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Ideal magnetohydrodynami¢MHD) still provides the mathematical framework and the textbook
vocabulary in which the possible states of a toroidal plasma are discussed, generally regarded as
static equilibria. This is so, despite the increasing realization that virtually all toroidal magnetofluids
have nontrivial fluid flowdfinite velocity fields in them. A very different perspective results from
nonideal MHD, including both resistivity and viscosity and invoking nonideal boundary conditions.
There, it has been shown that if Ohm’s law and Faraday’s law are given equal importance with force
balance, flows are an inevitable consequence of the assumptions of time independence and
axisymmetry. Previous treatments of the toroidal steady states for such systems have been based on
perturbation theory in which the flow velocity was assumed small, as a consequence of high
viscosity (or in dimensionless terms, low Hartmann numibgr. Here, recently newly available
numerical programs are used to lift this limitation and to solve nonlinearly for the allowed steady
states of an axisymmetric, current-carrying, toroidal magnetofluid without such an expansion in the
Hartmann number. Flow patterns for valuestbfirom <1 to >1 have been calculated. A$ is

raised, the flow pattern goes from the predominantly poloidal pair of counter-rotating “convection
cells” revealed by the perturbation theory to a pattern in which the toroidal kinetic energy of flow
considerably exceeds the poloidal kinetic energy. In no case is the flow discovered a simple
rotation. © 2003 American Institute of Physic§DOI: 10.1063/1.1524629

I. INTRODUCTION difficulty of solving the steady-state nonideal MHD equa-
. _ tions in toroidal geometry with resistive and viscous bound-
The possible steady states of a magnetized plasma haygy conditions, it has been necessary to proceed up to now by
been the starting point for nearly all treatments of magnetigerturbation theory, in which the expansion parameter may
fusion confinement and stability* Most commonly, it has g yariously considered to be the mechanical Reynolds num-
been the ideal magnetohydrodynam{ilHD) description  per the Hartmann number, or the reciprocal of the
that has been employed. In the last few years it has beco”\ﬁscosity?‘lz Any way the matter is phrased, the solutions
clear that the character of the possible steady states is greaj, e essentially been large-viscosity solutions, in which the
altered, at least from a theoretical perspective, if nonitigal, g, speed remained small because of size of the viscosity. A

. . lo .
rather than ideal, MHD is employed:® In the following,  cparacteristic flow pattern emerged, somewhat independently
nonideal MHD will be taken to mean MHD with viscous and of the shape of the toroidal boundary cross section, and in-
resistive terms included, with Ohm'’s law and Faraday’s lawyenendently of the viscous and resistive boundary conditions

promoted to equal status with the equation of motion, andmhosed: a pair of counter-rotating poloidal vortices or con-
with some internally consistent set of viscous and resistivg,action cells involving mostly toroidal vorticity.

boundary conditions—even highly oversimplified ones—

enforced. . merical computations that do not require the assumption of
One of the more striking effects to have emerged congma|| Hartmann number. The method is new, and permits the
cerns the differences between resistive steady states insid§ atmann number to range frorgl to >1. The primary
toroid and those inside a straight periodic cylinder withgftect to emerge is the appearance of a strong toroidal veloc-
Wh'?h toro!dal gt_eornetry IS often apprquated. In the ity component that appears in the flow as the Hartmann num-
straight cylinder, it is relatively easy to find steady states,g js rajsed and then eventually saturates, when the ratio of
including a voltage-driven current distribution which involve ;s mean square to that of the poloidal flow is considered. By
no flow (zero velocity-field. However, it has become appar- q\6idal flow, we mean not a simple poloidal rotation, but
ent that in the toroid, virtually all the resistive, driven steady4iher a flow whose streamlinésften dipolay lie primarily
states that can be connected to a realistic resistivity profilg, 3 pjane perpendicular to the toroidal direction. There are
involve steady flows with toroidal vorticity. Because of the /¢ significant quantitative changes in the nature and geom-
etry of the flow pattern. The focus is on what happens to a
dElectronic mail: I.p.j.kamp@tue.nl given voltage-driven steady state at fixed resistivity and im-

The purpose of this paper is to report the results of nu-
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posed driving electric field as the viscosity is varied. We do AZ
this, because viscosity is one of the most uncertain quantities o Q_) ¢
remaining in high-temperature MHD, both as to the form of ~ toroid with perfectly
the viscous stress tensor and as to the magnitude of the
coefficient>®*?Lack of a sufficiently inclusive theoretical or
experimental grasp of magnetized plasma viscosity may be
thought of as perhaps the most severe theoretical limitation +L
in fusion MHD at the present time.

We have made several assumptions that we would prefer
not to have made, because of our present inability to include -
them, and we list them nowl) We have assumed uniform
density and incompressibility, to avoid the need for an en-
ergy equation and the complications of self-consistent trang=!G. 1. Geometry _of computational model. The tgroid has a rectangular

.. . . . . ross section with impenetrable, perfectly conducting walls. The magneto-

port coefficients with vz_arlable dependencies on density anggluid occupies the region between the racdii andr, , andz=—L.+L.
temperature; we have simply assumed constant values for th@e walls are perfectly smooth.
coefficients of viscosity and resistivit{2) We have assumed
a simple, Newtonian viscous term and a scalar resistivity,
and have avoided confronting the difficulties associated witHl. STATEMENT OF THE PROBLEM
the Braginskii tensors for viscosity and resistivitd) We

S We will work in the familiar set of “Alfvenic” dimen-
have assumed stress-free, rather than no-slip, viscous boungbnless variables for advancing the fluid variabiesthe
ary conditions on the velocity field; they may be equally

. L . 2 electric field, B (the magnetic fielg v (the velocity field, J
unreallsnc_ approximations for the edge region of a Co.nfm.e'(the electric current densityw (the vorticity field, and the
ment deV|ce,_ bu_t anything more complex involves k|net|cScalar pressurp, normalized to the mass density.
theory complications that are presently beyond our reggh.

Wi . trv th hout. It d be desirable | With these notations, then, the dimensionless MHD
€ assume axisymmetry throughout. Tt wolld be desirable Irzequations of motion for a uniform-density, incompressible,
the future to remove any or all of these four limitations.

) . . conducting, steady-state fluid are taken to be the following.
Section Il contains the MHD equations to be solved. In 9 y 9

. ." " 'First, there is mechanical force balance,
the Appendix, they are re-expressed, for the case of axisym-

metric steady states, in terms of the scalar functions which (V- V)v=JXB—Vp+»V?y, ()

are computed. Section Il is a brief description of the numeri-Where for reasons of tractability we have assumed a simple

cal method employed. Section IV summarizes and display§.|ar form for the Newtonian viscous term. The velocity
the results of several computations, with an emphasis on thl‘?eld obeys the incompressibility condition

effects of different choices for the assumed magnitude of the

viscosity coefficient. Since the cases in Sec. IV have param- V-V=0. ()
eters far from close to current laboratory operating regimeSFaraday’s law reads

we present in Sec. V two “realistic” cases, in which the

numbers chosen are taken to correspond as closely as pos- VXE=0. (©)
sible to a data set from the first trittum shot in the Jointohm's law is

European TorugJET). Particularly different are the large

values of the Lundquist numb&rand the small values of the E+vXB=nJ. (4)
toroidal electric field, which are much larger and smallerAmpere’s law says

than those for the cases reported in Sec. IV. The situation is

still ambiguous, however, due to large uncertainties in what VxB=J. (5)
should be chosen for the values of the viscosity coefficientAnd, finally,

The Braginskii—Balesctf viscosity tensor formally contains V.B=0 ®)
five coefficients of which there are only three basically dif- '
ferent ones. The “ion parallel” viscosity is an ion thermal In the dimensionless units used, where velocities are mea-
speed times an ion collision time, The other two coefficientssured in units of the Alfve speedy is the reciprocal of the
are down by about one and two powers, respectively, of theiscous Lundquist numbeM. In terms of laboratorycgs

ion gyrofrequency times the ion collision time. What we units, M is given by»~'=M=C,L/7, whereC, is an Al-
have done is to choose the “ion parallel” viscosity coeffi- fvén speed based on a typical magnetic figlds a charac-
cient of Braginskii, the largest possible candidate for the vis+teristic length scalée.g., the minor radius of the torysand
cosity and we have done a calculation with a viscosity coef% is the laboratory kinematic viscosity, expressed irfksmz;
ficient that is a million times smaller. The latter case isis the reciprocal of the resistive Lundquist numig&rwhich
intended to illustrate the changes in the flow field when then laboratory units is defined by, '=S=4x5C,L/c?,
viscosity coefficient approaches the smallest possible valuetheres is the cgs electrical conductivity aradis the speed

in the three Braginskii coefficients. Section VI reviews theof light. The Hartmann numbeH is related toM and S
results and offers some observations on their possible elabthrough the relatiotd=MS.

ration in experimental settings. The geometry of the modésee Fig. 1 for which these

smooth walls

-Y

Fu r+
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equations may be solved numerically consists of an axisymwhere ¢y is the stream function ang is the flux function.
metric toroid the axis of symmetry of which coincides with Since there is no time dependence, the gradient of a scalar

the z-axis in a set of cylindrical polar coordinates, ¢,z2). field may be added to the externally applied electric field,
The midplane of the toroid is the plaze- 0. The boundaries
. . lo~
of the toroidal cross section are taken to be a rectangle. Do- E(r,2)=Eo—1,- V. (12)
r

ing so leads to calculational simplicity, but is not believed to

be necessary for the effects we shall describe. The upper aigith these new variables the electric current density and the
lower boundaries are at=L andz=—L, respectively, and yorticity may be expressed as

the inner and outer boundaries are at the raeir _ andr

=r,, respectively. This geometry will be adopted in the J(r,2)=V(rB,)Ve—V3(xV¢)

present paper. The boundary conditions that have been im- 1 A

posed upon the solutions of the set of E(9—(4) are that =V(rB,)Ve— F(A*X)iw (12

any tangential viscous stress, and the normal components of

v, J, andB, should vanish at the walls. As in the case of the w(r,Z)=V(rv<p)V<p—V2(ngo)

planar-boundary assumption, these boundary conditions are
believed not to be uniquely important ones, and are chosen
mainly for calculational convenience. One may idealize such

? boundary as a perfectly smooth dielectric coating on a Pel here the modified Laplace operattst is defined by
ect conductor.

The source of the driving toroidal electric field is ideal- . 5 20A PA 1A A
ized as an axisymmetric, infinitely-long, iron core through ATA=VA- T v T a2 (14)
which thez-directed magnetic flux is increasing proportion- ) ) . )
ally to the time. This implies a curl-free time-independent I the Appendix a coupled set of nonlinear Poisson-like

toroidal electric field in thep-direction according to equations is derived for the variablgsw, , B,, v, x, and
J, . This set is then solved numerically using a commercially

7) available software package callegviLAg.*® FEMLAB applies
the finite element method to our system of partial differential
equations in two dimensions in conjunction with adaptive
- . . . . meshing and error control. A numerical solver that is pointed
r=ro, andi, is a unit vector in the toroidafazimuthal to solving stationary nonlinear equations is used. Because of

;j_|rlzct|on. A?dd't'g nall;t/ alsc|> alp.l:jrelly .todr_o idal dc rr:jatg_:;]ne:lc the symmetry in our problem, we note that all solutions have
I€ld supported by external pooldal windings around € tors, 1, g e symmetri¢even parity or antisymmetric(odd
oid, is assumed to be present. This magnetic field is curl-fre

. . Earity) with respect to the=0 midplaneB,, x, andJ,, are
too and is described by even functions ire, whereasy, w,, andv, are odd func-

1 “
=V(ro)Ve— Z(A* P, (13

rO’.‘
Eext(r,z)zEOTl(p,

whereE, is a reference value of the electric field at radius

roa tions ofz. Therefore by consideriﬁlg only, say, the upper half
Bex(r,2)=Bo— 1, (8  of the toroid we can reduce the amount of numerical calcu-

) o ~ lation by a factor 2. In a typical run the upper half of the
whereB, is a reference value of the magnetic field at radiusyrgigal cross section is divided in approximately 10 000 tri-
r=ro. o . _angles with 5000 nodes to acquire the desired accuracy.

We will ignore the violation of electrodynamics that is Based on the oddness or evenness of the variable to be

implied by the presence of these finite axial electric andyo)eqd, we can formulate the following boundary conditions
magnetic fields inside the perfectly conducting toroidal wall.¢5, ,— -

In real life, the externally maintained electric and magnetic
fields would require slits and slots cut into the perfect con- 5;&,; -~ % Ix ~0

ductor in order that it might penetrate. That, however, would iz 2:0_ bodz|,_, ' oz 2:0_ '

destroy the the rotational symmetry desired, and make even (15)
the problem of finding steady states to perturb prohibitively ~ #|,—-0=0, ®,];-0=0, v,|;-0=0.

difficult. So a compromise with the laws of eIectrodynamicsFOr the other three boundaries,
is necessary, even to set up the problem.

i.esr_, r=r, andz
=L the conditions upon the solutions are

=0, w,|_, ,..=0
IIl. NUMERICAL SOLUTIONS Hrer. o=t elr=r. o=t

Starting from the set of nonideal MHD Egd.)—(6) and B¢|f=r: 2=1=0, X|r=ri 2=1=0,
using the fact that we consider axisymmetry, we introduce

. . Eor
scalar variables according to Jolimr. 2o1= % , (16)
) 7] _
V(r,2)=VyxVe+ui,, 9) e
Uy v,
. r0 2 — | =V, — =0.
B(r,z2)=VxyXVe+ BOT+B¢, [ (10 ar\r =r, z|,_ .
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magnetic flux function Vp
0.4 — . . . . 04— . :
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(@) r/r, i,
FIG. 3. Vector plot ofVp for the same set of parameters as in Fig. 2.
il poleidal curent density in these and similar figures; the variables in the lower half
H=1,1=1, E;=1,B,=1 can be inferred from obvious symmetries. Contour plots of

the magnetic flux functiory and the poloidal current density
stream functionrB, using x_=r_/ry=0.6, X, =r,/rg
oo, | =1.4, andyy=L/ry=0.3 appear in this figure. Note the
' slight outward shift of the magnetic surfaces with respect to
the center of the toroidal cross section. This is not too dif-
m ferent from the “Shafranov shift” found in ideal MHD equi-
ol /\ | libria. The pinch ratio, being the surface-averaged poloidal
; . . . . magnetic field divided by the mean toroidal magnetic field
06 0.8 1 1.2 1.4 for this set of parameters, is found to be 0.171. We also
(b) t/ry calculated the ratio of the total kinetic energy to the total
magnetic energy, the latter calculated with and without the
FIG. 2. (a) A plot of the poloidal magnetic field lines for_/r, externally imposed toroidal magnetic fig(d) included. For
=0.6,r, /ro=14, L/r,=0.3, andH=1. (b) Streamlines of the poloidal  the current set of parameters these numbers are found to be,
current density for the same set of parameters ds)in respectively, 1.28 108 and 8.3% 10 .
Figure 3 contains a vector plot &fp calculated from
Eqg. (A9) for the same set of parameters as in Fig. 2. At the

be calculated withoua priori knowledge of the pressuge ~ rectangular toroidal boundarp has a finite tangential
and the electric potentiab. The latter follow from(1) and ~ Omponent, indicating that the bounding wall is not an iso-

(4), respectively, and are determined up to an additive conbaric surface. However, note that tangential stress at the
stant[see Eqs(A9) and (A10)]. boundary is absent since we require the toroidal vorticity to

vanish there.
IV RESULTS _ As_ mentioned b_efore, up to now the set of equatlpns
given in the Appendix could only be solved by perturbation

From the set of equations to be solved, i(814)—(A19) theory*® based on the assumed smallness of the Hartmann
of the Appendix, it should be clear that apart from choosingnumber. UsingFEMLAB we recalculated these so-called
numerical values for the boundaries of the rectangular crosslow-flow” solutions v, B, andJ for a small value of the
section of the toroid, there are four parameters to vary. Thesdartmann number. Contour and surface plots thus obtained
are the values of the externally maintained fieliggsandB,  of the toroidal vorticityw,,, the velocity stream functiog,
and the values of the electrical conductivifyand the Hart-  and the toroidal velocity , are given in Fig. 4 for the same
mann numbeH, which is a measure for the viscosity of the parameters used in Figs. 2 and 3, but witk0.1.
magnetofluid. In the present paper the emphasis will be on The next set of figures is devoted to the behavior of the
the influence of lowering the viscosity on the flow fields in poloidal and toroidal velocity fields for increasing values of
poloidal and toroidal directions keeping the electrical con-the Hartmann number. Again fox_=r_/ry;=0.6, X,
ductivity and and the externally imposed fields constant. In=r , /ry=1.4, andy,=L/r,=0.3 we show combinations of
effect this means that the Hartmann number is increased. lcontour and surface plots of the toroidal vorticity,, the
what follows we will takeEy=1=B, and »=1 unless oth-  velocity stream function/, and the toroidal velocity, for
erwise specified. H=1 (Fig. 5, H=40 (Fig. 6), H=100 (Fig. 7), and forH

In Fig. 2 we show a typical example of a runrEMLAB =500 (Fig. 8.
with the Hartmann number taken to be unity. We should note  In all the color plots the color is a measure for the value
that because of the symmetries about the midplan8, we  of the relevant toroidal quantity, blue meaning a Iqrossi-
are showing only the upper half of the toroidal cross sectiorbly negative value and red meaning a high value. Since the

As explained in the Appendix, solutions fer B, andJ can
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tumjdalvmh{:tty (color), stream function {contours) toroidal vur!u:rty {colar), stream ﬁ.er:.an {mntoum}
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it rir
0
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FIG. 5. (Color) Same as Fig. 4 but withl = 1. The pinch ratio for this case

is 0.171 and the ratio of total kinetic and magnetic energy with and without
FIG. 4. (Colon (a) Color plot of the toroidal vorticityw, combined with ~ the externa"y applied toroidal magnetic field included, is, respectively,
contours of the stream functiap A marker indicates the extreme value of 1.29x10°® and 8.3% 10" 7.

the toroidal vorticity.(b) Color plot of the toroidal velocity,, . Markers

indicate the maximum and minimum values of the toroidal velocity. Both

plots forr_ /ry=0.6,r, /ro=1.4, L/rq=0.3, andH=0.1. The pinch ratio loidal fl Its i d l fi
for this case is 0.116 and the ratio of total kinetic and magnetic energy witPololdal flow results in a steady-state streamline configura-

and without the externally applied toroidal magnetic field included, is, re-tion that topologically is equivalent to helices, which circle
spectively, 1.2& 10" '? and 8.40< 10" ™. The color bar indicates the color the toroid in alternate senses, amounting to what are essen-
coding between the extreme values as they are marked in the plots. tially four “convection cells.” For low Hartmann numbers
the toroidal speed scales with the reciprocal of the dimen-
sionless viscosityv. Figures 5—8 show that for increasing
value corresponding to a certain color is not the same in alHartmann number, the toroidal flow speed eventually takes
the color plots, we have placed minimum and maximumover in overall magnitude resulting in a situation in which
markers in them. In the toroidal vorticity plots we have in- the total flow is predominantly in the toroidal direction. For
dicated by a marker where this quantity attains its minimumeven larger values ofl, the toroidal flow develops into a
value. Toroidal vorticity in the upper half of the toroidal double jet structurdsee Fig. 8 giving rise again to essen-
cross section is for the range of Hartmann numbers we intially four “convection cells” each of which amounts to he-
vestigated always negative inside the bounding wall meaningical stream lines. Finally, we emphasize that these helical
that it becomes maximum at the wall of the toroid. Extremestream lines are not parallel to the magnetic fiBld
values of toroidal velocity are also indicated by markers. Our computations indicate that increasing the Hartmann
When increasing the Hartmann number we note that the@umber, keeping the electrical conductivity constamibich
topology of the poloidal flow field does not change veryamounts to lowering the viscosjtas well as keeping, and
much. As in the previously investigated “slow-flow” B, constant, has almost no effect on the total magnetic en-
case$? the poloidal flow still is characterized by paired ergy in the toroid. However, kinetic energy rapidly increases
convection-like cells resembling a “double smoke ring” con- in that case, leading to the rise in energy ratios as indicated
figuration. For the toroidal flow the situation is quite differ- in the captions of Figs. 4—8. In fact from the “slow-flow”
ent. For a low Hartmann numbésee Fig. 4v,, changes sign  Eq. (A23)—(A25) together with Eq.(A11) it may be esti-
when crossing the toroidal cross section horizontally. Addingmated that the ratio of kinetic energy and magnetic energy in
this toroidal velocity component vectorially to thgargep  the toroid scales withl* asH—O0.
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H=40, n=1, E;=1, B =1

502
ﬂ 9
06 08 1 12 14 06 08 1 12 14
rir rir
(a) : (a) o
taroidal velocity toroidal velocity
0.4 — i ; ; — 04—
H=40, n=1, Eu=1' Eu=1 H=100, n=1, E:|=‘I. Bc=t
o | ‘_D
ﬁ D2t 1 a2 D2
Or 1 ot
06 0.8 1 1.2 1.4 0.6 0a 1 1.2 1.4
T rir
b 0 o
(b) (b)

FIG. 6. (Color) Same as Fig. 4 but withHl = 40. The pinch ratio for this case . o . ) )
is 0.171 and the ratio of total kinetic and magnetic energy with and WithoutFIG' 7 (ggl;g) S?jnlﬁ as ':'g' ?tbltjtlm{('.th{ ; lOO.dThe plngh ratio for t_k:;]s d
the externally applied toroidal magnetic field included, is, respectively,c"’.1se 15 5. an € ralio of total KInetic and magnetic energy with an
0.014 and 0.893. without the externally applied toroidal magnetic field included, is, respec-

tively, 0.109 and 7.20.

Figure 9 shows the ratio of kinetic energies contained int id is still imated ¢ | ing in radi
the toroidal and poloidal components of the flow vs an in-borg:/ IS S 'd.?‘pf;":'ma ed gsé rec angléatr\;vrangln? n raﬁf us
creasing Hartmann number f&,=1=B, and for E,=10 etween radii of .= m and .6 m, and between vall

=B,. In order to have both plots in the same figure, what is . 0.9m and+0.9m. The plasma is assumed to be deute-

actually plotted is this ratio divided byB2. For Ey=10 rium, with an electron density of 3:610° per cubic meter

=B, we see that for sufficiently low viscosity toroidal flow gnd an electron temperature of .10 keV. The ion temperature
overtakes the poloidal one. is assumed to be 18 keV. Following the tabulated formulas in

The main conclusion from Figs. 4—8 is that the flow the NRL handbook for collision times and transport coef-

pattern goes from the previously identified pair of counterf'c'ems’ this gives too large a value 8{(1.4x 10"), and we

rotating toroidal vortices(dipolar poloidal convection cells ?re Ier:j_ mstctar?d ;olalMintdqu.lzt Inumt&otf 1.8><I10j, n tc;;g;r
to a pattern in which the toroidal component of the flow 0 achieve e o. oroidai current, néglecting

: contribution in Ohm’s law. The validity of the latter has been

becomes important too. verified numerically. This lower value & may be attributed
to an anomalous resistivity, outside the MHD framework.

The viscosity is of course uncertain within orders of

The numbers chosen to present the results of Sec. IV ammagnitude, experimentally and theoretically. We first make
not close to the operating regimes of current toroidal conthe somewhat arbitrary choice of the “ion parallel” viscosity,
finement devices. In particular, the values of the Lundquisthe biggest of the three Braginskii—Balescu coefficients. This
numberS are not large enough, and the toroidal electric fieldleads to a laboratory kinematic viscosity of 1.25
is much too large. Here, we present results from a run inx 10'° cn?/s. The resulting viscous Lundquist number is
which the plasma parameters are chosen to be close to thodeen M =8.64x< 10 °, with a Hartmann number of about
of the first tritium shot in the JE¥ The value of the toroidal 125. The dimensionless parametég and B, of previous
voltage is chosen to be 1V, ar@lis then chosen to give a subsections are now 210 ° and 1.0, respectively, and the
plausible toroidal current of 3.1 MA. For the imposed toroi- dimensionless length, is 2.0. The resulting pinch ratio is
dal magnetic field, we take 28 kG. The cross section of th@.152. Figures 1@ and 1@b) are color plots of toroidal

V. A “REALISTIC” PARAMETER SET
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H=500, n=1, E;=1, B =1 H=125, 1=5.5+10", E,=2.5x 107, B=1
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FIG. 8. (Color) Same as Fig. 4 but withl=500. The pinch ratio for this ) . o .
case is 0.169 and the ratio of total kinetic and magnetic energy with and!G- 10. (Color) Same as Fig 4 but with “realistic” parameters, i.&,
without the externally applied toroidal magnetic field included, is, respec-=1-80< 10°, M=8.64x10"°, resulting in a Hartmann number of 125. The
tively, 0.281 and 18.72. total toroidal current and the mean of the total toroidal magnetic field that
result from these parameters are 3.04 MA and 29.86 kG, respectively. The

vorticity [color in Fig. 1@a)] and stream functioficontours ~ Pinch ratio is 0.152.
in Fig. 10@], and toroidal velocity{color in Fig. 1@b)].

Root mean square values for flow speeds in the toroidal di-

rection are about 0.84 cm/s and in the poloidal direction,

kinetic energy ratio

toroidal velocity (color), stream function (contours)

0.4 i
-1
o - H=125000, n=5.5x10"% ED=2.5:~10'“, B=1
107} / ...........................
10°} P _ )
g - A 02f
Q 4 .
3107} /
8
10°F e
6 o —— E =1=B , n=1
kK . L |
10 E0=10=801 n=1 0
-7 | | I I I
10 ¢ 1 06 0.8 p P 5
10° . | ]
10 100 1000
Hartmann number FIG. 11. (Color) Contour plot of the stream function combined with a color

plot of the toroidal velocity. This plot is for_ /r,=0.6,r, /rq=1.4, L/rq
FIG. 9. Plotted here is the ratio of kinetic energy contained in the toroidal=0.3, and “realistic” parametersS=1.80x10® and H=125000. The
component of the flow to that contained in the poloidal part of it for two straight-line element betweerir,=0.7, z/r ,=0.225, andr/r,=0.6, z/r
different values o, andBg, r_/ro=0.6,r. /ry=1.4,L/r,=0.3 and for ~ =0.3 crosses the boundary layer near the wall of the torus. Plots of the
increasing Hartmann number. In order to have both plots in the same figuréyoundary layer behavior in the stream function and in the toroidal velocity
what is actually plotted is this ratio divided 3. Note that forEy=10 when traversing the cross section of the torus along this line towards the
=B, the toroidal flow component becomes dominantoe 25. wall of the torus appear in Fig. 12.
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0.96 cm/s. Maximum flow speeds in the toroidal and poloidal 443 boundary layer behavior in stream function

direction are 2.5 cm/s and 2.9 cm/s, respectively. The toroi- [

dal energy of flow is about 0.77 times the poloidal kinetic

energy of flow. -
It is to be stressed that these modest flow speeds are a®c

direct consequence of our having picked the largest possibil-

ity in sight for a viscosity coefficient. Alternatively, one

could also have chosen the smallest of the three Braginskii—

Balescu viscosity coefficients. This so-called transverse vis-

cosity is about {;7;)? times smaller than the “ion parallel”

viscosity. Herew; is the ion cyclotron frequency ang is

the ion collision time. For the JETp.7,~10°. The Hart-

mann number that follows from this smallest value of a vis- -12

cosity coefficient is about a million times larger than the one

that follows from the “ion parallel” viscosity, i.e.H=125 (a) AircLength

X 10°. At this moment we are unable to perform a numerical

calculation for such a large value of the Hartmann number.

The main reason for that will become clear in the rest of this boundary layer behavior in toroidal velocity

r/ro=0.6, z/r0=0.3

sl r/ro=0.7, z/r0=0.225

stream function (cl

0 0.02 004 006 008 01 012 014

section where we present results of a calculation for a value 90
of H for which FEMLAB still gives reliable results, namely,
H=125000. The other parameters are kept to the same val- _ 0
ues as they had in the =125 calculation above. e
Figure 11 is a combination of a contour plot of the i -80
stream function and a color plot of the toroidal velocity for 3 r,=0.6, z/r =0.3
the highH computation. A striking feature of the flow nowis @ -108
that although in the interior of the torus flow speeds do not el rfr,=0.7, 2/r =0.225
differ much from the ones of the previots= 125 computa- °
tion (poloidal speeds are typically 0.7 cm/s and toroidal = 55t L
speeds are typically 1.5 cm/s in the intejidarge flow i
speeds occur very close to the wall. Our calculations show 5y . . . . . . .
that this feature becomes more prominent when the Hart- 0 002 004 006 008 01 012 014
mann number increases. Lowering the viscosity leads near Arc Length

the wall to a narrowing layer of increasing flow speed, i.e., a

boundary layer. In the boundary layer large gradients in thex. 12. Typical cross-section plots of the boundary layer near the wall of

stream function and in the toroidal velocity develop. Thisthe torus for the same set of parameters as in Fig(al Plotted is the value

boundary layer behavior is illustrated in Fig. 12 that showsof strear_n fun_ction in crlis whgn approac_:hing the w_aII of the torus along

typical cross-section plots of the stream function and of théi'g_zsgg'g:zl'gﬁ dgg”;;’:zfg%":tzelfofogf’kbilszggt'gg;ﬁ;og WZ/trI’:)e

toroidal velocity when approaching the wall of the torus by yajye of the toroidal speed in cmis is plotted.

traversing the plasma from/ry=0.7, z/r;=0.225 tor/rg

=0.6,2/ry=0.3. The maximum flow speeds that are attained

at the wall in the poloidal and toroidal direction are 122 cm/sdifferential equations, and it ought to be impossible then to

and 225 cm/s, respectively. impose as many boundary conditions as we did in the present
The narrowing of the boundary layer combined with anpaper.

increase in gradients for increasing Hartmann number is the

main reason for not being able tq perform a numerical Cal'\/l. CONCLUSIONS

culation for the smallest possible value of the three

Braginskii—Balescu viscosity coefficients. Resolving the By using newly available numerical metho@EMLAB),

ever increasing fine structure of the flow field near the wallwe have lifted the restriction to low Hartmann numifleigh

of the torus when the viscosity is lowered by again threeviscosity that had limited our earlier attempts at calculating

orders of magnitude is currently beyond our numerical capathe velocity fields associated with voltage-driven, nonideal,

bilities. toroidal, steady states in a rigidly wall-bounded magneto-
Finally, it is to be noted that the structure of the bound-fluid. The emergent flow pattertiweather map”) has been

ary layer is likely to be sensitive to the type of boundarycharacterized for a range of Hartmann numbers, ranging

conditions that are imposed upon the soluti¢asgy., stress- from <1 to >1. The flows have arisen from giving Fara-

free vs no-slip boundary conditionand also to the shape of day’s law and Ohm'’s law equal status with force balance in

the boundary(rectangular versus circularA comparison of the dynamics. There are both toroidal and poloidal compo-

this small viscosity computation with MHD calculations in nents of the flows for finite Hartmann numbers, and neither

which the viscosity is set to zero from the outset is tricky.may be characterized as a simple rotation. As the Hartmann

Setting»=0 in Eq. (1) lowers the order of our system of number is raised, the toroidal component becomes important,
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and eventually, for sufficiently large externally imposedbe an inherent and important part of any toroidal MHD
fields, overtakes the poloidal one in magnitude.Hf1, steady state, and present inability to diagnose in detail the
which has been dealt with in perturbation the®r/ the po-  character of those flows stands as a serious experimental im-
loidal flow is due to a torque that comes from the fact thatpediment in confinement research. We see the most severe
the JX B force (whereB is the poloidal part of the magnetic theoretical limitation as the absence of manageable approxi-
field andJ is the toroidal component of the current density mations to the viscous stress tensor that go beyond the
is no longer directed toward the geometical center of thesimple, scalar Newtonian viscosity terms used here. Much if
cross section, the way it is in cylindrical geometry. This not most of the extant stability and turbulent-transition litera-
means that there is a local nonvanishing(JxB) torque ture will likely need to be modified when and if reliable
density that tries to twist the plasma in a poloidal plane. Itviscous terms can be identified and agreed upon. But as in
succeeds and does work steadily against viscosity, creatingthe case of neutral fluids, it seems eminently reasonable that
steady-state velocity dipolar pattern in the direction ex-a dissipative magnetofluid experiencing rather complex ex-
pected. The situation becomes less easy to see through as teenal forces will also experience mechanical motions.
viscosity is lowered, thereby raisird, increasing the veloc-

ity magnitude, and producing significant poloidal currents. ACKNOWLEDGMENTS
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intended only to illustrate the fundamental phenomenon anfum-
its variation with Hartmann number, the two examples of
Sec. V come from choosing numbers as close as possible ®PPENDIX: EQUATIONS TO BE SOLVED

a realistic large tokamak parameter set. It is to be stressed | this appendix we will rewrite the set of nonideal
that the relatively modest typical flow speedscm/s found  \Hp equations(1)—(6). We start by taking the toroidal part
in the first example for the largest possible estimate for visyy Eq. (13). This results in

cosity amount to a sort of lower bound on the internal ve-

locities. The highest-computablé-results { =125 000) in A =—Tw,. (A1)

the second example of Sec. V show flow speeds in excess §fext consider the vorticity equation that is obtained from
100 cm/s in a boundary layer near the toroidal wall; as far agaking the curl of the force balance E@),

we know, this boundary layer behavior is new and has not )

appeared in this context before. Finally, it is perhaps unnec- ¥V @=VX(@Xv+JIXB). (A2)
essary to mention that the analytic estimates we have foraking the toroidal part of this equation yields

such quantities as conductivity and viscosity originate in

Chapmap—Epskog calculations for collision 'dominated plas- VA* (rw,)Ve=V(rv,) XV Ve 1V Yo X V()
mas, which likely do not represent well high-temperature r
behavior in the JET. B
Nevertheless, we believe that to the extent that MHD is +v| =24+ _02_0 XV(rB,)
relevant to high-temperature confinement at all, the predic- r r
tions of the presence of both the steady-state toroidal and J
poloidal flows are solid. The analytical or computational es- +VxXV TSD) (A3)
timates cannot be sharpened up without more reliable num-
bers for viscosity. The curl of the poloidal part of Ohm’s lay4) leads to the

Stress-free mechanical boundary conditions at the toroifollowing equation forB,,:

dal boundary have been employed. It is not clear what dif- B Bur v
ferences would arise from some other choice of velocity-field ~ »A*(rB,)Ve=V <4 —02—0) XVi—V ( £ X Vy.
boundary conditions, such as no-slip ones, but it seems cer- r ' r (A4)

tain that there would be some. Any tractable idealization of . _ _ N

the velocity field at the wall seems unlikely to do full justice An equation fow,, is obtained by rewriting the force balance

to the complicated mechanical interaction that must occur agquation(1) as follows:

a limiter or divertor operated tokamak wall, but it still seems 9 12

of use to have at least a few solved problems in the catalog PWV=V(p+ 207+ @xXv-JXB. (AS)

of MHD steady states. Up to now, these have largely beefThe toroidal part of this equation gives

ideal steady states, which are seen to be qualitatively differ-

ent in character. vA*(rv,)=[VxXV(B,)—V¢XV(rv,)]-Ve. (A6)
It has been clear for some time that flows seem likely toThe toroidal part of Eq(12) reults in
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A*y=—r1J (A7)

7 1
Y _ _ 77U6:;{U5,U1}- (A19)
where the toroidal current density follows from the toroidal
part of Ohm’s law, The curly brackets denote the Poisson bracket of two func-

tionsu andv with respect to the variables andy that is

r Vx XV .
77r‘Jgo=EOTO_ #ch. (A8)  defined as
. . ¢ _ Ju dv  Ju dv A20
EquationgAl), (A3), (A4), (A6), and(A7) form a set 0 {u,v}= Xy ay X’ (A20)

coupled, nonlinear Poisson-like equations for the scalar vari-
ablesy, rw,, rB,, rv,, and y to be supplemented with Equations(A14)—(A19) are subject to the following bound-
expression(A8) for J,. Note that these equations can beary conditions that follow from{15) and (16):

solved withouta priori knowing the pressurp and the sca- Fory=0

lar potential®. Once this is don& p follows from the force

. . au au au
balance equatiofl) rewritten as follows: (9_3 =0, (9_5 =0, — =o,
2 Y ly=o Yly=o % y=0
Vp=1V2v—V| = | — xv+IxB (A9) (A21)
P=vV=v 2| ey : Usly=0=0, Usly—0=0, Ugly—o=0.

This determines the pressure up to an additive constant. In ROrX=Xx_=r- Ifo, X=X, =T Iro, andy=y, =L/ro:

similar fashion® follows out of the poloidal part of Ohm'’s Ugly=x. y=y,=0, Ug|x=x. y=y.=0,
law, i.e., | - | -
U3 =X, ,y= :l, U5 =X, ,y= :O,
VO=vxB-yV(rB,)X Vg, (A10) T RS (A22)
in which we have used Ampe's law (5) to replace the po- u6|>‘:xr y=y, =0,
loidal current density in terms of the toroidal magnetic field. au, 2 auy
The final step is to introduce new variables accordingto —— = —Uglx=x.. = =
IX | L Xe =9y Yoy,
Y rB N
U1=E. Up=Tolwy, U3=|—:+1, The previously studiéd“slow-flow” equations follow

from Egs.(A14) to (A19) by taking the high-viscosity limit

ro, (AL1) (H?<1). This results in
Us=——, Us=—, Ug=Trgrd,— I,
Yl Syt 00T e A*u;=—u,, (A23)
where le dug
VA*Uy=—2— —, (A24)
raEo ? x* gy
le=—— and l,=r(By, (A12)
7 A*ug=—l,g, (A25)
and with toroidal flow neglected. That isi, is dropped, being a
factorH? smaller than the poloidal flow variables andus,,
r z . . . ) .
X=—, y=—. (A13) and the toroidal magnetic fields are ignored singe- 1 is a
o Mo factor H? smaller than the poloidal magnetic field variable

In terms of these new variables the partial differentialUs- The vxB force i52 also neglected, that ig is dropped
equations(Al), (A3), (Ad), (A6), (A7), and (A8) become, Since itis of orderH- compared to the currerlt, that is

respectively, driven by the externally applied electric field.
A*Ulz_UZ, (A14)
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