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Abstract 

Toroidal magnetic field configuration in a 
gravitational field is calculated both from a simple 
force-balance and from the calculation using maqnetic 
surfaces. The configuration is found which is posi-
tionally stable in a star. The vibrational frequency 
near the equilibrium point is proportional to the hy
drostatic frequency of a star multiplied by the ratio 

1/2 
(WB'/l"V where N B is the magnetic field energy den
sity, and K M is the material pressure at the equili
brium point. It is proposed that this frequency may 
account for the observed solar spot cycles. 
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I. Introduction 

There are many theoretical discussions with regard to 
1—4 magnetic field configurations in stars. The virial 

theorem relates the oblateness of stars with the magnetic 
1 energy. 
A self-consistent magnetic field configuration in 

stars is difficult, in general, to calculate. In the stellar 
interior, the magnetic field pressure is usually very small 
compared with the material pressure, whereas in the stellar 
atmosphere the magnetic field pressure is either cimparable 
or higher than the material (plasma) pressure. The self-
consistent field configuration, therefore, should be derived 
by numerical calculation, but here a simplified analytical 
calculation is presented which may be close to the actual 
configuration of the magnetic field in the stellar interior. 

The model presented here is a simplification, but it 
is hoped that this model provides the plausible equilibrium 
configuration and offers possible new astrophysical observa
tions. The model is shown in Fig. 1. The region, A, in the 
stellar interior is centered around the equatorial plane 
and forms a tcrus. The electric current density, J, is not 

->-zero in this region, while outside the region A, J vanishes, 
that is, the magnetic field, S, created by J in A is curl 
free. The boundary condition is far away from the star, B 
vanishes. The azimuthal symmetry is assumed. We also 



assume that the cross section of region A is circular with 
radius a, which is much smaller than the major radius, r 
(radius from the center of the star)• 

The configuration is very much like the tokamak 
toroidal equilibrium. The basic difference here i <= the role 
of gravity and absence of the external magnetic field (i.e., 
B •* 0 away from the star). In what follows, we shall present 
a simple force argument to find the equilibrium and proceed 
to more rigorous theoretical treatment later. 

II. Force Balance 

In the region A, the plasma pressure is different from 
the surrounding area because of the existence of the J * B 
force. The temperature, on the other hand, is assumed to 
be equal to the surrounding area because the heat conduction 
time is generally very much smaller than the magnetic field 
diffusion time. This assumption need not be imposed, but 
this simplifies the subsequent analytical treatment. Then 
if the pressure in region A on an average is lower than 
that of the surrounding area, the buoyancy results. The 
combined magnetic and material pressure is oriented to move 
the ring to the surface. The result is, the ring cannot 
have the force balance, hence no equilibrium. 

Thus the equilibrium requires that the material 
pressure in region A must be higher than the surrounding 
area so that the gravitational pull balances the outward 
force of combined magnetic and material pressure. The 
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expanding magnetic pressure originates from the so-called hoop 
force. The hoop force is due to toroidal current (i.e., total 
current in the aximuthal direction, I , ) , I, and is approxi
mately 

3 L 1 T 2 1 T 2 M 8 r° 3 _,_ ., 
^ - g I = I U Q I -dn — - j + A) , (1) 

where A is a numerical coefficient of order unity and depends 
on the actual current distribution. The material pressure 
force is 

-=£ 2iTrdr»dz » 2ir 2 2— pdr-dz = 2TT a p (2) 
A 

where p is the excess material pressure over the surrounding 
area and bar over p indicates the average in region A. The 
total excess weight Q f the torus is then 2ir 2a 2r op om/kT. We 
assume kT is constant in region A as this region is small com
pared with the major radius. Here m is the average mass of 
particle (including free electrons). The force balance then 
yields 

1 T 2 n
 8 r o 3 , flW _ 2 2- 2 * 2 * 2 r o W • 

P o 1 ( l n T " 4 + A ) + 2TT a p = j ^ (3) 

The current is related approximately to the pressure p by 

the relation 
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r n a (P f + 5 ^ f , ) • ( 4 ) 

4 it a o 

The Equation (4) is the force balance between material, and 
toroidal and poloidal magnetic pressures. The constants, 
f and f, are of the order of unity and depend on the actual 

2 distribution of p and E. Eliininating I between Eqs. (3) and 

| + A ) + 1 + f±fi; 

C4> . we g e t 

kT [f 
8 r ^ 

X 
8r 

< l n - ^ 

(5) 
| + A)] = r Q m g. 

The left-hand side is proportional to kT which is a decreas
ing function of r , whereas r q is an increasing function of 

o o J J 

r . Thusiexcept for very special cases (such as a star with 
very high surface temperature), there exists a unique r for 
which Eq. (5) can be satisfied. The equilibrium point shifts 

- 2 - 2 -
outwards as B. /p increases. As B /p increases, the in
creases in the incremental mass in A decreases in relation to 
the hoop force. Hence more gravity is needed for equilibrium. 

From the nature of Eq. (5), the ring is stable against 
the change in r . In addition, if the star is rotating, the 
centrifugal force will locate the ring at: the equatorial 
plane. 
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I I I . O s c i l l a t i o n Near Equil ibrium Poin t 

The v i b r a t i o n a l frequencies of the r ing w i l l be 
5 

c a l c u l a t e d in t h i s s e c t i o n . If we assume t h a t , ou t s ide A, 

the ma te r i a l i s non-conducting, the small amplitude motion 

near the equ i l ib r ium p o i n t i s given by 

2„ 2 a 2 r Q ( l + h) p s ^ | = J f . ( r - r o ) (6) 
dt o 

where h(s 1) is the factor associated with the material 

motion outside the region A and p is the total mass density 
at r . The force, F, is o 

P = J uQI2 rCln 5 £ - J + A) + 2, 2 a 2 p 

2 2 - -
2TT a r p m g/kT 

Furthermore if the star is in hydrostatic equilibrium, we 

expect 

i£_ - p ( r ° ) - !° R* = *i 3r ~ " R* " R* ' % o 
(8) 

le_ = a
 2 (1_ - T ± ) (9) 

3 r o ° R* 
where Y = 5 /3 . Also approximately from rr.agnetic f lux 

conserva t ion 
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ai _ I o 
ar r o 

(10) 

Therefore 

(11) 

T 2 0 2 2-
_ = _ V Q ( l n _ _ - _ + A.) _ _ _ 

2 2 - -2n a„ r p m . o o ro dg kT dr o 

except for very close to surface,dg/dr >0, hence 

3rQ 0 (12) 

where A' differs from A by a number of the order of unity. 
The oscillation period, T, is then 

o o o r 
, ° (13) 

kT V 8 rn 3 ~h 

Here p i s the average incremental mass densi ty in A, i . e . , 

p m 
p o a "FT * < 1 4 > 



If we assume kT = 1 kev, r = R* = r /2, B = 0, m = nu , 

f (In -!° - .J + A-> s 1, h = 1, y = 5/3, f£ = _ £ ? _ 
a 4 ' ' ' ' dr mR*r , 

s 
(here r g is the radius of the Sun), we get 

P„ 1/2 
x(sec) = 4200 (—) . (15) 

If ( O g / p ^ : 1.5 x 10 5, T is about 22.5 yrs. 
There is, in addition, an oscillation mode perpendicular 

to the equatorial plane. The period is related to the rota
tional period of a star, T , by 

c ' rot J 

r- Ps h 

T = /2 (-£) T . (16) 
p„ rot. 

h 5 
If we use (p /p ) : 1.5 * 10 , T , = 27 days, thare is the 

4 next time period of 10 years. 
If this mechanism is responsible for fluctuations 

in the magnetic field, in magnetic stars, the period is 
expected to be shorter. It is conceivable that there will 
be three different periods in observed field fluctuation 
in magnetic stars: the rotational period, the radial 
vibrational period (Eq. 13), and the vertical vibrational 
period (Eq. 16). 
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The previous analysis is of necessity idealized. 
In real stars, the magnetic field lines are frozen into the 
stellar matter. Thus the vibration will not necessarily 
lead to the corresponding change in the magnitude at the 
surface. Numerical analysis is called for. 

The radial vibrational period (Eq. 13) may be inter
preted as the transit time of Alfv^n wave velocity, where 
the magnetic field pressure is much less (~ 10 ) than 
the material pressure. 

IV. Analytical Calculation of Equilibrium 

In what follows, the azimuthally symmetric equilibrium 
will be solved. To simplify the matter, the background 
plasma (in the absence of magnetic field) is assumed to be 
in hydrostatic equilibrium with gravity. The region where 
current flows is the region A of Fig. 1. The radius, a, of 
the region A is much smaller than the stellar radius, r , 
where the center of A is located. There will be no ex
ternally imposed magnetic field. 

The equilibrium will be given by 

3 * I = vp + pg . ( 1 7 ) 

We assume that kT and g are constants independent of position 
in region A. We can write 

P - I * T • (IB) 
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The azimuthal symmetry means the poloidal field is derivable 
from magnetic surface function, ip, by 

B = - i |± , B =IM ( 1 9 ) 

r r 3z ' z r 3r l i y ; 

pB = K(t|i) • (20) 

Also because 

•̂ E + g = v* (21) 

i n v i ew of Eq. (18) , we g e t from Eq. 1 7 , 

• (iM • (22) 

We n o t e 

V„P + pg„ = 0 (23) 

where parallel sign means the component of vectors parallel 
to B. The third component of Eq. (17) yields 

ifl - I -2*. + ill - - A . [*i _ nr2 41 u (24) 

We solve Eq. (24) by expanding the series of a/r. T^1 t n e 

zeroth order 
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2 2 
_p_ , _o _ d .K , 2d* ,, , 

with 

B-Vp = 0, i.e.,g = 0 and p Q = p (i|i)- (26) 

2 The expression (25) , has a solution for arbitrary 4> and K 
for cylindrically symmetric configuration in 

2 2 *s 
£(=[(r-r ) + z ] ). To simplify the matter here, we let 

2 
K •lji and 4«lnij;. The s o l u t i o n i s t h e n g iven by 

* o = i Q ( a 2 - C 2) e < a (27) 

* o = - i Q a 2 In i 5 > a (28) 

where 
O - d ( R 2 I + „ r 2 d p o _ d .K 2

 + r 2 d * o 
Q ' m {-T] + vo r o "dT ~ ? ~ '"T* + V o im u o 

(29) 

* Q ( r ) * (r) 

•v** = p

0 0 n o r = p 0 0 -*— ( 3 0 ) 

o T o o 

P o ^ ' = Poo OT 0< 5 <a ( 3 1 > 

kT , 
= 1 " l n ^ • (32) 
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To t h e n e x t o r d e r 

2 2 ? 3 IK 3 iK - ,3d) o, 2 { r - r ) iK p r u 1 + 1 _ 1 o ( 1 o ^ 1 , ^oo o c 
a 2 ., 2 r 3r o r ii 4' 
J r rfz o o o v o oo 

(33) 

A l so from E q s . (21) and (32) , 
kT - ^ 1 p l 

o o 

Thus 

3 \ , 3 \ l Q , , ^ ^ o ' £ , , , 
~ T + —"2 " - 2 — , r - r o ) " ( r kT ' ' " V ' 1 

3r 3z o o 
2 (35) 

p R u 
0 0 ° °- = G- (r-r ) • 

oo 

The solution of i|<, is 

iPx = - ̂  (5 3 - £ a 2) cose, 0 < i < a, (36) 

2 3 
* x = {- \ -|- 5In | - 2-^1 (I - |) } cose a<5. (37) *o 

where G' = G -Q /r . o 
The outside solutions (37) must agree with the 

expansion of vacuum dipole field created by the current ring. 
rb- expansion is well known and is 



(38) 
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Br 

il, = K n [lni + i f cose {§ In | - (In — H - 2) 1 a z r a a o o 
2 

a £ 2 
o 

where K., is a constant. 

Comparing Eq. (38) with Eqs. (28) and (37), we obtain 

K ; L = - I Q a 2 (39) 

- 2 r - K l fin ̂ 2 -2) = - ^ ' «<» 
o 

Thus 2 

G, 5 (JL _ ja, ̂ V o . i 2. = . 2 5_ ( l n !!a _2) 

o oo o o 
or (41) 

2 
§S = J. + J_ (in !!° - f) (1 + !°£- -L. ) . ,42) 
k T r o r o 4 2 u o Poo 

The gravitational field g is 

2 
roSg = *T [ 2(ln^-|) + !2a. ̂  (i„ !!2 - J, 

(43) 

Except for some numerical difference, the result confirms 
the simple derivation of Eq. (5). The radius, r , for 
which Eg. (43) is satisfied, is the equilibrium position 
of the current ring. 



-14-

V. Other Equilibrium 

A ring of current containing plasmas may exist even 
in the vicinity of stars or planets. The origin could be 
the sweeping action of electrons by the dipole magnetic 
field of rotating stars on the breakup of smaller accompany
ing celestial bodies (companion stars, planets, satellites, 
etc.). The equilibrium may be found by balancing the ex
panding force of the current ring with the gravitational 
pull. The temperature of the plasma in the ring could be 
much higher than the surface temperatures of stars or 
planets. Thus, in spite of large gravity, the equilibrium 
is possible at radius which is greater than the radius of 
the star. The ring is close to marginal stability against 
the expansion and/or contraction. The second order effect 
(such as gravitational potential of ring itself or image 
current at the star surface) probably make the ring stable 
under certain conditions. If dipole field from the star 
exists, the equilibrium and stability should be discussed by 
a combination of gravitational and magnetic field effects. 

VI. Conclusions 

A simple force balance consideration points to an 
equilibrium of a current-carrying plasma in a star. The 
configuration is expected to be stable against the posi
tional instabilities. The oscillation frequency near the 
equilibrium point is much lower than the simple characteristic 
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frequency of gravitational equilibrium. In fact, the sunspot 
cycle frequency could be recovered, if we choose (rather 
arbitrarily) the magnetic field strength inside the Sun to 
match the observed frequency. 

It is quite conceivable that some pulsars may 
have similar oscillation frequency superposed over the 
rotational frequency of the pulser. 

Toroidal ring plasmas could exist surrounding stars 
or planets. The rings remain together by the magnetic field, 
and the total force balance is maintained by the presence 
of either gravity or dipole field of stars. 

An equilibrium calculation of toroidal plasmas in 
gravitational field was presented. The technique derived 
here could be applied to the toroidal equilibrium calculation 
of tokamaks whose current is carried by the relativistic 
electron beam reported by Mohri et al. 

This work supported by the U.S. Department of Energy 
Contract No. DE-AC02-76-CHO-3073. 
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Geometry Of Plasma 

E qu i l i b r i u m 

(PPPL-806218) 
Fig. 1. Schematic drawing of the model discussed in the 

text. 


