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Toroidal flows in resistive magnetohydrodynamic steady states
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Ideal magnetohydrodynamics~MHD! still provides the mathematical framework and the textbook
vocabulary in which the possible states of a toroidal plasma are discussed, generally regarded as
static equilibria. This is so, despite the increasing realization that virtually all toroidal magnetofluids
have nontrivial fluid flows~finite velocity fields! in them. A very different perspective results from
nonideal MHD, including both resistivity and viscosity and invoking nonideal boundary conditions.
There, it has been shown that if Ohm’s law and Faraday’s law are given equal importance with force
balance, flows are an inevitable consequence of the assumptions of time independence and
axisymmetry. Previous treatments of the toroidal steady states for such systems have been based on
perturbation theory in which the flow velocity was assumed small, as a consequence of high
viscosity ~or in dimensionless terms, low Hartmann numberH). Here, recently newly available
numerical programs are used to lift this limitation and to solve nonlinearly for the allowed steady
states of an axisymmetric, current-carrying, toroidal magnetofluid without such an expansion in the
Hartmann number. Flow patterns for values ofH from !1 to @1 have been calculated. AsH is
raised, the flow pattern goes from the predominantly poloidal pair of counter-rotating ‘‘convection
cells’’ revealed by the perturbation theory to a pattern in which the toroidal kinetic energy of flow
considerably exceeds the poloidal kinetic energy. In no case is the flow discovered a simple
rotation. © 2003 American Institute of Physics.@DOI: 10.1063/1.1524629#
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I. INTRODUCTION

The possible steady states of a magnetized plasma
been the starting point for nearly all treatments of magn
fusion confinement and stability.1–3 Most commonly, it has
been the ideal magnetohydrodynamic~MHD! description
that has been employed. In the last few years it has bec
clear that the character of the possible steady states is gr
altered, at least from a theoretical perspective, if nonideal4–6

rather than ideal, MHD is employed.7–10 In the following,
nonideal MHD will be taken to mean MHD with viscous an
resistive terms included, with Ohm’s law and Faraday’s l
promoted to equal status with the equation of motion, a
with some internally consistent set of viscous and resis
boundary conditions—even highly oversimplified ones
enforced.

One of the more striking effects to have emerged c
cerns the differences between resistive steady states ins
toroid and those inside a straight periodic cylinder w
which toroidal geometry is often approximated. In t
straight cylinder, it is relatively easy to find steady sta
including a voltage-driven current distribution which involv
no flow ~zero velocity-field!. However, it has become appa
ent that in the toroid, virtually all the resistive, driven stea
states that can be connected to a realistic resistivity pro
involve steady flows with toroidal vorticity. Because of th

a!Electronic mail: l.p.j.kamp@tue.nl
1571070-664X/2003/10(1)/157/11/$20.00
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difficulty of solving the steady-state nonideal MHD equ
tions in toroidal geometry with resistive and viscous boun
ary conditions, it has been necessary to proceed up to now
perturbation theory, in which the expansion parameter m
be variously considered to be the mechanical Reynolds n
ber, the Hartmann number, or the reciprocal of t
viscosity.8–12 Any way the matter is phrased, the solutio
have essentially been large-viscosity solutions, in which
flow speed remained small because of size of the viscosit
characteristic flow pattern emerged, somewhat independe
of the shape of the toroidal boundary cross section, and
dependently of the viscous and resistive boundary conditi
imposed: a pair of counter-rotating poloidal vortices or co
vection cells involving mostly toroidal vorticity.

The purpose of this paper is to report the results of
merical computations that do not require the assumption
small Hartmann number. The method is new, and permits
Hartmann number to range from!1 to @1. The primary
effect to emerge is the appearance of a strong toroidal ve
ity component that appears in the flow as the Hartmann n
ber is raised and then eventually saturates, when the rat
its mean square to that of the poloidal flow is considered.
poloidal flow, we mean not a simple poloidal rotation, b
rather a flow whose streamlines~often dipolar! lie primarily
in a plane perpendicular to the toroidal direction. There
also significant quantitative changes in the nature and ge
etry of the flow pattern. The focus is on what happens t
given voltage-driven steady state at fixed resistivity and
© 2003 American Institute of Physics

 license or copyright; see http://pop.aip.org/pop/copyright.jsp



d
iti
o
t

r
b

tio

ef
ud

en
n

an
r t

it
it

u
lly
ne
tic
.
e

In
ym
ic
r

ay
t
th

am
e
e
p

in
e
e
le
n
ha
n

s
if-
al
nt
th
e

fi-
is
e
is

th
alu
he
ab

D
le,
ng.

ple
ity

ea-

ular
eto-

158 Phys. Plasmas, Vol. 10, No. 1, January 2003 L. P. Kamp and D. C. Montgomery
posed driving electric field as the viscosity is varied. We
this, because viscosity is one of the most uncertain quant
remaining in high-temperature MHD, both as to the form
the viscous stress tensor and as to the magnitude of
coefficient.5,6,12Lack of a sufficiently inclusive theoretical o
experimental grasp of magnetized plasma viscosity may
thought of as perhaps the most severe theoretical limita
in fusion MHD at the present time.

We have made several assumptions that we would pr
not to have made, because of our present inability to incl
them, and we list them now.~1! We have assumed uniform
density and incompressibility, to avoid the need for an
ergy equation and the complications of self-consistent tra
port coefficients with variable dependencies on density
temperature; we have simply assumed constant values fo
coefficients of viscosity and resistivity.~2! We have assumed
a simple, Newtonian viscous term and a scalar resistiv
and have avoided confronting the difficulties associated w
the Braginskii tensors for viscosity and resistivity.~3! We
have assumed stress-free, rather than no-slip, viscous bo
ary conditions on the velocity field; they may be equa
unrealistic approximations for the edge region of a confi
ment device, but anything more complex involves kine
theory complications that are presently beyond our reach~4!
We assume axisymmetry throughout. It would be desirabl
the future to remove any or all of these four limitations.

Section II contains the MHD equations to be solved.
the Appendix, they are re-expressed, for the case of axis
metric steady states, in terms of the scalar functions wh
are computed. Section III is a brief description of the nume
cal method employed. Section IV summarizes and displ
the results of several computations, with an emphasis on
effects of different choices for the assumed magnitude of
viscosity coefficient. Since the cases in Sec. IV have par
eters far from close to current laboratory operating regim
we present in Sec. V two ‘‘realistic’’ cases, in which th
numbers chosen are taken to correspond as closely as
sible to a data set from the first tritium shot in the Jo
European Torus~JET!. Particularly different are the larg
values of the Lundquist numberS and the small values of th
toroidal electric field, which are much larger and smal
than those for the cases reported in Sec. IV. The situatio
still ambiguous, however, due to large uncertainties in w
should be chosen for the values of the viscosity coefficie
The Braginskii–Balescu5,6 viscosity tensor formally contain
five coefficients of which there are only three basically d
ferent ones. The ‘‘ion parallel’’ viscosity is an ion therm
speed times an ion collision time, The other two coefficie
are down by about one and two powers, respectively, of
ion gyrofrequency times the ion collision time. What w
have done is to choose the ‘‘ion parallel’’ viscosity coef
cient of Braginskii, the largest possible candidate for the v
cosity and we have done a calculation with a viscosity co
ficient that is a million times smaller. The latter case
intended to illustrate the changes in the flow field when
viscosity coefficient approaches the smallest possible v
in the three Braginskii coefficients. Section VI reviews t
results and offers some observations on their possible el
ration in experimental settings.
Downloaded 25 Sep 2008 to 131.155.151.77. Redistribution subject to AIP
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II. STATEMENT OF THE PROBLEM

We will work in the familiar set of ‘‘Alfvénic’’ dimen-
sionless variables for advancing the fluid variablesE ~the
electric field!, B ~the magnetic field!, v ~the velocity field!, J
~the electric current density!, v ~the vorticity field!, and the
scalar pressurep, normalized to the mass density.

With these notations, then, the dimensionless MH
equations of motion for a uniform-density, incompressib
conducting, steady-state fluid are taken to be the followi
First, there is mechanical force balance,

~v•¹!v5J3B2¹p1n¹2v, ~1!

where for reasons of tractability we have assumed a sim
scalar form for the Newtonian viscous term. The veloc
field obeys the incompressibility condition,

¹•v50. ~2!

Faraday’s law reads

¹3E50. ~3!

Ohm’s law is

E1v3B5hJ. ~4!

Ampère’s law says

¹3B5J. ~5!

And, finally,

¹•B50. ~6!

In the dimensionless units used, where velocities are m
sured in units of the Alfve´n speed,n is the reciprocal of the
viscous Lundquist number,M . In terms of laboratory~cgs!
units, M is given byn215M5CaL/ ñ, whereCa is an Al-
fvén speed based on a typical magnetic field,L is a charac-
teristic length scale~e.g., the minor radius of the torus!, and
ñ is the laboratory kinematic viscosity, expressed in cm2/s. h
is the reciprocal of the resistive Lundquist number,S, which
in laboratory units is defined byh215S54ps̃CaL/c2,
wheres̃ is the cgs electrical conductivity andc is the speed
of light. The Hartmann numberH is related toM and S
through the relationH5AMS.

The geometry of the model~see Fig. 1! for which these

FIG. 1. Geometry of computational model. The toroid has a rectang
cross section with impenetrable, perfectly conducting walls. The magn
fluid occupies the region between the radiir 2 and r 1 , and z52L,1L.
The walls are perfectly smooth.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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equations may be solved numerically consists of an axis
metric toroid the axis of symmetry of which coincides wi
the z-axis in a set of cylindrical polar coordinates (r ,w,z).
The midplane of the toroid is the planez50. The boundaries
of the toroidal cross section are taken to be a rectangle.
ing so leads to calculational simplicity, but is not believed
be necessary for the effects we shall describe. The upper
lower boundaries are atz5L andz52L, respectively, and
the inner and outer boundaries are at the radiir 5r 2 and r
5r 1 , respectively. This geometry will be adopted in t
present paper. The boundary conditions that have been
posed upon the solutions of the set of Eqs.~1!–~4! are that
any tangential viscous stress, and the normal componen
v, J, andB, should vanish at the walls. As in the case of t
planar-boundary assumption, these boundary conditions
believed not to be uniquely important ones, and are cho
mainly for calculational convenience. One may idealize su
a boundary as a perfectly smooth dielectric coating on a
fect conductor.

The source of the driving toroidal electric field is idea
ized as an axisymmetric, infinitely-long, iron core throu
which thez-directed magnetic flux is increasing proportio
ally to the time. This implies a curl-free time-independe
toroidal electric field in thew-direction according to

Eext~r ,z!5E0

r 0

r
îw , ~7!

whereE0 is a reference value of the electric field at radi
r 5r 0 , and îw is a unit vector in the toroidal~azimuthal!
direction. Additionally also a purely toroidal dc magnet
field supported by external poloidal windings around the t
oid, is assumed to be present. This magnetic field is curl-
too and is described by

Bext~r ,z!5B0

r 0

r
îw , ~8!

whereB0 is a reference value of the magnetic field at rad
r 5r 0 .

We will ignore the violation of electrodynamics that
implied by the presence of these finite axial electric a
magnetic fields inside the perfectly conducting toroidal wa
In real life, the externally maintained electric and magne
fields would require slits and slots cut into the perfect co
ductor in order that it might penetrate. That, however, wo
destroy the the rotational symmetry desired, and make e
the problem of finding steady states to perturb prohibitiv
difficult. So a compromise with the laws of electrodynam
is necessary, even to set up the problem.

III. NUMERICAL SOLUTIONS

Starting from the set of nonideal MHD Eqs.~1!–~6! and
using the fact that we consider axisymmetry, we introdu
scalar variables according to

v~r ,z!5¹c3¹w1vw îw , ~9!

B~r ,z!5¹x3¹w1S B0

r 0

r
1BwD îw , ~10!
Downloaded 25 Sep 2008 to 131.155.151.77. Redistribution subject to AIP
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where c is the stream function andx is the flux function.
Since there is no time dependence, the gradient of a sc
field may be added to the externally applied electric field

E~r ,z!5E0

r 0

r
îw2¹F. ~11!

With these new variables the electric current density and
vorticity may be expressed as

J~r ,z!5¹~rBw!¹w2¹2~x¹w!

5¹~rBw!¹w2
1

r
~D* x! îw , ~12!

v~r ,z!5¹~rvw!¹w2¹2~c¹w!

5¹~rvw!¹w2
1

r
~D* c! îw , ~13!

where the modified Laplace operatorD* is defined by

D* A5¹2A2
2

r

]A

]r
5

]2A

]r 2 2
1

r

]A

]r
1

]2A

]z2 . ~14!

In the Appendix a coupled set of nonlinear Poisson-l
equations is derived for the variablesc, vw , Bw , vw , x, and
Jw . This set is then solved numerically using a commercia
available software package calledFEMLAB.13 FEMLAB applies
the finite element method to our system of partial differen
equations in two dimensions in conjunction with adapti
meshing and error control. A numerical solver that is poin
to solving stationary nonlinear equations is used. Becaus
the symmetry in our problem, we note that all solutions ha
to be either symmetric~even parity! or antisymmetric~odd
parity! with respect to thez50 midplane.Bw , x, andJw are
even functions inz, whereasc, vw , andvw are odd func-
tions ofz. Therefore by considering only, say, the upper h
of the toroid we can reduce the amount of numerical cal
lation by a factor 2. In a typical run the upper half of th
toroidal cross section is divided in approximately 10 000
angles with 5000 nodes to acquire the desired accuracy.

Based on the oddness or evenness of the variable t
solved, we can formulate the following boundary conditio
for z50:

]Bw

]z U
z50

50,
]Jw

]z U
z50

50,
]x

]zU
z50

50,

~15!
cuz5050, vwuz5050, vwuz5050.

For the other three boundaries, i.e.,r 5r 2 , r 5r 1 and z
5L the conditions upon the solutions are

cur 5r 6 ,z5L50, vwur 5r 6 ,z5L50,

Bwur 5r 6 ,z5L50, xur 5r 6 ,z5L50,

Jwur 5r 6 ,z5L5
E0r 0

hr U
r 5r 6

, ~16!

]

]r S vw

r D U
r 5r 6

50,
]vw

]z U
z5L

50.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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As explained in the Appendix, solutions forv, B, andJ can
be calculated withouta priori knowledge of the pressurep
and the electric potentialF. The latter follow from~1! and
~4!, respectively, and are determined up to an additive c
stant@see Eqs.~A9! and ~A10!#.

IV. RESULTS

From the set of equations to be solved, i.e.,~A14!–~A19!
of the Appendix, it should be clear that apart from choos
numerical values for the boundaries of the rectangular c
section of the toroid, there are four parameters to vary. Th
are the values of the externally maintained fieldsE0 andB0

and the values of the electrical conductivityh and the Hart-
mann numberH, which is a measure for the viscosity of th
magnetofluid. In the present paper the emphasis will be
the influence of lowering the viscosity on the flow fields
poloidal and toroidal directions keeping the electrical co
ductivity and and the externally imposed fields constant
effect this means that the Hartmann number is increased
what follows we will takeE0515B0 andh51 unless oth-
erwise specified.

In Fig. 2 we show a typical example of a run ofFEMLAB

with the Hartmann number taken to be unity. We should n
that because of the symmetries about the midplanez50, we
are showing only the upper half of the toroidal cross sect

FIG. 2. ~a! A plot of the poloidal magnetic field lines forr 2 /r 0

50.6, r 1 /r 051.4, L/r 050.3, andH51. ~b! Streamlines of the poloida
current density for the same set of parameters as in~a!.
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in these and similar figures; the variables in the lower h
can be inferred from obvious symmetries. Contour plots
the magnetic flux functionx and the poloidal current densit
stream functionrBw using x25r 2 /r 050.6, x15r 1 /r 0

51.4, andy05L/r 050.3 appear in this figure. Note th
slight outward shift of the magnetic surfaces with respec
the center of the toroidal cross section. This is not too d
ferent from the ‘‘Shafranov shift’’ found in ideal MHD equi
libria. The pinch ratio, being the surface-averaged poloi
magnetic field divided by the mean toroidal magnetic fie
for this set of parameters, is found to be 0.171. We a
calculated the ratio of the total kinetic energy to the to
magnetic energy, the latter calculated with and without
externally imposed toroidal magnetic field~8! included. For
the current set of parameters these numbers are found t
respectively, 1.2931028 and 8.3931027.

Figure 3 contains a vector plot of¹p calculated from
Eq. ~A9! for the same set of parameters as in Fig. 2. At
rectangular toroidal boundary,¹p has a finite tangentia
component, indicating that the bounding wall is not an is
baric surface. However, note that tangential stress at
boundary is absent since we require the toroidal vorticity
vanish there.

As mentioned before, up to now the set of equatio
given in the Appendix could only be solved by perturbati
theory8,9 based on the assumed smallness of the Hartm
number. Using FEMLAB we recalculated these so-calle
‘‘slow-flow’’ solutions v, B, andJ for a small value of the
Hartmann number. Contour and surface plots thus obtai
of the toroidal vorticityvw , the velocity stream functionc,
and the toroidal velocityvw are given in Fig. 4 for the same
parameters used in Figs. 2 and 3, but withH50.1.

The next set of figures is devoted to the behavior of
poloidal and toroidal velocity fields for increasing values
the Hartmann number. Again forx25r 2 /r 050.6, x1

5r 1 /r 051.4, andy05L/r 050.3 we show combinations o
contour and surface plots of the toroidal vorticityvw , the
velocity stream functionc, and the toroidal velocityvw for
H51 ~Fig. 5!, H540 ~Fig. 6!, H5100 ~Fig. 7!, and forH
5500 ~Fig. 8!.

In all the color plots the color is a measure for the val
of the relevant toroidal quantity, blue meaning a low~possi-
bly negative! value and red meaning a high value. Since t

FIG. 3. Vector plot of¹p for the same set of parameters as in Fig. 2.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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value corresponding to a certain color is not the same in
the color plots, we have placed minimum and maximu
markers in them. In the toroidal vorticity plots we have i
dicated by a marker where this quantity attains its minim
value. Toroidal vorticity in the upper half of the toroida
cross section is for the range of Hartmann numbers we
vestigated always negative inside the bounding wall mean
that it becomes maximum at the wall of the toroid. Extrem
values of toroidal velocity are also indicated by markers.

When increasing the Hartmann number we note that
topology of the poloidal flow field does not change ve
much. As in the previously investigated ‘‘slow-flow
cases,8,9 the poloidal flow still is characterized by paire
convection-like cells resembling a ‘‘double smoke ring’’ co
figuration. For the toroidal flow the situation is quite diffe
ent. For a low Hartmann number~see Fig. 4! vw changes sign
when crossing the toroidal cross section horizontally. Add
this toroidal velocity component vectorially to the~larger!

FIG. 4. ~Color! ~a! Color plot of the toroidal vorticityvw combined with
contours of the stream functionc. A marker indicates the extreme value o
the toroidal vorticity.~b! Color plot of the toroidal velocityvw . Markers
indicate the maximum and minimum values of the toroidal velocity. B
plots for r 2 /r 050.6, r 1 /r 051.4, L/r 050.3, andH50.1. The pinch ratio
for this case is 0.116 and the ratio of total kinetic and magnetic energy
and without the externally applied toroidal magnetic field included, is,
spectively, 1.29310212 and 8.40310211. The color bar indicates the colo
coding between the extreme values as they are marked in the plots.
Downloaded 25 Sep 2008 to 131.155.151.77. Redistribution subject to AIP
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poloidal flow results in a steady-state streamline configu
tion that topologically is equivalent to helices, which circ
the toroid in alternate senses, amounting to what are es
tially four ‘‘convection cells.’’ For low Hartmann number
the toroidal speed scales with the reciprocal of the dim
sionless viscosityn. Figures 5–8 show that for increasin
Hartmann number, the toroidal flow speed eventually ta
over in overall magnitude resulting in a situation in whic
the total flow is predominantly in the toroidal direction. F
even larger values ofH, the toroidal flow develops into a
double jet structure~see Fig. 8! giving rise again to essen
tially four ‘‘convection cells’’ each of which amounts to he
lical stream lines. Finally, we emphasize that these hel
stream lines are not parallel to the magnetic fieldB.

Our computations indicate that increasing the Hartma
number, keeping the electrical conductivity constant~which
amounts to lowering the viscosity! as well as keepingE0 and
B0 constant, has almost no effect on the total magnetic
ergy in the toroid. However, kinetic energy rapidly increas
in that case, leading to the rise in energy ratios as indica
in the captions of Figs. 4–8. In fact from the ‘‘slow-flow
Eq. ~A23!–~A25! together with Eq.~A11! it may be esti-
mated that the ratio of kinetic energy and magnetic energ
the toroid scales withH4 asH→0.

th
-

FIG. 5. ~Color! Same as Fig. 4 but withH51. The pinch ratio for this case
is 0.171 and the ratio of total kinetic and magnetic energy with and with
the externally applied toroidal magnetic field included, is, respectiv
1.2931028 and 8.3931027.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Figure 9 shows the ratio of kinetic energies contained
the toroidal and poloidal components of the flow vs an
creasing Hartmann number forE0515B0 and for E0510
5B0 . In order to have both plots in the same figure, wha
actually plotted is this ratio divided byB0

2. For E0510
5B0 we see that for sufficiently low viscosity toroidal flow
overtakes the poloidal one.

The main conclusion from Figs. 4–8 is that the flo
pattern goes from the previously identified pair of coun
rotating toroidal vortices8 ~dipolar poloidal convection cells!
to a pattern in which the toroidal component of the flo
becomes important too.

V. A ‘‘REALISTIC’’ PARAMETER SET

The numbers chosen to present the results of Sec. IV
not close to the operating regimes of current toroidal c
finement devices. In particular, the values of the Lundqu
numberS are not large enough, and the toroidal electric fie
is much too large. Here, we present results from a run
which the plasma parameters are chosen to be close to t
of the first tritium shot in the JET.14 The value of the toroida
voltage is chosen to be 1 V, andS is then chosen to give a
plausible toroidal current of 3.1 MA. For the imposed toro
dal magnetic field, we take 28 kG. The cross section of

FIG. 6. ~Color! Same as Fig. 4 but withH540. The pinch ratio for this case
is 0.171 and the ratio of total kinetic and magnetic energy with and with
the externally applied toroidal magnetic field included, is, respectiv
0.014 and 0.893.
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toroid is still approximated as rectangular, ranging in rad
between radii of 2.4 m and 3.6 m, and between values ofz of
20.9 m and10.9 m. The plasma is assumed to be deu
rium, with an electron density of 3.631019 per cubic meter
and an electron temperature of 10 keV. The ion tempera
is assumed to be 18 keV. Following the tabulated formula
the NRL handbook15 for collision times and transport coef
ficients, this gives too large a value ofS (1.431010), and we
are led instead to a Lundquist numberS of 1.83108, in order
to achieve the 3.1 MA toroidal current, neglecting thev3B
contribution in Ohm’s law. The validity of the latter has bee
verified numerically. This lower value ofS may be attributed
to an anomalous resistivity, outside the MHD framework.

The viscosity is of course uncertain within orders
magnitude, experimentally and theoretically. We first ma
the somewhat arbitrary choice of the ‘‘ion parallel’’ viscosit
the biggest of the three Braginskii–Balescu coefficients. T
leads to a laboratory kinematic viscosityñ of 1.25
31015 cm2/s. The resulting viscous Lundquist number
then M58.6431025, with a Hartmann number of abou
125. The dimensionless parametersE0 and B0 of previous
subsections are now 2.531029 and 1.0, respectively, and th
dimensionless lengthr 0 is 2.0. The resulting pinch ratio is
0.152. Figures 10~a! and 10~b! are color plots of toroidal

t
,

FIG. 7. ~Color! Same as Fig. 4 but withH5100. The pinch ratio for this
case is 0.170 and the ratio of total kinetic and magnetic energy with
without the externally applied toroidal magnetic field included, is, resp
tively, 0.109 and 7.20.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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163Phys. Plasmas, Vol. 10, No. 1, January 2003 Toroidal flows in resistive MHD steady states
vorticity @color in Fig. 10~a!# and stream function@contours
in Fig. 10~a!#, and toroidal velocity@color in Fig. 10~b!#.
Root mean square values for flow speeds in the toroida
rection are about 0.84 cm/s and in the poloidal directi

FIG. 8. ~Color! Same as Fig. 4 but withH5500. The pinch ratio for this
case is 0.169 and the ratio of total kinetic and magnetic energy with
without the externally applied toroidal magnetic field included, is, resp
tively, 0.281 and 18.72.

FIG. 9. Plotted here is the ratio of kinetic energy contained in the toro
component of the flow to that contained in the poloidal part of it for tw
different values ofE0 andB0 , r 2 /r 050.6, r 1 /r 051.4, L/r 050.3 and for
increasing Hartmann number. In order to have both plots in the same fig
what is actually plotted is this ratio divided byB0

2. Note that forE0510
5B0 the toroidal flow component becomes dominant forH>25.
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FIG. 10. ~Color! Same as Fig 4 but with ‘‘realistic’’ parameters, i.e.,S
51.803108, M58.6431025, resulting in a Hartmann number of 125. Th
total toroidal current and the mean of the total toroidal magnetic field t
result from these parameters are 3.04 MA and 29.86 kG, respectively.
pinch ratio is 0.152.

FIG. 11. ~Color! Contour plot of the stream function combined with a col
plot of the toroidal velocity. This plot is forr 2 /r 050.6, r 1 /r 051.4, L/r 0

50.3, and ‘‘realistic’’ parametersS51.803108 and H5125 000. The
straight-line element betweenr /r 050.7, z/r 050.225, andr /r 050.6, z/r 0

50.3 crosses the boundary layer near the wall of the torus. Plots of
boundary layer behavior in the stream function and in the toroidal velo
when traversing the cross section of the torus along this line towards
wall of the torus appear in Fig. 12.
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0.96 cm/s. Maximum flow speeds in the toroidal and poloi
direction are 2.5 cm/s and 2.9 cm/s, respectively. The to
dal energy of flow is about 0.77 times the poloidal kine
energy of flow.

It is to be stressed that these modest flow speeds a
direct consequence of our having picked the largest poss
ity in sight for a viscosity coefficient. Alternatively, on
could also have chosen the smallest of the three Bragins
Balescu viscosity coefficients. This so-called transverse
cosity is about (vcit i)

2 times smaller than the ‘‘ion parallel’
viscosity. Herevci is the ion cyclotron frequency andt i is
the ion collision time. For the JET,vcit i'106. The Hart-
mann number that follows from this smallest value of a v
cosity coefficient is about a million times larger than the o
that follows from the ‘‘ion parallel’’ viscosity, i.e.,H5125
3106. At this moment we are unable to perform a numeri
calculation for such a large value of the Hartmann numb
The main reason for that will become clear in the rest of t
section where we present results of a calculation for a va
of H for which FEMLAB still gives reliable results, namely
H5125 000. The other parameters are kept to the same
ues as they had in theH5125 calculation above.

Figure 11 is a combination of a contour plot of th
stream function and a color plot of the toroidal velocity f
the high-H computation. A striking feature of the flow now i
that although in the interior of the torus flow speeds do
differ much from the ones of the previousH5125 computa-
tion ~poloidal speeds are typically 0.7 cm/s and toroid
speeds are typically 1.5 cm/s in the interior! large flow
speeds occur very close to the wall. Our calculations sh
that this feature becomes more prominent when the H
mann number increases. Lowering the viscosity leads n
the wall to a narrowing layer of increasing flow speed, i.e
boundary layer. In the boundary layer large gradients in
stream function and in the toroidal velocity develop. Th
boundary layer behavior is illustrated in Fig. 12 that sho
typical cross-section plots of the stream function and of
toroidal velocity when approaching the wall of the torus
traversing the plasma fromr /r 050.7, z/r 050.225 to r /r 0

50.6,z/r 050.3. The maximum flow speeds that are attain
at the wall in the poloidal and toroidal direction are 122 cm
and 225 cm/s, respectively.

The narrowing of the boundary layer combined with
increase in gradients for increasing Hartmann number is
main reason for not being able to perform a numerical c
culation for the smallest possible value of the thr
Braginskii–Balescu viscosity coefficients. Resolving t
ever increasing fine structure of the flow field near the w
of the torus when the viscosity is lowered by again th
orders of magnitude is currently beyond our numerical ca
bilities.

Finally, it is to be noted that the structure of the boun
ary layer is likely to be sensitive to the type of bounda
conditions that are imposed upon the solutions~e.g., stress-
free vs no-slip boundary conditions! and also to the shape o
the boundary~rectangular versus circular!. A comparison of
this small viscosity computation with MHD calculations
which the viscosity is set to zero from the outset is trick
Setting n50 in Eq. ~1! lowers the order of our system o
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differential equations, and it ought to be impossible then
impose as many boundary conditions as we did in the pre
paper.

VI. CONCLUSIONS

By using newly available numerical methods~FEMLAB!,
we have lifted the restriction to low Hartmann number~high
viscosity! that had limited our earlier attempts at calculati
the velocity fields associated with voltage-driven, nonide
toroidal, steady states in a rigidly wall-bounded magne
fluid. The emergent flow pattern~‘‘weather map’’! has been
characterized for a range of Hartmann numbers, rang
from !1 to @1. The flows have arisen from giving Fara
day’s law and Ohm’s law equal status with force balance
the dynamics. There are both toroidal and poloidal com
nents of the flows for finite Hartmann numbers, and neit
may be characterized as a simple rotation. As the Hartm
number is raised, the toroidal component becomes import

FIG. 12. Typical cross-section plots of the boundary layer near the wa
the torus for the same set of parameters as in Fig. 11.~a! Plotted is the value
of stream function in cm3/s when approaching the wall of the torus alon
the straight-line element depicted in Fig. 11 starting atr /r 050.7, z/r 0

50.225 and ending atr /r 050.6, z/r 050.3. ~b! Same as~a! but now the
value of the toroidal speed in cm/s is plotted.
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and eventually, for sufficiently large externally impos
fields, overtakes the poloidal one in magnitude. IfH!1,
which has been dealt with in perturbation theory,8–12 the po-
loidal flow is due to a torque that comes from the fact th
theJ3B force ~whereB is the poloidal part of the magneti
field andJ is the toroidal component of the current densi!
is no longer directed toward the geometical center of
cross section, the way it is in cylindrical geometry. Th
means that there is a local nonvanishingr3(J3B) torque
density that tries to twist the plasma in a poloidal plane
succeeds and does work steadily against viscosity, creati
steady-state velocity dipolar pattern in the direction e
pected. The situation becomes less easy to see through a
viscosity is lowered, thereby raisingH, increasing the veloc-
ity magnitude, and producing significant poloidal curren
Apparently what happens is that a component of local tor
density develops which tries to twist the plasma in a toroi
direction as well, becoming more and more effective as
viscosity is lowered~i.e., asH goes up!. We must admit an
incomplete ability to visualize the torque and force balan
that arise in this case, though we do believe the numer
results.

Though the examples given in Sec. IV are academic,
intended only to illustrate the fundamental phenomenon
its variation with Hartmann number, the two examples
Sec. V come from choosing numbers as close as possib
a realistic large tokamak parameter set. It is to be stres
that the relatively modest typical flow speeds~1 cm/s! found
in the first example for the largest possible estimate for v
cosity amount to a sort of lower bound on the internal v
locities. The highest-computable-H results (H5125 000) in
the second example of Sec. V show flow speeds in exces
100 cm/s in a boundary layer near the toroidal wall; as fa
we know, this boundary layer behavior is new and has
appeared in this context before. Finally, it is perhaps unn
essary to mention that the analytic estimates we have
such quantities as conductivity and viscosity originate
Chapman–Enskog calculations for collision dominated p
mas, which likely do not represent well high-temperatu
behavior in the JET.

Nevertheless, we believe that to the extent that MHD
relevant to high-temperature confinement at all, the pre
tions of the presence of both the steady-state toroidal
poloidal flows are solid. The analytical or computational e
timates cannot be sharpened up without more reliable n
bers for viscosity.

Stress-free mechanical boundary conditions at the to
dal boundary have been employed. It is not clear what
ferences would arise from some other choice of velocity-fi
boundary conditions, such as no-slip ones, but it seems
tain that there would be some. Any tractable idealization
the velocity field at the wall seems unlikely to do full justic
to the complicated mechanical interaction that must occu
a limiter or divertor operated tokamak wall, but it still seem
of use to have at least a few solved problems in the cata
of MHD steady states. Up to now, these have largely b
ideal steady states, which are seen to be qualitatively dif
ent in character.

It has been clear for some time that flows seem likely
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be an inherent and important part of any toroidal MH
steady state, and present inability to diagnose in detail
character of those flows stands as a serious experimenta
pediment in confinement research. We see the most se
theoretical limitation as the absence of manageable appr
mations to the viscous stress tensor that go beyond
simple, scalar Newtonian viscosity terms used here. Muc
not most of the extant stability and turbulent-transition lite
ture will likely need to be modified when and if reliabl
viscous terms can be identified and agreed upon. But a
the case of neutral fluids, it seems eminently reasonable
a dissipative magnetofluid experiencing rather complex
ternal forces will also experience mechanical motions.
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APPENDIX: EQUATIONS TO BE SOLVED

In this appendix we will rewrite the set of nonide
MHD equations~1!–~6!. We start by taking the toroidal par
of Eq. ~13!. This results in

D* c52rvw . ~A1!

Next consider the vorticity equation that is obtained fro
taking the curl of the force balance Eq.~1!,

n¹2v5¹3~v3v1J3B!. ~A2!

Taking the toroidal part of this equation yields

nD* ~rvw!¹w5¹~rvw!3¹S vw

r D1¹S vw

r D3¹~c!

1¹S Bw

r
1

B0r 0

r 2 D3¹~rBw!

1¹x3¹S Jw

r D . ~A3!

The curl of the poloidal part of Ohm’s law~4! leads to the
following equation forBw :

hD* ~rBw!¹w5¹S Bw

r
1

B0r 0

r 2 D3¹c2¹S vw

r D3¹x.

~A4!

An equation forvw is obtained by rewriting the force balanc
equation~1! as follows:

n¹2v5¹~p1 1
2 v2!1v3v2J3B. ~A5!

The toroidal part of this equation gives

nD* ~rvw!5@¹x3¹~rBw!2¹c3¹~rvw!#•¹w. ~A6!

The toroidal part of Eq.~12! reults in
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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D* x52rJw , ~A7!

where the toroidal current density follows from the toroid
part of Ohm’s law,

hrJw5E0

r 0

r
2

¹x3¹c

r
•¹w. ~A8!

Equations~A1!, ~A3!, ~A4!, ~A6!, and~A7! form a set of
coupled, nonlinear Poisson-like equations for the scalar v
ablesc, rvw , rBw , rvw , and x to be supplemented with
expression~A8! for Jw . Note that these equations can
solved withouta priori knowing the pressurep and the sca-
lar potentialF. Once this is done¹p follows from the force
balance equation~1! rewritten as follows:

¹p5n¹2v2¹S v2

2 D2v3v1J3B. ~A9!

This determines the pressure up to an additive constant.
similar fashionF follows out of the poloidal part of Ohm’s
law, i.e.,

¹F5v3B2h¹~rBw!3¹w, ~A10!

in which we have used Ampe`re’s law ~5! to replace the po-
loidal current density in terms of the toroidal magnetic fie

The final step is to introduce new variables according

u15
c

r 0
, u25r 0rvw , u35

rBw

I b
11,

~A11!

u45
rvw

I b
, u55

x

r 0
, u65r 0rJw2I e ,

where

I e5
r 0

2E0

h
and I b5r 0B0 , ~A12!

and

x5
r

r 0
, y5

z

r 0
. ~A13!

In terms of these new variables the partial different
equations~A1!, ~A3!, ~A4!, ~A6!, ~A7!, and ~A8! become,
respectively,

D* u152u2 , ~A14!

nD* u25
I b

2

x2

]u3
2

]y
22

u61I e

x2

]u5

]y
1

1

x
$u6 ,u5%

1
1

x
$u1 ,u2%12

u2

x2

]u1

]y
2I b

2 ]

]y S u4
2

x2D , ~A15!

hD* u35
2

x2 S u3

]u1

]y
2u4

]u5

]y D1
1

x
~$u1 ,u3%1$u4 ,u5%!,

~A16!

nD* u45
1

x
~$u3 ,u5%1$u1 ,u4%!, ~A17!

D* u552~u61I e!, ~A18!
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hu65
1

x
$u5 ,u1%. ~A19!

The curly brackets denote the Poisson bracket of two fu
tions u and v with respect to the variablesx and y that is
defined as

$u,v%5
]u

]x

]v
]y

2
]u

]y

]v
]x

. ~A20!

Equations~A14!–~A19! are subject to the following bound
ary conditions that follow from~15! and ~16!:
For y50

]u3

]y U
y50

50,
]u5

]y U
y50

50,
]u6

]y U
y50

50,

~A21!
u1uy5050, u2uy5050, u4uy5050.

For x5x25r 2 /r 0 , x5x15r 1 /r 0 , andy5y15L/r 0 :

u1ux5x6 ,y5y1
50, u2ux5x6 ,y5y1

50,

u3ux5x6 ,y5y1
51, u5ux5x6 ,y5y1

50,

~A22!
u6ux5x6 ,y5y1

50,

]u4

]x U
x5x6

5
2

x6
u4ux5x6

.
]u4

]y U
y5y1

50.

The previously studied8 ‘‘slow-flow’’ equations follow
from Eqs.~A14! to ~A19! by taking the high-viscosity limit
(H2!1). This results in

D* u152u2 , ~A23!

nD* u2522
I e

x2

]u5

]y
, ~A24!

D* u552I e , ~A25!

with toroidal flow neglected. That is,u4 is dropped, being a
factorH2 smaller than the poloidal flow variablesu1 andu2 ,
and the toroidal magnetic fields are ignored sinceu321 is a
factor H2 smaller than the poloidal magnetic field variab
u5 . The v3B force is also neglected, that isu6 is dropped
since it is of orderH2 compared to the currentI e that is
driven by the externally applied electric field.
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