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Abstract. We showed that the twist subgroup of the mapping class group of

a closed connected nonorientable surface of genus g ≥ 13 can be generated by

two involutions and an element of order g or g − 1 depending on whether g is
odd or even respectively.

1. Introduction

Let Σg denote a closed connected orientable surface of genus g. The mapping
class group, Mod(Σg), is the group of the isotopy classes of orientation preserv-
ing diffeomorphisms of Σg. It is a classical result that Mod(Σg) is generated by
finitely many Dehn twists about nonseparating simple closed curves [4, 6, 12]. The
study of algebraic properties of mapping class group, finding small generating sets,
generating sets with particular properties, is an active one leading to interesting de-
velopments. Wajnryb [23] showed that Mod(Σg) can be generated by two elements
given as a product of Dehn twists. As the group is not abelian, this is the smallest
possible. Later, Korkmaz [9] showed that one of these generators can be taken as a
Dehn twist, he also proved that Mod(Σg) can be generated by two torsion elements.
Recently, the third author showed that Mod(Σg) is generated by two torsions of
small orders [24].

Generating Mod(Σg) by involutions was first considered by McCarthy and Pa-
padopoulus [15]. They showed that the group can be generated by infinitely many
conjugates of a single involution (element of order two) for g ≥ 3. In terms of gen-
erating by finitely many involutions, Luo [14] showed that any Dehn twist about
a nonseparating simple closed curve can be written as a product six involutions,
which in turn implies that Mod(Σg) can be generated by 12g+6 involutions. Bren-
dle and Farb [2] obtained a generating set of six involutions for g ≥ 3. Following
their work, Kassabov [7] showed that Mod(Σg) can be generated by four involu-
tions if g ≥ 7. Recently, Korkmaz [10] showed that Mod(Σg) is generated by three
involutions if g ≥ 8 and four involutions if g ≥ 3. Also, the third author improved
his result showing that it is generated by three involutions if g ≥ 6 [25].

The main aim of this paper is to find minimal generating sets of torsion elements
for a particular subgroup, namely the twist subgroup, of the mapping class groups
of nonorientable surfaces. Let Ng denote a closed connected nonorientable surface
of genus g. The mapping class group,Mod(Ng), is defined to be the group of the
isotopy classes of all diffeomorphisms of Ng. Compared to orientable surfaces less
is known about Mod(Ng). Lickorish [11, 13] showed that it is generated by Dehn
twists about two-sided simple closed curves and a so-called Y -homeomorphism (or
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a crosscap slide). Chillingworth [3] gave a finite generating set for Mod(Ng) that
linearly depends on g. Szepietowski [21] proved that Mod(Ng) is generated by three
elements and by four involutions.

The twist subgroup Tg of Mod(Ng) is the group generated by Dehn twists
about two-sided simple closed curves. The group Tg is a subgroup of index 2 in
Mod(Ng) [13]. Chillingworth [3] showed that Tg can be generated by finitely many
Dehn twists. Stukow [19] obtained a finite presentation for Tg with (g + 2) Dehn
twist generators. Later Omori [17] reduced the number of Dehn twist generators
to (g + 1) for g ≥ 4. If it is not required that all generators are Dehn twists,
Du [5] obtained a generating set consisting of three elements, two involutions and
an element of order 2g whenever g ≥ 5 and odd.

In the present paper, we prove that Tg can be generated by two involutions and
an element of order g or g − 1 depending on the parity of g (see Theorems 2.4 and
2.5).

Main Theorem. The twist subgroup Tg can be generated by two involutions and
an element of order g or g − 1 depending on whether g is odd or even respectively.

Before we finish the introduction, let us point out that the twist subgroup Tg
admits an epimorphism onto the automorphism group of H1(Ng;Z2) preserving the
(mod 2) intersection pairing [16], which is isomorphic to (see [8] and [22]){

Sp(2h;Z2) if g = 2h+ 1,

Sp(2h;Z2) n Z2h+1
2 if g = 2h+ 2.

Hence, the action of mapping classes on H1(Ng;Z2) induces an epimorphism from

Tg to Sp
(
2bg − 1

2
c;Z2

)
, which immediately implies the following corollary:

Corollary 1.1. The symplectic group Sp
(
2bg − 1

2
c;Z2

)
can be generated by two

involutions and an element of order g or g − 1 depending on whether g is odd or
even respectively.

Acknowledgments. The authors thank Mustafa Korkmaz for helpful conversations
and Tara Brendle for her helpful comments on a previous version of this paper.
The first author was partially supported by the Scientific and Technologic Research
Council of Turkey (TÜBİTAK)[grant number 117F015].

2. Background and Results on Mapping Class Groups

Let Ng be a closed connected nonorientable surface of genus g. Note that the
genus for a nonorientable surface is the number of projective planes in a connected
sum decomposition. The mapping class group Mod(Ng) of the surface Ng is defined
to be the group of the isotopy classes of diffeomorphisms Ng → Ng. Throughout
the paper we do not distinguish a diffeomorphism from its isotopy class. For the
composition of two diffeomorphisms, we use the functional notation; if g and h are
two diffeomorphisms, the composition gh means that h acts on Ng first.

A simple closed curve on a nonorientable surface Ng is said to be one-sided if a
regular neighbourhood of it is homeomorphic to a Möbius band. It is called two-
sided if a regular neighbourhood of it is homeomorphic to an annulus. If a is a
two-sided simple closed curve on Ng, to define the Dehn twist ta, we need to fix
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one of two possible orientations on a regular neighbourhood of a (as we did for the
curve a1 in Figure 1). Following [10] the right-handed Dehn twist ta about a will
be denoted by the corresponding capital letter A.

Now, let us recall the following basic properties of Dehn twists which we use
frequently in the remaining of the paper. Let a and b be two-sided simple closed
curves on Ng and f ∈ Mod(Ng).

• Commutativity: If a and b are disjoint, then AB = BA.
• Conjugation: If f(a) = b, then fAf−1 = Bs, where s = ±1 depend-

ing on whether f is orientation preserving or orientation reversing on a
neighbourhood of a with respect to the chosen orientation.

Figure 1. The curves a1, a2, bi, ci, e, f and γi on the surface Ng.

Figure 2. Generators of H1(Ng;R).

Consider the surface Ng shown in Figure 1. The Dehn twist generators of Omori
can be given as follows (note that we do not have the curve dr when g is odd).

Theorem 2.1. [17] The twist subgroup Tg is generated by the following (g + 1)
Dehn twists

(1) A1, A2, B1, . . . , Br, C1, . . . , Cr−1 and E if g = 2r + 1 and
(2) A1, A2, B1, . . . , Br, C1, . . . , Cr−1, Dr and E if g = 2r + 2.
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Consider a basis {x1, x2. . . . , xg−1} for H1(Ng;R) such that the curves xi are one-
sided and disjoint as in Figure 2. It is known that every diffeomorphism f : Ng →
Ng induces a linear map f∗ : H1(Ng;R) → H1(Ng;R). Therefore, one can define
a homomorphism D : Mod(Ng) → Z2 by D(f) = det(f∗). The following lemma
from [11] tells when a mapping class falls into the twist subgroup Tg.

Lemma 2.2. Let f ∈ Mod(Ng). Then D(f) = 1 if f ∈ Tg and D(f) = −1 if
f 6∈ Tg.

2.1. A generating set for Tg. We start with presenting a generating set for Tg.
The diffeomorphism T is the rotation by 2π

g or 2π
g−1 as shown on the right hand

sides of Figures 3 and 4, respectively. Note that the rotation T satisfies D(T ) = 1,
which implies that T belongs to Tg.

Figure 3. The models for Ng if g = 2r + 1.

Figure 4. The models for Ng if g = 2r + 2.
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Theorem 2.3. The twist subgroup Tg is generated by the elements

(1) T,A1A
−1
2 , B1B

−1
2 and E if g = 2r + 1 and r ≥ 3,

(2) T,A1A
−1
2 , B1B

−1
2 , Dr and E if g = 2r + 2 and r ≥ 3.

Proof. Let G be the subgroup of Tg generated by the following set

G =

{
{T,A1A

−1
2 , B1B

−1
2 , E} if g = 2r + 1,

{T,A1A
−1
2 , B1B

−1
2 , Dr, E} if g = 2r + 2,

where r ≥ 3. It follows from Theorem 2.1 that we only need to prove thatG contains
the elements A1, A2, Bi and Cj shown in Figures 3 and 4 where i = 1, . . . , r and
j = 1, . . . , r − 1. (We use the explicit homeomorphism constructed in [18, Section
3] to identify the models in these figures.)
Let S denote the set of isotopy classes of two-sided non-separating simple closed
curves on Ng. Define a subset G of S × S as

G = {(a, b) : AB−1 ∈ G}.

Using the arguments similar to the proof of [10, Theorem 5], the set G satisfies

• if (a, b) ∈ G, then (b, a) ∈ G (symmetry),
• if (a, b) and (b, c) ∈ G, then (a, c) ∈ G (transitivity) and
• if (a, b) ∈ G and H ∈ G then (H(a), H(b)) ∈ G (G-invariance).

Hence, G defines an equivalence relation on S.
We begin by showing that BiC

−1
j is contained in G for all i, j. It will follow from

the definition of G and from the fact that T (b1, b2) = (c1, c2), we have C1C
−1
2 is in

G (here, we use the notation f(a, b) to denote (f(a), f(b))). Also, by conjugating
C1C

−1
2 with powers of T , one can show that the elements BiB

−1
i+1 and CiC

−1
i+1 are

contained in G. Moreover, the subgroup G contains the elements BiB
−1
j and CiC

−1
j

by the transitivity. To start with, since B2B
−1
3 ∈ G and it is easy to check that

B2B
−1
3 A2A

−1
1 (b2, b3) = (a2, b3),

so that A2B
−1
3 is contained in the subgroup G. We have

(A1A
−1
2 )(A2B

−1
3 )(B3B

−1
2 ) = A1B

−1
2 ∈ G,

since each of the factors is contained in G. Hence, T (a1, b2) = (b1, c2) implies that
B1C

−1
2 is also in G. Now, the subgroup G contains the element

B1C
−1
1 = (B1C

−1
2 )(C2C

−1
1 ).

Therefore, the elements BiC
−1
i is contained in G by conjugating with powers of T

for all i = 1, . . . , r − 1. It follows from the transitivity that BiC
−1
j is in G. Note

that, we have

• (A1B
−1
2 )(B2C

−1
1 ) = A1C

−1
1 ,

• (C1A
−1
1 )(A1A

−1
2 ) = C1A

−1
2 , and

• (C2C
−1
1 )(C1A

−1
1 ) = C2A

−1
1

from which it follows that the elements A1C
−1
1 , C1A

−1
2 and C2A

−1
1 belong to G. It

can also be shown that

(B2A
−1
1 )(C1A

−1
2 )(C2A

−1
1 )(b2, a1) = (d1, a1)

and

(A1B
−1
2 )(A1C

−1
1 )(A1C

−1
2 )(A1B

−1
2 )(a2, a1) = (d2, a1)
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so that G contains D1A
−1
1 and D2A

−1
1 (here, the curves d1 and d2 are shown in

[10, Figure 1]). Also, we have

(D2A
−1
1 )(A1C

−1
1 ) = D2C

−1
1 ∈ G.

By similar arguments as in the proof of [10, Theorem 5], the lantern relation implies
the following identity

A3 = (A2C
−1
2 )(D1A

−1
1 )(D2C

−1
1 ).

Since the subgroup G contains each factor on the right hand side, the element A3

belongs to G. It follows from

B3 = A3(B3B
−1
1 )A3(B1B

−1
3 )A−1

3

that B3 is also contained in G. By conjugating B3 with the powers of T , we get
A1, B1, C1, . . . Br−1, Cr−1 and Br are all contained in G. Moreover,

A2 = (A2A
−1
1 )A1 ∈ G.

Therefore, we conclude that G = Tg.

Figure 5. The involution σ if g = 2r + 1.

Figure 6. The involution σ if g = 2r + 2.

We consider the surface Ng where g-crosscaps are distributed on the sphere as
in Figures 5 and 6. If g = 2r + 1 ≥ 13, there is a reflection, σ, of the surface Ng in
the xy-plane such that

• σ(a1) = f , σ(br) = cr−1,
• σ(x2) = x3, σ(xg) = xg−2 and
• σ(xi) = xi if i = 4, . . . , g − 3 or i = 1, g − 1.
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with reverse orientation as in Figure 5. (Recall that xi’s are the generators of
H1(Ng;R) as shown in Figure 2.) If g = 2r+ 2 ≥ 14, there is a reflection, σ, of the
surface Ng in the xy-plane such that

• σ(a1) = f , σ(br) = dr,
• σ(x2) = x3, σ(x3) = x4, σ(xg) = xg−2 and
• σ(xi) = xi if i = 6, . . . , g − 3 or i = 1, g − 1.

with reverse orientation as in Figure 6. Note that in both cases the reflection σ in
in Tg since D(σ) = 1 for g ≥ 13.

Now, for the remaining part of the paper, let Γi denote the right handed Dehn
twist about the curve γi shown in Figure 1.

Theorem 2.4. For odd g ≥ 13, the twist subgroup Tg is generated by the three

elements T, σ and σΓg−3C
−1
g−9
2

.

Proof. Consider the surface Ng as in Figure 5. Since

σ(γg−3) = γg−3 and σ(c g−9
2

) = c g−9
2
,

and σ reverses the orientation of a neighbourhood of a two-sided simple closed
curve, we have

σΓg−3σ = Γ−1
g−3 and σC g−9

2
σ = C−1

g−9
2

.

Hence, it is easy to verify that σΓg−3C
−1
g−9
2

is an involution. Let H be the subgroup

of Tg generated by the following set

{T, σ, σΓg−3C
−1
g−9
2

},

where g ≥ 13 and odd. It follows from Theorem 2.3 that we only need to prove
that the elements A1A

−1
2 , B1B

−1
2 and E are contained in the subgroup H.

Since

Γg−3C
−1
g−9
2

= (σ)(σΓg−3C
−1
g−9
2

),

the element Γg−3C
−1
g−9
2

belongs to H.

It follows from

• T 13−g(γg−3, c g−9
2

) = (γ10, c2),

• T−4(γ10, c2) = (γ6, a1) and
• T 2(γ6, a1) = (γ8, c1)

that the elements Γ10C
−1
2 , Γ6A

−1
1 and Γ8C

−1
1 are in H. Since

(Γ6A
−1
1 )(C2Γ−1

10 )(γ6, a1) = (c2, a1),

the element C2A
−1
1 is in H. Since

• (Γ6A
−1
1 )(A1C

−1
2 ) = Γ6C

−1
2 ∈ H and

• T 4(γ6, c2) = (γ10, c4),

Γ10C
−1
4 is contained in H. Also, we have

(C4Γ−1
10 )(Γ10C

−1
2 ) = C4C

−1
2 ∈ H.

Thus, C3C
−1
1 , C3C

−1
5 , B4B

−1
2 and C2A

−1
1 are contained inH by conjugating C4C

−1
2

with some powers of T . Then, since

(C4C
−1
2 )(B4B

−1
2 )(c2, a1) = (b2, a1),
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H contains B2A
−1
1 . Also, we get

(C2A
−1
1 )(A1B

−1
2 ) = C2B

−1
2 ∈ H.

Since

C1C
−1
3 B2B

−1
4 (c3, c5) = (b4, c5),

H contains B4C
−1
5 . Then,

T−4(b4, c5) = (b2, c3)

implies that B2C
−1
3 ∈ H. It follows from the following equalities

• C2C
−1
3 = (C2B

−1
2 )(B2C

−1
3 ) and

• T−2(b2, c3) = (b1, b2)

that B1B
−1
2 belongs to H. On the other hand, since

• (Γ8C
−1
1 )(C1C

−1
3 )(C3C

−1
5 )(C5B

−1
4 ) = Γ8B

−1
4 and

• T−7(γ8, b4) = (γ1, a1) = (a2, a1)

that A1A
−1
2 is contained in H.

Since the elements T , A1A
−1
2 and B1B

−1
2 are contained in the subgroup H, the

generators A1, B1, C1, . . . , Br−1, Cr−1, Br are in H by the proof of Theorem 2.1.
Moreover,

A1σ(a1) = A1(f) = e

leads to E ∈ H. This completes the proof.

Theorem 2.5. For even g ≥ 14, the twist subgroup Tg is generated by the three

elements T, σ and σΓg−3C
−1
g−8
2

.

Proof. Consider the surface Ng as in Figure 6. Since

σ(γg−3) = γg−3 and σ(c g−8
2

) = c g−8
2
,

and σ reverses the orientation of a neighbourhood of a two-sided simple closed
curve, we have

σΓg−3σ = Γ−1
g−3 and σC g−8

2
σ = C−1

g−8
2

.

Hence, it is easy to show that σΓg−3C
−1
g−9
2

is an involution. Let K be the subgroup

of Tg generated by the following set

{T, σ, σΓg−3C
−1
g−8
2

},

where g ≥ 14 and even.
Since

Γg−3C
−1
g−8
2

= (σ)(σΓg−3C
−1
g−8
2

),

the element Γg−3C
−1
g−8
2

is contained in K.

It follows from

T 13−g(γg−3, c g−8
2

) = (γ10, c2)

that the elements Γ10C
−1
2 is in the subgroup K. Recall that this element also

appears in the proof of Theorem 2.4. The remaining part of the proof follows as in
the proof of the previous theorem. Also, note that the element Dr belongs to K
since σ(br) = dr. This finishes the proof.
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