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Abstract. Given an effective action of an (n−1)-dimensional torus on an n-
dimensional normal affine variety, Mumford constructs a toroidal embedding,
while Altmann and Hausen give a description in terms of a polyhedral divisor
on a curve. We compare the fan of the toroidal embedding with this polyhedral
divisor.
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Introduction

Suppose X is an n-dimensional normal affine variety over the complex
numbers with an effective action by the (n − 1)-dimensional torus T . With
T ∼= (C∗)n−1, we associate the lattice M ∼= Zn−1 of characters and the dual
lattice N = Hom(M, Z) of one-parameter subgroups. The action defines the
weight cone ω in M generated by the degrees of semi-invariant functions on X
and the dual cone σ in N . Effectivity of the action translates to the fact that
ω is full-dimensional and σ is pointed.

Notation. A cone δ “in” a lattice N is really a subset of the vector space
N� = N ⊗ Q. The toric variety associated with this cone will be denoted by
TV(δ).

Our goal is to compare two sets of combinatorial data associated with X.
Mumford [3, Chapter 4, §1] takes a rational quotient map p from X to a
complete nonsingular curve C. He defines X ′′ to be the normalization of the
graph of p and shows that for certain open subsets U of C, we obtain a toroidal
embedding (U × T, X ′′). This determines a combinatorial datum, namely the
toroidal fan Δ(X, U). It is a collection of cones in different lattices Z×N , one
for each point P ∈ C \ U , glued along their common face in (0, N).

Altmann and Hausen [1] construct a divisor D with polyhedral coefficients

on a nonsingular curve Y ; this divisor determines a T -variety X̃, affine over
Y , which contracts to X. Here, D is of the form ΣP∈Y ΔP ⊗ P , where the ΔP

are polyhedra in N� with tail cone σ, only finitely many nontrivial.
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To compare these data, we note that the curve Y is an open subset of

C, namely the image of the map π : X ′′ → C. In fact, the varieties X̃ and
X ′′ agree, which allows us to describe Δ(X, U) in terms of D. Defining the
homogenization of a polyhedron Δ ⊂ N� with tail σ to be the cone in Z × N
generated by (1, Δ) and (0, σ), we obtain the following result.

Theorem 1. The toroidal fan Δ(X, U) is equal to the fan obtained by gluing
the homogenizations of the coefficient polyhedra ΔP of points P ∈ Y \U along
their common face (0, σ).

In Section 1, we recall relevant facts about toroidal embeddings and summa-
rize the construction of the embedding (U × T, X ′′). Section 2 contains some
details about polyhedral divisors on curves. Finally, we present the proof of
Theorem 1 in Section 3.

1. Toroidal interpretation

Toroidal embeddings. A toroidal embedding [3, Chapter 2] is a pair (U, X)
of a normal variety X and an open subset U ⊂ X such that for each point
x ∈ X, there exists a toric variety (H, Z) with embedded torus H ⊂ Z which
is locally formally isomorphic at some point z ∈ Z to (U, X) at x. We will
further assume that the components E1, . . . , Er of X \U are normal, i.e., that
all toroidal embeddings are “without self-intersection”.

The components of the sets ∩i∈IEi \ ∪i�∈IEi for all subsets I ⊂ {1, . . . , r}
give a stratification of X. The star of a stratum Y is defined to be the union
of strata Z with Y ⊂ Z. Given a stratum Y , we have the lattice MY of Cartier
divisors on the star of Y with support in the complement of U . The submonoid
of effective divisors is dual to a polyhedral cone σY in the dual lattice NY .

If Z ⊂ star(Y ) is a stratum, its cone σZ is a face of σY . The toroidal fan of
the embedding (U, X) is the union of the cones σY glued along common faces.

Remark 1. A toroidal fan differs from a conventional fan only in that it lacks
a global embedding into a lattice.

Below, we will use the fact that an étale map (U, star(Y )) → (H, TV(δ))

induces an isomorphism σY
∼→ δ of lattice cones.

Toroidal embeddings for torus actions. We return to the T -variety X and
summarize Mumford’s description [3, Chapter 4, §1]. There is a canonically
defined rational quotient map p : X ��� C to a complete nonsingular curve C.
Sufficiently small invariant open sets W ⊂ X split as W ∼= U × T for some
open set U ⊂ C, where the first projection U × T → U corresponds to p. We
will identify U × T with W .

We define X ′ to be the closure of the graph of the rational map p in X ×C,
and X ′′ to be its normalization. The action of T on X lifts to X ′′. We may
consider U × T as an open subset of X ′′; the projection to U now extends to
a regular map π : X ′′ → C.
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After possibly replacing U by an open subset, we are in the following sit-
uation: Let P ∈ C \ U be a point in the complement of U . The sets U ,
U ′ = U ∪ {P} and π−1(U ′) are affine with coordinate rings R, R′ and S, re-
spectively. We may regard S as a subring of R ⊗ C[M ] which is generated by
homogeneous elements with respect to the M-grading. Denoting by s a local
parameter at P ∈ C, the ring S is generated over R′ by a finite number of
monomials skχu.

The corresponding semigroup in Z×M and its dual cone δP in Z×N define
a toric variety Z = TV(δP ). The monomial generators of S define an étale
map π−1(U ′) → Z which shows that the embedding (U×T, π−1(U ′)) is toroidal
with cone isomorphic to δP . By considering all points P ∈ C \ U , we see that
(U × T, X ′′) is a toroidal embedding.

Theorem A ([3, Chapter 4, §1]). The embedding (U × T, X ′′) is toroidal. Its
fan Δ(X, U) consists of the cones δP glued along the common face δP ∩(0, N�).

Remark 2. This common face is σ ⊂ N� and corresponds to π−1(U), an open
subset of each π−1(U ′). For points P that lie outside the image of π, we have
π−1(U ′) = π−1(U), hence the cone δP is equal to (0, σ).

Remark 3. Given U ⊂ C, the constructed toroidal fan Δ(X, U) is independent
of the choice of equivariant isomorphism U ×T ∼= W . It does however depend
on the choice of U .

If we don’t require that there be an étale model for the whole of π−1(U ′), we

can enlarge U to form a canonical embedding (V ×T, X̃). Here, V is obtained
by adding to any U as above all points P with a toric model that splits as
Z = A1 ×F , where F = TV(σ) is the generic fiber of π. That is, the points P
with cone δP isomorphic to σ × Q≥0.

Example. The affine threefold X = SL(2, C) = C[a, b, c, d]/(ad−bc−1) admits
a two-dimensional torus action by defining

(t1, t2) ·
(

a b
c d

)
=

(
t1a t2b
t−1
2 c t−1

1 d

)
.

It admits a quotient morphism π : X → A1 = Spec C[s] with s 	→ ad. Let W
be the open subset of matrices with no vanishing entries. With U = A1\{0, 1},
we get an isomorphism W ∼= U × T by mapping t1 	→ a and t2 	→ b.

We consider P = 0, so U ′ = A1 \ {1}. The coordinate ring of π−1(U ′) is
generated over C[s]s(s−1) by t1, st−1

1 and t±1
2 . Thus δ0 is generated by (1, 0, 0)

and (1, 1, 0). Similarly, δ1 is generated by (1, 0, 0) and (1, 0, 1), as shown in
Figure 1. The fan Δ(X, U) is obtained by gluing these two cones at the vertex.

2. Polyhedral divisors on curves

We turn to the construction and relevant properties of proper polyhedral
divisors on curves, restating results of Altmann and Hausen [1] in the setting
of codimension one actions.
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δ0 δ1 Δ1, Δ2

Figure 1. Cones and polyhedra for SL(2, C)

Given a cone σ in N , the set of polyhedra with tail cone σ

Pol+σ = {Δ ⊂ N� | Δ = Π + σ for some compact polytope Π}
forms a semigroup under Minkowski addition. It is embedded in the group
of differences Polσ; the neutral element is σ. A divisor D ∈ Polσ ⊗CaDiv(Y )
on a smooth curve Y is called a polyhedral divisor. Under certain positivity
assumptions (

∑
ΔP � σ is almost the right condition, see [1, Example 2.12]),

D is called proper. We may express it as

D =
∑

ΔP ⊗ P,

where the sum ranges over all prime divisors of Y , and all but finitely many
of the polyhedra ΔP are equal to σ.

A proper polyhedral divisor defines an affine T -variety. Each weight u in
the weight monoid ω ∩ M gives a Q-divisor D(u) on Y by

D(u) =
∑

min〈u, ΔP 〉 · P.

This allows us to define an M-graded sheaf A of OY -algebras by setting Au =

OY (D(u)). We denote by X̃ the relative spectrum SpecY (A) and by X = X (D)
its affine contraction SpecΓ(Y,A).

We summarize the relevant results on proper polyhedral divisors.

Theorem B ([1, Theorem 3.4]). Given a T -variety X as above, there is a
curve Y and a proper polyhedral divisor D on Y such that the associated T -
variety X (D) is equivariantly isomorphic to X.

Theorem C ([1, Theorem 3.1]). Let X and X̃ be given by a proper polyhedral
divisor on the curve Y .

(i) The contraction map X̃ → X is proper and birational.

(ii) The map π : X̃ → Y is a good quotient for the T -action on X̃; in partic-
ular, it is affine.

(iii) There is an affine open subset U ⊂ Y such that the contraction map
restricts to an isomorphism on π−1(U).

Example. A polyhedral divisor for the torus action on X = SL(2, C) is com-
puted easily by considering the closed embedding in the toric variety Mat(2×
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2, C) ∼= A4. The toric computation [1, Section 11] shows that A4 with the
induced (C∗)2-action may be described by the divisor D′ = Δ1 ⊗D1 +Δ2⊗D2

on A2, where Di = div(xi) are the coordinate axes and Δi = conv{0, ei}. The
image of X in A2 is the line through (1, 0) and (0, 1). Hence, D′ restricts to
the divisor D = Δ1 ⊗ [0] + Δ2 ⊗ [1] on A1.

3. Comparison

Now to compare the toroidal and polyhedral data associated with a T -variety
X. By Theorem B, we may assume X is given by a polyhedral divisor D on a
curve Y , contained in the complete curve C. As above, we have the T -variety
X̃ with the quotient map π to Y and the contraction to X.

Denote the open subset of points P with trivial coefficient ΔP = σ by V .
Then for any open subset U ⊂ V , we have

π−1(U) = SpecU OU ⊗ C[ω ∩ M ] = U × TV(σ).

In particular, U × T is an open subset of X̃. By part (iii) of Theorem C, we
may regard U ×T as a subset of X after possibly shrinking U . The projection
to U gives the required rational quotient map X ��� C.

We get varieties X ′ and X ′′ as before and note the following fact.

Lemma 1. X̃ is canonically isomorphic to X ′′.

Proof. It follows from the construction of X ′′ that the maps X̃ → X and

X̃ → C factor through a map ϕ : X̃ → X ′′. Since both maps to X are proper,
so is ϕ. Since both maps to C are affine, so is ϕ. Since ϕ is also birational, it
is an isomorphism.

Now for suitable U , we saw above that (U × T, X̃) is a toroidal embedding
with fan Δ(X, U). We recall the statement of our claim.

Theorem 1. The toroidal fan Δ(X, U) is equal to the fan obtained by gluing
the homogenizations of the coefficient polyhedra ΔP of points P ∈ Y \U along
their common face (0, σ).

To see this, consider P ∈ Y \ U and U ′ = U ∪ {P} with local parameter
s at P . Since D|U is trivial, we have D|U ′ = ΔP ⊗ P . The graded parts of
A =

⊕
u∈ω∩M Au are thus

Au = OU ′
(D|U ′(u)

)
= OU ′

(
min〈u, ΔP 〉 · P

)
= OU ′

(�min〈u, ΔP 〉
 · P
)
.

Hence, we can express the graded parts of the coordinate ring S of π−1(U ′) as

Su = Γ
(
U ′,OU ′(D(u))

)
= R′ · s−	min〈u,ΔP 〉�.

It follows that the monomial semigroup of the toric model consists of the pairs
(k, u) ∈ Z × M with k ≥ −min〈u, ΔP 〉. By Lemma 2 below, we see that δP is
the homogenization of ΔP . As Remark 2 implies that points in the complement
of Y don’t contribute to Δ(X, U), the proof is complete.
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Lemma 2. Let Δ be a polyhedron in N with tail cone σ. Let δ in Z×N be its
homogenization, i.e., δ = pos{(0, σ), (1, Δ)}. Then the dual cone δ∨ consists
of those pairs (r, u) ∈ Q × M� with u ∈ σ∨ and r ≥ −min〈u, Δ〉.
Proof. By definition, we have (r, u) ∈ δ∨ if and only if (r, u) is non-negative on
both (0, σ) and (1, Δ). The first condition is equivalent to u ∈ σ∨. The second
condition means that r ≥ −〈u, v〉 for any v ∈ Δ, that is, r ≥ −min〈u, Δ〉.
Example. For the example of SL(2, C), clearly the homogenizations of the seg-
ments conv{0, ei} give the cones δ0, δ1 generated by (1, 0) and (1, ei). This is
illustrated in Figure 1.

Remark 4. Both descriptions generalize to the non-affine case. Mumford treats
this directly, while the polyhedral approach involves the fans of polyhedral di-
visors developed by Altmann, Hausen and Süß [2]. It should be straightforward
to carry this result over.
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