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Torsional vibration of carbon nanotubes under initial compression stress
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This study examines torsional vibration of Single-walled carbon nanotubes (SWCNTs) subjected to initial com-
pression stresses. The nanotube structures are treated within the multilayer thin shell approximation with the
elastic properties taken to be those of the graphene sheet. Simplified Flügge shell equations of motion are pro-
posed as the governing equations of vibration for the carbon nanotubes. A new equation of motion and phase
velocity of torsional waves propagating in carbon nanotubes (CNTs) subjected to initial compression stresses
have been derived. The study reveals that the initial stresses present in the tube has a notable effect on the
propagation of torsional waves. The results has been discussed and shown graphically. This investigation is
very significant for potential application and design of nanoelectronics and nanodevices.
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1. INTRODUCTION

The discovery of carbon nanotubes (CNTs) in 1991 [1]
has stimulated ever-broader research activities in science and
engineering devoted entirely to carbon nanostructures and
their applications. This is due in large part to the com-
bination of their expected structural perfection, small size,
low density, high stiffness, high strength(the tensile strength
of the outer most shell of MWCNT is approximately 100
times greater than that of aluminum), and excellent elec-
tronic properties [2]. As a result, carbon nanotubes (CNT)
may find use in a wide range of applications in material re-
inforcement, field emission panel display, chemical sensing,
drug delivery, and nanoelectronics. Despite the potential im-
pact of carbon nanotubes in many areas of science and indus-
try, a robust understanding of their mechanical behavior is
lacking and thus limits the design and optimization of CNT-
enhanced materials. The deformation behavior of CNTs has
been the subject of numerous experimental, molecular dy-
namics (MD), and elastic continuum modeling studies. Ex-
periments at this length scale are themselves still under de-
velopment and thus have resulted in a range of reported val-
ues for various mechanical properties [3]. Furthermore, con-
sistent interpretation of tube geometry when reducing data
to properties remains an important issue, particularly when
studying multi-wall nanotubes (MWNTs).

Vibrations of CNTs are of considerable importance in
a number of nanomechanical devices such as oscillators,
charge detectors, clocks, field emission devices and sen-
sors. In addition, CNT vibrations occur during certain man-
ufacturing processes (e.g., ultrasonication in nanocomposite
processing) and as part of some nondestructive evaluation
processes (e.g., Raman spectroscopy). Electron microscope
observations of vibrating CNTs have also been used to in-
directly and nondestructively determine the effective elas-
tic moduli and other aspects of mechanical behavior of the
CNTs. Microwave excitation has been found to cause in-
tense heating of CNTs. So there is considerable motivation
for studying vibration characteristics of CNTs. The CNTs
acting as basic elements of nano-structures often occur in
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initial stresses due to thermal stress, mismatch between dif-
ferent materials or initially external axial load.

Recently, the vibration of multi wall carbon nanotubes
(MWCNTs) and wave propagation of double-wall carbon
nanotubes (DWCNTs) have been studied based on Flügge
shell equation [4,5,6]. These works show that the CNTs have
the vibration and sound wave frequency over terahertz be-
cause of their nanoscale, which opens a new topic on wave
characteristics. Some researches have taken the effect of ini-
tial stress on the wave propagation in CNTs [7-11] to under-
stand the dynamic behavior of CNTs.

Although much information is available on vibrational of
surface waves in CNTs, the torsional vibrational has not
drawn much attention and very little literature is available
on propagation of this wave. Lord Rayleigh [12], in his re-
markable paper, showed that the isotropic homogenous elas-
tic half-space does not allow a torsional surface wave to
propagate. Bhattacharya [13] has been investigated the tor-
sional wave propagation in a two-layered circular cylinder
with imperfect bond. The propagation of torsional wave in
a finite piezoelectric cylindrical shell has been discussed by
Paul et al. [14]. Recently, the propagation of torsional wave
in an initially stressed cylinder has been discussed by Dey et
al. [15] and Selim [16].

The purpose of this article is to study effects of initial com-
pression stress on torsional vibrational analysis of Single-
walled carbon nanotubes (SWCNTS). The analysis is based
on Flügge shell equation. A new equation of motion and
phase velocity of torsional waves propagating in CNTs sub-
jected to initial compression stresses have been derived. The
study reveals that the initial stresses present in the tubes has
strong effect on the propagation of torsional wave in CNTs.
Derive program version 6 was used to simplify the Algebraic
expressions and the results have been discussed and shown
graphically.

The paper is organized as follows. Section 2 provides the
governing equation of torsional vibrational in the tubes under
initial compression stress. Sections 3 and 4 provide torsional
vibration of carbon nanotube with and without initial com-
pression stress. Section 5 presents phase velocity of waves
propagate in torsion. Section 6 presents numerical results
from special model of CNTs under the effect of compression
stress. The results are shown graphically for different val-
ues of initial compression stress parameter and thicknesses of
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tubes. Finally, some conclusions on the developed method-
ology are given in Section 7.

2. GOVERNING EQUATIONS

The cylindrical coordinates system used for describing
the vibration of carbon nanotubes under initial compression
stress and is defined in Fig. 1. Approximate Flügge shell
equations are proposed as the governing equations of the
problem. In the derivation of Flügge equations, the follow-
ing assumptions (Love’s first approximation) for cylindrical
shells are made:
1- All points that lie on a normal to a middle surface before
deformation do the same after deformation.
2- Displacements are small compared to the shell thickness.
3- The normal stresses in the thickness direction are negligi-
ble (planar state of stress).
In particular, the first assumption may not correspond to re-
ality in the neighborhood of the shell boundaries. However,
this fact will not be considered here.

In the sequel, the x coordinate is taken in the axial direc-
tion of the shell, where the θ and z coordinates are in the
circumferential and radial directions, respectively (Fig. 1).
The displacements of the nanotube are defined by ux,uθ and
uz in the direction of x,θ and z axes, respectively. z is the
displacement from the middle surface of the tube. The coor-
dinates uxand uθrepresent in-plane axial and circumferential

displacements of the tube wall midsurface, respectively, and
uz represents the out-of-plane transverse displacement of the
tube wall (Fig. 1).

 

FIG. 1: Definition of geometry of the tube, displacements and
stresses.

The relationship of strains and stresses of thin –single tube
under initial compression stress can be written as
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whereP = −σzz is the initial stress parameter, ci j(i, j =
1,2,6)are the effective elastic constants of single-walled car-
bon nanotube, sxx,sθθ,sxθ are the membrane strains of the
middle surface, and kxx,kθθ,kxθ are the curvatures , which
are expressed as
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where R is the radius of the middle surface of shell. In-
tegrating the stresses across the thickness of the single-
walled carbon nanotube, the membrane forces Nxx,Nθθ and
Nxθ of the middle surface and internal moment Mxx,Mθθ and
Mxθexerted on the middle surface are expressed as [17]

{Nxx,Nθθ,Nxθ}=
∫ h/2

−h/2
{σxx,σθθ,σxθ} dz, (3a)

{Mxx,Mθθ,Mxθ}=
∫ h/2
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{σxx,σθθ,σxθ} z d, . (3b)

where his the effective thickness of single-walled carbon
nanotube. Substitution Eq. (1) into eq. (4), yields
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where Ai j, Di j and Bi j(i, j = 1,2,6)are the tension stiffness
, the bending stiffness and the tension-bending coupled stiff-
ness, which is expressed as [18]

{
Ai j,Bi j,Di j

}
=

∫ h/2

−h/2

{
1,z,z2} Ci jdz, (i, j = 1,2,6).

(5)
The ideal nanotubes structures can be obtained from a rolled
graphene sheet with an isotropic material. For isotropic
graphene sheet, therefore, the stiffness coefficients in Eq.(4)
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can be simplified and given by
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(
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Eh,
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and the coupled stiffness coefficientsBi j = 0, where E and
ν are the elastic modulus and is Poisson’s ratio of graphene
sheet.

Based on Love’s first approximation stated above and us-
ing the coordinate system defined in Fig. 1, the Flügge type
basic equations of motion are proposed as the governing
equations of the wave propagation under initial compression
stress (σxx =−P) in CNTs. The equations of motion for the
nanotube can be written by [19]
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where ζx = P(1+ν)
E , h is the thickness of the CNT , ρis the

mass density, P is the initial compression stresses, and P̂ is
the pressure between two adjacent nanotubes ( mainly due to
the van der Waals interaction).

In matrix form, equations (7) may be expressed as: L11 +α11 L12 +α12 L13 +α13
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(8)
where Li j(i, j = 1,2,3) are the differential operators with re-
spect to x and θ, given by
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σ =
h2

12R2 is the nondimensional thickness parameter, and

β =
(1−ν2)

Eh
. (10)

Equation (8) represents a set of three expressions as:

D11u1 +D12u2 +D13u3 = 0,
D21u1 +D22u2 +D23u3 = 0,
D31u1 +D32u2 +D33u3 + βP̂ = 0,

(11)

where

D11 = L11 +α11 , D12 = L12 +α12 , D13 = L13 +α13,

D21 = L12 +α21 , D22 = L22 +α22 , D23 = L23 +α23,

D31 =−L13 +α31,D32 =−L23 +α32,D33 = L33 +α33 .

(12)

3. TORSIONAL VIBRATION OF CARBON NANOTUBE

For the present problem we confine ourselves to study a
torsional vibration of carbon nanotubes. Assuming that a
nanotube vibrates in torsion only, such that the cross-section
of the tube is not elastically deformed, we can set

ux = uz = 0 and
∂(.)
∂θ

= 0 (13)

Following the usual procedure for the problems having θ

symmetry and using (13) it can easily be seen that the re-
maining part of equation of motion (7) becomes(
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Since the shear modulus G = E
2(1+ν) , thus the equation of

motion(15) becomes(
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)
∂2uθ
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Since we may assume that h2/12 << 1, and introducing the
velocity of shear sound wave at the initial stress-free (ζx = 0)

α =

√
G
ρ

(17)

We obtain

∂2uθ

∂ t2 −
(

α
2− ζxE

2hρ(1+ν)

)
∂2uθ
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4. PARTICULAR CASE

The presence of ζxin relation (18) shows that the effect of
initial stress on the equation of motion of nanotube in tor-
sion. If the nanotube is free from initial stresses, (ζx = 0),
the equation of motion (18) becomes

∂2uθ

∂ t2 − α
2 ∂2uθ

∂x2 = 0, (19)

which coincide with the result given by Werner [20] at the
absent of external forces.

5. PHASE VELOCITY OF TORSIONAL WAVES

Assuming a harmonic wave solution, namely

uθ(x,z, t) = A(z)exp[i(kx−ω t)], (20)

where A(z) is the amplitude of the wave propagation, and ωis
the circular frequency of the wave. Substitution of (20) into
(18) leads to:

k2
(

β
2− ζxE

2hρ(1+ν)

)
−ω

2 = 0 (21)

where ki s the wave number which is related to the angular
frequency by

k = ω/c. (22)

and cis the phase velocity of torsional wave. Inserting
Eqs.(17) and (22) into Eq.(21) the phase velocity (c) of tor-
sional wave may be obtained as

C
β

=

√
1− ζxE

2hG(1+ν)
(23)

A negative sign before the term ζxE
2hG(1+ν) of relation (23) in-

dicates that the presence of initial compression stresses (ζx)
reduce the phase velocity c, which is the same as obtained by
Narian [21]

6. NUMERICAL RESULTS AND DISCUSSION

The purpose of numerical computation is to examine the
effect of compression initial stresses on phase velocity of
torsional waves propagating in SWCNTs. In order to per-
form numerical calculation from equation (23) the CNTs to
be considered has the elastic modulus of graphene sheets
with E = 1 .095 T Pa, Poisson’s ratio of ν = 0.19and shear
modulus of G = 0.4601 T Pa. The mass density of CNTs of
ρ = 1.3 g/cm3. The SWCNTs are (40,0) zigzag tubes and
has a diameter of R = 2.0 nm.

The dispersion curves of dimensionless phase veloc-
ity of torsional waves with different values of thick-
nesses(nanometer) of SWCNTs under initial compression
stresses are presented in figure (2). The results show that
ashincreases the phase velocity of torsional wave increase.
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FIG. 2: Variation of dimensionless phase velocity (C/α) with
tube-thickness(h) for different values of initial stress parameter
ζx = 0.01, 0.025, 0.04.

In order to examine the influence of the initial compres-
sion stresses on the torsional wave propagation of SWC-
NTs, the results under initial compression stress ζx = 0.01,
ζx = 0.025 and ζx = 0.04 are plotted in figure (2). Compar-
isons show that the change tendency of the wave speeds of
torsional waves in single-walled CNTs with initial compres-

sion stresses ζx = 0.025 is similar to those in at ζx = 0.01,
and the change is clearly observed in the case of ζx = 0.04.
The curves reveal clearly that the presence of initial com-
pression stresses affects the propagation of torsional wave in
sense that every small change in the value of initial stress
parameter ζx produces a substantial change in the phase ve-
locity.

7. CONCLUSIONS

It is concluded that the presence of initial compression
stresses has a notable effect on the propagation of torsional
waves in single-walled carbon nanotubes. The study also,
shows that the presence of compressive initial stresses de-
creases the velocity of torsional waves propagating in single-
walled carbon nanotubes. The investigation presented may
be helpful in the application of CNTs, such as high – fre-
quency oscillators and mechanical sensors.
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