content that is produced at any spe-

cific location (if any). Maintaining limited trajectories allows

performing several important analytical queries (e.g., traffic

analysis) without exhausting memory resources by not keep-

ing the entire history in memory. These queries cannot be

answered if we only keep current-time location data.

• Spatio-textual Querying. Nowadays, many complex spatio-

textual operators and their matching complex indexing struc-

tures are commonly being proposed in the literature. How-

ever, in the authors’ opinion, this approach is against the

spirit of SQL and relational algebra. In relational algebra,

simple relational operators are offered, e.g., relational se-

lects, projects, and joins, that are composable to form more

complex queries. Tornado’s query language follows the phi-

losophy of SQL and relational algebra in the following sense.

Tornado offers simple declarative spatial, textual, and seman-

tic building block operators and predicates that are compos-

able to form complex spatio-textual queries.

• Deduplication and Fusion. Tornado identifies duplicate

spatio-textual data, e.g., tweets that convey the same infor-

mation, and returns a single representation of these dupli-

cates (fusion). The benefit of this phase is twofold. On one

hand, it reduces the number of tweets to be processed by the

query evaluators, hence, improving the query response time.

On the other hand, it diversifies the content of the returned

answer, and hence improving the quality of the query results.

• Map-assisted Query Interface. Users of Tornado can ex-

press spatio-textual queries using an SQL-like query lan-

guage that is coupled with a map. For example, users can

specify a set of focal points by clicking on the map and ref-

erence these points in their k-nearest neighbor queries. This

interface is different from [9], as Tornado provides an SQL-

Like language to express user queries while [9] uses a web-

based form to specify the various predicates.

• Semantic Search. Tornado provides semantic search ca-

pabilities extending beyond conventional Boolean keyword

matches. Introducing semantic search allows Tornado to find

the semantically relevant items that match the query.

2.2 Data Model
Tornado processes tuple data from mulitple sources that are of

the following format: {srcid, oid, (x, y), t, text}, where srcid is

the data source identifier, oid is the identifier of the object reporting

the incoming tuple. (x, y), t, and text are the spatial location of

the centroid of the object, the timestamp, and the textual content of

the tuple, respectively.

2.3 Supported Query Predicates
Tornado is meant to handle a wide range of spatio-textual

queries. In the current phase of Tornado, we are mainly concerned

with both snapshot and continuous versions of the following query

predicates: spatio-textual range and kNN select and join predicates

(including distance joins), textual similarity and semantic matching

predicates, limited history, and temporal predicates. Examples of

supported queries are given in Section 4.

3. SYSTEM ARCHITECTURE
In this section, we give an overview of the layered architecture

of Tornado illustrated in Figure 2.

3.1 Adaptive Indexing Layer
Indexing in Tornado is distributed and is composed of (1) a

global spatial index, and (2) local spatio-textual indexes. Fig-

ure 3 illustrates Tornado’s indexing module. All incoming data

and queries navigate though the global index to be assigned to a

query processing unit (i.e., a bolt). To avoid performance bottle-

necks, the global index is replicated across several bolts. A local

spatio-textual index is composed of multiple in-memory k-d trees

(one per data source). Each non-leaf node in the k-d tree is aug-

mented with an inverted list that summarizes the textual contents

2021

Synchronization Module

Execution

Bolts

Global Indexing

Bolts

U
s
a

g
e

S
ta

ti
s
ti
c
s

X

Y Z
Aux

Bolt

A

(a) Before index change

Synchronization Module

Execution

Bolts

B
o

u
n

d
a

ry

U
p

d
a

te

Aux

Bolt

Merge Data

Split data

X1

Y Z

X2

Global Indexing

Bolts

X A

(b) Transient phase

Synchronization Module

Execution

Bolts

Global Indexing

Bolts

X2X1

Y

Aux

Bolt

Z

X A

(c) After index change

Figure 4: Index adaptivity in Tornado.

Input Queries APIs Input Data Streams

Persistent Data APIs

Real-Time Query Processors

Adaptive Indexing Layer

HDFS HBase RDBMS

Desktop

Applications

Mobile

Applications

GPS

Logs
Twitter …...

T
o

rn
a

d
o

 T
o

p
lo

g
y

……….

Deduplication and Fusion

Textual Semantic (Offline- Online)

Figure 2: The layered architecture of Tornado.

of its child nodes. The inverted lists help speedup the processing of

the spatio-textual queries.

It is expected that the system workload will not be the same at

all times, and hence having a static indexing layer can result in

poor system performance. Some processing bolts may get over-

loaded, while other processing bolts may get underutilized. Tor-

nado is adaptive to changes in both the data and query workload.

It is challenging to ensure workload adaptivity for the following

reasons:

• Replicated Index Bolts: In Tornado, incoming tuples go to

any instance of the indexing bolts. This mandates that all the

indexing bolts maintain the same layout of the global index to

ensure consistency when sending the tuples to the processing

bolts.

• No Global System View: It is relatively easy to achieve

adaptivity in a centralized system, where the workload statis-

tics are centralized. This is not the case in Tornado, where

the workload statistics are distribued, and the indexing bolts

do not have access to the memories of each other.

Tornado uses Apache ZooKeeper [5], an open-source distributed

configuration and synchronization service, to synchronize the

changes in the global index bolt. Zookeeper stores usage statistics

(i.e., the number of data objects and queries processed) from the

Non-Replicated

Query Executers
 Global Indexing

Bolts

Continous

Query

Buffers

Spatio-Textual

Indexes

Output

Bolt Links

Spatial

Index

Figure 3: Indexing in Tornado.

data processing bolts. The index bolts access these usage statistics

from the zookeeper to detect when a change in the index is needed.

We model the overhead (i.e., cost), say C, corresponding to a

bolt, say b, as: C(b) = P (b) × Q(b), where P (b) and Q(b) are

the number of data objects and queries in b, respectively. To up-

date the layout of the bolts, we split the space corresponding to

the bolt, say Hb, with the highest overhead. We use a free auxil-

iary bolt to hold a portion of the data of Hb. To keep the number

of bolts constant in the topology, which is a physical constraint

due to cluster resources, we merge two adjacent bolts that have the

lowest overhead into one new bolt. Thus, the layout of the bolts

always follows the structure of a k-d tree. Tornado avoids unnec-

essary splits/merges by integrating its cost model with the cost of

shuffling the data between the bolts. Figure 4 describes the steps

of adapting to workload changes. In Figure 4(a), Bolt X is under

heavy load while Bolts Y and Z are underutilized. Figure 4(b) rep-

resents the transient phase, where the data in Bolt X is split into x1

(remains at Bolt X) and x2 (sent to the free auxiliary Bolt A). The

data from the underutilized Bolt Z is transferred to Bolt Y . After

the transient phase, Bolt Z becomes the free auxiliary bolt to be

used in future adaptivity actions. Figure 4(c) gives the global index

and execution bolts after the change.

3.2 Query Evaluation Layer
The data processing layer is the working horse of Tornado. This

layer is composed of a set of interconnected data processing bolts

(evaluators). Evaluators are responsible for query evaluation over

streamed data. Incoming spatio-textual data and queries go through

the global indexing layer to determine the relevant evaluator bolts

2022

to be sent to. An evaluator bolt is composed of two main com-

ponents, (1) continuous queries buffer, (2) local spatio-textual in-

dexes. Continuous queries are held in a main-memory buffer until

revoked. Incoming streamed data is checked against the continu-

ous queries buffer to update the results of queries. The local spatio-

textual index is composed of multiple k-d trees augmented with text

as descried in Section3.1.

The following steps outline how the queries are evaluated in Tor-

nado: (1) Check the query’s spatial attributes against the global

index. (2) Send the query to the relevant execution bolt(s). (3) Use

the local spatio-textual index to evaluate the query. (4) Consult the

neighboring bolts if needed, e.g., textual-kNN and textual distance

join. (5) Report the query results. Continuous queries are held in

a continuous-queries buffer and query results are updated based on

the incoming data.

3.3 Data Input Layer
Tornado is able to ingest a wide range of spatio-textual data

streams e.g., GPS logs of moving vehicles, tweets, and human in-

teractions with online ads, as well as persistent (i.e., static) data,

e.g., road networks and points of interests. Users of Tornado may

submit queries from either desktop or mobile applications. In a

Storm topology, input streams are accessed through spouts. Tor-

nado extends Storm and follows the same conventions. In Tornado,

there are three main types of inputs, namely (1) streamed queries,

(2) streamed spatio-textual data, and (3) persistent data.

Tornado provides spouts for input types (1) and (2). For input

type (3), we do not use spouts to read persistent data. To avoid

the overhead of going though the indexing layer for persistent data,

Tornado provides an API to directly load this data from disk stor-

age, e.g., from HDFS, HBASE, or RDF stores, into the query pro-

cessing bolts (i.e., the evaluators).

3.4 Deduplication and Fusion Layer
Tornado performs on-the-fly deduplication and fusion of spatio-

textual data streams as the data arrives. For deduplication, we har-

ness Tornado’s spatial indexing scheme to consider only data ob-

jects that are geographically co-located. Incoming spatio-textual

data objects are matched against previously processed streams. In

case of high similarity, the incoming data object is deemed dupli-

cate and is not returned. After identifying the duplicates, fusion is

performed by returning the data that is deemed most informative.

3.5 Textual Semantics Layer
In Tornado, we compute the semantic relatedness among spatio-

textual data to enrich the query results. The computation is per-

formed in two phases: 1) an offline preprocessing phase, where

we calculate semantic relatedness scores among keywords and con-

cepts, and 2) an online phase, where we use the precomputed scores

to match spatio-textual data with queries. If the overall semantic re-

latedness score between a data object and a query is above a certain

threshold, the object is reported among the result set of the query.

4. DEMO SCENARIO
Real-time Human Experience: We demonstrate the scenario

highlighted in Section 1, where a tourist issues a query to view

the tweets that discuss attractions. The real-time feedback from

tweeters can assist the tourist to avoid crowded or uninteresting

attractions. This query can be expressed in Tornado as follows:

REGISTER QUERY q1 AS

SELECT * FROM OSM Data AS O, Tweets AS T

WHERE WITHIN DISTANCE(T, O, Threshold)

Figure 5: The index visualizer in Tornado.

and INSIDE(T,@currentMapView)

and INSIDE(O,@currentMapView)

and CONTAINS(O.text, "attraction")

and OVERLAPS(T.text, O.text);

Nearby Taxi Finder: In this scenario, a user issues a snapshot

query to find nearby taxis from a specific taxi company. This query

resembles a snapshot kNN query with a textual predicate and can

be expressed using the following SQL statement. The output of

this query visualizes the current location of the query issuer along

with 5 nearest taxis that belong to the requested company.

RUN QUERY q2 AS

SELECT kNN FROM Vehicles AS V

WHERE CONTAINS(V.text,"Taxi","Company")

and kNN.k=5 and kNN.Focal(@myLoc);

In addition to the visualization of spatio-textual queries, the Tor-

nado demo displays the internals of the adaptive index component.

We visualize the effect of changing the query and data workloads

on the global spatial index boundaries. To show the global index

adaptivity, we give an initial partitioning of the global index. Then,

we change the workload and show how the global index reacts ac-

cordingly to balance the load. Figure 5 illustrates the interface for

the index adaptivity visualizer.

5. REFERENCES
[1] Hadoop. http://hadoop.apache.org/, 2015.

[2] OpenStreetMap. http://www.openstreetmap.org/, 2015.

[3] Spark. https://spark.apache.org/, 2015.

[4] Storm. https://storm.apache.org/, 2015.

[5] ZooKeeper. https://zookeeper.apache.org/, 2015.

[6] A. Eldawy and M. F. Mokbel. A demonstration of spatialhadoop: An
efficient mapreduce framework for spatial data. VLDB, 2013.

[7] J. Lu and R. H. Guting. Parallel secondo: A practical system for
large-scale processing of moving objects. In ICDE, 2014.

[8] Y. Ma, Y. Zhang, and X. Meng. St-hbase: a scalable data
management system for massive geo-tagged objects. In Web-Age

Information Management. Springer, 2013.

[9] A. Magdy, L. Alarabi, S. Al-Harthi, M. Musleh, T. M. Ghanem,
S. Ghani, and M. F. Mokbel. Taghreed: A system for querying,
analyzing, and visualizing geotagged microblogs. SIGSPATIAL,
2014.

[10] A. R. Mahmood, W. G. Aref, A. M. Aly, and S. Basalamah. Indexing
recent trajectories of moving objects. In SIGSPATIAL, 2014.

[11] M. F. Mokbel, L. Alarabi, J. Bao, A. Eldawy, A. Magdy, M. Sarwat,
E. Waytas, and S. Yackel. MNTG: an extensible web-based traffic
generator. In SSTD. 2013.

[12] T. M. Sutherland, B. Liu, M. Jbantova, and E. A. Rundensteiner.
D-cape: distributed and self-tuned continuous query processing. In
CIKM, 2005.

2023

