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ABSTRACT

We contribute by quantifying the e�ect of network latency and

battery consumption on mobile app performance and retention, i.e.,

user’s decisions to continue or stop using apps. We perform our

analysis by fusing two large-scale crowdsensed datasets collected

by piggybacking on information captured by mobile apps. We �nd

that app performance has an impact in its retention rate. Our re-

sults demonstrate that high energy consumption and high latency

decrease the likelihood of retaining an app. Conversely, we show

that reducing latency or energy consumption does not guarantee

higher likelihood of retention as long as they are within reasonable

standards of performance. However, we also demonstrate that what

is considered reasonable depends on what users have been accus-

tomed to, with device and network characteristics, and app category

playing a role. As our second contribution, we develop a model

for predicting retention based on performance metrics. We demon-

strate the bene�ts of our model through empirical benchmarks

which show that our model not only predicts retention accurately,

but generalizes well across application categories, locations and

other factors moderating the e�ect of performance.

CCS CONCEPTS

• General and reference→ Cross-computing tools and tech-

niques; • Networks → Network performance evaluation; • Com-

puting methodologies→ Modeling and simulation.
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1 INTRODUCTION

Nowadays there is an app for almost everything with Apple App-

Store, Google Play and other major marketplaces o�ering millions

of apps to users [48]. While the total number of apps on the mar-

ketplaces is high, a large fraction of them vanish without ever

attracting a signi�cant user base, and the majority of the rest strug-

gle to maintain their user base over time. Speci�cally, studies on

mobile app usage suggest that over a quarter of installed apps are

only used once [25], and even apps used for more than a day are

unlikely to stay relevant longer than a fortnight [46].

While low retention of apps is well known [9, 10], surprisingly

little is known about the conditions that drive users to abandon apps.

Indeed, existing research has mostly focused on identifying factors

that result in poor user perceptions without quantifying their e�ect

on user behaviour. For example, performance related characteristics

and technical problems have been shown to be a leading factor for

abandoning apps [15], a major source of frustration, and a common

complaint in app reviews [27, 28]. However, the point at which they

result in users abandoning apps is currently not known. Improving

our understanding of the relationship between user behaviour and

these factors would be of signi�cant academic and commercial

interest as, among others, it would deepen our understanding of

mobile interactions and how they are in�uenced by context [4, 7,

14, 36], provide marketers information about which factors most

contributed to the success or failure of an app [12, 23], and allow

developers to better understand how to improve their app [3, 40].

Traditionally, mobile app performance has been analyzed by

capturing performance metrics either on the network level or using

active monitoring on the user’s mobile device [1, 5, 24]. Unfortu-

nately both approaches are limited in their capability to capture

and quantify performance and its e�ect on mobile app usage. Net-

work level measurements only capture performance factors related

to networking, ignoring other factors such as energy completely.

Additionally, relating network measurements to speci�c applica-

tions is di�cult [1]. Active client monitoring captures richer set

of performance factors and allows relating them with speci�c ap-

plications, but su�ers from limited generality due to performance

being sensitive to the current context of the user. For example,

ambient temperature and mobility a�ect an app’s energy use [37]

https://doi.org/10.1145/3308558.3313428
https://doi.org/10.1145/3308558.3313428
https://doi.org/10.1145/3308558.3313428
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while latency is in�uenced by mobility, network operator, com-

munication technology and available network infrastructure [20].

Characterizing performance would thus require collecting a large

number of samples to ensure all relevant contexts are captured –

something that would take prohibitively long or require battery

heavy sampling when performed on individual device [20, 22].

In this paper, we contribute by quantifying the relationship be-

tween mobile application performance and retention, i.e., whether

users are willing to continue using an app. We perform our analysis

by fusing two large-scale datasets of crowdsensed measurements

collected by piggybacking on information collected by mobile apps.

Crowdsensing allows reaching a larger pool of users and usage

contexts by taking advantage of existing application distribution

channels, such as mobile app marketplaces. By piggybacking on

mobile app data, the overhead of data collection is minimized and

separate instrumentation of the devices is avoided, unlike in intru-

sive client-side monitoring. The �rst dataset we consider consists

of detailed information about network latency [47] and the sec-

ond contains information about energy consumption and mobile

app usage [32]. To analyze the combined e�ect of these perfor-

mance factors, we build on statistical survey analysis methods (hot

deck multiple imputation [2, 41]) to fuse the datasets together. Our

analysis focuses on energy consumption and latency as they have

been shown to be key components in shaping user’s perceptions of

apps [23, 27]. Indeed, energy drain is known to be a major source of

frustration and cognitive burden as users are forced to actively take

countermeasures to prolong their battery lifetime [6, 38, 39]. Impor-

tance of energy is also re�ected by the high popularity of energy

saving apps on mobile marketplaces [32]. Latency, in turn, a�ects

user engagement and results in shorter interactions and higher

degree of frustration [11, 18]. While importance of these perfor-

mance parameters has been established beyond doubt, their e�ect

on continued mobile application usage is currently not understood.

Our analysis reveals that both high energy consumption and

high degree of latency decrease the likelihood of retaining an app.

Conversely, we show that decreasing latency or battery consump-

tion does not guarantee higher likelihood of retention - as long

as they are within reasonable standards of performance. However,

what is considered reasonable depends on what the users have been

accustomed to, with the app category, device characteristics, and

network characteristics having an in�uence. For example, we �nd

the level of expected latency to be lower in Finland than in USA,

thanks to faster network infrastructure and consequently di�ering

user expectations. To provide further insights into app retention

and abandonment, as our second contribution, we develop a model

that predicts the extent that performance a�ects retention. We demon-

strate the bene�ts of our model through empirical benchmarks

which show that our model not only predicts retention accuracy,

but generalizes well across application categories, locations and

other factors moderating the e�ect of performance.

Summary of Contributions:

• We demonstrate that latency and energy, two key performance

metrics for mobile apps, have a signi�cant adverse e�ect on mo-

bile app retention and abandonment and that this e�ect is stable

across most application categories. However, we also conversely

demonstrate that improving latency and energy drain does not

Table 1: Summary statistics of application usage and net-

work connectivity datasets.

Dataset Samples Users Apps Time

NetRadar [47] 875,907 - - Jan 1 - Dec 31, 2016

Carat [32] 19,608,938 25,402 48,770 Jul 1 - Dec 31, 2016

Combined
1,000,058 (Latency)

2,819,748 (Energy)
1,241 243 Jul 1 - Dec 31, 2016

guarantee improvements in retention as long as the performance

metrics are within reasonable levels.

• We derive critical points for popular applications and applica-

tion categories, demonstrating that the point where performance

has a signi�cant e�ect varies depending on the level of perfor-

mance people are accustomed to, as well as the functionality and

category of the application.

• We further explain our �ndings through a model that predicts the

extent that performance a�ects retention. Our model achieves

an overall error of 1.4 percentage points (measured using Mean

Absolute Error MAE) of retention across all data.

2 DATASETS AND PREPARATION

We quantify the e�ect of performance-related variables on long-

term application usage by analyzing two large-scale crowdsensed

datasets. Our �rst dataset, NetRadar [47], contains information

about network performance at di�erent locations, whereas the sec-

ond dataset, Carat [32], contains information about mobile appli-

cation usage and energy drain of applications.1 To analyze overall

impact of performance, we fuse the two datasets using coarse-

grained location and timezone information. While instrumenting a

single application to monitor both energy and latency is technically

feasible, in practice the functionalities for sampling network or en-

ergy di�er signi�cantly, which would make attracting su�ciently

large user base di�cult. Indeed, network pro�lers are typically used

sporadically instead of continuous data collection. Continually col-

lecting network performance measures, on the other hand, would

signi�cantly increase energy overhead from sampling and thus be

contrary to the original purpose of energy-awareness apps.

After combining the datasets, we select those countries with

highest amounts of data for our analysis. In the intersection of the

two datasets, 91% of data is from Finland and USA, and 93% of the

USA data is from Eastern USA. This is mainly due to demographics

of the user populations of the mobile apps which were used to

collect measurements. As a result, we focus our analysis in Finland

and USA (EST - Eastern Standard Time). In the remainder of the

paper we use EST-USA to refer to the measurements collected from

USA that are included in our analysis. The datasets considered in

our study are summarized in Table 1.

2.1 Network Latency

Latency directly in�uences the response time of applications and

consequently has a major impact on the observed performance.

Several application categories, such as on-line gaming and web

conferencing [49], require low latency while for many others it can

1The datasets are available through separate license agreements. More information
can be found at http://carat.cs.helsinki.� and http://www.netradar.com/.

http://carat.cs.helsinki.fi
http://www.netradar.com/
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cause frustration even if it is not critical for running the app [11, 18].

For these reasons, we consider latency as a performance - related

parameter in our experiments. As source of latency data we con-

sider data collected through NetRadar, a mobile app designed for

end-users to help diagnose network conditions [47]. The data con-

sidered in our analysis consists of samples collected during cellular

network connectivity and contain timestamp, average RTT latency

calculated during a 5 second window interval, mobile network in-

formation in the form of mobile country code (MCC) and mobile

network code (MNC), and GPS location. We restrict our analysis

on cellular network connectivity as Wi-Fi has higher bandwidth

than cellular technologies and as its performance has less variation

overall [16, 17]. Another reason to limit on cellular networks is

that this guarantees our analysis to capture a broad range of usage

contexts and higher spectrum of mobility patterns.

Figure 1a compares the latency distributions of Finland and

EST-USA in the NetRadar dataset. The two locations have distinct

latency distributions with Finland having lower expected latency

than EST-USA (median 36ms vs. 66ms). The overall variation within

Finland is several orders of magnitude smaller with the majority of

values being within 45ms. For EST-USA, latency is mostly in the

range between 40 to 100ms, but we can observe smaller peaks at

around 140ms and even at 200ms. While the values of the distri-

butions di�er, the shape of the two distributions is similar with

both being long-tailed and skewed towards lower values. To put

the values into context, most latencies for Finland are below 70ms

which is within LTE network range. For EST-USA, the majority of

values is within LTE range, but we can also observe values over

100ms which are likely to correspond to 3G connectivity - or even

2G at the end of the tail. This would suggest there are di�erences

in network infrastructure, or mobile subscriptions, within the two

locations. These di�erences in latency distributions, and charac-

teristics of the underlying network infrastructure motivate us to

consider the two locations separately in our analysis.

2.2 Energy Consumption

Our second performance factor, energy, has been shown to be an

active source of frustration and a cognitive burden as users actively

seek to prolong their battery lifetime [6, 38, 39]. As source of en-

ergy consumption measurements we consider Carat [32], a popular

mobile energy-awareness application. Carat samples the device

whenever battery level changes. Each sample contains current bat-

tery level, timestamp, list of running applications and additional

attributes, such as device uptime and battery state.

As unit of analysis we consider energy rates which correspond to

the relative change in battery in a given time interval. Formally, let

∆b denote change in battery between successive samples, and let

∆t denote the di�erence in timestamps. Energy rate is then de�ned

as the mean change in battery over the interval, i.e., e = ∆b/∆t .
We only consider samples where rate is positive (negative rate

indicates charging), battery state is not charging (AC or USB), and

device uptime has increased from last sample (device has not been

turned o� in between). We restrict our analysis to samples collected

from Android devices as information about running applications

cannot be accessed on other platforms and because the sampling

granularity on Android devices is better than on iOS devices.
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Figure 1: Comparison of latency and energy rate distribu-

tions between Finland and Eastern USA.
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Figure 2: App category use pro�le di�ers between locations.

To study energy consumption of application a, we take all rates

ea containing a in the list of currently running apps and calculate

the mean rate ea for the application. Since energy consumption �uc-

tuates due to environmental variables (e.g., Wi-Fi and strength of

cellular signal) and speci�c system settings (e.g., screen brightness

or use of location tracking), and other currently running applica-

tions, we represent energy consumption using the 95% standard

error of the mean (SEM) con�dence interval [32] given by

ea,ranдe = ea ± h · σa√
na
, (1)

where h = 1.96 is the con�dence interval coe�cient, σa is the

standard deviation, and na is the number of samples containing a.

Figure 1b compares energy consumption distributions of Finland

and EST-USA. Compared to latency, the distributions are closer to

each other (mean rate 0.0056 for Finland cf. 0.0051 for EST-USA)

and have similar variance, with 44% and 45% of apps exceeding

the average in Finland and EST-USA, respectively. To put these

values into context, the means correspond to around 5 battery life

while most apps are in the range of 5-9 hours. Note that Carat �ags

applications with very heavy energy drain as hogs and recommends

the user to remove them [32]. For this reason applications with

very low expected battery life are rare in the dataset.

While the two locations have similar energy consumption distri-

butions, they di�er in terms of application usage patterns. This is

illustrated in Figure 2, which shows the usage frequency of each

category for both locations. EST-USA has higher overall applica-

tion usage, and the two locations di�er in terms of the relative

importance of application categories. In our analysis, we separately

consider the moderating e�ect of application category. Motivated

by these di�erences in application category use, we analyze also

energy separately across the two locations.
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2.3 Retention Rate

The main focus of our work is on analyzing and quantifying how

performance related factors a�ect long-term user behavior. As mea-

sure of user behavior we consider n day retention rate, which is

the fraction of users continuing to use an app n days since �rst

use. Retention is widely used to measure the success of apps as

higher retention corresponds to higher adoption and level of en-

gagement [46]. As source of retention information we use the list

of running applications collected by Carat. The list of applications

contains all applications running on the device, including those

related with the operating system and those pre-installed by the

manufacturer. To ensure our analysis focuses on actual usage, we

�lter the applications by (i) removing all apps for which no category

information is found on Google Play; and (ii) removing pre-loaded

applications that have not been seen on the foreground, such as

Google Exchange Services (com.google.android.exchange).

To estimate retention, let dua denote the number of days between

�rst and last use of an application a by user u in the Carat data. To

ensure retention is not in�uenced by the data collection period, we

only consider cases where we have measurements for 7 days before

�rst use, and 7 days after last use. Similarly, to ensure the estimated

retention patterns are su�ciently robust, we only consider users

that have at least 14 days of data, and apps that have at least 10

users that have used them for more than a day. The n day retention

rate of a, denoted ran , is then given by the fraction of users whose

retention time dua is higher than n, i.e.,

ran =
#Ua,n

#Ua
· 100 (2)

whereUa is the set of users to use a, andUa,n ⊆ Ua is the subset of

users for whom dua ≥ n. Note that retention rate is cumulative so a

user with da = 3 days also contributes to day 1 and 2 retention.

Table 2 compares the average retention over the �rst 7 days

across the two locations for the 5 most popular applications. From

the table we can observe the two locations to have distinct retention

patterns with Finland having higher mean retention than EST-USA,

but also much higher variation. To highlight di�erences in usage

across the locations, as part of the table, we have also included

the number of users, number of samples and summary statistics of

the performance variables for the apps. While the number of users

tends to be lower in EST-USA than in Finland, we can observe that

the number of samples to characterize each performance variable is

enough for both locations. In terms of retention behavior, one of the

applications, Dropbox, has lower latency but higher energy drain in

Finland than in EST-USA, which suggests that it is used in di�ering

situations. These di�erences in retention and usage patterns further

serve to illustrate the need to consider the measurements separately.

2.4 Combining Datasets

Di�erent performance factors are typically closely linked with each

other. For example, latency results in energy drain, and networking

technology has amajor impact on energy use [26, 37, 47]. To analyze

and quantify the combined e�ect of performance factors, we thus

need to combine measurements in the two datasets. We perform

the combination using hot deck multiple imputation, a widely used

method for aligning two datasets that overlap only partially [2, 30,

41]. The idea in hot deck imputation is to �ll in missing values

(in the combined set) with items that are similar (in the individual

data sets). In our analysis we consider the combined dataset as our

primary source of analysis as this ensures the usage contexts where

performance is captured are comparable across the datasets.

Data Fusion: We combine the datasets using a combination of

timestamp, and coarse grained location information given by Mo-

bile Country Code (MCC), Mobile Network Code (MNC) and reverse

geocoding of the GPS (time zone from the cellular coverage). The

sampling periods of the datasets di�er and hence we �rst need

to align them temporally. We perform the alignment by creating

hourly bins and mapping each sample in NetRadar and Carat to

the closest bin. Next, we match the (MCC, MNC, Time zone) tuples

across the two datasets in each bin and calculate hourly latency

values for a given location as medians of all matching measure-

ments. The measurements in the combined dataset are summarized

in Table 1. In total, the combined dataset comprises 243 applications

and 1,241 users from July to December, 2016. This is translated in

terms of samples to 1, 000, 058 measurements for analyzing latency,

and 2, 819, 748 measurements for analyzing energy. The reason for

di�ering sample counts for energy and latency is that we perform

the matching separately for each application and category consid-

ered in our analysis. As the energy dataset is originally larger, this

results in a higher total sample count of energy.

Validity:We demonstrate the validity of the combined dataset by

comparing statistical characteristics extracted from the combined

data against those extracted from the individual datasets. First,

we compare mean latency and energy of the individual datasets

to those of the combined set. The mean and standard deviation

values for both latency (Finland, mean = 38.27, SD = 12.31; EST-

USA, mean = 87.45, SD = 61.34; combined, Finland mean = 36.7,

SD = 6.6; EST-USA, mean = 84.4, SD = 53.4) and energy (Finland,

mean = 0.0053, SD = 0.012; EST-USA, mean = 0.0059, SD = 0.016;

combined, Finland mean = 0.0056, SD = 0.003; EST-USA, mean

= 0.0051, SD = 0.0023) are closely aligned, suggesting that the

statistical characteristics of the individual datasets are preserved in

the fusion. Second, we compare the sample distributions between

the combined and individual datasets using Kolmogorov-Smirnov

distribution tests. No statistically signi�cant di�erences were found

(latency: Finland KS = 0.104; EST-US KS = 0.096, p > 0.05; energy:

Finland KS = 0.04; EST-US KS = 0.05, p > 0.05).

Representativeness:We assess whether the energy distribution

of Eastern USA is representative of USA as a whole by compar-

ing energy distributions of all samples from USA against those

matched to Eastern USA based on timezone information. Again, no

signi�cant di�erences were found (KS = 0.06, p > 0.05).

2.5 Privacy

We consider only aggregate-level data derived from anonymous

user records. We consider country level granularity due to privacy

reasons and the need for additional application permissions for

collecting �ner grained location information of individual users.

For Carat, the privacy protection mechanisms are detailed in [32]

and for NetRadar in [47]. Users of both apps are informed about

the collected data and consent from their devices.
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Table 2:Retention rate variation, energy and latency, and in�uence of appperformance in retention for top 5 categories (a) and applications (b)

together with statistical analysis results of the importance of performance on retention. Darker colors re�ect statistical signi�cance (p ≤ 0.05).

(a) Retention(r) Energy Latency Signi�cance: Energy Signi�cance: Latency

Category Location Mean St.dev. Users Mean St.dev. Samples Median Samples Day 1 Day 7 Day 15 Day 1 Day 7 Day 15

Communication (C) Finland 94.1 2.3 993 0.0049 0.0014 3,184,554 34 1,197,260 0.028 0.005 0.006 0.003 0.685 0.921
EST-USA 78.1 7.5 83 0.0052 0.0010 474,340 79 4,044 0.019 0.026 0.244 0.313 0.001 0.053

Productivity (P) Finland 90.1 3.8 719 0.0049 0.0014 1,726,808 37 622,071 0.654 0.600 0.378 0.033 0.001 0.002
EST-USA 78.1 7.5 63 0.0048 0.0018 328,787 79 1,654 0.263 0.636 0.756 3.0E-04 1.0E-04 0.584

Tools (T) Finland 87.5 4.8 697 0.0059 9.0E-04 1,614,639 36 606,531 3.0E-04 0.001 1.0E-04 2.0E-04 1.0E-05 0.007
EST-USA 76.8 8.1 73 0.0050 0.0015 376,269 89 2,585 0.059 0.005 5.0E-04 0.499 0.029 0.016

Social (S) Finland 88.7 4.3 684 0.0056 0.0016 1,367,938 34 53,2110 0.223 0.284 0.027 0.010 0.246 0.0669
EST-USA 76.4 8 68 0.0051 0.0011 294,461 68 2,779 2.0E-04 4.0E-05 0.003 0.0612 0.022 0.099

Music (M) Finland 79.7 7.2 552 0.0051 0.0020 292,685 35 118,019 0.004 0.050 0.304 0.803 0.288 5.0E-04
EST-USA 64.4 12.3 42 0.0037 0.0011 118,454 101 885 0.027 0.389 0.908 0.244 0.007 0.013

(b) Retention(r) Energy Latency Signi�cance: Energy Signi�cance: Latency

App Location Mean St.dev. Users Mean St.dev. Samples Median Samples Day 1 Day 7 Day 15 Day 1 Day 7 Day 15

Whatsapp (C) Finland 98.3 0.8 815 0.0047 0.0014 980,097 35 405,203 0.028 0.040 0.011 0.007 0.066 0.109
EST-USA 66.5 13.8 25 0.0050 3.0E-04 45,281 79 588 0.315 0.194 0.724 0.460 0.293 0.125

Facebook (C) Finland 98 0.9 617 0.0039 0.0018 1,109,947 32 389,834 0.027 0.107 0.007 0.203 0.638 0.381
messenger EST-USA 95 2.1 55 0.0052 0.0016 239,841 108 2,178 0.050 0.017 0.011 0.186 0.096 0.158

Facebook (S) Finland 96.9 1.5 565 0.0036 0.0021 955,718 37 345,073 0.239 0.431 0.022 0.009 0.001 0.002
app. EST-USA 86.7 5.4 59 0.0060 1.0E-04 225,832 77 1897 0.013 0.004 0.009 0.035 0.050 0.010

Dropbox (P) Finland 94 2.6 428 0.0056 0.0019 606,958 40 204,430 0.665 0.478 0.792 0.039 0.004 1.0E-04
EST-USA 78.1 8.8 24 0.0038 1.0E-04 102,060 79 316 0.377 0.216 0.134 0.105 0.074 0.313

Twitter (N) Finland 92.7 3.2 323 0.0042 0.0017 192,232 37 71,067 0.089 0.040 0.147 0.231 0.065 0.232
EST-USA 67.8 13.8 26 0.0045 0.0012 38,192 70 314 0.471 0.033 0.077 0.030 0.041 0.198

3 QUANTIFYING EFFECT OF PERFORMANCE
ON RETENTION

In this section, we quantify, for the �rst time, the impact of perfor-

mance related factors on long-term user behavior, as re�ected by

retention. We focus on latency and energy as the main performance

related variables and analyze them using the Netradar and Carat

datasets described in the previous section (see Sections 2.1 and 2.2).

We �rst consider the impact of latency and energy individually,

showing they indeed have a signi�cant in�uence on retention. We

proceed to quantify the point where the e�ect of performance be-

comes signi�cant, demonstrating that we can identify a critical

point beyond with performance has a clear e�ect. We also demon-

strate that the e�ects of energy and latency are moderated by user

expectations and by application functionality. We end the section

by analyzing the combined e�ect of latency and energy, showing

them to have a complex relationship where neither variable alone

is capable of explaining retention.

3.1 Performance In�uences Retention

We begin our analysis by demonstrating and quantifying the overall

in�uence of latency and energy as individual performance-related

variables on retention, analyzing their combined e�ect in Sec. 3.6.

Both latency and energy have been shown to a�ect user experi-

ence [27], and hence to have an indirect e�ect on long term user

behavior. However, whether they have a direct e�ect on retention

has not been previously established. We assess overall e�ect using

Kruskal-Wallis test and considering the �ve most popular appli-

cation categories (Communication, Productivity, Tools, Music &

Audio, and Social) and applications (Dropbox, Facebook Messenger,

Whatsapp, Facebook, Twitter). For each day of the retention period

(1 − 15 days), we compare the mean performance of those that stop

using the application and those that retain it.

Table 2 shows results of statistical tests at both category-level and

app-level together with corresponding retention and performance

Table 3: Retention rate di�erence of hiдh and low groups propor-

tions for app categories and apps: L: Latency, E: Energy; O: Overall,

C: Communications, P: Productivity, T: Tools, S: Social, M: Music, w:

Whatsapp, fm: Facebook Msg., fa: Facebook, d: Dropbox, t: Twitter.

Area, Factor O C P T S M w fm fa d t

Finland, L 63 67 58 26 65 67 10 84 30 57 45
Finland, E 69 63 78 50 67 63 50 43 69 78 51
EST-USA, L 24 32 10 18 25 10 10 10 10 10 31
EST-USA, E 52 10 64 25 11 29 10 10 10 10 10

values. From the results, we can observe that performance indeed

a�ects retention, but the e�ect is moderated by application category

and popularity of the app. We can also observe the e�ects to re�ect

di�ering interaction patterns across application categories. For

example, messaging apps (Facebook messenger andWhatsapp) that

require users to wait for response are not in�uenced by latency but

energy drain has signi�cant e�ect on their retention. On the other

hand, productivity apps, which tend to be used for shorter periods

of time, demonstrate signi�cant e�ect for latency but not for energy.

Comparing e�ects across number of days, we can observe users to

have di�erent levels of tolerance for poor performance depending

on application category. For example, Music apps show no e�ect

on latency at day 1, and even at day 7 they only show an e�ect in

Eastern USA where latency is higher than in Finland. However, at

day 15 latency has a signi�cant e�ect for both locations. Similarly,

e�ects of energy are higher for later days for both Facebook and

Twitter, suggesting users are willing to tolerate more performance

issues with them – potentially because other factors, such as user

experience, are more important during the �rst few days.

3.2 Level of "Critical Point" in Performance

Previous section demonstrated that both latency and energy have

an overall e�ect on retention. We next analyze the relationship
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between performance related variables and retention in more detail,

showing that we can identify clear points where decrease in perfor-

mance results in lower retention. We refer to these points as critical

points of performance. Conversely, we demonstrate that improving

performance beyond this point has no in�uence on retention.

We carry out the analysis by splitting users into two performance

groups using a thresholdv on the two performance factor, and com-

pare the retention in the two groups using a test of proportions (i.e.,

a two-tailed z-test). We iterate over di�erent values ofv considering

values between the 10th and 90
th percentile identifying the range

of values where retention is signi�cantly di�erent. We omit the

lowest and highest 10 percentiles as these resulted in the smaller

group having insu�cient data for assessing statistical signi�cance.

In the following we refer to the two user groups as high and low

depending on which side of v the average performance of users in

the corresponding group is.

Table 3 shows the percentile of latency and energy after which

the test of proportions indicates di�erence in retention rate between

the low and high groups to be statistically signi�cant (p < 0.05).

We show percentiles instead of exact performance values due to

the fact that the values vary across categories and applications

depending on which samples include the category or application.

From the results we can see clear di�erences in the points where

performance start to in�uence retention. Mirroring the results of

previous section, we can see that both the category and applica-

tion moderate the results Besides the category and application,

we can also observe location to heavily moderate the level where

performance starts to in�uence retention. In Finland, signi�cant

di�erences start to occur only at higher percentiles, whereas in

Eastern USA signi�cances start to appear earlier. As an example,

latency higher than 60
th percentile has signi�cant e�ect of reten-

tion across all application categories in Finland, whereas in USA

the e�ect is signi�cant already from 30
th percentile onwards. Simi-

larly, energy starts to have an e�ect at much earlier percentile in

Eastern USA than in Finland. For latency, this di�erence can be

partially explained by di�erences in network infrastructure, with

users in Finland having lower latency and less variability than users

in Eastern USA. However, for energy this is not the case with the

distributions being similar across the two locations. Consequently,

this suggests that users at di�erent locations either assign di�erent

importance to energy or have di�erent levels of tolerance.

3.3 Di�erence in the E�ect of Performance

In the previous sectionwe showed there to be a critical point beyond

which performance starts to have a signi�cant e�ect on retention.

We next analyze the extent at which individual performance factors

start to have a signi�cant e�ect on retention during app usage.

To perform this analysis, we �rst calculate the di�erence in re-

tention percentage between the high and low groups. Figure 3

shows the results. We identify in the �gure the percentile where

the changes �rst become signi�cant and can start to be quanti�ed

(critical point depicted as vertical line). Points where the di�er-

ence is negative correspond to cases where retention drops in line

with performance degradation. From the �gure we can observe

the strength of signi�cance to vary considerably across locations,

categories, and applications. We also can see that, depending on the

Table 4: Critical Point and ∆P for top 5 categories and apps.

Critical Point, EST-US Critical Point, Fin

Category Energ. Lat. ∆P Energ. Lat. ∆P

Communication 10 27 -17 64 67 -3
Productivity N/A 10 N/A 79 58 21
Tools 24 28 -4 50 23 27
Social 11 16 -5 67 58 93
Music 29 10 19 64 67 -3

App Energ. Lat. ∆P Energ. Lat. ∆P

Whatsapp N/A 10 N/A 74 11 63
Facebook Msg. 10 10 0 84 N/A N/A
Facebook App. 19 10 9 87 30 57
Dropbox 46 10 36 80 57 23
Twitter 70 31 39 N/A 45 N/A

category, the percentile at which performance di�erences become

signi�cant varies between energy and latency, with one factor typ-

ically having a signi�cant e�ect much earlier than the other. We

also can observe that for a few cases, the performance factor does

not seem to in�uence the retention (gray background). Most of

these cases correspond to communications apps, such as Whatsapp

and Facebook messenger, which are commonly used within social

circles and whose usage is moderated by level of social activity [44].

Even if the performance of these apps would be suboptimal, replac-

ing them would require the user’s entire social circle to migrate to

a new service, which is unlikely to happen rapidly.

To further analyze these di�erences in signi�cance, Figure 4

compares the di�erence in critical points (CP) between energy and

latency, represented as di�erence in percentiles ∆P . In the Figure

we consider the collection of all applications across all categories

for both, Finland and Eastern USA. Interestingly, when the e�ect of

latency is perceived �rst, the area of ∆P covers a wider percentile

range than in the opposite case. Indeed, when latency is the �rst

to have an e�ect, energy becomes signi�cant only at much later

percentages. This relation is explored in Table 4 for all categories

and apps considered in our analysis. We analyze this relation by

calculating a (Kendall) correlation between CPs for both factors.

We observe a positive correlation between CPs for both categories

(0.51, p = 0.04) and apps (0.62, p = 0.05). From the table, we see

indeed greater di�erence between energy and latency when latency

is perceived �rst to decrease performance. We can observe that this

relation is three-times as signi�cant for apps than for categories.

Intuitively, energy consumption of a particular application may

take a long time for the user to discover, while network conditions

can change rapidly within seconds and minutes. Therefore bad

latency can be discovered much quicker than high energy con-

sumption. Higher latency may also a�ect the energy consumption

of the device, which can result in retention decreasing faster. Be-

cause latency is a shorter-term phenomenon than battery life, the

decreased retention is easily attributed to latency instead of both

energy consumption and latency.

3.4 E�ects on Highly-Rated Apps

Besides performance, app functionality and user interface design

can in�uence user satisfaction and ultimately retention. To demon-

strate that e�ects of performance on retention are robust across
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Figure 3: Average retention di�erence for hiдh and low groups. (a), (b) Latency, (c), (d) Energy. Categories: O: Overall, C: Communications, P:

Productivity, T: Tools, S: Social, M: Music; Apps: o: overall, w: Whatsapp, fm: Facebook Msg., fa: Facebook App., d: Dropbox, t: Twitter

EST-USA Finland

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

-5

0

5

10

15

A
v
e

ra
g

e
 r

e
te

n
ti
o

n
 r

a
te

d
if
fe

re
n

c
e

 (
h

i-
lo

w
) 

[%
]

  Mean Energy   Mean Latency Critical point

Figure 4: Overall average retention di�erence for hiдh and low

groups combining latency and energy "critical point" thresholds.

other factors, we analyze 10 applications that are not among the top

apps of their categories but have high user satisfaction. As proxy for

user satisfaction, we consider the star rating of the apps on Google

Play store. As these applications have predominantly received high

ratings, users are likely satis�ed with the functionalities and user

interface design of the apps. We omit most popular applications to

avoid possible popularity biases in�uencing the retention of these

apps. For our selection of apps, we also ensured that any negative

ratings would not be caused by di�erences in functionality between

commercial and free versions of the app, e.g., due to high amount

of advertisement or restricted functionality.

Table 5 shows results together with the applications and their rat-

ings. We applied the same method to calculate the critical point(CP)

and di�erence (DeltaP ) (see Sec. 3.2). Latency has higher impact

than energy for apps that highly depend on displaying on-line con-

tent, such as Viaplay. Retention of apps used for personalization,

such as Zedge, is more in�uenced by energy variations. The criti-

cal points behave similarly for apps with similar functionality. For

example, for both eBay and Aliexpress the critical point on latency

is low whereas users are more tolerant to energy. As both applica-

tions focus on online shopping are used only intermittently, the

importance of latency is understandable. However, for utility apps,

such as AVG and Avast, no clear patterns can be identi�ed. Indeed,

Avast is more sensitive to latency whereas AVG is more sensitive

to energy. In summary, our results show that even for applications

with high user ratings, clear critical points can be identi�ed, sug-

gesting that performance indeed has a major in�uence on their

retention. Our analysis also suggests that the relative importance

of latency and energy is dependent on the functionality of the app.

Table 5: E�ect of performance in case study apps. r: retention, CP:

Critical Point ,E: Energy, L: Latency; App: ag: AVG antivirus, aa:

Avast antivirus, ac: Avast cleanup, f: Firefox, ae: Aliexpress, e: Ebay,

v: Viaplay, h: Here WeGo, s: Sports tracker, z: Zedge; Categories:

T: Tools, C: Communication, SH: Shopping, E: Entertainment, MA:

Maps, H: Health, PE: Personalization.

Categ App Google ⋆ r CP,E CP,L ∆P

T ag 4.5 90.2 10 22 -12

T aa 4.5 95.2 33 14 19

T ac 4.5 90 21 12 9

C f 4.4 84.1 37 90 -53

SH ae 4.6 88.2 71 31 40

SH e 4.4 79.2 49 10 39

E v 4.0 84.3 58 17 41

MA h 4.4 71.2 50 28 22

H s 4.5 70.6 56 21 35

PE z 4.6 92 10 73 -63
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3.5 Other Factors

To further demonstrate the robustness of our �ndings, we next

demonstrate that the e�ect of performance is robust across other

factors in�uencing user perceptions and retention.

Data Freshness: We repeated our analysis for e�ect of energy

considering a snapshot of Carat data collected between May 2018

and October 2018. We consider the same �ve categories and appli-

cations as in Sec. 3.1. The mean retention of all categories and apps

decreased compared to 2016 with particularly Tools and Dropbox

witnessing steep decline. The critical point shifted to a higher per-

centile for communication (9 percentiles) and music and audio (5

percentiles), but decreased for the other three categories (percentile

di�erences: 11 for productivity, 5 for social, 40 for tools). For the in-

dividual apps, the critical point shifted to a lower percentile for four
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apps. The sole exception was Twitter, for which we were unable

to obtain a clear critical point earlier. In the 2018 data, the critical

point is at 66th percentile, which is in line with the other apps. The

results thus suggest that the e�ect of energy on retention is robust

over time. In fact our results suggest it has increased in importance

since most critical points have shifted to lower percentiles.

Robustness against Energy Saving Mechanisms: To rule out

potential biases resulting from the fact that our application data

was collected using an energy-awareness app, we repeated our anal-

ysis on all applications with energy rates lower than the average

energy rate across all apps. For these apps neither Carat nor energy-

e�ciency mechanisms of the operating system trigger warnings,

suggesting the e�ects of performance are direct result of user per-

ceptions while using the app. The overall e�ect of energy persists.

However, since their overall energy usage is low compared to other

apps, critical points shift on average to a 17 percentile higher point.

3.6 Combined E�ect of Latency and Energy

We next assess the combined e�ect of energy and latency by per-

forming a cost-bene�t analysis that looks at the combined e�ect

on retention when the importance of individual factors is varied.

To perform the analysis, we de�ne a linear cost function that de-

termines the overall e�ect of the two performance variables as a

weighted combination of their individual e�ect. We consider di�er-

ent relative weightings to see how the importance of individual fac-

tors a�ects retention. Formally, let rl and re denote the di�erences

in retention between the hiдh and low groups (See Section 3.2), and

lw and ew the weights of latency and energy, respectively. Given

energy e and l , we estimate retention for a given performance level,

denoted R(e, l), using
R(e, l) = re · ew + rl · lw

ew + lw
. (3)

Figure 5 shows the results of our analysis as series of heatmaps.

Each heatmap shows the combined e�ect of latency (y-axis) and

energy (x-axis) on retention for di�erent percentiles (10-90) and

di�erent weights lw and ew . In the �gure, lighter colors re�ect

retention improvement and darker ones worsened retention. The

scale is in percentage units of retention.

From the �gure we can observe the e�ect of performance factors

to be non-linear with neither variable clearly dominating the other.

When latency is twice as important as energy, the e�ect on retention

is slightly higher than in the opposite case. However, even in this

case there is a lot of variation and a highly complex relationship

between the two performance variables.

4 MODELING RETENTION

Having quanti�ed the e�ect of performance on retention, we next

develop a mode for predicting the degree to which performance a�ects

retention. Themodel is important to estimate how users will respond

to apps during their evolving life span, e.g., di�erent releases with

extra processing and network functionality.

Model speci�cation: In our general model, app retention is in-

�uenced by M factors Fi , |1 <= i <= M . Each factor Fi has a per-

formance threshold ϵi , whose changes a�ect the overall retention.

Thus, ϵi depicts the starting point to quantify how incremental

poor performance of a factor impacts app retention. By analyzing
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Figure 5: Retention behaviour for performance-related fac-

tor given di�erent weights of latency lw and energy ew .

changes in performance relative to ϵi , it is possible to estimate the

amount of in�uence that a performance level has on retention. We

estimate retention using a step function as depicted in equation 4,

where x is the performance value for a factor, e.g., 30ms for latency;

and дi (x) is an exponential probability function that approximates

the retention rate of the factor given expected performance.

Ri (x) =
{

0, x ≤ ϵi

дi (x), x > ϵi
(4)

We then quantify the overall impact on retention by aggregating

the in�uence of each individual factor. The overall impact of app

performance on retention, R, is determined by the factor Fi ∈ M

whose in�uence on retention is highest, i.e. R = max(Ri ). The
expected retention rate is then calculated from the unin�uenced

retention rate curve r (x) by division as follows r ′(x) = r (x)/R
Experimental Setup:We assess performance of our model by per-

forming a 80/20 split for each country (Baseline). We also perform a

cross-country validation between Finland and EST-USA subsets by

training our model with data from Finland and predicting EST-USA

retention based on expected performance, and vice versa. Following

same approach, we also analyze the e�ect of mixing data from Fin-

land and EST-USA (Mixed) into a single subset to predict retention.

We then compare the performance of our model when predicting

retention based on combined factors.

Individual factor prediction: The top part of Table 6 shows the

results of the baseline. We can observe that our model indeed is

able to predict retention values with lower error rate, specially

for Finland as it is the country that has most of the data for our

analysis. We then explore Cross-country validation. The Cross-

country sections of Table 6 shows the results for both latency and

energy. From the result, we can observe that the error rate increases

slightly compared to the country baseline. Ourmodel has an average

overall prediction MAE of 2.25, which depicts an overhead of 46%

when compared with the baseline. However, we can observe a small

error window in retention based expected latency for (EST-USA

→ Finland), in this case, the error is reduced in 5%. The slightly

overhead is due to the fact that critical points in which performance

starts to be perceived by users is di�erent in each country. For
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Table 6: MAE for categories (model data → predicted), O: Overall,

C: Communications, M: Music, P: Productivity, S: Social, T: Tools

Retention estimation O C M P S T
(Baseline) Latency
Finland (80%)→ (20%) 0.91 0.54 1.67 0.98 0.83 1.72
EST-USA (80%)→(20%) 1.90 3.33 10.03 2.86 3.15 2.13
(Baseline) Battery
Finland (80%)→ (20%) 0.63 0.30 0.75 0.73 1.12 1.08
EST-USA (80%)→(20%) 1.51 2.49 3.87 1.69 3.70 2.77
(Cross-country) Latency
Finland→ EST-USA 3.58 5.00 31.99 3.76 7.13 2.29
EST-USA→ Finland 1.66 6.49 37.06 3.39 8.15 2.01
(Cross-country) Battery
Finland→ EST-USA 2.29 5.84 4.98 2.21 15.49 4.61
EST-USA→ Finland 1.53 1.30 5.67 2.18 21.29 4.18
(Mixed Finland + EST-USA)
Latency (80%)→(20%) 0.82 0.50 1.10 0.85 0.61 1.49
Battery (80%)→(20%) 0.28 0.27 0.83 0.56 1.11 1.04
(Mixed Finland + EST-USA)
Combined Latency+
Battery (80%)→(20%) 0.29 0.45 0.97 0.35 0.47 0.51

instance, when training our model with latency data from Finland

to predict EST-USA, we can observe that the observed latency in

Finland is between 30 − 45 ms while the ground truth of EST-

USA consists of values around 51 − 147 ms. Clearly, the accuracy

prediction of our model is reduced due to this issue.

On the other hand, when analyzing a speci�c application cate-

gory, we observe a higher error rate, particularly when trying to

generalize the data from EST-USA to Finland. The errors for cate-

gories are in�uenced by the number of samples and applications

included in the subset that is used to train the model (see Table 2).

Additionally, the dominant applications of each category can di�er

in the two locations. For instance, in the case of the Music category,

most of the collected data for Finland is from the Spotify app, while

in the case of EST-USA, most of the data is from the Pandora Music

app (not available for installation in Finland), which explains the

higher rate of error for the Music category. Similarly, the Tools

category contains signi�cant variation across the locations which

explains worse predictive performance. However, for categories

with similar usage patterns the results are well aligned across the

two countries, like in the case of the Productivity category.

We then proceed to analyze the performance of our model when

mixing the data of Finland and EST-USA to predict retention. The

bottom of Table 6 shows the results. We can observe that our model

improves signi�cantly when mixing data from both countries. In-

deed, we can observe very accurate predictions withmarginal errors

up to 1.49 for all the categories and for both factors.

Combined factor prediction:We analyze the e�ect on retention

when multiple performance factors are taken into consideration.

Since the accuracy of the prediction clearly is improved when mix-

ing the data of both countries, we perform a 80/20 validation using

both mixed datasets for both energy and latency. In the combined

e�ect, the value of retention is constrained by the factor that in-

�uences the performance the most. In other words, the factor that

is perceived �rst by users. Table 6 also shows the results for the

combined prediction. Compared to the results of individual factors

(Baseline, Cross-country and Mixed), we can observe an improve-

ment in overall retention prediction. We can observe a maximum

marginal error of 0.51 for all the categories, which depicts around a

50% reduction in error when compared with our mixed model that

performs the best in the individual factor analysis.

5 DISCUSSION

On data validity: The Carat application used as source of energy

measurements records samples whenever the battery level changes,

and may not be able to record data when the phone is in sleep

mode, depending on the operating system version. Therefore, the

data we see here is biased towards active use, and the resulting

battery life values represent the remaining time for actively us-

ing the device with a given application running 100% of the time.

In the dataset, the most common e (around 0.005) represents an

active battery life of 5 hours. To mitigate these biases, we ensure

selecting the location and apps with the most samples to foster

better characterization of performance factors. Similar considera-

tions apply to the NetRadar dataset used as source of latency data,

which is predominantly collecting data whenever users explicitly

request network performance assessment or periodically at user

con�gurable intervals (between 1 and 120 minutes).

Data Quantity: Our validation of the retention prediction model

suggests that number of training samples is critical for ensuring

high quality predictions. In the case of Finland, data from several

hundreds of users was obtained while for US only few tens of users

were retained after data fusion. Our data was collected from two

mobile applications that have been in long-term usage worldwide,

suggesting that crowdsensing is indeed essential for capturing su�-

cient quantity of measurements. However, our results also highlight

the di�culties whenmultiple crowdsensing datasets need to be com-

bined in that their intersection might be small, limiting the power

of statistical analyses carried on it.

Fusion of Large-Scale Passive Data: We combined passive mea-

surements from NetRadar and Carat datasets in our analysis. While

we ensured that statistically the dataset combination is representa-

tive by analyzing and estimating similarity metrics of each dataset

individually, we experienced a high reduction of available samples

in the fused dataset, mainly due to limited coverage of USA in the

NetRadar dataset. However, data fusion is necessary to ensure the

quality of contexts that we study. For example, the location, time,

operators and communication technologies, etc, must be matched

between the records of the two datasets. In other words, there is a

trade-o� between data data size and data quality. In addition, the

individual nature of each dataset (NetRadar - infrastructure, Carat -

App usage) also acted as a �lter in the combination process, as extra

manipulation was required to match attributes in both datasets,

e.g., reverse geocoding in the GPS of NetRadar to match the time-

zones of Carat data records. We were able to model the combined

relation that energy and latency have on retention by merging the

two datasets. Our methodology also provided insights about the

relationship between performance factors that was initially hidden,

but revealed when the di�erent sources were combined, similar

to recent observations [13] . Speci�cally, we observe that when

latency starts a�ecting retention, large variations in energy e�-

ciency are possible before retention is a�ected further. However,
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when battery life issues cause lower retention, latency can vary

less before retention degrades further.

Energy e�ciency models can in�uence retention: Extending

battery life for smartphones is a primary research topic in academy

and industry. Mobile devices are equipped with awareness mech-

anisms that monitor energy consumption based on applications

usage and resources utilization. Smartphones then can decide based

on this information whether to stop, outsource, or moderate the

execution of tasks to save energy. While these mechanisms indeed

induce gains in energy as the computation of tasks are reduced,

they can foster a collateral damage in the perception that users have

towards apps. For instance, iOS devices implement a low power

mode mechanism that reduces computation of applications in the

background to save energy [43] . This suggests that app perfor-

mance is reduced and augmented dynamically based on application

usage. This can potentially a�ect retention as the responsiveness of

applications is degraded. By using our model in conjunction with

energy e�ciency models, it is possible to equip smartphones with

a smarter mechanism that can save energy without degrading per-

formance to an extent in which it is not tolerable to users anymore.

As shown in Sec. 3.5, both the overall e�ect and existence of critical

points are robust against e�ects of these mechanisms.

In�uence of performance depends on usage patterns: Appli-

cation usage patterns can be very di�erent. For example, Dropbox

is a productivity application which mostly runs on the background

synchronizing photos. When the user interacts with it, they do so

to �nd or share a �le, using it infrequently and for a short period of

time, which results in smaller in�uence of performance degradation.

On the other hand, Facebook and Twitter apps provide a continuous

feed of updates enabling users to spend hours reading, watching,

and interacting with content. Not only does this presenting a larger

window of opportunity for performance issues to manifest, but this

highlights how di�erent usage patterns are likely to in�uence the

importance of di�erent performance factors.

6 RELATED WORK

Mobile App Quality: Previous research on mobile app quality

has focused on exploring user perception of mobile apps. Common

techniques include usability studies [42], contextual inquiries [19],

sensor data logging [33], interviews [27], and text mining on user

reviews [23]. These studies generally focus on the user’s perception

instead of factors that a�ect it. Ickin et al. [27] list bugs, performance

issues, and poor match with user needs as factors that in�uence

quality perceptions while Chen et al. [12] show that app ratings are

key driver for app downloads. While these factors a�ect app percep-

tions, studies do not explain how these perceptions translate into

changes in behaviour. Our research addresses this gap with existing

studies, focusing speci�cally on the e�ect of app performance.

Mobile App Performance: There has also been research looking

at modeling application performance through the steps involved

by the user’s task [40] and the response time perceived by the user.

Most relevant aspects causing bottlenecks in app performance have

been shown to be network communication and processing costs.

There have been research e�orts to study network performance

metrics and relate them with user satisfaction [1, 24]. The general

idea is to capture features, such as bitrate, jitter and delay metrics,

and to use machine learning to predict user response times [5, 8,

31]. Approaches for dynamic resource augmentation have been

proposed to alleviate bottlenecks, relying solely on the device’s

resources [45] or remote infrastructure [21]. While performance

has been modeled and improved, the level at which it starts to

in�uence user perceptions has not been quanti�ed previously.

E�ect of Energy: Human interface studies have shown that 80%

of mobile users will take steps to improve their battery life [39].

Past work have termed unnecessarily high energy consumption in

applications as energy bugs [34] and identi�ed their possible causes,

such as the environment or settings of the smartphone [37] and

programming problems [35]. Regardless of the cause, an app that

reduces battery life may end up getting uninstalled by users [3],

and possibly replaced by a di�erent app. Many applications try

to improve energy consumption by controlling processes on the

device, or helping users identify energy hungry applications [32]

and raising the level of energy awareness among users [3].

E�ect of Network Quality: Network quality has been studied

mainly through the in�uence of latency on user experience in desk-

top contexts and within speci�c application categories, e.g. online

gaming [11, 49], education and video streaming [29, 50]. Studies

on the former have shown that latency reduces session times, and

that users actively seek countermeasures to reduce latency. In ed-

ucation, latency has been a barrier for real-time interaction and

collaboration, e.g., in Second Life. These �ndings, however, do not

directly translate to mobile apps, since network quality can change

abruptly depending on the technology (WiFi, 3G, LTE) and tra�c

conditions. Moreover, network quality also in�uences battery life,

raising the impact of network quality on users.

7 SUMMARY AND CONCLUSION

The present paper contributed by quantifying the in�uence of two

performance factors, latency and energy, on app retention. We �nd

poor performance to increase likelihood of app abandonment. How-

ever, the point at which the e�ect becomes signi�cant depends on

what the user is accustomed to, with app category, device charac-

teristics and network characteristics having an in�uence. For exam-

ple, Finland has lower expected latency than USA thanks to faster

network infrastructure, and consequently user expectations di�er

between the two countries. Conversely, we �nd that improving app

performance does not have any positive in�uence on retention as

long as performance is within reasonable performance standards.

Our results also indicate that latency and energy have a combined

e�ect on app retention, but in most cases the e�ect of latency is

perceived before energy. Lastly, we built a model that estimates

retention based on the expected performance of an application.

Performance validation considering cross-country performance

demonstrated good performance across all application categories.

However, this was moderated by application categories with those

categories with limited overlap su�ering in performance.
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