Corrigendum

Torsion in cocompact lattices in coverings of spin ($2, n$)

M.S. Raghunathan

Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India
Math. Ann. 206, 403-419 (1984)

Received: 5 April 1994
A.S. Rapinchuk has drawn my attention to an error in the proof of Assertion 5.8 of the paper referred to in the title [1] (Math. Ann. 206 (1984), 403-419). The assertion itself and other results stated in the paper are correct. In this note we give a correct proof of Assertion 5.8. We will make free use of the notations of the earlier paper. Briefly they are as follows:
k is a numberfield and we fix a completion $k_{v} \simeq \mathbf{R}$ of k and treat k as a subfield of \mathbf{R} through this identification. G is the algebraic group of norm 1 elements in a quaternion division algebra D over k which splits over k_{v}. We set $\mathscr{G}=S L(2, \mathbf{R})=G(\mathbf{R}), \hat{\mathscr{G}}$ a central extension of \mathscr{G} by $T=\mathbf{R} / \mathbf{Z}$ split over $G(k)$. For $x, y \in \mathscr{G}$, the commutator $\tilde{x} \tilde{y} \tilde{x}^{-1} \tilde{y}^{-1}$ of lifts \tilde{x}, \tilde{y} of x, y to $\hat{\mathscr{G}}$ is independent of the choice of these lifts and defines thus a continuous map $\hat{C}: \mathscr{G} \times \mathscr{G} \rightarrow \hat{\mathscr{G}}$. If $x, y, x^{\prime}, y^{\prime}$ are in $G(k)$ with $x y x^{-1} y^{-1}=x^{\prime} y^{\prime} x^{\prime-1} y^{\prime-1}$, the $\hat{C}(x, y)=\hat{C}\left(x^{\prime}, y^{\prime}\right)$. (The main result of Sect. 5 in the paper is that \hat{C} factors through $C: \mathscr{G} \times \mathscr{G} \rightarrow \mathscr{G}$ given by $(x, y) \mapsto x y x^{-1} y^{-1}$). One defines f : $\mathscr{G} \times \mathscr{G} \rightarrow \mathscr{G} \times \mathscr{G}$ by setting $f(x, y)=\left(x y x^{-1}, y^{-1}\right)$ for $x, y \in \mathscr{G}$ and $E=\mathscr{G} \times$ $\mathscr{G} \backslash C^{-1}(\pm 1), P=f(E)$. Also $m: \mathscr{G} \times \mathscr{G} \rightarrow \mathscr{G}$ is the multiplication map so that $C=m \circ f$. It is shown in the earlier paper [1] that \hat{C} on E factors through $E \xrightarrow{f}$ $P: \hat{C}=\hat{m} \circ f$. With these notations we will establish the following (claim 5.8 of [1]).

Claim \hat{m} is constant along the fibres of $m: P \rightarrow \mathscr{G} \backslash\{ \pm 1\}$.
We begin by examining the fibres of $m: P \rightarrow \mathscr{G} \backslash\{ \pm 1\}$. Let $\alpha \in \mathscr{G} \backslash\{ \pm 1\}$ be a semisimple element. The fibre $m^{-1}(\alpha)$ then can be described as pairs $\left\{\left(\alpha y, y^{-1}\right) \mid y \in \mathscr{G}, \alpha y\right.$ is conjugate to y in $\left.\mathscr{G}\right\}$. The map $m: \mathscr{G} \times \mathscr{G} \rightarrow \mathscr{G}$ given by $\left(\alpha y, y^{-1}\right) \mapsto y$ imbeds $m^{-1}(\alpha)$ as a subset of \mathscr{G}. The condition that αy and y be conjugates in \mathscr{G} implies that trace $\alpha y=$ trace y (but the equality of the traces only ensures that αy and y are conjugates in $G L(2, \mathbf{R})$).

Case $i . \alpha$ is an elliptic element. In this case after a conjugation in \mathscr{G} we may assume that $\alpha \in \operatorname{SO}(2)$: for $-\pi<\theta \leqq \pi$, set $u(\theta)\left(\begin{array}{cc}\operatorname{Cos} \theta & \operatorname{Sin} \theta \\ -\operatorname{Sin} \theta & \operatorname{Cos} \theta\end{array}\right)$ and let $\alpha=u(\chi),-\pi<\chi \leqq \pi$. Let \mathscr{P} be the set of positive definite matrices of determinant 1 . Then for any $g \in \mathscr{G}$ we have the unique polar decomposition $g=u(\theta(g)) \cdot p(g)$ where $p(g) \in \mathscr{P}$. Let $y=\beta p, \alpha y=\gamma q, \beta, \gamma \in S O(2), p, q \in$ \mathscr{P}. Then $\alpha \beta p=\gamma q$ so that $\gamma=\alpha \beta$ and $p=q$. If y and αy are conjugates, their traces are equal so that trace $\beta p=$ trace γq. Now let $\beta=u(\varphi)$ and $\gamma=u(\psi)$; this leads to the equation (note that p, q are symmetric) trace $p \operatorname{Cos} \varphi=$ trace $q \operatorname{Cos} \psi$. Thus $\varphi= \pm \psi(\bmod 2 \pi)$ and since $\varphi-\psi=\chi(\bmod 2 \pi)$, one has $\varphi=-\psi$ so that $\beta=\gamma^{-1}$ and $2 \varphi=\theta(\bmod 2 \pi)$. It follows that $\varphi=\chi / 2$ or $\chi / 2+\pi$. Thus $y=\beta p$ and $\alpha y=\beta^{-1} p$. Clearly the element $w_{o}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ conjugates y into αy. Now if there is an $x \in \mathscr{G}$ such that $x y x^{-1}=\alpha y$ then $x^{-1} w_{o}(\in G L(2, \mathbf{R}))$ centralises y and $\operatorname{det} x^{-1} w_{o}=-1$. Conversely if there is a $z \in$ centraliser of y in $G L(2, \mathbf{R})$ such that $\operatorname{det} z=-1$, then $w_{o} z^{-1} \in \operatorname{SL}(2, \mathbf{R})$ conjugates y into αy. Now the centraliser of y in $G L(2, \mathbf{R})$ has an element of determinant -1 , if and only if y is hyperbolic i.e., if and only if \mid trace $y \mid>2$ and $|\operatorname{trace} y|=\operatorname{trace} p \operatorname{Cos} \chi / 2$. Thus the fibre $m^{-1}(\alpha)$ can be identified with the set

$$
\{ \pm u(\chi / 2) p \mid \text { trace } p \cdot \operatorname{Cos} \chi / 2>2\} .
$$

This is evidently a disjoint union of two connected sets and hence $m^{-1}(\alpha)$ has two connected components. Further $m^{-1}(\alpha)$ is stable under the map $\left(\alpha y, y^{-1}\right) \mapsto\left(-\alpha y, y^{-1}\right)$ which interchanges its two connected components.

Case ii. α hyperbolic $\alpha=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ after a conjugation with $\lambda>0$. Suppose now that $\left(\alpha y, y^{-1}\right) \in m^{-1}(\alpha)$ with $y=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. The equation trace $\alpha y=\operatorname{trace} y$ which holds in $m^{-1}(\alpha)$ leads us to conclude that $d=\lambda a: y=$ $\left(\begin{array}{cc}a & b \\ c & \lambda a\end{array}\right)$. Now $\alpha y=\left(\begin{array}{cc}\lambda a & \lambda b \\ \lambda^{-1} c & a\end{array}\right)$. Suppose that $b / c<0$ (so that $b c<0$); then $-\lambda b / c=\rho>0$ and if we set $w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $\tau=\left(\begin{array}{cc}\rho^{1 / 2} & 0 \\ 0 & \rho^{-1 / 2}\end{array}\right), \tau w$ conjugates y into αy and belongs to \mathscr{G}. Thus ($\alpha y, y^{-1}$) belongs to $m^{-1}(\alpha)$. Next if $b c=0$ either $b=0$ or $c=0$. Suppose that $c=0$; then $y=\left(\begin{array}{cc}a & b \\ 0 & \lambda a\end{array}\right)$ while $\alpha y=\left(\begin{array}{cc}\lambda a & \lambda b \\ 0 & a\end{array}\right)$ and $1=\operatorname{det} y=\lambda a^{2}$. It follows that $y=\left(\begin{array}{cc}\lambda^{-1 / 2} & b \\ 0 & \lambda^{1 / 2}\end{array}\right)$ while $\alpha y=\left(\begin{array}{cc}\lambda^{1 / 2} & \lambda b \\ 0 & \lambda^{-1 / 2}\end{array}\right)$. Now y is conjugate to $\left(\begin{array}{cc}\lambda^{-1 / 2} & 0 \\ 0 & \lambda^{+1 / 2}\end{array}\right)$ in \mathscr{S} - infact by an upper triangular unipotent. Similarly αy is conjugate in \mathscr{G} to $\left(\begin{array}{cc}\lambda^{1 / 2} & 0 \\ 0 & \lambda^{-1 / 2}\end{array}\right)$ and these two diagonal elements are conjugate under
$\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Thus αy and y are conjugates in \mathscr{G} if $c=0$; an entirely analogous argument holds in the case $b=0$. Finally suppose now that $b c>$ 0 . This means $\lambda a^{2}-1>0$ so that $\lambda a^{2}>1$ leading to $|\lambda a|>|1 / a|$. This means that \mid trace $y|=|a|+|\lambda a|=|a|+1 /|a|>2$ so that y is hyperbolic. Now $y=\left(\begin{array}{cc}a & b \\ c & \lambda a\end{array}\right)$ is conjugate under $\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ to $\left(\begin{array}{cc}\lambda a & c \\ b & a\end{array}\right)$ and this last element is conjugated into αy by $\left(\begin{array}{cc}(\lambda b / c)^{1 / 2} & 0 \\ 0 & (\lambda b / c)^{-1 / 2}\end{array}\right)$. Thus we find y and αy are conjugates by an element σ of determinant -1 . Since y is hyperbolic, one can find $\tau \in G L(2, \mathbf{R})$ centralising y and with $\operatorname{det} \tau=-1$ evidently $\sigma \tau$ has determinant 1 and conjugates y into αy. We see thus that $m^{-1}(\alpha)$ can be identified with $\left\{\left.\left(\begin{array}{cc}a & b \\ c & \lambda a\end{array}\right) \right\rvert\, \lambda a^{2}-b c=1\right\}$. Since $\lambda>0$, this is a connected set. Thus $m^{-1}(\alpha)$ is connected for α hyperbolic and trace $\alpha>0$.

Case iii. α hyperbolic, $\alpha=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ with $\lambda<0$. Once again one has $y=\left(\begin{array}{cc}a & b \\ c & \lambda a\end{array}\right)$ and we need to examine when y and $\alpha y=\left(\begin{array}{cc}\lambda a & \lambda b \\ \lambda^{-1} & a\end{array}\right)$ are conjugates in $S L(2, \mathbf{R})$. Since $\lambda a^{2}-b c=1$, one has $b c=\lambda a^{2}-1<0$. Thus $b / c<0$. Now the element $w_{o}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ conjugates y into $\left(\begin{array}{cc}\lambda a & -c \\ -b & a\end{array}\right)$. If we set $\tau=\left(\begin{array}{cc}\rho^{1 / 2} & 0 \\ 0 & -\rho^{-1 / 2}\end{array}\right)$ where $\rho^{1 / 2}$ is the positive square root of $\lambda c / b, \tau w_{o}$ conjugates y into αy; and let $\tau w_{o}=-1$. Thus y and αy are conjugates if and only if the centraliser y contains an element of determinant -1 i.e., if and only if y is hyperbolic; and y is hyperbolic if and only if $|a+\lambda a|>2$ i.e., if and only if $|a|>2 /|1+\lambda|$. Thus we see that $m^{-1}(\alpha)$ can be identified with the set

$$
\left\{\left.\left(\begin{array}{cc}
a & b \\
c & \lambda a
\end{array}\right) \right\rvert\, a \lambda^{2}-b c=1 \text { and }|a|>2 /|(1+\lambda)|\right\} .
$$

It is now easily seen that $m^{-1}(\alpha)$ has exactly two connected components; the subsets corresponding to $b>0$ or $b<0$. It is also clear that the map $\left(\alpha y, y^{-1}\right) \mapsto\left(-\alpha y,-y^{-1}\right)$ maps $m(\alpha)$ into itself interchanging the components.

Suppose now $\alpha \in \mathscr{G} \backslash\{ \pm 1\}$ is semisimple, $\alpha \in G(k)$ and further $\alpha=$ $x y x^{-1} y^{-1}$ with $x, y \in G(k)$. If α is elliptic or hyperbolic with trace $\alpha<0$, then $\left(x y x^{-1}, y^{-1}\right)$ and $\left(-x y x^{-1}, y^{-1}\right)$ belong to different connected components $m^{-1}(\alpha)$. Thus we see that if $\alpha=x y x^{-1} y^{-1}$ with $\alpha \in G(k), \alpha$ semisimple and not equal to ± 1, then $G(k) \times G(k)$ meets every connected component of $m^{-1}(\alpha)$. Suppose now $x, y \in G(k)$ with $x y x^{-1} y^{-1}=\alpha$. Let $Z(x)$ (resp. $(Z(\alpha))$ denote the centraliser of x (resp. α) in \underline{G}; then $Z(x)(k)$ (resp. $Z(x)(k))$ is dense in $Z(x)(\mathbf{R})$ (resp. $Z(\alpha)(\mathbf{R})$) weak approximation). Now the map $Z(x)(\mathbf{R}) \times Z(\alpha)(\mathbf{R}) \rightarrow m^{-1}(\alpha)$ given by $(z, \gamma) \mapsto\left(x y z x^{-1}, z^{-1} y^{-1}\right)$ is easily checked to be of maximal rank at (1,1) (see proof of Assertion 5.9 of [1]).

It is now evident that the closure of $m^{-1}(\alpha) \cap(G(k) \times G(k))$ in $m^{-1}(\alpha)$ contains non-empty open subsets in every connected component. Now the continuous map $m^{-1}(\alpha) \times m^{-1}(\alpha) \rightarrow \hat{\mathscr{G}}$ given by $(\xi, \eta) \mapsto \hat{C}(\xi) \hat{C}(\eta)^{-1}, \xi, \eta \in m^{-1}(\alpha)$ is identically equal to 1 on $G(k) \times G(k)) \cap m^{-1}(\alpha)$ and is thus identically 1 on non-empty open subsets in every connected component $m^{-1}(\alpha)$. Thus $\hat{C}(\xi)=\hat{C}(\eta)$ for all $\xi, \eta \in m^{-1}(\alpha), \alpha=x y x^{-1} y^{-1}, x, y \in G(k)$. Now the set $\mathscr{B}=\left\{x y x^{-1} y^{-1} \mid x \in G(k), y \in G(k)\right\}$ is dense in $\mathscr{G} \backslash\{ \pm 1\}$ and the map of $J=P_{m}^{\times} P \rightarrow \mathscr{G} \backslash\{ \pm 1\}$ of the fibre product of P with itself over $\mathscr{G} \backslash\{ \pm 1\}$ on $\mathscr{G} \backslash\{ \pm 1\}$ being of maximal rank, the union $\Omega=\bigcup_{\alpha \in 厄}\left(m^{-1}(\alpha) \times m^{-1}(\alpha)\right)$ is dense in J. Since the continuous map $(\xi, \eta)(\in P \times P) \mapsto \hat{m}(\xi) \hat{m}(y)^{-1}$ is identically 1 on Ω, it is identically 1 on J; in other words \hat{m} is constant along the fibres of m proving the assertion.

