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Summary. Motivated by the possibility that torsional oscillations of neutron
stars may be observable in the timing of pulsar subpulses and/or in future
gravitational-wave detectors, this paper develops the detailed mathematical
theory of such torsional oscillations and of the gravitational waves they emit.
The oscillations are analysed using the formulation of first-order perturba-
tions of a fully general relativistic spherical stellar model. All sources of
damping are ignored except gravitational radiation reaction. The perturba-
tions are resolved into spherical harmonics, which decouple from each other.
For each harmonic this paper presents equations of motion, an action
principle, an energy conservation law and a Liapunov-type proof that the
oscillations are always stable. Each harmonic is then resolved into normal
modes with outgoing gravitational waves (time dependence €'“! with w
complex) and an eigenvalue problem is posed for the eigenfunctions and the
eigenfrequencies w. Five methods of solving the eigenvalue problem are
presented; three methods are valid in general (the method of resonances, the
variational method and the method of energy conservation); one is valid in
the slow-motion approximation (wavelength of waves large compared to star)
and one is valid in the weak-gravity approximation. For stellar models with
weak gravity and with radially constant density and shear modulus the
eigenvalue problem is solved analytically.

An appendix develops a general theory of action principles for systems
with radiative boundary conditions — a theory which is then used to derive
the action principles in the body of the paper and which could be useful for a
variety of other problems involving physical systems coupled to radiation.

1 Introduction

If torsional oscillations of neutron stars could be observed, then comparisons of their
measured periods and Qs with theoretical models would give valuable information not only
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about neutron star structure, but also about the physics of matter at subnuclear and supra-
nuclear densities. There are two hopes for such observations: pulsar timing data and gravita-
tional radiation. Van Horn (1980) has pointed out that the ‘marching subpulses’ observed in
some pulsars have the same range of periods, 10—50 ms, as low-order torsional oscillations of
neutron star crusts; and on this basis he has argued that such oscillations may be the clock
which regulates the marching subpulses. And Dyson (1972) has pointed out that, if neutron
stars have solid cores, then quakes in those cores should generate torsional oscillations which
might produce gravitational waves strong enough to detect on Earth.

With these two applications in mind, and with hope that they or others will materialize,
we construct in this paper the detailed mathematical theory of torsional oscillations of
non-rotating, general relativistic stellar models with isotropic shear moduli u.

The analogous general relativistic theory of non-spherical compressional oscillations
of non-rotating perfect-fluid stars was laid out a number of years ago by Thome &
Campolattaro (1967), Price & Thorne (1969), Thorne (1969a,b), Campolattaro & Thorne
(1970), Ipser & Thorne (1973), Detweiler & Ipser (1973), Thorne (1983, in preparation).
Those eight papers developed many facets of the theory. This paper is rather long because it
attempts to develop, all at once, all of those same facets for the theory of torsional
oscillations, and several more facets besides. .

To set the stage for our analysis, we shall review briefly the structures of neutron stars
and the characteristic magnitudes of various quantities associated with them; for further
detail see, e.g., Baym & Pethick (1975, 1979) and references therein.

Observation and theory agree that typical neutron stars have masses M ~ 1M, and radii
R ~ 10km. Theory predicts with great confidence that within minutes after the star is born,
its crust will cool enough to solidify into a crystal governed by Coulomb forces between
atomic nuclei. This crystalline crust should extend from the star’s atmosphere inward to a
depth of order 1km, where the density is within a factor 2 of nuclear, p~ (1.5-3) x 10!*g
cm 3. Throughout the crust the shear modulus u is computed to be nearly proportional to
density p, with

(m/p)?=vg~1x108cms™!. €))

Here vs is the speed of non-relativistic shear waves (Ruderman 1968; Pandharipande, Pines &
Smith 1976; Hansen & Cioffe 1980) (see equation 20 for a relativistic correction).

It is now widely believed that below the solid crust resides a superfluid mantle, which
extends inward through a thickness of roughly 5km and through a density range of
(1.5-3)x 10 to (5—10)x 10" gcm™, until it meets the star’s ~ 4 km core. The physical
state of the core is highly uncertain. Possibilities include a pion-condensed state, which
might or might not be a solid governed by nuclear forces; an ‘abnormal state’ in which the
nucleons become practically massless; a degenerate Fermi liquid of quarks, etc. The possi-
bility of a solid core was viewed with much favour between 1971 and 1974, both on grounds
of nuclear many-body calculations and on grounds of a reasonable fit between the theory of
core quakes and observations of glitches in the timing of the Vela pulsar (Pines, Shaham &
Ruderman 1974, see Hansen 1974, p. 189). However, by 1975 improved many-body calcula-
tions had cast doubt on the likelihood that supranuclear matter will solidify. The doubt
remains today, but the calculations are far from convincing either way; see Baym & Pethick
(1975, 1979) for details and references. If the core is a solid, then its shear modulus u could
be as large as its pressure P, or it might be somewhat smaller:

(u/p)V? =v,S (P/p)?~1x10" cms™?, (2)

Hansen & Cioffe (1980) have used Newtonian theory to compute the torsional oscillation
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periods of neutron star crusts. As one might expect, they obtain for modes with no radial
nodes (so transverse wavenumber dominates)

Period = 27/w = 2n [I({ + D]"2R/ug~ 20ms  for [=2, (32)

where /=1, 2, 3, .. .is the spherical-harmonic index. Relativistic effects (especially gravita-
tional redshitts and the dragging of inertial frames) are likely to change these periods by
~10-50 per cent. These periods are a factor ~ 10 longer than would be compressional—
oscillation periods for the crust, because the electrostatic forces which govern the crystal and
its torsional oscillations are ~ 100 times weaker than the degeneracy forces and nucleon—
nucleon forces which govern compressional oscillations. Because the crust’s torsional oscilla-
tions are so slow, vg/c <1, they can be described very accurately by the ‘slow-motion
approximation’ to general relativity (Thorne 1980; Section 4.5 of this paper) which predicts
gravitational waves so weak that it is hopeless to ever detect them:

3
Y (GM:r) (5) 6o 108 (Ekl';") ( b ) for =2, (30)

rc c ¥ 10—_3

Here % is the dimensionless gravity-wave amplitude, 7 is the distance from the Earth to the
star, 8 is the dimensionless amplitude of the star’s shearing oscillations, M ~ 0.1 M, is the
mass of the crust, and we have specialized to quadrupole modes which are the strongest
emitters. Gravitational radiation reaction will damp the crustal oscillations with an e-folding
time

7~ 03 (GM/Rc*)  (vg/c) 5wt~ 10%yr; (3¢)

cf. equations (76).
If the core is solid and has u~ P (as was widely believed in the early 1970s), then the

periods of its torsional oscillations would be roughly the same as those of its compressional
oscillations:

Period = 2m/w =27 R o /g~ 03 ms  for [=2. (4a)

where Ro,~4km is the core radius. Because the torsional oscillations emit ‘current quad-
rupole’ gravitational waves (gravitational analogue of magnetic quadrupole), whereas the
compressional oscillations emit ‘mass quadrupole’ waves (analogue of electric quadrupole),
the waves from torsional oscillations will be weaker by (vg/c) ~ 1/3 and will be damped more
slowly by (vs/c) 2 ~ 10 than those from compressional oscillations:

'GMCO) e\ > 10 kpc g

h~03 ( (—) ~3x107% ) (——), 4b

re* / \c b r 1073 (4)
GM ,\7! (vg\~°

T~30( C‘;) (—S) w~1s. (4c)
RoC c

(The coefficients used here are extrapolated from strong-gravity, tast-motion calculations
of compressional oscillations by Thorne (1969a); the coefficients used in equations (3) for
crustal oscillations are based on the weak-gravity, slow-motion calculations of equations (76)
of this paper.) Assuming that the Vela pulsar has a solid core, and that the glitches observed
every 2 or 4 yrin the Vela pulse arrival times are due to core quakes, Pines et al. (1974) have
estimated that the total strain energy released in each quake is ~ 10% erg corresponding to
B~ 107%, which at a distance r ~ 500 pc would produce % ~ 6 x 1072, Other, younger neutron
stars might be stronger emitters. For comparison, the best currently operating gravitational-
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wave detector (Stanford’s bar; Boughn ez al 1982) has a burst sensitivity #~ 5x 107 (rms
noise 4 ~ 1x 107'®) at a period P ~ 1073s; the design sensitivity of a multikilometre laser-
interferometer gravity-wave detector being planned for the late 1980s (Drever et al. 1982)
for 10 kHz waves that last 1s, would be 2 ~ 3x 10723, Thus, it is not inconceivable that
corequakes in neutron stars could be detected and studied routinely in the 1990s.

We turn now to the detailed analysis of torsional oscillations of spherical, non-rotating,
relativistic stellar models. The spherical symmetry of the unperturbed star guarantees that
the oscillations can be decoupled into modes of definite spherical—harmonic indices (I, m)
and definite parity. In the language of previous analyses (e.g. Regge & Wheeler 1957) pure
torsional oscillations are the normal modes of odd-type or magnetic-type parity, n = (— 1)**1,
Such modes do not exist for /=0 (monopole). They exist for /=1 (dipole) but cannot
generate gravitational waves. For /> 2 they do generate waves. The differences between / =1
and /> 2 are so fundamental that they are best analysed in different gauges and with
different mathematical techniques. Sections 2—4 of this paper are devoted to modes with
I> 2; Section 5 treats / = 1. Section 2 lays the foundation for the analysis with /> 2, includ-
ing the description of the unperturbed star (Section 2.1), the coordinates, metric and Ricci
tensor for the perturbed star (Section 2.2) and the description of the material motion — i.e.
the displacement function, four-velocity and stress-energy tensor (Section 2.3). Section 3
presents the details of the analysis, including the equations of motion for the matter and the
gravitational field (Section 3.1), the boundary conditions on the matter and field variables
(Section 3.2), the form of the gravitational waves emitted and their energy loss rate (Section
3.3), an action principle and local law of energy conservation for the pulsations and their
waves (Section 3.4), and a Liapunov-type proof that so long as the shear modulus is positive
the star is stable against arbitrary (but first-order) torsional perturbations (Section 3.5).
Section 4 analyses the star’s outgoing wave modes (pulsations with sinusoidal time depen-
dences and complex frequencies), including a formulation of the eigenvalue problem for the
normal modes (Section 4.1) and various methods of solving the eigenvalue problem: the
method of resonances (Section 4.2), a variational principle method (Section 4.3), an energy
conservation method (Section 4.4), a method valid in the slow-motion approximation
(Section 4.5), and a method for stars with weak internal gravity (Section 4.6, which also
includes an analytic solution of the eigenvalue problem for weak-gravity stars with constant
density and shear modulus). The analysis of dipole oscillations in Section 5 follows a similar
outline — but with all issues of gravitational radiation absent. Some mathematical details are
relegated to appendices. Of special interest may be Appendix B which elaborates and
extends an elegant formulation (by Friedman & Schutz 1975) of the general theory of
action principles for systems that can radiate waves — any kind of waves — to infinity.

Throughout this paper we use the mathematical conventions of Misner, Thorne & Wheeler
(1973, cited henceforth as MTW), including setting the speed of light and Newton’s gravi-
tation constant to unity and denoting covariant derivatives by semicolons and partial
derivatives by commas.

2 Foundations for the analysis: / > 2

2.1 THE UNPERTURBED STAR

The unperturbed spherical star is described in the standard manner (see, e.g. MTW). The
metric, in Schwarzschild coordinates, is

ds?=(ds?)o=— 2P d? + " dr* + P (d9? +sin® 9 d¢?)

= Yy dx* dx”, (52)
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where ®(r) and A(r) are functions of the radial coordinate, . The ‘mass inside radius r’,
m(r), is defined by
e?=1-2m/r, (5b)

The density of total mass-energy and the (isotropic) pressure are denoted by p and P, respec-
tively. The standard equations of structure for the equilibrium star are (i) the mass equation

r

m= f dnr?p(r)dr. (5¢)
0

(ii) The Oppenheimer—Volkov equation of hydrostatic equilibrium

dP _ (p+P)(m +4nr’P)

dr r*(1 — 2mjr)

., PR)=0 (5d)

where R = (value of  at surface of star), and (iii) the source equation for ® (r)
ddb m+4nrP B () = 0 (se)
— =, o) = (). e
dr r*(1—2m/jr)

From equations (5b) to (5e) the following useful relations are easily derived:

AN =127 —e*™) +4nrpe*?, (59)
P =—1/271(1 —e*) +4nrPe?h, (58)
O +AN=4nr(ptP)e*®  or (p+P)=—(@Am) (e PN e A, (5h)
e?®=¢2A=1-2M/r outside the star, (5i)

where primes denote radial derivatives, 8/0r, and where M =m (R) is the star’s total mass
and R is its radius. The complete unperturbed model is specified by giving the radial distri-
butions of p, P, ®, A (or m) and the shear modulus u(r). We assume in this paper that u is
isotropic (‘scalar field’).

2.2 COORDINATES, METRIC AND RICCI TENSOR FOR PERTURBED STAR

For the perturbed star we introduce coordinates (¢, r, 9, ¢) which reduce to those of the
unperturbed star when the oscillations vanish. We linearize our entire analysis about the
unperturbed configuration and resolve the oscillations into spherical harmonics of definite
indices /, m and parity m. The spherical symmetry of the unperturbed configuration guaran-
tees that modes of different /, m, n superpose linearly (i.e. no mixing). Therefore, we can
restrict attention to modes with fixed /, m, 7 (pure modes). In this paper we do not consider
‘even-parity’ modes [ =(—1)"] because they represent compressional oscillations rather
than pure torsional oscillations; see Thorne & Campolattaro (1967) for discussion. The odd-
parity torsional modes with fixed / but different m can be obtained from each other by
linear combinations of rotations about the star’s centre. Thus, without loss of generality, we
can specialize to an odd-parity mode with definite / and with 2 = 0; and we henceforth use
m exclusively to denote the mass inside radius r (equation 5b) and not a spherical harmonic
index.

The metric g, for our oscillating star consists of the unperturbed metric vy,, plus
components A, which describe our odd-parity perturbation:

ds® = (ds?) + hy, dx* dx" . (62)
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Clearly, A4, hy and hy, are scalars under rotation and thus have even parity, which means
they must vanish. Further (c¢f. appendix A of Thorne & Campolattaro 1967) we are free to
specialize our coordinates (choose our gauge) so as to make all other components of 4,
vanish except the following:

hyg=hp=—1P(t, )by =— 1’y sin $3 3 P; (cos ),
Bp=he,=—re =2 0(t, r)by. (6b)

Here by is equal to [4m/(2]+1)]Y? times the Regge—Wheeler (1957) odd-parity vector
spherical harmonic & ; in future equations we shall raise and lower the index on by with the
metric of the unit sphere:

by =sin®>9b® =sin 999 P; (cos I); (6¢)

the indices of the metric perturbation functions 4, are raised and lowered with the unper-
turbed metric, 7, (equation 5a). In equations (6b, ), P; (cos 9) is the Legendre polynomial
of order /, and the dot over y denotes a time-derivative 9/d7 = d,. The perturbation function
¥b® is equal to the angular velocity of a zero-angular momentum observer (ZAMO; cf., e.g.,
Bardeen, Press & Teukolsky 1972); thus yb® is the angular displacement of a ZAMO and is
dimensionless. Outside the star the perturbation function Q is equal to the Regge—Wheeler
(1957) gravitational-wave variable, aside from a multiplicative constant.

The metric perturbation (6b) produces a perturbation of the Ricci tensor with the follow-
ing non-vanishing components (Thorne & Campolattaro 1967, equation B3 as corrected in
the erratum — but note the different notation and signature used there):

8Rsp=0R¢r = {e‘;zf‘ e P AG —er PO +em P A (re® MYy l(l; 1)5’} bg,
(72)
. I(1+1)
8R,y=8Ry,= {1/2 r2e2® ' — eA=20/r) +r‘1e‘2q’(re‘b—A)’Q - T eA_ch} bo,
(7b)
8Rgp=08Rpy= {1/2r%¢2®y — 1/2e~ 2~ (rQ)'} sin? 9 . (7c)

Here and below primes denote radial derivatives and dots denote time derivatives, Q' = 8Q/or
=Q , and Q=030Q/3t=Q ,. Note that sin?95% , =sin>99,b? is equal to [167/(2l + 1)] 2
times the Regge—Wheeler odd-parity tensor spherical harmonic x’§¢.

We now go on to consider the motion of the star and the interaction of its matter with
the surrounding spacetime geometry.

2.3 DISPLACEMENT FUNCTION, FOUR-VELOCITY AND STRESS—ENERGY TENSOR
FOR PERTURBED STAR

In the perturbed star, the coordinate location of a specific particle of stellar matter oscillates.
We describe its oscillating location by a displacement vector § whose components £", £ % and
£® are functions of the particle’s original location (7, 9, ¢) and of time ¢:

Toert ST HE (67,0, 0); Opee =0 +E°(6, 7,0, 0);  pers =0 +E° (2, 7, 9,0). (8a)

Because £ is a scalar under rotations about the centre of the star and thus has even parity, it
must vanish. The angular displacements form a vector field on the unit sphere, §=£%3, +
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E%d,, and must therefore have the angular dependence of a vector spherical harmonic of
definite /, of m = 0 and of parity 7 = (— 1)!*1:

£=0, £°=0; =Y ) (sin 9 0yP(cosV) =Y (¢t r)b®. (8b)

Note that just as yb? is the angular displacement of a ZAMO, so Y»? is the angular
displacement of the stellar matter.

The four-velocity u* of a particle with world line (8a,b) is obtained from the relations
W’ = dx{,eﬂ/dt = Sf,t; ubu’g,,,= — 1. The result, linearized in the perturbation functions
0,7, is

ul=e®  u'=0, u®=0, u®=ec®YD°, 9)

The radial and angular variations of the azimuthal displacement £? produce deformations
(shears) of the star’s crystal lattice. These deformations are described by a shear tensor Sagp
When viewed in the orthonormal comoving frame of a particle of the stellar material Sagis
purely spatial (Soo= So; = Sjo = 0), and its spatial components Sjx = Si; are precisely those
of the non-relativistic theory of a stressed medium (see, e.g. Landau & Lifshitz 1970).
Hence, in this proper reference frame of the particle, the shearing motion produces a restor-
ing stress given by the standard non-relativistic formula T]s}}ea’= — 2uSjx, where u is the
shear modulus. By general covariance (¢cf. MTW, chapter 16) this equation can be rewritten
in the coordinate-independent form

T(syh;ar= - 2,USa5. (10)

To calculate the components Sqp of the shear tensor in our Regge—Wheeler coordinate
system we proceed as follows: First, we calculate the rate of shear 0Oqp from standard
formulae (see, e.g., MTW, exercise 22.6):

Oap = 1/2 (Way P4g +ugy PPy — 13 Pygut,, (11)
where
Popg=gopt+ugug.

The result is

Orp = 0pr=1/2 rze‘@(Y’—eA“q’Q/r)b(b; (12a)
O9p=0g59=1/277€® Ysin2z9b"”19; (12b)
all other components vanish. (12¢)

(Notice thateven for a fluid at rest in the (7, 9, ¢) coordinate system (¥ = 0) there is a chang-
ing radial shear 0,4 associated with the changing metric (Q # 0; ‘deformation of coordinates’).
It is only because we are in the Regge—Wheeler gauge where hye =0 that the non-radial
shear 0,94 vanishes when Y = 0.) Next, we write in explicit form the relationship

c=%,8, (13)

that the rate of shear is the Lie derivative of the shear along the world lines — a relationship
which is best derived in the proper reference frame of a fiducial material particle; cf. Carter
& Quintana (1972). The result, to first order in the oscillations, is

Uaﬁ=e—q)Saﬁ’ t (14)
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Finally, we combine equations (12) and (14) and integrate with respect to time, using the
initial condition that the shear S,z is equal to zero in the unperturbed star (i.e. when Y and
hyy vanish). The result is

Sro=Spr=1/2P(Y' — e* =P Qfr) by = £y + 1/2 15 (15a)
Soe=Sps=1/2rY sin®9b% 5 =E9.¢)- (15b)

Note that the shear S,z is generated both by the deformation of the crystal relative to the
coordinate system (non-zero Y) and by the deformation of the coordinate system itself
(non-zero h,y).

The shear stress of equations (10) and (15) is only one contributor to the stress-energy
tensor of the stellar material. The other contributors are the total density of mass-energy p
and the isotropic pressure P, both of which maintain their unperturbed values because they
are scalar fields and therefore cannot undergo odd-parity perturbations. The stress-energy
tensor associated with p and P (the bulk part of the stress-energy tensor) has the standard
perfect fluid form

TOME = (p + PYugug + Pgag. ‘ (16)

Using equations (5), (6), (9), (10), (15) and (16), we obtain for the total stress-energy
tensor Ty, g = ng‘k + T;‘;faf of the oscillating star

Tye=pe®®, T, =Pe*  Tys=Pr Tpy=Pr’sin®9; (17a)
Tio=Tpr=—1[(p +P) Y — py] by; (17b)
Tro=Tor=—r[urY —(u—P)e™ = Q] by; (17¢)
Top=Tgo=—ruYsin>9b%, y; (17d)
all other components vanish. (17e)

For evaluation of the Einstein field equations, R, = 87 (T, — 1/2 T'g,,), we shall need
the first-order perturbations of (7, —1/2 Tg,,). These are easily found from equations
(5), (6) and (17):

8(Trp— 1/2T815)=r*[1/2(p +3P)y — (p + P) Y] by; (18a)
8(Typ— 1/2Tgg)=r[—urY' +(u—1/2p +1/2P)e™ ~* Q] by; (18b)
6(T19¢ — 1/2 Tgad,) == /.U"2 YSil’lZ&bd), 9 (18C)

where we have used the fact that T=T$ =3P — p-

3 Details of the analysis: [ > 2
3.1 EQUATIONS OF MOTION

Because our stellar oscillations are described by three functions of £ and r — Y, y, Q — our
analysis will require three equations of motion. Our chosen versions of these equations are
obtained from the perturbed Einstein field equations 6R, =878 (T, — 1/2Tgy,) by
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manipulations described in Appendix A.

Our first equation is an initial-value equation for the ZAMO angular displacement
function y:

P+ A
e I+2)(1 -1
- (e PAyy + 24 [161r(p +P)+ (———)rg )]y
ed>+A
—16m(p + ) Y +— — (P2 QY = 0. ‘ (19a)
14

This equation can be solved at any moment of time to give y in terms of Y and 0.

Our second equation is a wave equation for the angular displacement Y of the stellar
material:

—D_A
(p+P)e2®¥_° T (wte®TAYY + [161r(p +P)+(_l+_2_)____£l—1)]“y
r - r
e—(b—/\ , e_cI)_A L
_(,D +P) 2 (rQ) + r4 ('ur Q) =0, (19b)

The characteristics of this equation (the world lines of high-frequency, radially propagating
wave packets) have a propagation speed, as measured by an observer at rest in the star, given
by

e’dr ( M )1/2 (20)
v — = R
* e®dr p+P

When one recalls that (p + P) is inertial mass per unit volume in relativity (see, e.g., exercise
5.4 of MTW), one recognizes this as the standard expression for the speed of propagation of
shear waves in an isotropic solid; cf, Carter (1973 a).

Our third equation is a wave equation for the Regge—Wheeler gravitational-wave-
function, Q:

DA
e"zq’Q~e_q)"A(ed’—AQ’)’+ [16ﬂ#+@p—re_d’_/\(e )] 0
r

r2

+16m1re =P~ A (ue*®yyY =0, (19¢)

In the vacuum outside the star this reduces to the Regge—Wheeler (195 7) equation for gravi-
tational waves propagating in Schwarzschild spacetime. Both inside the star and out the
characteristics of this equation are radial null lines (propagation speed equal to speed of
light). Note that the ZAMO displacement function y has been completely decoupled from
the wave equations (19b, c); they are coupled wave equations for Y and Q alone.

One can show (see Appendix A) that our equations of motion (19) are ‘complete’ in the
sense that the set of all physically acceptable solutions of (19) is identical to the set of all
physically acceptable solutions of the perturbed Einstein field equations — physical accept-
ability being defined as satisfaction of the boundary conditions as given in the next section
of this paper.

One can also show from our equations of motion (19) plus boundary conditions (or,
more easily, from equations 19¢, 19b and €96 =0 in A.3) that in any region of the star
where the shear modulus vanishes, u = 0, the perturbed gravitational field is decoupled from

16
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the stellar matter, and the matter cannot support torsional oscillations. More specifically,
equation (19¢) then becomes a homogeneous wave equation for the decoupled gravitational-
wave variable Q; equation (19a) or (A.3) determines the ZAMO displacement y in terms of
@; and (A.3) together with (19b) guarantees that the fluid is at rest relative to the ZAMOs,
Y = y. This decoupling has been noted previously by Thorne & Campolattaro (1967).

3.2 BOUNDARY CONDITIONS

The equations of motion (19) must be solved subject to suitable boundary conditions at
the star’s centre and surface, and at infinity.

At the star’s centre the fluid motions and the spacetime geometry must be suitably
smooth. Roughly speaking, smoothness means that the more rapid are the angular variations
of Y, y, O — ie. the larger the value of / — the more rapidly must Y, y and Q approach

zero at r=0. To make this quantitative we introduce local Cartesian coordinates {x?}
near r = 0:

x'=rsindcos¢g, x2=rsindsing, x3=rcos?d. (21)

Because A~ pr? near r =0 the components of the unperturbed spatial metric (5a) are
Cartesian at 7 = 0 in this coordinate system: vy,; = 8,5 + O(r?).
Consider the three-dimensional vector and tensor fields

E=80g, . a=hfds,  B=H"(0,00,+03,20,); (22)

£is the material displacement vector, a is the time—space part of the metric perturbation,
Bis the spatial part of the metric perturbation, indices on hsg have been raised with the
unperturbed metric v*¥ and £, « and B can all be regarded as solutions of the perturbed
Einstein field equations. The ‘smoothness’ of the Einstein equations at r = 0 implies that
the Cartesian components of £, a and P will have power series expansions near = 0 whose
leading terms are infinitely differentiable — or, equivalently, whose leading terms are
expressible as products of non-negative powers of x!, x2 x3; e.g.

gl =(x1)*(x?) (x*)* (1 + terms which vanish as r- 0).
Using equations (6) and (8) we can write §, aand B as
E=rYA, a=—-rA, B=-e A0, 0A+A®0,]; (232)
A=rxV Py(cos 9). (23b)

By writing P; (cos®) in terms of Cartesian coordinates (cf equation 33 below; Section
II.C of Thorne 1980) we can bring the Cartesian components of equations (23) nearr=0
into the following form:

gb = Yr—l+1p?l @ gbed ye (3 ax ) (x4, | x%), (242)
o = — prlt1pgs - agbed e g raydy e | ), (24b)
8% =~ Qe ®r 1P ax B )N (3 [ax Ty (x4 . x71), (24c)
Here €**¢ is the Levi—Civita tensor, P/ - % is a constant, symmetric, trace-free tensor

(¢f. equation 33 below), and the parentheses in the superscript indicate symmetrization.
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These Cartesian components will be non-negative products of x!, x? and x* near r =0 if
and only if

Y(t, r) =¥ ~ ! [constant + terms which vanish as r > 0], (252)
y(t, r) = '~ [constant + terms which vanish as r > 0], (25b)
Q(t, r) =r'*1 [constant + terms which vanish as 7 > 0]. (25¢)

Thus, our boundary conditions near » = 0 are
l—
Y~r'"h y~ri-l gt g 50, (262)

It is straightforward to show that, so long as the unperturbed star is smooth at r =0 (p, p,
u and p' finite there), these asymptotic forms satisfy the equations of motion (19). How-
ever, there also exist solutions to (19) which violate these boundary conditions (Y ~r+?
and/ory ~ r 52 and/or Q ~ r") and which thus are physically unacceptable.

At the star’s surface, r =R, the normal (radial) components of the stress tensor must
vanish (there is no matter outside = R to support a stress): T,— 0 as r—~>R_= inner
edge of stellar surface. Inspection of the stress-energy tensor (equation 17) shows that
this condition is satisfied if and only if (i) the unperturbed pressure P approaches O as
r—>R_, and (ii) the material motions and shear modulus u satisfy the ‘zero-torque-at-surface’
condition

T¢=‘r2e_2Au(Y'_eA_¢’Q/r)b¢"O as r—=>R_. (26b)

For a star with a solid surface (e.g. iron), u is finite at 7= R, so Y’ must equal ¢*~® Q/R
there.

At the star’s surface the gravitational potentials y and Q must be sufficiently continuous
that (i) the intrinsic geometry of the star’s surface

ds?=—e*® df? +r*(d9* +sin® 9 d¢*) — 2r* y by dt do
is continuous, and (ii) the extrinsic curvature,
K p=e™T4yp (A, B ranging over ¢, 8, 9),
is continuous (see, e.g. section 21.13 of MTW). Straightforward calculation shows that
K=(2® 2@ di2 + e [(r%9) — re =P Q] bydt do
—re"® Q 5in? 952, 3 dO dp — re M (dO? + sin® O d¢?). (27)

Therefore, continuity of the intrinsic and extrinsic geometries is satisfied if and only
if — in addition to the familiar equilibrium conditions of continuous ®, ®' and A —

y,y' and Q are continuous across 7 = R. (26¢)

At the interfaces of solid regions (crust and/or core) with fluid regions (mantle) the
shear modulus u may go to zero discontinuously. There one must be sure that the zero-
torque condition and the continuous intrinsic and extrinsic curvature conditions are
satisfied:

Th=—re?Muy' - et ~®Q/r)bs -0  at solid—fluid interfaces, (264d)

y,y and Q are continuous across solid—fluid interfaces. (26e)
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Far from the star, 4. and h,e, must describe outgoing gravitational waves. In this region
our equations of motion [(19¢) for Q; (A3), which follows from (19a, b, c). for y]
become | .

0 =0,03,+Q — (1 = 2MJr) [I(1 + 1)/* — 6M/r?] Q, (28a)

Y =r9,.(r0), (28b)
where. |
r =r+2Min(r/2M - 1) (28¢)

is Wheeler’s ‘tortoise coordinate’, and where no approximations have yet been made,
Note that equation (28a) is the Regge—Wheeler (1957) equation for odd-parity gravita-
tional waves. The general outgoing-wave solution to these equations has the asymptotic
form at large radii ‘

I(+1)

r

Q= F(H-l)(u) + F(’)(u) +0(F?) as r-oo, (260

_FO@ @+2¢-1

r 2r?

FO-Dw)+0(3) as r-oo, (26g)

where u =t — r,. Here, F(u) is an arbitrary function of u to be determined by integrating
the equations of motion, and FP(u) =d'F/du’ denotes the Ith derivative of F(u). We shall
see later that F(u), aside from a multiplicative constant, is the star’s current /-pole moment.
One can show that, in addition to the physically acceptable outgoing-wave solutions (26f, g),
the equations of motion (19) possess unacceptable incoming-wave solutions of the form
(26f, g) with u replaced by v =t +r, and with the signs of the second term of Q and first
term of y reversed, and also unacceptable solutions with mixtures of outgoing and incoming
waves.

3.3 RADIATION FIELD AND ENERGY LOSS RATE

The radiation field far from the star is described by the metric perturbations (obtained by
combining equations 6b and 26f, g)

Rep=hoe= [PEC D)+ 1/2( +2)(1 = 1) FO )]y + O (F); (292)
Rep=hgp=[—(r + 2M)FU* D) — 1210 + 1) FO )] by + O (F7Y); (29b)
all other components vanish. : o ' (29¢)

The physical components of these perturbations,
hig=€®(rsin 9y hyy, hip =€ (rsin 9 h,q,

have amplitudes which are independent of 7, rather than amplitudes which die out like 1/r.
This is because the Regge--Wheeler gauge is badly behaved in the radiation zone (cf. Price &
Thorne 1969). A more reasonable behaviour is obtained by making a gauge change
(infinitesimal coordinate transformation; Box 18.2 of MTW) with the generating vector

ne =rFM(u)by;  all other n, vanish. (30)
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The metric perturbation in the new gauge,

néew

ag = ngs — Ne|g — MBlas

where the bar | denotes covariant derivative with respect to the flat metric, has components

RV =12 +2)( = DFD @by + 0 (7 1); (31a)
rev=—120+2( - DFO@bs+ 0@ ™); (31b)
Ry = — rFO @) sin? 9% 4; (31¢)
all other components vanish. (314d)

To leading order the new metric perturbation is in Lorentz gauge A"V ", =0), and its
physical components die off like 1/ in the radiation zone.

Any gravitational wave can be characterized in a gauge-invariant way by the transverse-
traceless (TT) part of its metric perturbation (see chapter 35 of MTW). Only 433" contributes
to the TT part of our wave (31). By combining equation (6¢) for b, with (31c) for 233", and
by converting to covariant notation in the three-dimensional Euclidean space far from the
star, we obtain

(W)= [ 2kF Dt — 1) 1P €pg; P11 i P (32)

Here n = t/r is the unit radial vector, €, is the Levi—Civita tensor, P; = P (cos ¥) is regarded
as a scalar field in flat space, | denotes covariant derivative, § means symmetrize on indices
j and k£, and TT means take the transverse-traceless part using the techniques of Box 35.1 of
MTW.

One of the authors has attempted to introduce a standardized formalism for multipole
expansions of gravitational radiation fields (Thorne 1980). In that formalism the mass and
current multipoles are represented by completely symmetric, trace-free tensors. To make the
connection between equation (32) and that formalism we introduce into equation (32) the
symmetric, trace-free representation of the Legendre polynomial

Py(cos 9) =P, g, - Mg (33)

1

(cf: Section IL.C of Thorne 1980, where P;% -+ % is denoted by @ [ ...a;/C'®)and we then
perform the differentiations denoted by P,'qlk. The result is

GReITT =7 200 = DF O~ 1) epgi P In ny,..mg 1. (34)

Direct comparison with equation (4.8) of Thorne (1980) shows that the radiation field is
that of a current /-pole with /-pole moment

_@-n@+!

o}’“l“-"l(t—r*) F(t_r*)Plal'“al' (35)

This radiation field carries off energy at a rate given by (¢f. Thorne 1980, equation 4.16)
dEsta.r _ 4l(l + 2)

it (=D @+1D)! QI+
B ED U EP

B 4020 +1)

(¥ ceqp(IH 1) Jpa, g (1 +1))

([FOD (= r )], (36)

where ( ) means averaged over several characteristic periods of the radiation and where
equation (2.26a) or (2.5) of Thorne (1980) has been used to obtain the second line.
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34 ACTION PRINCIPLE AND ENERGY CONSERVATION LAWS

Our star’s torsional oscillations are governed by an action principle. The action’s Lagrangian
density can be derived either by second variation of the Einstein Lagrangian density
(—=2)Y?R + Zmatter (method of Taub 1969) or by multiplying the star’s equations of
motion by carefully selected functions and removing a divergence (method of Chandrasekhar
1964a,b; see also Detweiler & Ipser 1973 and Appendix B of this paper). The Lagrangian
density is

&= ————221(:;) [(p + P)ret =P (¥ —p)? +(1/16mrte =P~ A( — e~ Q/r)
+(1/16m) (I +2)( — Dr?er =92 —urte® M (Y - AP Q)
—ul+2) (A -1Drre®tAY2 _(1/167) (1 +2)(I — e~ ® 02, (37)

and the action principle is
) f Fdtdr=0, (38)
Q

where £ is any compact region of spacetime, and where the functions to be varied (¥, y and
Q) must be held fixed on the boundary 92 (i.e. §Y =6y =8 Q = 0 there). If Q2 includes the
star’s centre or surface or a solid—fluid interface, then Y, y and Q must satisfy the smooth-
ness and continuity equations (26a,b,c, d,e) there. By varying Y, y and Q in this action we
obtain, respectively, the perturbed Einstein field equations ez =0 (equation A.S), é;,=0
(equation A.2) and €,4 = 0 (equation A.4). Our equations of motion (19) are linear combina-
tions of these equations and their derivatives and time integrals; cf. equations (A.7)—(A.9).

Because our Lagrangian density (37) is time-independent, (0 #/07)y, ;, o fixea = 0, there is
a conserved quantity associated with it:

Sa,a:O’ (39)
where
27l(l +1) . e~ P-4 )
StE_ +P r4eA—<I) Y — Ny 2+_— '/_eA~d> r2
YT LR (V= P4 o/r)
I+ -1
+-(—-———)( )r2e’\“‘l’j)2+w"‘eq)”\(Y'—eA_cDQ/")2
167
1+2)(1 -1
+u(l+2)(l_1)r2e¢+/\ Y2+(_‘—_)—()€A_d) QZ.’ (403)
167 J
and
Agl(l+1)(r*e~ 24 3 .
gr= 2D P - Q) +urte® MY (Y - e Q). (40b)

(21 +1) 167

(For a derivation, and for a discussion of how we have selected this specific S* from among
an infinity of such divergence-free quantities, see Appendix B.) Note that the energy density,
S? is just the Lagrangian density . with the signs of the potential energy terms converted
from minus to plus.

If we regard Q and y as gravitational fields which reside in the unperturbed spacetime and
which couple to the matter displacement Y, then we can associate with the perturbations a
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stress-energy tensor T'*” which resides in the unperturbed spacetime. The law of energy-
momentum conservation 7., =0 (where the semicolon denotes covariant derivative with
respect to the unperturbed metric Ywv), together with Killing’s equation for the generator
0/0t of time translations, guarantees that T'-93/d¢ has vanishing covariant derivative — i.e. in
component notation and in the (7, 7, 9, ¢) coordinate system of equation (5a)

(1" 7], =0. (41)

Here v is the determinant of the unperturbed metric components Yup, and (—y)Y?is equal to

r*e®*Asin . After integrating this equation over angles ¥ and ¢ we obtain the conservation
law (39), with

S%=—[T¢(—y)>d9d¢. (42)

The perturbation stress-energy tensor 7" can be computed in the canonical manner from
the Lagrangian for the perturbations (albeit a Lagrangian in which, unlike (37), the angular
dependences have not yet been integrated out). There is an infinity of resulting 7*"’s
depending on the gauge in which the Lagrangian is written (i.e. depending on one’s choice of
infinitesimal ripples in the perturbed star’s coordinate system). If one only wants to know
the components 7~"‘," one can evaluate them by undoing the angular integrations in equation
(42), a process which contains some arbitrariness corresponding to part of the gauge-
dependent arbitrariness in 7"”. With a choice for this arbitrariness which we regard as
optimal, the equations (40a), (42) and

n 20(0+1)
f sin ¢ [09P;(cosH)Pdd=———,
0 (27+1)
m 09 P (cos¥)\1? 20(1+1
f sin® 9 [al9 (J’—’(—))J dd=(1+2)(I—1) ( ), (43)
0 sin ¢ 21+1
give the result
~ sl - 1 1
T*==T/=1/2(p+P) v +u(Sj)* + — (0% i) + — Bjp)?, (442)
167 167
FEF_ A=® Fr_ o] 1 won o Zas
T "=—e Tt —-2MSrju+‘1‘6;Arijjk, (44b)

where there is an implied summation over j and k. These equations make use of the ortho-
normal basis of an observer at rest in the unperturbed star:

e;=e P8, e;=e Ny, e;=rla,, ej=(rsin 9) ' 9. (452)
The quantity T # (equation 44a) is the energy density measured by this static observer.
The term 1/2(p + P)v*in T*" is the kinetic energy density of the matter: v is the velocity of

the matter relative to the ZAMO’s (see discussion following equations 6¢ and 8b),

v=re~® (Y - Y)bgeg;  bg= (sin ) by =0y P; (cos ). (45b)
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The term u(S;)* is the standard expression for the potential energy density of a deformed,
elastic solid; S} is the shear '

Sie=84#=1/2 re MY - eh? 0/rbg,

S36=S45=1/2Ysin9p® , (45¢)
(equations 15) and by virtue of the stress—strain relation (10)

u(Siiy=—1/2 T 5%, (45d)
The term (167) ! (0 ]-*,;)2 is the kinetic energy density of the gravitational field; oZ 7% is the

rate of shear of the congruence of ZAMO observers (equations 12 with the matter displace-
ment Y replaced by the ZAMO displacement y)

0Zp5 = 0%5:=1/2re" =A@ — A Qfr) bg,
0%35=0%55=1/2¢ %y sindb? 5. 45e)
é :

The term (167) ' (Bji)? is the potential energy density of the gravitational field; Bjj; is
defined to have as its only non-zero components

B@J,=B¢;{9§#1/2r'le‘d}Qsin 19b¢’,9, (45%)

We have not found a simple, physical description of the quantity Bji whose square is the
. gravitational potential energy, analogous to the description g% jk (& ZAMO rate of shear) of
the quantity whose square is the gravitational kinetic energy.
The quantity 77 (equation 44b) is the energy flux measured by a static observer. The
term - 2uS B ul = Y’f‘}ear'uf is the standard expression for the radial energy flux carried by
the matter’s shear stress;u’ is the matter velocity relative to the static observer

u=ules=re P yYbP ey, (459)
The term A7 o? jk is the radial energy flux carried by the gravitational waves; 4 ijk is
defined to have as its only non-zero components

72 e—2¢ —A

Aipe=Aio=———— @G - A2 Q/r sind b%, 95 45h
rdo rpd (l+2)(l—1) (J’ Q/) ( )

and as with Bj; we have not found a simple physical description of A ik

In the radiation zone the energy density T and energy flux 7 7 are carried entirely by
the gravitational waves (which we assume to be outgoing):

j k
= (1672 [FUFD@)]? (sin 9% o). (46)

Tit = i = (327! (];liI}ZW)TT (;l/qu)TT

Here (h ]“Ifw TT is the transverse traceless gravitational-wave field of equations (31) and (32);
equation (46) can be derived by combining equations (44), (45), (A.4) with €5 =0, (26) and
(31c). When averaged over several wavelengths, expression (46) reduces to the standard
Isaacson stress-energy tensor for the waves (see, e.g. Sections 35.7 and 35.15 of MTW).

The differential law of energy conservationS®, =0 or [(—¥)"2 T*] = 0, when spatially
integrated over the star’s interior and on out to some radius R., in the wave zone, becomes a
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law of global energy conservation:
AE g /dt = — S"(r=Re) = — [ {fﬁrzdﬂqu]
@ =-DIg+I+2)

=R o

= It [FUTD @ — )] (472)
R Reo ..
Egor = f Star= f f f Tte® dyol, (47b)
0 0

where dvol = e r?sin 9 d9 dp dr is the spatial volume element and e® is the gravitational
redshift factor,

3.5 STABILITY OF THE OSCILLATING STAR

The law of global energy conservation (47) is a foundation for proving that our oscillating
star is stable: So long as the shear modulus u is non-negative, the energy density T is every-
where positive (equation 44a), and therefore E,, (equation 47b) is a positive definite
functional of Y, y and Q. Since dEg,,/dt < 0 (equation 47a), no choice of initial conditions
Y(=0r),y(=0,), Q(t=0,) can produce Y, y, Q which grow arbitrarily large at later
times. Therefore our star with outgoing-wave boundary conditions is stable against arbitrary
initial perturbations (Liapunov stability; c¢f. LaSalle & Lefschetz 1961).

4 The outgoing-wave normal modes: [ > 2
4.1 THE EIGENVALUE PROBLEM

For most applications of the theory developed in this paper one will want to resolve the
torsional oscillations into normal modes with complex vibrational frequencies

w=0+i/27. (48)
In a normal mode the perturbation functions have the forms
Y(, V=Y, y(t,N=r, (e Q= 0, () e, (49)

The real part of the frequency, o, describes sinusoidal oscillations; the imaginary part, 1/27,
describes damping due to radiation reaction. (The factor 2 appears in w = 0 +i/27 so that 7
will be the e-folding time of the star’s oscillation energy, not of its amplitude.)

For a normal mode the two dynamical equations (19b,c) form a fourth-order system of
linear ordinary differential equations for the eigenfunctions Y, (r) and Q,, (¥) (hereafter we
omit the subscript w):

(urte®=AY"Y —e® A [16n(p + P)+ (1 +2)(I = D) F 2 Y

~(urP Q) +(p +P)P(rQ) =~ (p + P)r*et =T Y; (502)
€ 1QY — [16me® M u+(1+2) (-1 2e®* N —r(2e® )10
—167r(ue?®)Y = —w?er~ Q. (50b)
These equations must be solved subject to the boundary conditions (26a, b, f):
Y~r'=1 o~/ a5 r-0, (51a)
u(Y' —er=*0/>0 as r-R_, | (51b)
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and for the physically realistic case of outgoing waves at infinity (outgoing-wave normal mode)

Q0 =(w)* " 1 F, e ¥ a5 r->oo, (51c)

where F, is the amplitude of the oscillatory /-pole moment at £ =0, F(¢) = F, ¢'“’ Equa-
tions (50) and (51) together form an eigenvalue problem for the oscillation frequency w and
eigenfunctions Y, Q. Once the eigenvalue problem has been solved, the remaining metric
perturbation function y can be computed most easily from the initial-value equation €44 =0
(equation A.3), which gives

1 [—e® A
y=:2[ 72 -(rQ)'+167we”’Y]; (52)

alternatively (and equivalently) y can be computed from the initial value equation (19a).

In posing the eigenvalue problem (50)—(52) we have omitted some of the boundary
conditions (26). It is straightforward to show (cf. discussion of equations 26) that, so long as
the unperturbed star is well behaved at its centre and surface (p, P, u and ' finite at » = 0;
p, u finite but perhaps non-zero and P - 0 as r > R_), the omitted boundary conditions

y~r'=1! as  r-0, (53a)
u(Y' - e*=®Q/r)~ 0 at solid—fluid interfaces, (53b)
v, ¥ O continuous across ¥ = R and across interfaces, (53¢)
y~—(w)friF, e a5 roo (53d)

are automatically satisfied by any solution of equations (50)—(52).

In order to understand the spectrum of eigenfrequencies of our torsionally oscillating
star, we must first understand the asymptotic behaviours of the solutions of the eigen-
equations (50) just below the star’s surface. Those behaviours depend on the asymptotic
forms of the star’s density p and shear modulus u. If the star’s surface is solid, p will be
finite; otherwise it may go to zero as a power law. In general u will go to zero at least as fast
as p. Hence, it is reasonable to suppose that

p~R-n", P~R-nN*1  u~R-HN*S; N=>0, S5>0, (54)

where the form of P follows from the equation of hydrostatic equilibrium. One can show
that, so long as S < 2 [i.e. so long as the speed of shear waves (u/p)"'? goes to zero no faster
than (R —r)], one solution of the eigenequations (50) will have u (Y’ — e~ ®Q/r) finite
and non-zero at R_ and will thus be physically unacceptable. All other solutions will be
acceptable. For §> 2 all solutions have u(Y' — e~ ® Q/r) zero at R_, but they also all have
Y divergent, which would lead to a breaking of the crystal — a complication we are not pre-
pared to face in this paper. Thus, we shall restrict ourselves henceforth to the case S < 2; and
we shall impose a similar restriction at interfaces of solid regions with the fluid mantle. In
this case the spectrum of eigenfrequencies will be discrete, as the following argument shows.
Imagine a trial integration of the eigenequations (50). One selects a complex trial fre-
quency w and complex starting values 4 and B for Y/r'~! and Q/r'*! near r=0. (The
eigenequations (50) have the general solution Y =Ar'~1+Dr='=2 0 =Br'"1 + Er—'near
r=0; one makes sure that D and E vanish.) One then integrates the eigenequations (50)
outward from r=0 to the star’s surface r =R and examines the value of the complex
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number u(Y' — eA_q’Q/r) there; it will turn out to be non-zero, unless the starting ratio
A/B has been chosen to have some special value (or one of a discrete set of special values).
That choice must be made. One then continues the integration on outward into the radiation
zone, where one finds for Q (general solution of 50b)

0= C©O) p=iwr, 4 o) gtiwr, (55)

To get an outgoing-wave normal mode one must ensure that the complex ingoing-wave
amplitude CD vanishes. One cannot do so by adjusting the starting product AB; that
product merely fixes the overall amplitude and phase of the oscillations. Instead, to make
CD vanish one must carefully adjust the complex eigenfrequency w to one of a discrete set
of values. Thus, the spectrum is discrete.

The Liapunov proof of stability in Section 3.5 guarantees that the outgoing-wave normal
modes are all damped, i.e. all have positive values of Im(w) = 1/27.

We now describe five methods for solving the eigenvalue problem (50) and (51): the
method of resonances (Section 4.2), the variational method (Section 4.3), the energy
method (Section 4.4), the method of the slow-motion approximation (Section 4.5) and the
method of the weak-field approximation (Section 4.6).

4.2 METHOD OF RESONANCES

In the method of resonances (Thorne 1969a) one studies the unrealistic problem of an
oscillating star inside a large spherical cavity whose walls reflect gravitational waves perfectly.
This requires replacing the outgoing-wave boundary condition (51¢) by a standing-wave
boundary condition. The star and standing wave can oscillate with any desired real frequency
w = 0. For each value of the frequency w one can calculate (on a computer) the ratio

P (amplitude of star’s oscillating motions)

(56)

(amplitude of waves far from the star)

As w varies, Z will go through a sequence of sharp resonances. These resonances, on the real
frequency axis, are induced by nearby complex eigenfrequencies of the discrete, outgoing-
wave normal modes; i.e. when w nears the oscillation frequency w, of an outgoing-wave
normal mode, the standing gravitational waves will excite the star’s fluid into large-amplitude
motions. From the locations, half-widths and phase-shifts of the resonances one can
compute the complex frequencies w,, =0, +i/27, of the outgoing-wave normal modes.
Thorne (1969a) has discussed these calculations in detail for compressional oscillations;
calculations for our case of torsional oscillations would be the same in concept and method.

43 VARIATIONAL METHOD

The normal-mode eigenfunctions and eigenfrequencies can be evaluated using a Detweiler—
Ipser (1973) type action principle, which is closely related to the Lagrangian density .# of
equation (37). The relationship to . and a derivation of the action principle are sketched in
Appendix B. The action principle utilizes integrals from the centre of the starr=0to a
sphere r = R, far out in the radiation zone, and it utilizes complex trial functions Y, Q
which are constrained to satisfy the smoothness and continuity conditions (51a,b) and
(53b,c) at r = 0, on the star’s surface ¥ = R, and across solid—fluid interfaces. For any choice
of such trial functions Y, Q a corresponding complex function y is to be computed by
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solving the initial-value equation (19a) subject to the smoothness boundary condition (53a)
atr =0, and subject to the demand that

x/y = some fixed value, (x/¥)w, at 7=Ro; (57a)
here

Xx=—rlePTA (A0 ). (57b)
(Recall that outside the star A = — ®.) The quantity

Q*=B/4 (58a)

must then be computed, where

oo 4e—d)—A
= [T|@rpre-om oyt oty
0 167

+0-1 , o 2] 1
L — il A dr + — [r? r=
6m y " 6n[ YXlr=Ros, (58b)

'R oo
b= f [”’46¢_A(Y’~ AP tul+ ) (I - 1)rPe® A y?
0 2

+(1+2)(l"1)eA—®Q2]dr. (58¢)

167

The quantity Q*=B/A is an action for the normal modes. Those trial functions Q and Y,
which make Q7 stationary (§ 2% = 0) with respect to all variations §Q and § Y that satisfy
our smoothness and continuity conditions, are normal-mode eigenfunctions; and the
stationary value of Q is their complex eigenfrequency w. (The Euler—Lagrange equations
associated with this action principle are our eigenequations 50 with w? = Q2.)

The specific normal modes obtained from this action principle depend on the chosen
boundary value (x/y).. To obtain standing-wave normal modes, one chooses (X/¥)w real and
all trial functions real. For a given real (x/).. there will be a discrete set of standing-wave
modes (analogue of discrete normal modes of a violin string with ends clamped). To obtain
the full continuous set of standing-wave modes (one mode for each real w), the action
principle must be used time and again, with various values of (x/¥). and fixed R.; or with
fixed (x/¥)~ and various R.. (analogue of changing the clamping location of the violin
string).

If one chooses (X/¥). complex rather than real and uses complex trial functions, then the
action principle (57) and (58) will produce a discrete set of normal modes, each with a
different mixture of ingoing and outgoing waves — a mixture that cannot be predicted in
advance. Only by an iterative application of the action principle (procedure devised by
Detweiler (1975) for compressional oscillations of stars) can one be sure of obtaining a pure
outgoing-wave mode. For an outgoing-wave mode, if one knew the complex frequency w in
advance, one could solve the eigenequations (50) and initial-value equation (19a) far from
the star to find the asymptotic forms of Q, y and x:

R
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2o N1
iw I(1+1) 1 _;
X=~(l+2)(l—1)( ) F, [1+ (‘ +0(—2)]e T, (59¢)
r 2iwr r

where the complex number F, is the (arbitrary) Fourier amplitude of the /-pole moment;
cf. equations (26f, g). The corresponding boundary value of x/y is

oD o]

Detweiler’s procedure is to guess a value of w; choose the boundary value (x/¥). equal to
(594); apply the action principle using trial functions with the asymptotic forms (59a, b, ¢),
thereby obtaining a stationary Q; if Q is equal to w, stop with joy; if not, reiterate using a
new trial value of w. (One can show that if £ and w differ by a small amount, the normal
modes of frequency 2 with boundary condition 59d contain a mixture of ingoing and
outgoing waves of relative amplitude

DO = (Q - w)/(Q + w). (60)

This is a measure of the error in an unconverged iteration by Detweiler’s procedure.)

As cumbersome as this procedure may seem, it is the best method now known for com-
puting outgoing-wave normal modes from an action principle; and it actually has been made
to give reasonably accurate results for compressional oscillations of neutron stars (Detweiler
1975).

44 ENERGY METHOD

If one has obtained reasonable approximations to the eigenfunctions Q, Y, y and to the real
part o of the eigenfrequency of a complex normal mode, one can then compute the imagin-
ary part of the eigenfrequency, i/27, using the law of energy conservation (39), (40). In
integral form, and averaged over time, that law says (cf. equations 47 and B.19—B.23):

= Estar 61
S"(r=R.)’ ©
where
__ml(I+1) [Re [ rte” % ®
= +1/472 ) PeAC Yy y2+l € [y — e 2
T 001 J {(0 /7)[(;) e orl
I+2)(1-1
+( )( )r2eA“¢|y|2] +”r4ecl)_-Alyl_eA—<DQ/r|2
167
I+2)(1 -1
+u(1+2)(1_1)r2e‘1’”‘|Y|2+(—1)6(—)e"“"|Q|2}dr, (622)
m
_ 1(1+1) i 1
§7(r=Rw)=— Im (0+—) <02+—)r2y*x] (62b)
8(21+1) 27 472 Roo

for R. anywhere outside star,
=D +1)(+2)
- 8(21+1)
Here y* is the complex conjugate of y.

| Q12 for R.. far out in wave zone. (62b)
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In applying this energy method one can place R.. anywhere one wishes outside the star,
even in the near zone, if one uses the first line of equation (62b) for the energy flux.

4.5 SLOW-MOTION METHOD

A generator of gravitational waves is said to be a slow-motion source if and only if the
characteristic reduced wavelength of the waves, X =\/27 = 1/o, is much larger than both the
source itself and the source’s strong-field region:

X > R, X>» 2M = (gravitational radius). (63)

Thorne (1980) has given a detailed formalism for calculating the gravitational waves from
slow-motion sources, Here we specialize that formalism to the case of torsional oscillations
of a neutron star. (A forthcoming paper by Thorne will specialize it to g-mode compressional
oscillations of a neutron star.)

The discussion in the Introduction of this paper gave reduced wavelengths of X ~ 10°km
for crustal oscillations of neutron stars and XA~ 10km for core oscillations. Thus the slow-
motion approximation is accurate for crustal oscillations but probably not very accurate for
core oscillations.

If the slow-motion condition (63) is satisfied, we can neglect retardation of the gravita-
tional fields across the source, i.e. we can neglect ¥ = — w?x compared to x”, x'/r or x/r?
(x = Q or y) throughout the interior of the near-zone region

r<x=ol, (64)
(We cannot, of course, neglect retardation of the shear waves; i.e. we cannot neglect
%= — w?x compared to [u/(p + P)] x".) By neglecting gravitational retardation we convert

our gravitational variables Q and y into action-at-a-distance potentials analogous to that of
Newton; their wave equations become Poisson-like equations.
From (u/p) ~ (speed of shear waves)? < (6R)? we learn that

usS (R0 S (RINPF; (65a)

and from equation (19a) for y and (50b) for Q we learn the relative magnitudes of y, O and
Y in the slow-motion approximation:

y~(MR)Y, Q~(R/X)y<y. (65b)

Taking account of the extreme smallness of u compared to p and ¥ ? and of the extreme
smallness of Q. compared to ¥ and Y and neglecting gravitational retardation, we can bring
the equations governing normal-mode oscillations into the form

(ue® =AYy —(1+2)(I = 1)rPe® MY = — w?(p + Pyt ~®(Y — p), (662)
FPe " AyY —(1+2)( - Drre Py =—167(p + P)ter P (Y —y). (66b)
€@ 20y —[(1+2)(I—1D)r2e®M —r(F2e® )] 0 = 16mr(ue*®)'Y. (66¢)

Equation (66a) is (50a) with (52) used to replace a term involving Q by one involving y;
equation (66b) is (19a); and equation (66c¢) is (50b).

Outside the star, and at radii M < r< X where ® = — A= 0 and where the slow-motion
approximation is valid, Q and y have power-law fall-offs:

—nn I-1DHRI-1D!
Q=(—21—ll—)—inw» y=—( N F, for M<r<kx and r>R. (67a3)

r iortt?
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Here F, is the same /-pole moment used elsewhere in this paper, and (2/ —1)!!=(2/ - 1)
(21 —3)---1. These power-law fall-offs are the asymptotic solutions of equations (66b, c).
They can also be derived, including the precise coefficients involving /, w and F,,,, by solving
the non-slow-motion, Fourier-decomposed Regge—Wheeler equation (equation 50b with
p = =0 and r> 2M), matching to (51c) and (52) to obtain

Q=F,w" P (wr), y=-F,w'r?3,[rPhfP(wr)] (68)

for all r> M and r > R, where h}z) is the spherical Hankel function, and by then expanding
these solutions in powers of wr in the near zone wr< 1.

By virtue of the smallness of Q in the slow-motion approximation, the no-torque-at-
surface boundary condition (51b) reduces to

uY' -0 as r->R_; (67b)

but the smootheness boundary conditions (51a) and (53a) at the star’s centre remain
unchanged.

Y~ri=1 oy~ g~ ptl 5 r0. (67¢)

i)

The eigenvalue problem in the slow-motion approximation consists of the coupled
equations (66a, b) for Y and y (not Y and Q as previously!), which must be solved subject to
the boundary conditions (67a, b, c). The resulting eigenfunctions and eigenfrequencies will
be real (no damping in slow-motion approximation!) and discrete. They can be derived from
(664a,b), (67) by standard techniques, including the following action principle:

Define 22=B/A where B and A are the integrals (58b,c) with R., = and with the
surface term removed and with Q set to zero. Choose a trial function Y which satisfies the
boundary conditions (67), and from it compute y by integrating (66b) subject to the
boundary conditions (67). Then insert ¥ and y into Q2= B/A4 and ask whether § Q%= 0 for
arbitrary variations 8§ Y. If § 22 =0, then the trial function Y and the computed function y
are eigenfunctions, and their value of § is the corresponding eigenfrequency .

After the slow-motion eigenvalue problem has been solved, one can use the energy
method to compute the tiny imaginary part i/27 of w, which the slow-motion approximation
ignores. Specifically, 7 will be given by equation (61), where the star’s pulsation energy Eg,; is
(622) with R., =0 and Q = 0; and where the energy flux S is given by the second line of
(62b), with |Q|* replaced by its wave-zone value |w!'*!F > (equation 51c) and F,,
evaluated from the near-zone expression (67a) for the eigenfunction y.

4.6 WEAK-FIELD METHOD
For a torsionally oscillating star with weak internal gravity,

ulpSPlop~A~d~M/R<1 (69)

(e.g. a white dwarf), the slow-motion approximation is automatically valid, and the slow-
motion equations simplify. Most importantly, the fact that y ~ (M/R)Y < Y (equation 65b)
enables the equation of motion of the matter, (66a), to decouple from all gravitational fields

WAY'Y —(I+2)U - D rPuY =—w?pr*Y. (70)
This equation, together with the boundary conditions (67b, ¢)
uY'-0 as r->R_, Y~r'71 a r-0, (71)
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forms a Sturm—Liouville eigenvalue problem, which is well known and widely studied in the
geophysics literature (e.g. Alterman, Jarosch & Pekeris 1959), and which can be solved by
standard techniques. Once it has been solved, the Fourier amplitude of the /-pole moment
can be computed from

_ —lémiw
(-neHrH!

R
w f r'*t3pvar. (72)
0
(This equation can be derived by setting ® = A = 0 in (66¢), multiplying by r'*1, integrating
from r =0 to r = oo, using the asymptotic form (67a) of Q to evaluate the surface terms, and
using the equation of motion (70) to rewrite the integral.) The imaginary part i/27 of the
eigenfrequency can then be evaluated using the energy method (equations 61, 62, 51c)

7= Egaf/S, (732)
_ nl(l+1) (R 4 w2 4R 22
o 0+ 1) [w? pr* Y2 +ur* Y2+ (1+2)(I - Dur? Y?]dr, (73b)
0
. (-=DI(+1)(+2
S’=(— )8((2“-1)( )w2’+2le|2. (73¢)

Notice that, aside from an angular factor, piw Y7 is the density of momentum, i.e. of mass
current; consequently F,, (equation 72) is proportional to [ #'x (mass current density)x
(angular factor) dvol; i.e. in the language of Thorne (1980, especially equation 5.27b) F, is
the Fourier amplitude of the star’s current -pole moment.

For the special case of a star with uniform density p and radially constant shear modulus
u the eigenequation (70) reduces to the spherical Bessel equation for 7Y’; and consequently

Yo rilkr), k=(o/w)"w, (74)

where j; is the spherical Bessel function. The eigenfrequencies are fixed by the no-torque-at-
surface boundary condition Y'(R)=0 (equation 71). Straightforward calculations using
standard Bessel-function identities then yield the following formulas for the star’s oscilla-
tions and gravitational waves, in terms of the star’s radius R, mass M = 47pR3/3, shear-wave
velocity v, = (u/p)V?, and amplitude of oscillations

8 = (maximum value of angular displacement function Y inside star). (75)

The nth normal mode (of given angular quantum number /) has eigenfrequency and wave-
number

wy =Wg/R)x,, k,=x,/R. (762)
The angular displacement of the star’s crystal is
§¢o=£% = Yp? cos wpt
_ le(knr) 9Py (cos 9)
ak,r sin ¢

j2(knr)
ak,r

COS Wyt

:-——3ﬁ

cosdcosw,t if 1=2. (76b)

The star’s energy of oscillation is

E—star = E,Mug*g%. (76¢)
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Table 1. Constants governing quadrupole (7 = 2) torsional oscillations of a star with uniform
o and p and with weak gravity.

n Xy Ey Gp Ly, Dy,

1 2.5011 2.030 2.001 15.03 0.3379
2 7.1360 1.461 —1.062 34.45 0.3026
3 10.515 0.7171 0.7274 35.09 0.2148
4 13.772 0.4267 —0.5568 35.28 0.1666
S 16.983 0.2833 0.4519 35.35 0.1361
a=10.10403

The gravitational wave field has as its only non-zero components in an orthonormal, spherical
basis
T :
M55 = Gu(MJryuE* 18 sin 0 6% o cos [won (7 — ry) + (1 + 1)m/2]
=3G, (M/r)vdBsin 9sin [w,(t —ry)]  if =2 (764d)

The power carried off by the waves is

5= L R
=L,(M/R? 88> if 1=2, (76€)
This power loss causes the energy to decay by 1/e in a number of oscillations given by
WnTn =Dy (M/RY o7 @+ 1)
=D, (M/RY "% if 1=2. (761)
Here the constants «, x,, E,,, G, L,,, D, are given by
a =j(xy)/xy,
X, =nth root of 9, [f;(x)/x]=0,
E, = 3l(1+1) [fl(xn)]2 [1 RaIGs 1)]’
421 +1) 2

a X,

_ 12 1
Gn— Ol(l—- 1)(2l+ 1)” Xn ]l+l(xn)a

181(1 +1) (1 +2)
Q?(1—1)(21+1) [(21 + DHNT?

Ln = [xnl jl+ 1 (xn)]z,

D,=E,x,/L,. (76g)
and are tabulated in Table 1 for [ = 2.

5 Dipole torsional oscillations

We now turn attention to dipole torsional oscillations, i.e. oscillations with /=1 (and,
with only trivial loss of generality, m = 0). For /> 2 we used our gauge freedom to annul
hoy. For =1 hgy vanishes identically in all gauges because its angular dependence is
sin? 19b¢’19 =0. Thus, we can use our gauge freedom instead to annul hy (i.to set Q = 0),
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thereby leaving us with only one non-zero metric perturbation
(cf. equation 6b). The displacement function is defined as for /> 2
g=g=0, P=1p'=-Y (78)

(cf. equation 8b); and the Ricci tensor and stress-energy tensor then also have the same
forms as for /> 2 (equations 7 and 17 with specialization to /=1 and Q = 0).

Our equations of motion (19) for /> 2 were derived using the Einstein field equation
[BRos — 878 (T9p — 1/2 Tgoy)l/[sin?9b% o] (i.e. eys=0; equation A3). Because this
equation is invalid for /=1 (it involves dividing by sin? &b"”a =0), we cannot obtain the
correct / = 1 equations by simply setting Q =0 and / = 1 in (19). Rather, we must derive our
equations of motion directly from the Einstein equations (A.1)—(A.5), with the omission of
the eg4 equation. The result is

(p+ PP (Y =) =re™ =M (e~ 1YY, (792)
(0 +P)e2®(Y — y) =—(l6m) ' rte= PN (te= Ay, (79b)
A third Einstein equation, which is related to these two by the Bianchi identities, is

y'=—167ue*®Y’. (80)

The equations of motion (79) are derivable from the action principle (37), (38) in which
the Lagrangian density % is specialized to /=1 and Q = 0. The corresponding /> 2 con-
servation law S® ,= 0 is also valid for / =1, with the S of equations (40) specialized to /=1
and Q = 0; and the proof in Section 3.5 that if u> 0 then the star is stable, which is based
on the conservation law S% , = 0, remains valid for /= 1.

Equation (80) implies that y is time-independent outside the star; and equation (79b)
says that its radial dependence there is p =A + B/r® (recall that & + A = 0 in vacuum). The
constant A is physically unacceptable, while the term B/r® describes the dragging of inertial
frames by the star’s constant angular momentum (see, e.g. Hartle 1967). With only trivial
loss of generality we shall set the star’s angular momentum to zero (i.e. we shall refuse to
consider purely stationary, rotational perturbations), thereby enforcing y =0 everywhere
outside the star. As a result, our oscillating star not only will produce no gravitational waves
(a consequence of the dipole angular dependence of our perturbations); it will not have any
gravitational perturbations whatsoever outside itself.

The eigenvalue problem for normal-mode oscillations with /=1 consists of the coupled
differential equations

(urte®~AY'Y = — w2t =P (0 + P) (Y-y), (81a)
(Fe PNy =—16mr*e P (o +P) (Y - ») (81b)

(equations 79 with Y &/’ and y o« /%) together with the boundary conditions of
smoothness and zero torque at the origin, the surface, and solid—fluid interfaces

Y ~ constant + O (r*), y ~ constant + O(¥*)nearr =0, (82a)
»,y' and uY' -0 a r->R (82b)
uY' -0 at solid—fluid interfaces. (82¢)

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

Zz0z 1snbny 9| uo1senb Aq 9GL L L L/LSY/Z/S0Z/e1o1e/SeIUW/ /WO dno"olwepeoe//:sdiy wolj peapeojumod


http://adsabs.harvard.edu/abs/1983MNRAS.203..457S

FT9B3VNRAS, Z03. ~457S!

Torsional oscillations of neutron stars 483

[Equation (82a) rules out the divergent solutions ¥ ~ y™3 and y ~ r3; equation (82b) follows
from y =0 outside the star and integrations of (79b) through the star’s surface, and from
(80) or (51b); equation (82c) follows from (53b) or from integrations of (80) through the
interfaces.] The oscillation frequencies w and eigenfunctions Y, y will be real since there is
no gravitational radiation and no energy loss.

Note that the eigenequations (79) for / =1 are identical to those of the /> 2 slow-motion
approximation (equations 66a,b). Here the absence of retardation of the gravitational field
y is due to its /=1 angular dependence, which forbids gravitational radiation. There the
absence of retardation and of waves was due to the slow-motion assumption. Here, as there,
an action principle for the eigenvalue problem is given by §Q2 = 0, where 2= 4/B with A
and B given by expressions (58b,¢) with R., = R_, the surface term removed, Q set to zero,
and / set to one. For /=1 this action principle does not require slow motion, and a slow-
motion assumption produces no simplifications.

For a star with weak internal gravity the dipole eigenvalue problem (81), (82) simplifies
to (70), (71) specialized to /=1. When the star is homogeneous with p and u constant, that
eigenvalue problem has the analytic solution (74), (75), (76a, b, c, g) specialized to /= 1.
[For =1 the gravitational-wave related equations (72), (73a, c), (764, e, f) are irrelevant and
incorrect. ]

6 Concluding remarks

It should be straightforward to use the formalisms of this paper to evaluate numerically the
characteristics of normal-mode torsional oscillations of neutron star models. Such calcula-
tions should be performed both to improve the approximate formulas given in the introduction
of this paper (equations 3 and 4) and to discover quantitatively how the physical properties
of neutron star matter influence a star’s normal-mode frequencies, damping times and
gravity-wave strengths.
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Appendix A: Equations of motion
In deriving the equations of motion (19a, b, ¢) we shall denote by

€ap= [8Rap — 876 (Tag — 1/2 Teup)l /fap(r, 8), €7 =TEo/fr(r, 9) (A.1)

the expressions obtained by combining equations (5), (7), (18), (6) and (17) and dividing by
the functions

Jio=—1/2r2¢* by, fop=1/272c2® sin?9 5% 4,
fro=— 1/2reA‘3‘Db¢, fT=r2e'2d’b¢,.

These expressions are:

—e®tA I+2)(1 -1
€1¢p = at eT_ (r4e—d> —Ay/)l+e2A [1677(}0 .|.P) +(__)r§_l]y
e®+A
—167(p +P)e* Y + ” (r3e'2¢Q)'}; (A.2)
¥
e® —A
€9p =V ———— Q) +16mue*®Y; (A.3)
¥
. I+2)(1 -1
&p =0 +e*® [16mu+(—)§—)] Q—re® Ay —16mue3®=Ary’; (A4)
r

er =(p+P)Y —rte® M (urte® MYy + (14 2)(1 — 1) 2e2® Y
—(p+P)j+r2e® MurQy. (A.5)
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Note that e can be expressed as the following combination of the €,z (Bianchi identity):
er=(16n) [(1+2)(I - Dr?egy — €2 ¢y tr%e® A (PP, ]. (A.6)

The perturbed Einstein field equations are €,5=0; the law of conservation of energy—
momentum for the perturbed system, & T"‘ﬁ;ﬁ =0, reduces to the single equation e = 0.

The equations of motion (19a,b,c) used in the text are the following combinations of
field equations:

equation (19a), initial-value equation for y:

-

j €10 d1 = 0; (A.7)

equation (19b), wave-equation for Y:
e2® [er +(p + Pege] = 0; (A.8)

equation (19¢), wave-equation for Q:

P A

e_ch [€r¢ +re 619(1,’] =0. (A9)

We must show that our equations of motion (19) are complete, i.e. that all physically
acceptable solutions of (19) also satisfy the full set of perturbed Einstein equations e,z =0
and the equation of energy—momentum conservation €7 = 0. To prove this, we combine the
equations of motion (19) with the Bianchi identity (A.6) to obtain the Sturm—Liouville
equation

rAeP T A re P Mgy ) — 2N 16 (p + P) + (1 +2) (I —1)r2]egy =0 (A.10)

for €94. This equation, together with (19), leads to perturbation functions Y, Q, y which
satisfy the physical boundary conditions (26a,d,e) only if egy~ r!=1 pear r=0 and
€99 ~ r~'=2 near r = oo. However, the signs of the terms in (A.10) make it impossible for
these two asymptotic formulae to join on to each other except in the case €44 = 0. From this
we conclude that our equations of motion and boundary conditions imply €gq = O; this,
together with the equations of motion themselves, implies trivially that all the e,z and ep

vanish (cf. equations A.6—A.9). QED.

Appendix B: Foundations for action principles

Friedman & Schutz (1975; their section II) have given an elegant formulation of the general
theory of action principles for systems which can radiate waves to infinity. Unfortunately,
their analysis was not carried far enough to embrace the Detweiler—Ipser (1973) type of
action principle for normal-mode pulsations, which we use in Sections 3.4 and 4.3. In this
appendix we extend the Friedman—Schutz analysis to encompass such action principles, and
we use it to derive various results presented in the text of the paper. The general theory is
presented with full-left margins; the application to torsionally oscillating stars is presented
indented.

Consider a system described by functions Z4(A=1, 2,..., n) in a spacetime with
coordinates x*(«=0, 1, 2,..., m). Assume that the equations of motion for Z, are
derivable from an action principle

Bf Ldx®...dx"" =0, (B.1)
Q
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where 8Z 4 =0 on 9$2. Assume that the Lagrangian density % is quadratic and symmetric,
ie. &£ =L(Z Z)with

p P
— ABa,...0rB,...8
L(ZT:Z)_ kz“'llZlA * lel,a,...akZB, B,...Bp (B.2)

where A4B@: kb, .81 is 3 function of the coordinates x* which is completely symmetric
in the indices ;. ..oy, completely symmetric in the §, .. .8, and also symmetric under inter-
change of Aa;...aq with BBy... 18 (so L(ZT,Z)=L(Z, Z')). The Z}; are a set of functions
which have no special relationship to the Z,, and Z;Q’m1 oo = 0% Z Y [0x® -+ 3x% The
quantity p is the maximum number of derivatives that appear in the Lagrangian, and there is
an implied summation over repeated function indices 4, B as well as coordinate indices
Oy, ...,0,B4,..., B Define

oL(Z%,2)

— (B.3)
o aZji, Q@ ...

LA@D=0(-1)0,...0
l

Then the Euler—Lagrange equations are L# (Z) =0, and the integration-by-parts identity

used in deriving these Euler—Lagrange equations from the action principle (B.1) is

ZiL*(Z2)=L(z%, 2) - 8,0"(2Z", 2). (B.4)

The QM are determined only up to a divergence-free vector. Two versions of Q" which differ
from each other by a divergence-free vector, are

oL(ZT, z
0*(Z1,2)= L (~1'Z] 5,.. . 8o, .34, : z.2) : (B.5a)
k1 aZA, Q... B ... Bk
and
p p jtk ) oL ()
0(zt, 2)= ot (V) g (—) , (B.5)
PARNP) gl aalaz
P p k . i+ k .
0"z 2=5 5 ¥ (—Uf*""(’ | )Zlﬁ, ooy ( - )“)
j=0k=11=1 I 0 A’a1 ap_1b a0 1
(B.5¢)

The second version (equations B5b,c) has the virtue that the time component Q° (Z¥, Z)
contains the lowest possible number of spatial derivatives of the Z 4 it is the version which
we use in our analysis of torsional oscillations of stars. In the second version the Latin letters
b and a,, a,denote spatial tensorial indices and run from 1 to m;

(")
J

is the binomial coefficient; and superscripts in parentheses denote time derivatives as in the text:
ZH0D e =Zh 4. ap 0...0 With j — I zeros. It is imperative when using equations (B.3),
(B.5a—c) and others below that L(ZT, Z) be properly symmetrized (including making a
careful distinction, e.g., between Z4 10 and Z,4 o; and symmetrizing L in them); cf dis-
cussion following equation (B.2). Failure to symmetrize will produce in (B.3), (B.5 a—c)
multiple counting of second and higher-order derivative terms.

For our torsionally oscillating star the coordinates are x° =z, x! = r; the functions Z 4 are
Y, y, Q; the Lagrangian density % is equation (37). From the Lagrangian density we can
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read off
2ni(l +1) i .
Lzt z =ﬁ—[ +p)rter =Yt Ty (Y — 5
( ) QD) (0 +p) YT -—yHx -y
rre=P-A . . . (I+2)(I-1
e G ot et g+ T D e
167 167

— IJJAeq)_A (Y}-,“* e/\—(DQ?/r)(YV_ e/\—(DQ/r) *u(l+2)(l-—1)r2e¢+AYTY

—(1/16m) (I +2) (I — l)eA_‘DQTQ]. (B.6)

The Euler—Lagrange expressions L4 (Z), obtained from expression (B.3) (in which one

must take careful account of the symmetry properties of L) or by varying the action,are
the following:

—2ni(l+1
LY(Z)=—(—)r4eA—q’eT,
21+1)
—I(l+1
Ly(Z)=(ﬁ)r4e_d)_Aét¢,
8(21+1)
—I(l+1)
LoUZ)=———"r2eh-3® B.7
D= aren o (B.7)

where €1, €, and €, are the Einstein field-equation expressions given in Appendix A.
One of us (BLS) originally derived the Lagrangian density .# by constructing the
expression Z ¥ L4 (Z), by adding a perfect divergence (equation B.4) and by then setting
Z} =Z 4 (method of Chandrasekhar 1964a, b; Detweiler & Ipser 1973). Ior the quantities
Q" which appear in the divergence, we shall use expressions (B.5b, ¢) because they lead to
a Q° (and subsequently S°) which contain only first derivatives of Y, y and Q:

2ni(l+1)

OZT =
¢z (21+1)

[(p F Pyt Oy (v - )

o= ®—A

el VUL AR AV S IO o)) (B.82)
167

. (+2)(1-1) 2 eA_‘I’yTyJ,
167
—2ml{l +1) [}’46_(‘”A
(21 +1) 167
+urte®=Ayt(y — A2 Q/r]. (B.8b)
Whenever the Lagrangian is stationary in the sense that
[0L(ZT, 2)x°] 2t 7 hetd fixed =0, (B.9a)
the Euler—Langrange equations enforce a law of energy conservation:
L4 (Z)= 0 and (B.92) imply that 3, S* =0, (B.10a)

Q'(Z%, z)=

v - e =0/

where

SE=20M(Z,2Z) - 8% L(Z Z). (B.10b)
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The arbitrariness in Q" (freedom to add any divergence-free vector) produces a correspond-
ing arbitrariness in S*,

Our Lagrangian (B.6) is stationary. From our chosen form (B.8) for Q* and expression
(B.6) for L we derive expressions (40a, b) for our energy density, S° and energy flux, S”.
Had we chosen any other Q¥, the resulting energy density, S° would not have been equal
to the Lagrangian with sign reversal of the potential energy terms.

We now turn attention to functions Z 4 with exponential and sinusoidal time dependence
Za(x) =z, (e =1, 2, ..., m; w acomplex frequency) and we decompose L, L4,
and Q" into powers of w:

L (Z'fe—iwt’ Zeiwt)= w"Ln(zT, Z), LA (Zeiwt) =wnL;,1 (Z) eiwt,
QF@zTe " 269Ny = " Ok (2T, 2), (B.11)

where there is an implied summation over the integer n. In our discussion we shall require
that L be stationary (equation B.9a); this guarantees the existence of solutions with e'“?
time dependence. We shall also require that L,, contain only even powers of w

L,(%,z)=0 for nodd; (B.9b)

this, together with symmetry of L [L(ZT, 2)=L(Z, ZT)] and definition (B.11) of L,
implies that L,, is symmetric

Ln(ZTr Z)=Ln (Z’ ZT) (B12)
Note that the fundamental identity (B.4) implies that
L @)=L, (", z) — 3; 0}, (T, 2). (B.13)

For Z = z¢'? our equations of motion L (Z) = 0 reduce to the eigenequation
W"L(z)=0if and only if z is an eigenfunction and c is its eigenvalue;
iwt

i.e. if and only if ze'“? is a normal mode. (B.14)

We shall be interested in normal modes which are defined on a compact region ¥ of space
(not spacetime). Then the identity (B.13) together with the symmetry condition (B.12)
implies the following action principle: Define w(z) by I(w, z) = 0 where

I(w,z)=w" ‘LLn(z, z)d"mx — " 0l (z, z)d™ g,
3y

_ . . it B
= fL(ze "‘”,ze“‘”)aﬂ"x—fa O/ (ze™ " ze ) a™ 1z
L ,

=w"szLﬁ(z)dmx. (B.15)
.-

In general there will be several roots w(z). Consider each root in turn. The eigenfunctions
Z, are those for which « (z) is stationary under small perturbations 8z, with

" f [0}, 2. 82) — QI (52, 2)]d™ 1'%, = 0. (B.16)
oy
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Note that constraint (B.16) corresponds to certain combinations of the z 4 and their deriva-
tives being held fixed on 9 ¥". This constraint ensures that the Euler—Lagrange equations
associated with the action principle are " L;‘,‘(z) =0 (equation B.14).

For our torsionally oscillating star we choose ¥~ to be the interior of a sphere, 7 < Ro,
with boundary R.. far out in the radiation zone. Then the function /(w, z) is easily
evaluated from equations (B.6) and (B.8b) for L and Q"

2rl(l+1)
[(w,2)=——— (w?A4 — B), (B.17)
21+1)
where 4 and B are expressions (58b,c); and the constraint (B.16) on Q, y, Y is easily
evaluated from (B.8b)

227TLJrl)iyZS(x/y)=0 at r=R (B.18)
(21+1) 167 = '
Here x = — 2 e~ ® =AMy’ — A= % Q/r) (equation 57b). The action principle thus consists
of extremizing w?* = B/A with respect to variations of Q, y, Y, with x/y held fixed at R.,.

The initial-value equation (19a) for y is one of the Euler—Lagrange equations of this
action principle. Because it is independent of w, (19a) can be imposed as a constraint on
all trial functions before the action is varied. The normal modes obviously will still give
stationary w, and one can verify that this procedure does not introduce any spurious
solutions — only the normal modes give stationary . This is the version of the action
principle presented in the text (Section 4.3).

Assume that L(ZT, Z) is ‘real’ in the sense that Lzt 2= [L@T, 2)]", where "
denotes complex conjugation. Then if Z=ze'“? is a solution of the Euler—Lagrange

equations, Z* =z ¢~ " will also be a solution; and from the complex solution ze*?
we can build a real solution

Z=1/2 (% +z%e %) =0 +i[27. (B.19)
If we insert this real solution into expression (B.10b) for S* we obtain

Sk =Fke~tr+ §¥ cos (20t +9H) e~ 17 (B.20)
where '

S0= {Im [w*Q%z*e 19" ze/“T)] — 1/2 Re [L(z*e i¥* ze/¥N)]} !/, (B.21a)
§7=1Im [wrQf (zre™ '™, ze! N eF, (B.210)

and where S* is not of interest to us. In the law of energy conservation 0,8* =0, the pure
exponential terms and the sinusoidal terms must be conserved separately. It is the pure
exponential terms that interest us; for them, energy conservation says

(1/1)8°=5";; (B.22)

integration over the spatial region ¥~ implies

(1/r)f §°dmx=f Siam1y, (B23)
v 3

For our torsional oscillations S° and S”, as computed from equations (B.21), (B.6) and
(B.8), are the expressions given in equations (62), where g, = [S%dr.
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