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TOROIDAL WAVE FUNCTIONS*
BY

V. H. WESTON
University of Toronto

Abstract. The Helmholtz equation is solved in toroidal coordinates. A complete
set of solutions is obtained representing radiations from a ring source.

Introduction. Up to now the Helmholtz equation has been solved only for separable
coordinate systems. This paper presents solutions for a non-separable coordinate system,
the toroidal. The main interest will be with continuous, single-valued solutions satisfying
the radiation condition and possessing a ring singularity. Exact expressions for each of
the wave functions will be obtained in the form of a series expansion and integral over
finite range. The series expansions are uniformly convergent everywhere in space except,
of course, at the ring singularity.

The time dependence will be of the form exp (—iut).
1. Series solution of the Helmholtz equation in toroidal coordinates. The relation

between toroidal and cartesian coordinates systems is given by [5, p. 151]

_ d sinh £ cos
cosh — cos 1} '

d sinh £ sin <t>
V = —,  , (1.1)cosh — cos ri

d sin t>
z =  cosh £ — cos ij

Domains of the coordinates are 0 < ij < 2ir, 0 < 0 < 2w, 0 < £ < » where £ = £o
defines a torus

z2 + (p — d coth £0)2 = d2 csch2 £0

and v — Vn defines a sphere

(z — d cot tjo)2 + p2 = d2 csc t)o

where p = (x2 + y2)1/2.

The metric coefficients are given by the following relations

d
he — hv =

h,*, —

£ " cosh £ — cos r) ' ^

d sinh £
cosh £ — cos i?

From now on, in order to facilitate analysis, the variable s will be used instead of £
where the two are related by the equation cosh £ = s.
Now it has been shown [7], that for a certain class of non-separable rotational coordinates
(ill , u2 , </>), there are solutions of

VV + JfcV = 0 (1.3)
*Received May 1, 1957; revised manuscript received July 2, 1957.
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given by

4>(ui , u2 , <t>) = e"* Y, ar(u,)[h3(ux , u2)]r ^ ^

Mui ,y-2,<t>) = e'"*B(u,) X) br(u,) [h3(ui , u2)j'
r

where i 5^ 3, and j ^ 3, provided that the metric coefficients A, and , and the
function 5(tt,) satisfy certain conditions. The coefficients ar(u,) and &r(w,) of the above
series satisfy a recurrence set of ordinary differential equations.

In particular, the toroidal coordinates (£, 17, <£) belong to this rotational class and
the solutions are such that the power series given by (1.4) have a lower termination.
If the power series are expressed in the variable (s — cos tj)~' instead of the differential
equations involving the coefficients of the power series take a simpler form. The function
B(rj) for toroidal coordinates is sin ij. Solutions of (1.3) are given by

Us, V, <t>) = «"* £ Ar(») (s - cos „)"' (1.5)
r~T

and

\p0(s, v, <t>) = e"1* sin 17 X Br(s) (s — cos rj)~r. (1.6)
r= 7"

The coefficients must satisfy the differential equations

(s2 - l)A'r' + 2sA'r - A^r + 1) + 7^1:] + k2 d2Ar_2

- (2r - l)[(s2 - 1 )Ar'_, - s(r - 1 )Ar.l) = 0,

(1-7)

(s2 - 1 )B'/ + 2sB'r - B, r(r-X)+7^\ + k'M,., (18>

- (2r - l)[(s2 - 1)#_, - s(r - 2!)Br_,] .= 0 ,

where the prime denotes differentiation with respect to s. The numbers T and T' are
determined from the boundary conditions. The problem of solving a partial differential
equation in three variables in which only one variable is separable is reduced to solving
a recurrence set of ordinary differential equations in one variable.

The homogeneous equation corresponding to the equation (1.7) is
2

(s2 - l)co" + 2sco' - r(r + l)a> - a> = 0 (1.9}
s 1

of which, the associated Legendre functions P"T(s) and Q,(s) are solutions. The function
to"(s) will be used to represent both solutions of (1.9).

It is immediately evident that for r = T in (1.7) and r — T' in (1.8), the non-homo-
geneous portion of the equations vanish. Hence one has Ar = co£(s) and Br' = 00.
Since the solutions of the corresponding homogeneous equations of (1.7) and (1.8) are
known, the equations can be solved easily, resulting in the following relations,

AM = atfs) f n ,, f PXxWXx) dx (1.10)
Jc 1 (1—2 )[Ur\Z)\ Je»
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and

BM = «?-.(«) ['   ^ [' Gr(x)c4-i(x) dx, (1.11)
Jc(i - 2)[w;_,(z)f

where

FM = k2 d2Ar-2 - (2r - l)[(s2 - 1 )A'r.l - s(r - 1 )Ar.l] (1.12)

<?,(«) = k2 d25r_2 - (2r - l)[(s2 - l)£r'_, - s(r - 2)Br.1]. (1.13)

The constants Ci , c2 , c[ and c'2 are determined from the boundary conditions.
Define a basic set of solutions V.t(P) and VeT(Q) such that 4r(s) is equal to P£(s)

and Qt(s) respectively and the constants of integration in the expression for -Ar(s) are
taken as fixed numbers.

Let rj, <t>) be a solution of Eq. (1.3) of the form (1.5) with arbitrary constants
of integration and with 4r(s) = axPr(s) + biQ^is). Then

V.t{s, V, <£) — UiV.t(P) — &iV.t(Q)
is a solution of Eq. (1.3), with the coefficient of (s — cos ??)~r vanishing. Thus we have

V.t(s, - diV.riP) - biV.T(Q) = V.T+x(s,

where ^"eT+i (s, t], <t>) is a solution of Eq. (1.3) of the form (1.5) where the lower limit of
summation is T +'' 1. The coefficient of (s — cos j?) ~T~1 in v^r+i (s, v, <t>) must be of the
form a2P"T+i(s) + 62Qr+i(«)- Hence in a similar manner we have

l/'ertej Vi 0) '(P) 0,2^t+i(P) bi b3\//^T+i(Q) = f, <t>) •

By mathematical induction we see that any solution T(s, t), <j>) with arbitrary constants
of integration in the expressions for -Ar(s), is just a linear combination of ^„(P) and
V,z,{Q) where p = T, T + I, T + 2, .A similar discussion follows for the solutions
of the form \p£r, (s, i7, <j>). So no restriction is placed if we take the constants in the integrals
(1.10) and (1.11) as pre-determined fixed numbers, thus allowing us to obtain explicit
expressions for a set of solutions of (1.3).

Any solutions of the form rj, tf>) + j?, </>)} with arbitrary constants of
integration can be expressed as a linear combination of the explicit solutions \p*p(P),
VeAQ), Voy{P) and \p"oy(Q) where p = T, T + 1, • • • and p' = T', T' + 1, • • • .

From now on we shall be interested in solutions periodic in the angle 0. Hence we
set n = m where m — 0, ± 1, ± 2, • • • .

2. Obtaining explicit expressions for ^Cr(P) and ^.(P). The wave functions
WT{P) and WT'(P) are defined as those solutions satisfying (1.5) and (1.6) respectively
where the coefficients Ar(s) and Br(s) are given by (1.10) and (1.11) with the constants
Ci , c2 , c[, c'2 all set equal to unity, and AT(.s) and BT,(s) equal to P^'"'(s) and Pj.!mJ(s)
respectively. The negative superscript is taken so that our results include the case in
which T and T' — 1 are integers such that | T \ < \m \ and | T' — 1 | < \m \ when the
associated Legendre functions P^"[ (s) and Pr™-i do not exist.

For convenience the symbol M will be used to signify | m |, where m is a positive
or negative integer or zero, i.e.

M = | m | = 0, 1,2, 3, ••• (2.1)
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The integral operator I(M, r) operating on the function F(s) is defined as follows:

I(M, r)F(s) = corM(s) ['   f »?(x)F(x) dx. (2.2)
J i (1 - z2)kM(z)f J l

Hence the coefficients -4r(s) and Br(s) for \p?T(P) and rp"T'(P) satisfy the relations

Ar(s) = I(M,r)Fr(s), (2.3)

Br(s) = I{M,r - \)Gr(&), (2.4)

where Fr(s) and Gr(s) are defined by (1.12) and (1.13). To calculate vlr(s) and Br(s)
the following lemma* is needed:

Lemma: If

G(M, X, X - R) = (s2 - 1 )I/2Pi^-51(s), (2.5)

where X is a positive, and M a non-negative integer and if

F(s) = a[(s2 - 1) £ G(M, X-l, X - R) - s(R - l)G{M, X - 1, X - ff)]

+ bG(M, X - 1, X - R + 1),
then

I(M, R)F(s) = — [a{M + 2X - R - 1) + b]G(M, X, X - K)[2X]-'. (2.7)
Now -At.(s) = PtM(s) — P-t-i(s) = G(M, 0, —T) hence setting r = T + 1 in (1.13)
and using the fact that A r~i(s) = 0, one has

Ft+1(s) = -(2T+ l)[(s2 - 1) | G(M, 0, -T) - sTG(M, 0, —T)] • (2.8)

But

ylr+i(s) = I(M,T + 1 )Fr+1(s). (2.9)

Now Ft+1(s) corresponds to expression (2.6) where

a = — (271 + 1), 6 = 0, X = 1, R = T+ 1,

hence the lemma gives At+i from (2.9) and (2.7), resulting in the following relation

Ar+1 = — 2_1[—(2T + 1 )(M - T)]G(M, 1, -T) (g 1Q)
= (T + \){M - T)(i - l),/2P^:i(s).

To obtain -Ar+2(s) one must break the operation

Ar+2(s) = I(M, T -f- 2)Ft+2(s) (2.11)

into two separate integrals, i.e. FT+2(s) must be broken up into the following two ex-
pressions

-(2T + 3)[(s2 - 1 )A'r+1 - s(T + 1 )At+1] (2.12)

•This is a consequence of Lemma 2, page 13, [6].



1958] TOROIDAL WAVE FUNCTIONS 241

and
k2 d2AT . (2.13)

Expression (2.12) reduces to the form given by (2.6) where

a = ~(2T + 3)(r + |)(M - T), 6 = 0, X = 2, R = T + 2

and (2.13) reduces to the form given by (2.6) where

a = 0, b = k2 d2, X = 1, R = T + 2.

Hence using (2.11) and (2.7) one obtains

At+2 = -[—(2T + 3)(T + §)(M - T)(M - T + 1 )]G(M, 2, — T)4_1

- k2d2G(M, 1, - T - 1)2_1

= *(r + 3/2)(T + J)(Af - T)(M - T + l)(s2 - l)P-J?:?(s) (2"14)

-^(s2 -iy/2PZMTZl(s).

Rather than calculate the remaining /I r (s) in a similar manner it is better to obtain
them through mathematical induction. Assume that

l(r-T)/21

-4-(s) = X) (k d)2'A'rG(M, r-T-t, - T-t), (2.15)
<=0

where AI are constants. In the expression for the upper limit of summation, the following
notation is used: [x] is the integer such that x — I < [x] < x. The above expression
obviously holds for r = T, T + 1 and T + 2.

Assume that the expression holds for r — 1 and r — 2, hence in order for it to hold
for r one must have

Ar(s) = I(M,r)Fr(s), (2-16)

where from (1.13) and (2.15), Fr(s) becomes
lCr-r-2)/2)

Fr(s) = lc2 d2 £ (k df'AUG(M, r-2-T-t, - T- t)

- (2r - 1) (s: - 1) | - s{r - 1)]

[(r-r—1)/2]
£ (Jfe dT^-iGW, r - I - T - t, - T - t).
t =0

The coefficient of (fcc?)2' in Fr(s) is

A'rZlG(M, r-l-T-t, - T- t+l)

- (2 r - 1) (s2 - 1) £ - «(r - 1)].4:_AM, r-l-T-t, - T- t}.

Hence the coefficient of (kd)2' in /(M, r)Fr(s) is, on setting a = — (2r — lMJ_i, & = -A'lj,
X = r— T — t, R = r in expression (2.6) and using (2.7)

[(M — 2T — 2t + r — 1)(2r - 1)4^ - A'~l] g(M' r ~r^_~ *1~ T ~ (2.17)
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Equating coefficients of (kd)2i in (2.16) one obtains the relation

A'rG{M, r-T-t, - T-t)

= [(M - 2T - 2t + r - l)(2r - 1 )A\.l (2 lg)
G(M, r - T - t, - T - t)

2 (r-T-t)
— A'"Ar-2

which shows that the expression (2.15) holds for r if it holds for r — 1 and r — 2, provided
that the constants ^L' satisfy the equality

A\ = [(Af - 2t - 2T + r - l)(2r - 1 )A'r.1 - A'rZl]2-\r - T - t)~\ (2.19)

Thus one obtains

., _ (-1)' —rr(- T - t + i)r(- 2T + r - 2t + M) .
2'(r - T - 2t)!(t)!r(- r + t + j)r(M - T) ' y '

This expression for the constants A 'r holds for r = T, T + 1, T + 2 as is seen when
comparing the values given by (2.20) for the cases r = T + 1, t — 0; r = T 2, t — 0)
and r = T + 2, t = 1 with values of constants in equations (2.10) and (2.14). Since
the expression (2.15) holds for r = T, T + 1, T + 2 and it has been shown that if it
holds for r — 1, r — 2 then it will hold for r, one can, by mathematical induction, con-
clude that (2.15) holds for every r.

Hence one can immediately write
CO [(!•—T)/ 2]

*7t(P) = e<m* £ (« - cos vr £ (k d)2'A'Xs° - 1 Y'-^PZ^rXs). (2.21)
r=T t-=0

Noting that BT.(s) = Pl"(s) we can obtain in a manner similar to the above the
following explicit expression for (P)

» [ Cr— 7" )/2]
KAP) = e'""* sin v £ (s ~ cos v)~r £ (k d)2t

■Bl(s2 - i)r'""/2p:f-'(+ r'+'(g),

where the constants Blr are given by

_ (-l)'+,-r'r(- T' - t+ -5)r(- 2T' + r - 2t + M + 1) . ,
' ~ 2'(t)\(r — T' — 2<)!r(- r + t + .5)r(M - T' + 1) 1 ;

The expressions (2.21) and (2.22) can be placed in a neater form. In (2.21), inter-
change the order of summation of r and t, obtaining

°> i(r-TW 2]

£ £ = £ £
t =0 r = 2t + T

(The validity of this operation will be shown below.) Then replace the summation over
r by summation over a where a = — 2t + (r — T). One then has

00 °o Z7 7\ 2< _ '/o2   -I \ (<r+1)/2

i:T(p) = eim* £ £( f .;L+r Fri'r'-is), (2.24)
t-0 r-o (s — COS rj)
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where

„« - (-D'(M - T),(T+t + .5),
2'(t) !(a)! ' 1

Similarly T-(P) reduces to the form

fn (k d)2X(s2 -
(s - cos v)2,+'+T

(Jr iA2,h'(92 —KAP) = e'm* smvZH , JLr. Pt"-,'-7(s) , (2.26)

where
h> = (-l)'(Af + 1 - T'UT' + t+ .5),

2'(<) !(<r)! ' K '

To show convergence of the above series we require the following inequality

P;"(s) < (s - l)M/2(s + l)-M/2[s ± (s2 - l)1/2]"/r(l + M), (2.28)

where the positive and negative signs are taken when v > 0 and 0 > v respectively.
We shall represent the series expansion in (2.24) by the following

+TAP) = e<m* E E Ct,(s, v). (2.29)
t =0 (7 = 0

Using (2.28) and the inequality

(s — l)(s — cos t?)_1 < 1

which holds for 1 < s < °° and 0 < -q < 2w we can show that the series E"-o I C,„(s, rj) |
is dominated by the absolutely convergent series Dt(s, r?) ET-o I dt„ | where

\d,.\ =
and

(M - T).(T + t + -5),
(<r)!(l + M + t). (2.30)

D (s _) = (»- iy,/2 fc2,rf2'(S -1v[« ± (S2 - di/2]
Vs + 1/ 2'Crtlrn -4- M 4- Ms - r.ns rT)2'2* + r >+ 1/ 2'(<)!r(l + M + t)(s - cos v)

where the positive sign is taken when t + T > 0, negative sign otherwise.
For large /, (< + T + J > 0), we have

y I j | < r(i + M + Q(x)'/2  , i 4- r/iN
1 1 - r(i + t +r T) | r(.5 + m - T)\~*~ L + \</ (2.31)

where K is a constant which vanishes if M > T.
Using (2.31) it can be shown that the series E"-o XX o D, (s, rf) | c£J<r | is absolutely

convergent for every value of led and every value of s and r\ in the ranges 0 < s < <»
and 0 < j? < 2ir. Since the series is dominated by A (s> v) I d„ I we
can say that the original series given by (2.24) is uniformly and absolutely convergent
for 1 < s < 0= and 0 < ij < 2ir. Hence the change of order of summation above is valid.

A similar discussion follows for the series (2.26) except that the region of uniform
convergence 1 < s < «> and 0 < rj < 2tt, holds only if T' — 1 — M is a non-negative
integer. For other values of T' — 1 — M the region of uniform convergence is 1 < s <
and 0 < t) < 2tt, the wave functions (P) being discontinuous along the lines 17 = 0
and = 2r.
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3. Determination of T, T' through continuity conditions. We will be concerned with
solutions of the Helmholtz equation for the exterior problem, that is, solutions which
are non-singular and continuous in the region external to the torus s = sr, , where by-
external we mean s„ > s > 1. The region s0 < s < <*> describes the surface and interior
of a torus. The limiting torus s = oo describes a ring with radius d and centre, the origin.
As is seen from (1.1), a portion of the surface of the torus s = 1 is the z-axis. The rest
of the surface extends throughout infinity in all directions, i.e. if R is the spherical polar
coordinate, then R — °° for torus s = 1.

We shall eventually consider solutions satisfying the radiation condition, but before
doing so, we must consider the effect of applying the conditions of continuity and non-
singularity in the region s0 > s > 1. Since Qt(s) is singular on the surface s = 1, solutions
involving the associated Legendre functions Q"(s) will be singular there. Hence it
seen that solutions which are non-singular in region s„ > s > 1 can be formed only from
\1>?T(P) and \poT-{P) solutions. The condition of continuity shall be applied to the rp"T(P)
and toT'iP) solutions.

As was mentioned above is discontinuous at = 0 unless T' — 1 — M is a
non-negative integer. Even though the other wave functions are discontinuous at y = 0,
it is possible that there exists a linear combination of them which is continuous at ■q = 0.

We will be concerned with solutions odd in the variable ?7, of the form

^o(s, v,<t>) = ^2aptZ(P), (3.1)
P

. where p increases by integral values only. The coefficients av functions of kd only, are
normalized such that there exists at least one coefficient which does not vanish when
k is zero. Let

T'+N'

[V'otej Vj4>)]k-o = ap[^op(-P)]t-o i (3.2)
p-T-

where N' is an non-negative integer. We require (s, 77, </>) to be continuous at 17 = 0
for every s and kd in the ranges 1 < s < °° and 0 < led < °°. Hence a necessary con-
dition for continuity is that the Laplace portion of ^"(s, -q, 4>) must be continuous at
7] — 0. Since ^Z(s, v, <t>) is an odd function of tj, the following must hold for j? approach-
ing zero

[^0(8, V, <t>)]k-0 ~ 0(17) 1 < s < a>. (3.3)

Now it can be shown that [#Tr'(^>)]*«o has the value as r; approaches -f- 0

r(* - lNr2 (2tt)1/2(s - i)1/2-r'
[*oj»(f)]*-o [s + 1) r(—T' + 1 + M)r(T' + .5) ^ ^

The term independent of 77 in (3.4) is zero only if T' — 1 - M or - T' — \ is a non-
negative integer. Because of the factor (s — l)~r' there is no linear combination of
^ot'(P) which will satisfy (3.3) unless T' — 1 — M or — T' — f is a non-negative integer.
Hence in (3.2) the lower limits of summation may have the values M + 1, M + 2,
or — I, — 3/2, ■ • • .In the latter case the upper limit of summation is — n.

The even solutions of j?, \P"T(P) have all been shown to be uniformly convergent for
the region 1 < s < °° and 0 < j? < 2x, and hence are continuous everywhere in the
region. However, if we differentiate term by term the series given by (2.24) with respect
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to the variable rj, the resulting series can be shown to be uniformly convergent in the
region 1 < s < and 0 < v < 2t and discontinuous at rj = 0 or 2x, except when
T — M is a non-negative integer. In this case the differential series is continuous at
7j = 0 and 7j = 2ir.

We will be concerned with obtaining a necessary condition for continuity of the
partial derivative with respect to t) for the even solutions ^™(s, 17, <f>) where

v,<t>) = E MZ(P) (3.5)
V

and which has the value when k vanishes

v, 4>)]k-0= i PMZm-o . (3-6)
V-T

Using the asymptotic relation for 77 —»■ + 0

Fa (' - iyf/2 (2t)i/2(s - iri/2-r
Lau \S + 1/ r(-T + M)T(T + .5) + °{v) (3-7)

we can deduce in a manner similar to the above that the lower limit of summation'in
(3.6) may be M, M + 1, M + 2, • ■ • or — — 3/2, • • • , and in the latter case the
upper limit of summation is — 5.

Imposing the above conditions of continuity on T and T' restricts the number of
solutions.

To simplify further work <P?n(,P) and ^on(P) shall be defined by the relations

Cv'CP) = {kd)N4>:iM+N)n(P), (3.8)

KsiP) = 2~1/2(kd)N^M+N+1)/2(P), (3.9)

where in (3.8) T is replaced by (M + N)/2 and in (3.9) T' is replaced by (M + N + l)/2.
Later on we will be concerned with wave functions of the form

f>^o*(P), (3.10)
r = N

iiPMP), (3.11)
r =• N

where ar and are independent of led. Substituting in the expressions (3.8) and (3.9)
and normalizing we see that 011 employing the necessary conditions for continuity we
obtain for (3.11)

N = M + 21 or -N - 1 = M + 21
and for (3.10)

AT = M + 21 + 1 or -N-l=M + 2l+l,

where I = 0, 1, 2, 3, • • • .
4. Asymptotic value of i/-™v(P), t™v(P) when d —> 0. The main problem is to find

the linear combination of \p%{.P) and ^"n(P) which represents outgoing radiation
from a ring source. A necessary condition for this is that the wave function represent
radiation from a point source when the radius d of the ring approaches zero. Hence
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one must first consider the asymptotic values

lim iP?n(R, 9, <t>),
d—*0

lim ft7n(R, d,<t>),
d—*0

where (R, 9, </>) are spherical polar coordinates and before taking the limit, the toroidal
coordinates (s, rj, <j>) are replaced by (R, 9, <t>).

Since

_ d(s'8 — 1)1/2 _ d sin r\ , .
P (s — cos v) ' Z (s — cos ij) '

where (p, z, <i>) are cylindrical polar coordinates, one obtains

R2 _ (p2 + z2) (s + cos rj) ,
d2 d2 (s - cos v)

and
(Y - lV/2

Tan 9 = K . '— (4.3)sin t]

Eliminating j? from (4.2) and (4.3), one can obtain an expression for s in terms of R and
6. Hence the following are obtained when d approaches zero

(s2 — 1)I/2 ~ ^ 2 sin 9
K

1 + 2 sin2 9

(4.4)

Similarly one obtains

(s - cos v) ~ 2d2R 2 ^ ^

sin 1) ~ 2 dR~1 cos 9 j

The asymptotic values given by (4.4) and (4.5) hold not only when R is fixed and d
approaches zero, but when d is fixed and R approaches infinity.

Using the above the following limits can be calculated

lim ifN{R, d,4>) = H™(R, 6,4>)
lo < 9 < | , (4.6)

lim rpoxiR, 9, 0) = H"(R, 6, 4>)
rf-0 J

where

m(R, 9, 4>) = 2(,,-'v>/2e'^ £ sin (cos 0)- (4-7)

For present purposes the limit is only required for the range 0 < 9 < x/2.
5. Solutions of the wave equation representing radiations, from a ring source.

Having obtained the asymptotic values of <P7n(P) and tZv(P) we now find the linear
combination \p"N representing a solution of the Helmholtz equation, satisfying the radia-
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tion condition, and possessing a ring singularity (i.e. singular at the limiting surface
s = oo). This is done by using the necessary condition that \p" represent radiation
from a point source when d —* 0. No further restriction is placed if it is required that

lim = e'm*h^\kR)P" (cos 0), (5.1)
d—0

where N is an integer.
Since

h'Nx\kR)P" (cos 6) = jAkR)P" (cos 6) + t(-l)v+I;'-*-i(tt2)P-jr-. (cos 6)

it can be seen that the desired linear combination has the form
/ M j M i •/ -j \ W +1 » Af

where

*.v = EW.Wm. (5.2)
r

Thus it is seen that (5.1) can be replaced by

lim = e,m*jn{kR)PN (cos 0). (5.3)
d—»0

Using (4.6) and (5.2) this reduces to

£ CJN, M)Hmr(R, 6, 4>) = e'"*iN{kR)P™ (cos 6) 0 < 0 < |- (5.4)

Equation (5.4) determines the unknown constants Cr{N, M). It is an identity in the
variables (R, 0, <f>). In solving for Cr(N, M) we shall consider 0 to be in the
range 0 < 0 < ir/2. This will be sufficient for present purposes.

The right hand side of (5.4) is of the form

,r„ . (-.rff)***
2 S (p) !r(V + N + 3/2) p" (C0S eym*• (5'5)

This is a power series in (kR) with lowest power N and with all terms in the power
series of the same parity as N. Thus considering the expression for Hmr given by (4.7),
it is obvious that the left hand side of (5.4) must be of the form

£ CN+2r(N, M)Hn+2,{R, e, <t>) (5.6)
r =0

and on substitution of the expression given by (4.12) this becomes

eim*2'M~NU\kR)N ±E Cy+r(p rsin r"p^+T (cos e)■ (5"7)

Substitute the expression given by (5.5) and (5.7) in (5.4), divide out (/cfl)A e""*, and
equate coefficients of (kR)Zv to obtain

 (lt)U2Pn (cos 6)  n(M-N)/2-p Cy + 2r( N, M) • ( — 1) .
(p)!r(p + AT + 3/2)2N+2v+l ~ r-o r(p - r + 1) ' (5.8)

X Pnfp*rT (cos 0), where p = 0, 1, 2, 3, • • •



248 V. H. WESTON [Vol. XVI, No. 3

The constants C,v+2r(./V, M) are determined from the infinite set of equations (5.8).
To solve for C'N+2r(N, M) the following result is used

 Pn (cos 8)  _ y-> sin 8V rPn"v+r (cos 8)
2"(p)!r(p + N + 3/2) ~ 2\v - r)!(r)!r(JV + 3/2 + r) K )

The proof of the above expression is found in [6],

Using the fact that

P% (cos 6) = (~1)M ^ + ™ + I] P-nm (cos 0) (5.10)

and the identity given by (5.9) one immediately obtains

T(N + M + l)(-l)r+*
T(N - M + l)(r)\T(N + 3/2 + r) 2CN+2r(N, M) = 1V„T7wTJ,„ . * (5-n)

So now the coefficients Cr(N, M) in (5.2) have been found such that Eq. (5.3) holds.
Since the limiting process of d approaching zero is independent of whether ^™*(P) or
^o'(-P) are used in (5.2), one has two separate solutions for , odd and even solutions
in the variable ij. Define the even solutions by S" and the odd solutions by T" as follows:

eim*s" = z c„+3,(n, m)*:;+up), (5.12)
r-0

e<m*T% = E C„+UN, M)W;+2r(P). (5.13)
r-0

Applying the necessary condition for continuity of the function and its derivatives as
given in Sec. (3), it is seen that in (5.12) the subscript N is such that

N = M + 21 or -N - 1 = M + 21
and the subscript N in (5.13) is such that

N - M + 21 + 1 or -N - 1 = M + 21 + 1,

where I = 0, 1, 2, • • •

S" and T" have the following properties

lim S" = j„(kR)P$ (cos 8)

lim T" = jN(kIi)P" (cos 8)
0 < ' < 1-

Hence the functions V"- and IF" defined as follows,

F.f = ^ + i(-l)flf+VS^_, , (5.14)

Wn = T" + »(-l)*+1TV. , (5-15)
have the property

lim F.v = hy\kR)P" (cos 8)

lim TF.v = hy\kR)P" (cos 8)
rf-0

\0<8<l
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Thus we have a set of functions e""* F^(s, 17) and e,m* W"(s, rj) which satisfy the necessary-
condition for outgoing radiation. Their analytic properties of continuity convergence,
singularities etc., must be investigated.

The first thing that is required is to evaluate (5.12) and (5.13). From (5.12) and
(5.11) it is seen that

e
= W + M + 1)(tt)1/2( 1)" y, (-1 )>.S:,r(P)

* T(N - M + l)2lM+N)/2+1 7^0 2r(r)\T(N + 3/2 + r) '

where by (3.8), \p?N+ar(P) is obtained from (2.24) by replacing T by (N + M)/2 + r
and multiplying the resulting series by (kd)N+2r.

The expression given by (5.16) can be simplified and the following is obtained

e« = T(N + M+ lWi-m d)K f, (k d)2"(-lYKl
" T(N - M + l)2(M+N)/2+\s - cos VYM+NW2 h (s - cos V)v2" ' ( }

where

(M - N\ (N + M + 1
Ki =

(s2 - ir
(p)\T(N + 3/2 + p) (r) !(s - cos v)r (5.18)

~Pp+(N+M)/2 (s) .

Since N is specified for S% such that N = M + 21 or — M — 21 — 1, and I is a positive
integer or zero, the series in (5.18) terminates when r — I.

Similarly one can reduce the expression for T% to the following

tm = T(N + M + l)(x)'/2(-l)a/sin r,(k d)" y, (,kd)2\-\YKl
N T(N - M + 1)2<m+"+3,/2(s - cos VYM+N*l)/2 h 2p(s - cos v)'v y (5.19)

where

\r/2

 ±  \f /r\ & /_r  OA,

(p)!r(p + 3/2 + N) (r)!(« - cos v)'
' Pp+iM + N-D/lis) .

Since N is specified for T" to have the values N = M + 21 + 1 or — M — 21 — 2, the
series in (5.20) terminates when r = I.

Hence we see that and T% are comprised of two series one finite and the other
infinite. Hence for convergence, we only need to consider summation over p. Using
the inequality (2.28) an absolutely convergent dominant series can be found for the
series

£ 552v(s — cos nYip) -T(N + 3/2 + p)

Hence it can be shown that the series expression in (5.17) is absolutely and uni-
formly convergent for the region 1 < s < o°, 0 < r1 < 2w and 0 < | kd | < °=>. If the
series (5.17) is differentiated term by term by either s or t\, the resulting series is also
uniformly convergent for the same region.

The same remarks hold true for the series expansion (5.19) given for T" .
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6. Integral representation of F„+2,(s, v) and W", rj). Before the asymptotic
values for large li can be obtained, we must obtain an integral representation for each
of the functions.

Using the following integral expression for the associated Legendre function P*(s)
where m < J

P:(s) = _ ) I [« + («' - 1)1/2 cos «]"' (sin 0"2" dt (6.1)

we obtain
(s2 - l)r/2P;it/-r(s) _ 2~m(s2 - l)u/2 rr Zr (sin t)2M dtf z (sin 0 ' dt ,fi 2)

Jo \s + (s2 - 1)1/2 cos tr~n(s - cos v)r (f)1/2r(i + M + r) Jo [s+ (s2 - 1)1/2 cos £]"

where
(s2 — 1) (sin t)2

2(s — cos j?)[s + (s2 — l)l/2 cos t]z = S7I „ (6.3)

From (5.18) and (6.2) we thus obtain
2~m(s2 - 1)m/2(t)-W2

Ki = (p)\T(N + 3/2 + p)r(i + M)
• (M — N N + M 1 , . ,, . .\2v j.\ 2 ' 2~ ;i + M;Z) (sin <) dt (6.4)■I

? iW2 t 1(M-JV)/2-j>[s + (s2 - 1)1/2 cos t]

The range of Z is 0 < Z < 1 ,Z being unity when cos ?/ = 1 and s + (s2 — 1)1/2 cos t — 1.
Since we are considering the case where N = M + 21 or — N — 1 = M -f- 21 the hyper-
geometric function in the expression (6.4) is a polynomial with finite argument. Thus
the interchange of order of summation and integration is valid. Now in the expression
for S"& (5.17) substitute expression (6.4) for K'p . Interchange the order of summation
and integration. Noting that

- h (pV-W + 3/2 + v) 2 (b-5)
_ (j)u\k rf)^-"72-1 v (—l)"(fe rf)2'[s + (s2 - 1)'/2 cos t]'+N/2
~ (s- cos vf/2 & 2°(s - cos v)v(p)\r(N + 3/2 + p) '

X = kdAS + V-»U2™tT (6.7)
L s — COS 77 J

where

it is seen that the infinite series in the integrand is uniformly convergent for °° > s > 1
and 0 < t < ir. Hence the following holds

_ T(N + M+ 1)( —2)m(7t)~1/2

N T(N - M + l)r(l + M)
+ <f"8>

■jN(X)ZM/2 (sin t)M dt 1 < s < 00 .
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When N = M + 21 the integral in (6.8) will hold also for s = From (5.14) we have

M (2M + 2QK—2)-JV)-'/2 r M+l+*-*+M-Z)hw (X)
v M+2i — (2Z)!r(§ + M) Jo 2' 2 ' (0 9)

X Z"/2 (sin 0*

where hy\X) is the spherical Hankel function of the first kind. In a similar manner the
following integral expression may be obtained for T% where N = M + 21 + 1
or — N — 1 = M + 21 + 1,

T(N + M + 1)( —2)~m sin y(s2 - 1)~1/2
T{N - M + l)(x)1/2r(M + i)

rnM  
J- N —

1\1M — 1V1 T a; yn j A \-LYJ- T 2^

(6.10)
' I 2Fl(~ ' ^2^ + 1; i + Af; z)

■jN(X)Z<M+l)/2 (sin t) M~x dt.

The integral expression in (6.10) holds in the ranges 1 < s < °° for N = M + 21+1
and 1 < s < °° for N = — M — 21 — 2. We also obtain the integral expression for
Wm+2i+i which holds for 1 < s < <»

wm _ (2M + 21+ 1)!( —2)~Af sin y(s2 - l)"172
WM + 2l + i + 1)!Wl/2r(l +

-r (6-11)
2Fx(-l, M+1 + 3/2; I + M; Z)h^\n+l{X)Z'M+"'2 (sin t)M~l dt.

Jo

7. Asymptotic values of V^+nis, y) and W"+2l+1(s, y) for R oo. Having obtained
the integral formulation of the wave functions, we are now in a position to investigate
their asymptotic values when R approaches .

From (4.4) and (4.5) the following asymptotic values are obtained for R approaching

[' + °G?)_s — cos y) 2d
    0

s R

(7.1)

(7.2)

Hence the asymptotic values of Z and X for large R are

Z ~ sin2 t sin2 0 + 0(7.3)

and

X ~ kR + kd cos t sin 6 + (7-4)

Insert the values (7.3) and (7.4) into (6.9) and using the fact that when R approaches °o

,(1) /it"\ / ,xM+2!+i exp (ikR + ikd cos <sin 6)
hin+2i\X) ~ ( i) id (7.5)

we have
ikR

Vm+2i ~ (-i)M+2t+1 (cos d), (7.6)
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where

Rm+21 (cos 9) =
(2 M + 2Z)!(— 1)^(tt)~1/2

(21) \(2)mT(M + .5)
(7'7)

X [' 2F1(-l, M + I + J; | + M; sin t2 sin 0s) sin 0M sin t2M eikd°°' "in" dt.
Jo

Expand the hypergeometric series in (7.7) and use the relation

r(n + h)Jn(z) = ^"1/2(|)" [ ei'°°" sin £2" dt (7.8)

to obtain

r\M / n\ (2M -f- 21) \ (— l)r(M -|- I -f- ^)r /2 sin T n , . n\
RM+2l (cos 0) = (2l)l(__kdyt (^T ) J"+'(kdsm fl)- (?-9)

To obtain the asymptotic expansion for W7m+2;+i(s, j?) the following result is needed
[from (4.3)]

sin 7j(s2 - 1)~1/2 = cot 0. (7.10)

In a manner similar to the above, the asymptotic value of Wm+21 + i(s, v) can be obtained
for R approaching °°

ikR

w%+2l+l(s, V) ~ (~i)M+2l+2 ~R£+,«♦, (cos 9), (7.11)

where

Rm + 21+I (cos 9) =
V ^ _ (2M + 2/ + 1)! COS 9 ^ { — + I + 3/2)r /2 sin 6>V

(2Z + l)!(-/cd)M £o (f)! \ kd ) (7.12)

•J M+r(kd sin 0).

From (7.6) and (7.11) it is seen that the wave functions e'""4 Vm+2i(s, i?) and
e""* Wm+2i+i (s, f) will satisfy the radiation condition. We shall consider the case where
d approaches zero. It can be shown that the asymptotic values for Z and X given by
(7.3) and (7.4) will hold when d vanishes. Hence we have

lim V"+2l = h(M+2l(kR) lim R%+21 (cos 0). (7.13)

But
^ - (2M + 2Z)!(-!)"

tM+2l (.COS 0) - (or\UM\}
(7.14)Zo (21) l(M) I

sin 0
2

\M
J 2F1(-l, M + I + \-M + l;sin2 0)

■ Pm"2i (cos 0)
_ (2M + 2l)\(-l)M

(21)! (7.15)
= Pm+21 (cos 0) 0 < 9 < t.

We see that R'm+2i (cos 9) is identical with the associated Legendre function P"+2I
(cos 9) when d. vanishes. In a similar manner it can be shown that R"r+2l+1 (cos 9) becomes
identical to (cos 9) when d is zero. Hence the toroidal wave functions

Vm+2i(s, v) and e"n* Wm+21 + i(s, v) are identical to the spherical polar wave functions
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when d vanishes. Thus when d vanishes they represent radiations from a point source.
The remaining detail to be considered is the nature of the singularities of the wave

function at s = .
8. Asymptotic behaviour of Vm+21(s, v), W^w+21+iCs, v) as s —> o°. In order to in-

vestigate the asymptotic behaviour of V%+2l(s, ti) and JF^+2i+1(s, n) we must investigate
the functions Sm+2i » 8-M-21-1 » TM+21+1 and T ̂ ^-21-2 separately.

For Sm+2i and Tm+21+1 use the integral expressions. We have shown that the ex-
pressions hold for 1 < s < 0° and since the integrand is finite for s = 0° we may use
the integral expression to determine the asymptotic values.

From (6.3) and (6.7) the asymptotic values of Z and X become as s approaches °o

Z ~ 2~\1 - cos t), (8.1)
X~M2,/2(1 + cps<)1/2. (8.2)

Hence we obtain the following for s approaching 00

Sm+2i ~ constant, (8.3)

TM+21+1 ~ constant. (8.4)s

It is more difficult to find the asymptotic values for and T5m_2,_2. For simplifi-
cation of work, the functions Fv(s, 77; /, M) and G„(s, 77:1, M) are defined as follows

FM, i, M) - - COS M

. ,n . . V+U2 + 1 + 3/2),G,(s, 77; I, M) = sin v(,s - cos v) 1j (r)!(s _ cos vy
■(/ - iy/2p;Mr-Us)

Thus from (5.17), (5.18) and (8.5) it is seen that

r(2 M + 21 + 1 )W)l/\kd)-M-n-1

(8.5)

jS-M-2I-l(S) V) ~ r(21 + 1)2_i+1/2(— 1)m

^ (-mkd)2"Fv(s,y,l,M)
(8.6)

(p)!2T(-M -21 + V + h){s - cos vY

and from (5.19) and (5.20)

T-M-21-2^, V) —
T(2M + 21 + 2 )(ir)1/2(kdyM-21-2

T(2l + 2)2~i+1/2(— 1)m
(8.7)

(-i)'MX(s, V-1, M)
U {v)\2vV{-M -2l + v- §)(s - cos 7,)»

Now multiply <SMM_2!_,(s, v) by (kd)M+2l+1 e<m* and let k approach zero. The only term
which is non-vanishing is the term involving F„(s, 77; I, M). Thus we have the following

T(2M + 21+ 1)(7t),/22'-1/2(-1)m e""* (8.8)
= T{21 + l)r(-M - 21 + \) Fo(8' l' M)■
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But any solution of the wave equation when k = 0 is a solution of the Laplace equation.
Thus e'm* F0(s, tj; I, M) is a solution of the Laplace equation. Now F0(s, q; I, M) is a power
series of (s — cos ri) up to the Ith power, multiplied by (s — cos rj)1/2 and is non-singular
when s = 1. Since the complete set of solutions of the Laplace equation which are non-
singular at s = 1 are

and e,m* (s - cos ri)W2P~„-i/2(s) cosm/j ^ ^

e,m* (s — cos 7i)W2P~-l/2(s) sin ni)]

then
i

F0(s, ti] I, M) = Z ar(s — cos ii)x/2P~-i/z(s) cosrrj. (8.10)
r =0

By a similar analysis it is seen that

G0(s, V, l,M)= E Us - cos i,)I/2Pr"_%(«) sin rv. (8.11)
r = 1

So the problem is to calculate ar and br . To find the coefficients ar multiply both sides
of Eq. (8.10) by (s2 — iyM/2 and let s approach 1, using the fact that when s approaches 1

(„* _ -/ N ̂  2 "(S ~ I)'
( j " [ ) r(l + M + r) '

we obtain the equation
• I

E o-r cosrij = (1 — cost))'. (8.12)
r = 0

But on the expansion of (1 — cos 17)r in a Fourier series we see that

6,(20 !(-Dr
(I - r)!(Z + r)!2!

where
er = 1 when r — 1, 2, 3, • •

er = | when r = 0. J
Now in a similar manner Eq. (8.11) may be reduced to the following

l+l

sin 77(1 — cos y)' = E br sin rrj. (8.15)
r = 1

Thus the coefficients 6, are derived from a Fourier analysis and br are

r(2Z + l)!(~iy
(I + 1 + r)!(l + 1 - r)!2

Thus we obtain the following expressions for F0(s, 17; I, M) and G„(s, 77; I, M)

F0(fi, V, l, M) = (a - cos vY/2 Z „ ^fyrWo,-. cos (8-17>
r-o (I — r)!(t + r) !2

<?„(«, I, Jlf) = (« - cos „),/2 £ „ ^ ^ sin r„. (8.18)
r=i (t + 1 + r)!({ + 1 — r)!2

= „ T.,, ■ ' . (8-13)

(8.14)

&r = „ , ; . T„. ■ / v (8-16)
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Using the following asymptotic values for the associated Legendre function
/0\ V2 -1/2

pzUs) ~ ) YWTT)! loge (2s) ~ 7 ~ m + 4) 1

where 7 = 0.5772156649-•• and </-(*) = d ^

-p-M, \ 2T(n + f)s" x
" ® ~ (*)1/ar(i + n + AT) n > 2

(8.19)

we see that the values of ^(s, tj; I, Af) and G0(s, ??; I, AT) become the following when s
approaches °°

F0(s, r, l, M) ~ -4^T" s1/2P7"/a(s) COS Z„ , (8.20)
z

<?„(«, Z, M) ~ v Pr+v2(s) sin (Z + 1),. (8.21)
(~l)'s1/2

2l

It can be shown [6] that

(s — cos tlyF^s, Z, Af) < 0(s'~') p = 1, 2, 3, • • •
and hence the dominant term in expression (8.6) given for S^M_2l_l is F0{s, 77; Z, M) for
s» 1 provided that kd < s. Similarly it can be shown that G0(s, 77; Z, M) is the dominant
term in expression (8.7) given for T5m_2!_ 1 .

Thus from (8.6) and (8.20) we have when s approaches °°

(2 M + 2Z) !(2ir)1/2(—l)M+'t; „1/2d_m

(2Z)!r(-Af -21 + §)(M)J

and from (5.14), (8.22) and (8.3) we have

nl /„ \ \^m T &L)'\6Tr) L) l/2p-M / \ 7 qon
^-m-2i-i(s, v) ~ , ,w, am+2!+i s "i-'/'W cos l1! (8.22)

1/3/ /„ \ H~ \^J \^lyl l~ -^1 l/2p-JW / \ 7 /q O0\
r M + 2l\S) Vj u , S 1 J-1/2W COS IT) . (0.^0)(kd) \2l)\T(—M — 2Z + J)

From (8.7) and (8.21) we have
, N (2M + 2Z + 1)!(-1)M+W2)1/V/2 „ . „ . „

T_M_2I_2(s, 77) ~ —   ^rrr Pj+iMs) sin (Z + 1)77 (8.24)
(2Z + l)!r(—Af - 21 - $)(kd)M+2l+2

and hence
t(-l)'(23f + 21 + l)!(x/2)'/V4 ~ (2,V Pr"-w si° « + »'• <8'25)

9. Orthogonality and general discussion. We have obtained a set of solutions of
the Helmholtz equation in toroidal coordinates which satisfy the radiation condition,
are continuous and convergent in all space and possess a ring singularity. When the
radius d of the ring described by the coordinate s = °° approaches zero, the toroidal
wave functions become identical with spherical polar wave functions. Hence the toroidal
wave functions exn* F„+2i(s, 77) and em* I)';Jt2U1(s, 77) form a complete set. That is, any
solution which is continuous and single-valued outside the torus s = s0 (i.e. region
1 < « < ®o) and satisfies the radiation condition and arbitrary boundary conditions on
the torus can be represented by a linear combination of the above toroidal wave functions.
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Now the question of orthogonality arises. Are the functions e""4, F^+2i(s, 17) and
eym* Wm+21+i(s, v), orthogonal over the surface of every torus?

If we choose a weight function p(s, r,) which is an even function of the variable 17,
then we obtain the following

f" r leim*V%+2l(s, v)]{e-im'*V^+2l.(s, v)]p(s, „) dr, d<t> = 0, M 9* M' (9.1)
Jo Jo

r [e<m*WZ+il+l(s, „)][1?)]p(s, 17) dr, d<f> = 0, M' * M (9.2)
Jo Jo

r r [eim*V%+2l(s, v)][e"m'*W^+2l.+l(s, v)]p(s, „) dr, d<t> = 0, (9.3)
Jo Jo

which holds for every torus s = constant. What can be said about the integrals?

f" r leim*VZ+2,(s, ri)][e~im*V"+2i'(s, v)]p(s, „) dr, dcf,, I * V (9.4)
Jo Jo

[" r fe<m*WZ+aM(8, v)][e-im*WZ+v.+1(s, v)]p(s, v) dr, d<t>, I * V. (9.5)
Jo Jo

It can be shown that if p = h# , then the integrals given by (9.4) and (9.5) do not
vanish. In fact for p = h# , it can be shown that there is no set of linear combinations of
the wave functions eVuM+2i and e'""1' Hr"+2, + l which form a complete orthogonal set
over the surface of every torus. For p ^ /i0 nothing at present can be said about the
vanishing of the integrals given by (9.4) and (9.5).

As it stands now one can say that, the wave functions e""* F;"+2i(s, r,) and e""*
Wm+2i+i{®, v) form a partially orthogonal set over every torus. To complete the orthog-
onal set, one must at present use the Hilbert-Schmidt process for every torUs s = s0 .
That is, for each torus s = s0 and each value of m one must form an orthogonal set from
the functions e'm* V",{sa , 17), e""* Fj£+2(s0 , rj), e'm* F^+4(s0 , v), • • • using the Hilbert-
Schmidt process, and also form an orthogonal set from the functions e""* IF^+I(s0 , v),
eim"' Wm+3(80 , v), ■ ■ ■ ■ However the functions do form a complete orthogonal set over
the surface of the limiting torus s = s0 where s0 » 1.

Apart from the difficulty involved in the problem of incomplete orthogonality
which is a property of non-separability, the toroidal wave functions derived in this
paper can be used to solve any problem of diffraction of acoustic waves by a torus or
of a radiating torus. In fact they are useful in solving the vector wave equation, and
already have been of practical value in electromagnetic problems.
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