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Introduction

In this work we develop the study of relationship between the algebraic topology of manifolds and the
combinatorics of polytopes. Originally, this research was inspired by the results of the toric variety theory.
The main object of our study is the smooth manifold defined by the combinatorial structure of a simple
polytope. This manifold is equipped with natural action of the compact torus 7.

We define an n-dimensional convex polytope as a bounded set in R™ that is obtained as the intersection
of a finite number of half-spaces. So, any convex polytope is bounded by a finite number of hyperplanes.
A convex n-dimensional polytope is called simple if there exactly n codimension-one faces (or facets) meet
at each vertex. The bounding hyperplanes of a simple polytope are in general position at each vertex. A
convex polytope could be also defined as the convex hull of a set of points in R™. In this situation, if points
are in general position, the resulting polytope is called simplicial, since all its faces are simplices. For each
simple polytope there defined its dual (or polar) simplicial polytope and vise versa (see definition 1.3).
Sometimes it is more convenient to study the properties of a simple polytope in terms of its dual simplicial
one or even in terms of the corresponding boundary simplicial subdivision of a sphere.

We associate to each simple polytope P™ with m facets a smooth (m + n)-dimensional manifold Zp
with the canonical action of the compact torus 7. A number of manifolds playing an important role in
the different aspects of topology, algebraic and symplectic geometry appear as the special cases of the
above manifolds Zp, or as the quotients Zp/T* for toric subgroups T% C T™ acting on Zp freely. It
turns out that the maximal rank of a torus subgroup that can act on Zp freely equals m — n. We call
the quotients of Zp by tori of maximal possible rank m — n quasitoric manifolds. The name refers to the
fact that the important class of algebraic varieties known to algebraic geometers as toric manifolds fits
the above picture. More precisely, one can use the above construction (i.e., the quotient of Zp by a torus
subgroup) to produce all smooth projective toric varieties (cf. [Da]), which we refer to as toric manifolds.
On a (quasi)toric manifold there is defined the induced action of the torus T, whose orbit space is the
original simple polytope P". However, one can find a simple polytope P that can not be realized as the
orbit space for a quasitoric (and also toric) manifold. This means exactly that for this P it is impossible
to find a torus subgroup 7™ " C T™ of rank m — n that acts on the corresponding manifold Zp freely.
If the manifold Zp defined by a polytope P allows the free action of a torus subgroup of rank m — n,
then the different subgroups of this type can produce different quasitoric manifolds over P™, and some
of them may turn out to be toric manifolds. Originally, the quasitoric manifolds (under the name “toric
manifolds”) appeared in [DJ], where the different topological properties of them were described.

Our approach to constructing manifolds defined by simple polytopes is based on a construction from
algebraic geometry used in [Ba] for studying toric varieties. Namely, the lattice of faces of a simple polytope
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P" defines a certain affine algebraic set U(P™) C C™ with the action of algebraic torus (C*)™. This set
U(P™) is the complement to a certain collection of affine planes in C™ defined by the combinatorics of P™.
Toric manifolds appear when one can find a subgroup D C (C*)™ isomorphic to (C*)™~™ that acts on
U(P"™) freely. The crucial fact in our approach is that it is always possible to find a subgroup R C (C*)™
isomorphic to (R%)™~™ and acting freely on U(P™). In this case one can define the quotient manifold,
which we refer to as the manifold defined by simple polytope P™. There is the canonical action of the
torus 7™ on this manifold, namely the one induced from the standard action of 7™ on C™ by diagonal
matrices. The another approach to constructing manifolds defined by simple polytopes was proposed
in [DJ], where these manifolds where defined as the quotient spaces Zp = T™ x P™/ ~ for an equivalence
relation ~. We construct the equivariant embedding . of this manifold into U(P™) C C™ and show that
for any subgroup R ~ (R )™~" of the above described type the composition Zp — U(P™) — U(P")/R of
embedding and orbit map is a homeomorphism. Hence, from the topological viewpoint, both approaches
produse the same manifold. This is what we will refer to as the manifold defined by simple polytope P™
and denote Zp.

The analysis of the above constructions shows that one can replace the m-dimensional complex space
C™ ~ (R?)™ with the space (R¥)™ for arbitrary k. Indeed, we may consider the open subset U(P") C
(R¥)™ determined by the lattice of faces of P™ as in the case of C™ (i.e. U(P") is obtained by taking
off a certain set of affine planes as in definition 2.7). The multiplicative group (R%)™ acts on (R¥)™
diagonally (i.e. as the product of m standard diagonal actions of R on R¥). As before, it is possible
for this action to find a subgroup R C (R} )™ isomorphic to (R*)™™™ that acts on U(P") freely. The
corresponding quotient U(P™)/R is now of dimension (k — 1)m + n and is invested with the action of
the group O(k)™ (the product of m copies of the orthogonal group), which is induced by the diagonal
action of this group on (R¥)™. In the case k = 2 the above considered action of the torus 7™ is exactly
the action of the subgroup SO(2)™ C O(2)™. In the case k = 1 we obtain for any simple polytope P" a
smooth n-dimensional manifold Z” with an action of the group (Z/2)™, whose orbit space is P™. This
manifold is known as the universal Abelian cover of P" regarded as a right-angled Coxeter orbifold (or
manifold with corners). The analogue of quasitoric manifolds in the case k = 1 are the so-called small
covers. These are manifolds M™ with action of (Z/2)™ whose orbit space is P™. The name refers to the
fact that any cover of P™ by a manifold must have at least 2" sheets. All these questions related to
the case k = 1 were detailedly treated in [DJ] along with the quasitoric manifolds. The another case
of particular interest is k = 4, since the space R* can be regarded as the one-dimensional quaternionic
space. In this work we give the detailed treatment of the case kK = 2 and all constructions below relate to
this case.

One of our main goals here is to study the relationship between the combinatorial structure of sim-
ple polytopes and topology of the above described manifolds defined by these polytopes. There is a
well-known important algebraic invariant of a simple polytope: a graded ring k(P) (here k is any field)
called the face ring (cf. [St]). This is the quotient ring of the polynomial ring k[vi,...,v,,] by a cer-
tain homogeneous ideal determined by the lattice of faces of a polytope (see definition 1.1). Then one
can introduce the corresponding cohomology modules Tor,;[i}h__wm](k(P), k), where ¢ > 0. These mod-
ules are of great interest to algebraic combinatorists; some results about the corresponding Betti num-
bers 3*(k(P)) = dimy, Tor,, kE(P), k) can be found in [St]. We show that the bigraded k-module
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Toryu, ,...,0,.] (k(P), k) can b[e endovzfed with a bigraded k-algebra structure and its totalized graded algebra
is isomorphic to the cohomology algebra of Zp. Therefore, the cohomology of Zp possesses the canon-
ical bigraded algebra structure. To prove all these facts we use the Eilenberg—Moore spectral sequence.
This spectral sequence usually appeared in the algebraic topology as a powerfull tool for calculating the



cohomology of homogeneous spaces for Lie group actions (see e.g., [Sm]). So, it was interesting for us
to discover the quite different application of this spectral sequence. In our situation the Es term of the
spectral sequence is exactly Toryp,, .. .,.1(k(P), k) and the spectral sequence collapses in the o term.
Using the Koszul complex as a resolution while calculating the Es term, we show that the above bigraded
algebra is the cohomology algebra of a certain bigraded complex defined in purely combinatorial terms of
the polytope P™. Therefore, our bigraded cohomology algebra of Zp carries the whole information about
the combinatorics of polytope P™. In particular, it turns out that the well-known Dehn—Sommerville
equations for a simple polytope P" follow directly from the bigraded Poincaré duality for Zp. Given the
corresponding bigraded Betti numbers one can compute the numbers of faces of P of fixed dimension (the
so-called f-vector of the polytope). The Upper Bound for the number of faces of simple polytope can be
interpreted in terms of the cohomology of the manifold Zp. There also a lot of other relations between
the topology of manifolds and the combinatorics of polytopes.

Moreover, since the homotopy equivalence Zp ~ U(P™) holds, our calculation of the cohomology
is also applicable to the set U(P™). As it was mentioned above, the set U(P") is the complement to
a certain collection of affine planes in C™ defined by the combinatorics of P". Hence, here we have a
special case of the well-known general problem of calculation the cohomology of the complement to a
collection of affine planes. In [GM, part III] there was proved the theorem that reduces this calculation to
the calculation of the cohomology of a certain simplicial complex. In fact, our considerations show how
the special properties of the collection of affine planes allow to obtain much more explicit description of
the corresponding cohomology together with the multiplicative strucrure on it.

The questions considered here were discussed on the first author’s talk on the conference “Solitons,
Geometry and Topology” devoted to the jubilee of our Teacher Sergey Novikov. The part of these results
were announced in [BP].

1 The main constructions and definitions

1.1 Simple polytopes and their face rings.

Let P™ be a simple polytope and denote f; its number of codimension (i + 1) faces, 0 < ¢ <n — 1. We

refer to the integer vector (fo,..., fn—1) as the f-vector of P™. It is convenient to put also f_; = 1.
Along with f-vector we also consider the h-vector (hg, ..., h,) whose components h; are defined from the
equation

hot™ + ... hyat+hy == 1)+ folt = )"V .+ fuy. (1)

Therefore, we have
k .
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Now, we fix a commutative ring k, which we refer to as the ground ring. A certain graded ring called
face ring is associated to the combinatorial type of P™. More precisely, let P™ be a simple polytope and

F = (Fy,..., Fy,) be its set of codimension-one faces, m = fy. Form the polynomial ring k[vy, ..., vpy]
where the v; are regarded as indeterminates corresponding to the facets Fj.

Definition 1.1 The face ring k(P) of a simple polytope P is defined to be the ring k[vy, ... ,v,]/I, where

I:('Uil-wvis ‘i1<i2<...<is, FilﬁFigm"‘mFiS:@)~



Originally (see [St]) the face ring was defined for any simplicial complex as follows. Let K be a finite
simplicial complex with vertex set {vi,...,v,,}. Form a polynomial ring k[vy, ..., v,] where the v; are
regarded as indeterminates.

Definition 1.2 The face ring of a simplicial complex K (denoted k(K)) is defined to be the quotient ring
kvi,...,vm]/I, where

I=(viy...05, |01 <ia<...<is, {Viy,--.,0i,} does not span a simplex in K).

We shall regard the indeterminates v; in k[v1,...,vy] as being of degree two; in this way k(K) as well
as k(P) becomes a graded ring.

Definition 1.3 Given a convex polytope P™ C R"™, the dual (or polar) polytope (P™)* C (R™)* is defined
as follows:
(P ={z' e R™)* : (2/,2) <1 for all z € R"}.

It can be shown (cf. [Br]), that the above set is indeed a convex polytope. In the case of simple P" the
dual polytope (P™)* would be simplicial and the i-dimensional (simplex) faces of (P™)* are in one-to-one
correspondence with the faces of P™ of codimension 7 4+ 1. The boundary complex of (P™)* defines a
simplicial subdivision (triangulation) of (n — 1)-dimensional sphere S™"~!, which we will denote Kp. In
this situation both definitions 1.1 and 1.2 of the face ring give the same: k(P) = k(K p). The face rings
of simple polytopes have very special algebraic properties. In order to describe them we need to review
some commutative algebra.

Now suppose that k is a field and let R be a graded algebra over k. Let n be the maximal number
of algebraically independent elements of R (this number is known as the Krull dimension of R, denoted

Krull R). A sequence (Aq,...,A;) of homogeneous elements of R is called a regular sequence, if \jy1 is
not a zero divisor in R/(\1,...,\;) for each i (in the other words, the multiplication by A;41 defines
a monomorphism of R/(Aq,...,A;) into itself). It can be proved that (A1,...,Ax) is a regular sequence

if and only if A1,..., \; are algebraically independent and R is a free k[A1, ..., A\,]-module. The notion
of regular sequence is of great importance for the algebraic topologists (see, for instance, [La] [Sm]). A
sequence (A1, ..., A,) of homogeneous elements of R is called a homogeneous system of parameters (hsop),
if the Krull dimension of R/(A1,...,\,) is zero. The k-algebra R is Cohen—Macaulay if it admits a regular
sequence (Aq,...,A,) of n = Krull R elements (which is then automatically a hsop). It follows from the
above that R is Cohen—-Macaulay if and only if there exists a sequence (Ag,...,A,) of algebraically
independent homogeneous elements of R such that R is a finite-dimensional free k[A1, ..., A,]-module.
In our case the following statement holds (cf. [St]).

Proposition 1.4 The face ring k(P™) of a simple polytope P™ is Cohen-Macaulay. O

In the sequel we will need two successive generalizations of the notion of a simple polytope. As it was
mentioned in the introduction, the bounding hyperplanes of a simple polytope are in general position.
First, we define a simple polyhedron as any convex set in R™ (not necessarily bounded) that is obtained as
the intersection of a finite number of generally positioned half-spaces. The faces of a simple polyhedron
are defined obviously; all of them are simple polyhedra as well. It is also possible to define the (n — 1)-
dimensional simplicial complex Kp dual to the boundary of the simple polyhedron P™ (and again the
i-dimensional simplices of Kp are in one-to-one correspondence with the faces of P" of codimension
i + 1). However, the simplicial complex Kp obtained in such way not necessarily defines a triangulation
of (n — 1)-dimensional sphere S™~*.



Example 1.5 The simple polyhedron
R} = {(x1,...,2,) € R" | z; > 0},

bounded by n coordinate hyperplanes will appear many times throughout our work. Its dual simplicial
complex is (n — 1)-dimensional simplex A"~

We note, however, that not any (n—1)-dimensional simplicial complex can be obtained as dual to some
n-dimensional simple polyhedron. Because of this, we still need to generalize the notion of simple polytope
(and simple polyhedron). In this way we come to the notion of a simple polyhedral complez. Informally, a
simple polyhedral complex of dimension n is “the dual to a general (n—1)-dimensional simplicial complex”.
We take its construction from [DJ]. Let K be a simplicial complex of dimension n — 1 and let K’ be its
barycentric subdivision. Hence, the vertices of K’ are simplices A of the complex K, and the simplices of
K’ are sets (A1, A, ..., Ag), A; € K, such that A; C Ay C ... C Ayg. For each simplex A € K denote
by Fa the subcomplex of K’ consisting of all simplices of K’ of the foorm A =A¢ C A1 C... C A, If A
is a (k — 1)-dimensional simplex, then we refer to Fa as a face of codimension k. Let Pk be the cone over
K. Then this Pk together with its decomposition into “faces” {Fa}ack is said to be a simple polyhedral
complez. Any simple polytope P" (as well as a simple polyhedron) can be obtained by this construction
applied to the simplicial complex K™~! dual to its boundary.

1.2 The topological spaces defined by simple polytopes.

Following [DJ], in this subsection we associate to any simple polyhedral complex P (and, hence, to any
simple polytope) two topological spaces Zp and BrP.

Let T™ = S x ... x S! be the m-dimensional compact torus. Let F = (Fy, ..., F,,) denote, as before,
the set of codimension-one faces of P™ (which coincides with the vertex set of the dual simplicial complex
K"~1). We consider a free Z-module Z™ and fix a one-to-one correspondence between the facets of P"
and the elements of the standard basis {e1,...,€,} in Z™. Now we can define the canonical coordinate
subgroups 1% i, € T™ as the tori corresponding to the coordinate sublattices in Z™ (i.e., the sublattices
spanned by e;,,...,e;, ). Here we identify the torus 7™ with the quotient space R™/Z™.

Definition 1.6 The space Zp associated to a simple polytope P™ is defined as follows

Zp = (T™ x P")/~ [ (g1,p) ~ (92:9) © P =a, 195 ' €T,
where F; ..., F;, are all facets containing the point p € P™.

As it follows from the definition, dim Zp = m+n and the action of the torus 7™ on T™ x P™ descends to
the action of 7™ on Zp. In the case of simple polytopes, the orbit space for this action is n-dimensional
ball invested with the combinatorial structure of polytope P™ as described by the following proposition.

Proposition 1.7 Suppose that P" is a simple polytope. Then the action of T™ on Zp has the following
properties:

1. The isotropy subgroup of any point of Zp is a coordinate subgroup in T™ of dimension < n.

2. The isotropy subgroups define the combinatorial structure of the polytope P™ on the orbit space. More
precisely, the orbits with same isotropy subgroups define the interiors of faces of the polytope. If this
1sotropy subgroup is k-dimensional, then the corresponding face has codimension k. In particular,
the action is free over the interior of the polytope.



Proof. This follows easily from the definition of Zp. O

Now we return to the case of a general simple polyhedral complex P™. Let ET™ be the contractible
space of the universal principal T™-bundle over BT™ = (CP*)™. Applying the Borel construction to
the T™-space Zp, we come to the following definition.

Definition 1.8 The space BrP is defined as
BTP =FET™ Xm ZP. (3)

Hence, the B P is the space of bundle with fibre Zp associated to the universal bundle via the action
of T™ on Zp. As it follows from the definition, the homotopy type of By P is determined by a simple
polyhedral complex P".

1.3 Toric and quasitoric manifolds.

In the previous subsection we defined for any simple polytope P™ a space Zp with action of 7" and the
combinatorial structure of P™ in the orbit space (proposition 1.7). As we will see below, this Zp turns out
to be a smooth manifold. The another class of manifolds possessing the above properties is well known
in the algebraic geometry as toric manifolds (or nonsingular projective toric varieties). Below we give a
brief review of them. The detailed background material on this subject could be found in [Da, Fu].

Definition 1.9 A toric variety is a normal algebraic variety M containing the n-dimensional algebraic
torus (C*)™ as a Zariski open subvariety, with the additional condition that the diagonal action of (C*)"
on itself extends to action on the whole M (so, the torus (C*)™ is contained in M as a dense orbit).

On a nonsingular projective toric variety there exists a very ample line bundle whose zero cohomology
(i.e., the space of global sections) is generated by the sections corresponding to the points with integer
coordinates inside a certain simple polytope with vertices in the integer lattice Z™ C R™. Conversely, there
is an algebraic construction which allows one to produce a projective toric variety M>" of real dimension
2n starting from a simple polytope P™ with vertices in Z" (see, e.g., [Fu]). However, the resulting variety
M?" is not necessarily nonsingular. Namely, one obtains a nonsingular variety via the above construction
if and only if for each vertex of P™ the normal covectors of n facets meeting at this vertex form a
basis of the dual lattice (Z™)*. The toric variety is not uniquely determined by the combinatorial type
of a polytope: it depends also on the integral coordinates of vertices. Hence, we see that any number
of nonsingular projective toric varieties (toric manifolds) can be obtained from the given combinatorial
simple polytope (and sometimes this number can be zero). The corresponding examples will be discussed
below.

The algebraic torus contains the compact torus 7™ C (C*)™, which acts on a toric manifold as well.
It can be proved that all isotropy subgroups for this action are tori 7% C T™ and the orbit space has
the combinatorial structure of the simple polytope P™ as described in the second part of proposition 1.7
(here P™ is the polytope defined by the toric manifold as described above). The action of T™ on M?" is
locally equivalent to the standard action of T™ on C™ (by the diagonal matrices) in the following sense:
every point € M?" lies in some T™-invariant neighbourhood U C M?2™ which is T™-equivariantly
homeomorphic to a certain (T™-invariant) open subset V' C C™. Furthermore, there exists the explicit
map M?" — R™ (the moment map), with image P™ and corresponding orbits as fibres (see [Fu]). The
underlying smooth manifolds for a toric manifold M?" can be obtained as the quotient space T™ x P™/~
for some equivalence relation ~ (cf. [DJ]; compare this with the definition 1.6 of the space Zp). Now, if



we are interested only in topological and combinatorial properties, then we should not restrict ourselves
to algebraic varieties; in this way, forgetting all algebraic geometry of M2" and the action of the algebraic
torus (C*)™, we come to the following definition.

Definition 1.10 A topologically toric (or quasitoric) manifold over a simple polytope P™ is a real ori-
entable 2n-dimensional manifold M?" with action of the compact torus T™ that is locally isomorphic to
the standard action of T™ on C™ and whose orbit space has the combinatorial structure of P™ (in the
sense of the second part of proposition 1.7)

The quasitoric manifolds were firstly introduced in [DJ] (where they were called simply “toric mani-
folds”). As it follows from the above discussion, all algebraic toric manifolds are quasitoric as well. The
converse is not true: the corresponding examples can be found in [DJ]. One of the most important result
on the quasitoric manifolds obtained there is the description of their cohomology rings. As it was shown
in [DJ], these cohomologies have the same structure as the cohomologies of toric manifolds (see [Da]).
In the rest of this subsection we describe briefly the main constructions with the quasitoric manifolds in
order to use them later. The proofs could be found in [DJ].

Suppose M?2™ is a quasitoric manifold over a simple polytope P™ and 7 : M?™ — P™ is the orbit map.
Let F"~! be a codimension-one face of P™; then for any x € 7~ !(intF™ 1) the isotropy group at z is
independent of the choice of x rank-one subgroup G € T"™. This subgroup is determined by a primitive
vector v € Z". In this way we construct a function A from the set F of codimension-one faces of P™ to
primitive vectors in Z".

Definition 1.11 The defined above function X : F — Z" is called the characteristic function of M?>™.

The characteristic function could be also considered as a homomorphism A : Z™ — Z™, where m = #F =
fo and Z™ is the free Z-module spanned by the elements of F.

It follows from the local equivalence of the torus action to the standard one that the characteristic
function has the following property: if F;,, ..., F;, are the codimension-one faces meeting at some vertex,
then A(Fj,), ..., A(F;,) form a basis in Z". For any function A : F — Z™ satisfying this condition there
exists a quasitoric manifold M?"(\) over P™ with characteristic function A\, and M?" is determined by its
characteristic function up to an equivariant homeomorphism. Nevertheless, there exist simple polytopes
that do not admit any characteristic function. One of such examples is the duals to the so-called cyclic
polytopes C} for k > 2™ (cf. [DJ]). These polytopes can not be realized as the orbit space for any
quasitoric manifold (and, hence, this is also true for toric manifolds).

The quasitoric manifolds over a simple polytope P™ are closely related to the spaces Zp and BrP
introduced in the previous subsection. Viewing any quasitoric manifold M?" as a T™-space, we can take
the Borel construction ET™ x¢» M?™. It turns out that all these spaces for given P™ are independent of
M?" and have the homotopy type BrP:

BpP = ET™ xpn M?". (4)

The relationship between the T™-space Zp and the quasitoric manifolds over P" is described by the
following property: for each toric manifold M?2™ over P™ the orbit map Zp — P" is decomposed as
Zp — M?** = P where Zp — M?" is a principal 7™ "-bundle and M?" 5 P™ is the orbit map for
M?". Therefore, quasitoric manifolds over the polytope P™ correspond to subgroups in 7™ isomorphic
to T™~™ and acting freely on Zp; and each subgroup of this type produces a quasitoric manifold. As it
follows from proposition 1.7, subgroups of rank > m — n can not act on Zp freely, so the maximally free



action of T™ on Zp is exactly the case of existence of a quasitoric manifold over P™. We will discuss this
question in more details later.

From (3) we obtain the bundle p : BpP — BT™ with fibre Zp. All the cohomologies below are
considered with the coefficients in the ground ring k.

Theorem 1.12 Let P be a simple polyhedral complex with m codimension-one faces. The map p* :
H*(BT™) — H*(BrP) is surjective and after the identification H*(BT™) = kvy,...,vy] it becomes
the quotient epimorphism klvi,...,vm] — k(P), where k(P) is the face ring. In particular, H*(BpP) =
k(P). O

Now let M?" be a quasitoric manifold over a simple polytope P" with characteristic function \. The
characteristic function is obviously extended to a linear map k™ — k™. Consider the bundle py : BpP —
BT™ with fibre M?".

Theorem 1.13 The map pj : H*(BT™) — H*(BrP) is monomorphic and p§ :H?(BT") — H*(BrP)
coincides with \* : k™ — k™. Furthermore, after the identification H*(BT™) = k[t1,...,t,] the elements
Xi = p*(t;) € H*(BrP) 2 k(P) form a regular sequence of degree-two elements of k(P). O

Clearly, the quasitoric manifolds in all previous constructions can be replaces by the (algebraic) toric
manifolds. The toric manifolds correspond to simple polytopes P® C R™ whose vertices have integer
coordinates. As it follows from the above arguments, the value of the corresponding characteristic func-
tion is on the facet F"~! € F is its minimal integral normal (co)vector. All characteristic functions
corresponding to (algebraic) toric manifolds could be obtained by this method.

2 The geometrical and homotopical properties of Zp and BrP

2.1 The cubical subdivision of a simple polytope.

In this subsection we suppose that P" is a simple n-dimensional polytope. An abstract cube is given by
its lattice of faces. We will need the following combinatorial construction.

Definition 2.1 A cubical complez is a set of abstract cubes of any dimensions such that
1. All faces of any cube from the set belong to the set as well;

2. The intersection of any two cubes is a face of each.
We will use also the standard ¢-dimensional cube I? = {(z1,...,24) € R?| 0 < z; < 1}.

Theorem 2.2 Any simple polytope P™ with m = fy facets can be viewed naturally as a cubical complex
C, which has r = f,_1 n-dimensional cubes I} indexed by the vertices v € P"™. Furthermore, there is a
natural embedding ip of C into the boundary of standard m-dimensional cube I'™, which takes the cubes
of C to the faces of I™.

Proof. Let us fix a point in the interior of each face P™ (we also take all vertices and a point in the
interior of the polytope). The resulting set S of 1+ fo + f1 +...+ f,—1 points is said to be the vertex set
of the cubical complex. Since the polytope P" is simple, the number of k-faces meeting at each vertex is
(1), 0 < k < n. In this way we associate to each vertex v of P™ a 2"-element subset S, of & — one point



in the interior of each face containing v (hence, S, contains also the vertex v itself and the point in the
interior of P™). We say then that the points from S, are the vertices of the cube I corresponding to v.
The faces of I7* are defined as follows. We take any two faces F' and F} of P™ such that v € Ff C F,
0 < k=dimFF <l =dimF" < n. Then there are (l:k) faces FF*% of dimension k + i such that
v e FF c FFric FL 0 <i <1—k. In the interiors of these faces there are 2/=% points from the set
Sy C S. Then we say that all these points span a (I — k)-face Ig’kﬂ of the cube I7'. Now, to finish the
definition of the cubical complex C we need only to check the second condition from definiton 2.1. It is
sufficient to check that the intersection of any two cubes I} I, is a face of each. To do this we find a
face FP of P™ of minimal dimension that contains both vertices v and v" (there is obviuosly only one
such face). Then it can be easily seen that I N I7, = I}, 5. is the face of I)' and I7%.

Now let us construct the embedding C — I™. First’7 we describe the images of the vertices of C,
i.e. the images of the points from S. To do this we fix the numeration of facets: Ff“l, ..., F"=1 Now,
if a point from S lies inside the facet FZ-"_I, then we take it to the vertex (1,...,0,...,1) of the cube
I™, where 0 stands on the i-th place. If a point from S lies inside a face F™~* of codimension k, we

can write F"F = Fi?_l Nn...N Fi"k_l, and then take this point to the vertex of I"™ whose x;,,...,%;,
coordinates are zero and the other coordinates are 1. The point of S in the interior of P™ maps to the
vertex of I™ with coordinates (1,...,1). Hence, we constructed the map from the set S to the vertex

set of ™. This map obviously extends to a map from the cubical complex C corresponding to P" to the
cubical complex corresponding to I"™. This map can be realized geometrically as follows. We will need a
simplicial subdivision IC of P™ with vertex set S such that for each vertex v € P™ there exists a simplicial
subcomplex K, C K with vertex set S, isomorphic to the cube I)'. The simpliest way to construct such
subdivision is to view P™ as the cone over the barycentric subdivision of the complex Kgfl dual to
the boundary OP; then I, are just the cones over the barycentric subdivisions of the (n — 1)-simplices
of Kg_l. Now we can extend the map & < I linearly on each simplex of the triangulation IC to the
embedding ip : P" < I"™ (which is therefore a piecewise linear map). The picture below illustrates this
embedding for n =2, m = 3.

The above constructed embedding ip : P™ < I™ has the following property:

Ifv= ngl n---N Fi’:l*l, then the cube I} C P" is mapped onto the n-face of the cube I™ 5)
defined by (m —n) equations z; =1, j & {i1,...,4,}.

Thus, all cubes of C map to the faces of I, and the proof is finished. [

Lemma 2.3 The number ci of k-cubes in the cubical complex C constructed in the previous theorem for



a simple polytope P™ can be computed by the following formula:

n—Fk .
= famict (” . ’) = fa-i (Z) + faz (” B 1) et fen,
=0

where (fo,..., fn_1) is the f-vector of P" and f_1 = 1.

Proof. It follows from the fact that k-cubes of C are in one-to-one correspondence with the pairs
(F}, Fit*) of faces of P™ such that F} C Fit™* (see the proof of theorem 2.2). [

2.2 Zp as a smooth manifold and the equivariant embedding of Zp into C™.

Let us consider the standard polydisc (D?)™ C C™:
(D)™ = {(z1,- -, 2m) € C™| || <1}.

The standard action of 7™ on C™ by the diagonal matrices defines the action of 7™ on (D?)™ with orbit
space I"™. The main result of this subsection is the following theorem.

Theorem 2.4 For any simple polytope P™ with m facets the space Zp has the canonical structure of a
smooth (m + n)-dimensional manifold for which the T™-action is smooth. Furthermore, there exists a
T™-equivariant embedding i, : Zp — (D?)™ C C™.

Proof. It follows from theorem 2.2 that P" can be viewed as a union of n-cubes I} indexed by the vertices
of P". Let p: Zp — P™ be the orbit map. It easily follows from the definition of Zp that for each cube
I" C Zp we have p~1(I") = (D*)" x T™~ ", where (D?)" is the polydisc in C" with the diagonal action of
T™. We see that Zp is the union of “blocks” — subsets of the form B, = (D?)" x T™~". These “blocks”
are glued together along their boundaries to get the smooth T™-manifold Zp.

Now we are going to prove the statement about the equivariant embedding. We fix again a numeration
of codimension-one faces of P™: Fi"~' ... F?~1. Let us consider a certain block B, = (D?)" x T™ "
corresponding to the vertex v € P" (see above). Each factor D? or T! in B, corresponds to some
codimension-one face of P™, so one can assign an index i (1 < i < m) to this factor. Note that the
indexes corresponding to the codimension-one faces containing v are assigned to n factors D?, while
other indexes are assigned to m —n factors 7. Now we numerate the factors D? C (D?)™ of the polydisc
in any way. Then we embed each block B, C Zp into (D?)™ according to the indexes of its factors. It could
be easily seen the set of embeddings B, < (D?)™ define an equivariant embedding Zp < (D?)™. 0O

Lemma 2.5 The equivariant embedding i, : Zp < (D?)™ C C™ constructed in theorem 2.4 is pulled back
from the standard action of T™ on (D?)™ by the embedding ip : P < I™ constructed in theorem 2.2.
This can be described by the commutative diagram

ZP te (D2)m

l l

i

pr —L£ 5 ™
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Proof. It could be easily seen that the embedding of the face I™ C I"™ defined by m — n equations of
the type z; = 1 (as in (5)) pulls back the equivariant embedding of (D?)™ x T™~" into (D?)™. Then our
assertion follows from the representation of Zp as a union of blocks B, = (D?)™ x T™" and from the
property (5) of the embedding ip : P* — I™. O

The above constructed embedding i, : Zp — (D2)m C C™ allows as to connect the manifold Zp with
one construction from the theory of toric varieties. Below we describe this construction, following [Ba].

We consider the complex m-dimensional space C™ whose coordinates zi,...,z, are in one-to-one
correspondence with m codimension-one faces of P".

Definition 2.6 A subset of facets P = {F;,,...,F;,} C F is called a primitive collection if F;, N...N
F;, = @, while for all k, 0 < k < p, each k-element subset of P has nonempty intersection. In terms of
the simplicial complex Kp dual to the boundary of P", the vertex subset P = {v;,,...,v;,} is called a
primitive collection if {v;,,...,v; } does not span a simplex, while for all k, 0 < k < p, each k-element
subset of P span a simplex of Kp.

Now, let P = {Fj,,..., F; } be a primitive collection of P". Denote by A(P) the (m — p)-dimensional
affine subspace in C™, defined by the equations

I4

Since every primitive collection has at least two elements, the codimension of A(P) is at least 2.

Definition 2.7 Define the closed algebraic subset A(P™) in C™ as follows

AP = JAP),
P

where the union is taken over all primitive collections of facets of P™. Put
U(P")=C™\ A(P™).

We note that to define U(P™) we could take the complement in C™ to the union of all planes (6) cor-
responding to the collections of facets {F;,, ..., F;,} having empty intersection, not only to the primitive
collections as in definition 2.7. The resulting set will be the same in both cases. We note also that the
open set U(P™) C C™ is invariant with respect to the action of (C*)™ on C™.

It follows from the property (5) that the image of Zp under the embedding i, : Zp — C™ (see
theorem 2.4) does not intersect A(P™), and therefore, i.(Zp) C U(P™).

Let us consider the multiplicative group

RT:{(A1,7>\m)ERn|)\Z>O}

This group acts on R™ by dilations (an element (A1,...,\,) € RT takes (z1,...,7z,) € R™ to
(M1, .., Am@p)). There is the isomorphism exp : R™ — R between the additive and the multi-
plicative groups, which takes a vector to the dilation generated by it. We fix a basis eq, ..., e, in R™
whose elements correspond to the codimension-one faces of P™.

We will deal with subgroups R"™™ C R’ of rank m — n. Such a subgroup is defined by (m — n)
linearly independent vectors w; = wyie; + ... + Wpiem € R™, 1 < ¢ < m — n, which generate (m — n)

11



" is generated by (m — n) one-parameter

independent dilations. In the other words, the subgroup R~
subgroups

Ay, : Ry = Rt — (#7060,

Let us introduce the m x (m — n)-matrix

w11 ... Wim—n
; (7)

Wm1 -+ Wmm-n

which correspond to the above subgroup R’'™". In our study we consider only subgroups R}'™"™ with
following property:

All the maximal minors of the matrix (7) that are obtained by deleting n rows whose numbers (8)
correspond to codimension-one faces meeting in same vertex are nonzero.

Such matrices (and corresponding subgroups R'™" C R™) form an open subset in the Stiefel variety
of all m x (m — n)-matrices of full rank. This is the case of particular interest because of the following
theorem.

Theorem 2.8 Any subgroup R'™™ C R} possessing the property (8) acts freely on the algebraic set
U(P™) C C™ (see definition 2.7). For any such subgroup the composition Zp — U(P™) — U(P™)/R"™"
of the embedding i. and the orbit map is a homeomorphism.

Proof. A point from C™ could have the non-trivial isotropy subgroup with respect to the action of a
subgroup R!'™" only if it has at least one zero coordinate. As it follows from definition 2.7, if a point
of U(P™) has some zero coordinates, then all of them correspond to facets of P™ having nonempty
intersection (i.e., at least one common vertex). So, let {i1,...,i,} be the index set of facets meeting at
some vertex and take any point p € U(P™) whose corresponding coordinates may vanish. This point
could have a non-trivial isotropy subgroup with respect to the action of a subgroup R}'™™ only if some
linear combination of wy, ..., wm_, lies in the coordinate subspace spanned by e;,,...,e;, . But this is
impossible if R"™" has property (8). Thus, a subgroup R['"" satisfying (8) acts on U(P™) freely.

Now, let us prove the second part of the theorem. Here we will use both embeddings i, : Zp —
(D%)™ C C™ from theorem 2.4 and ip : P® — I™ C R™ from theorem 2.2. It is sufficient to prove
that each orbit of the action of R’'™™ on U(P") intersect the image i.(Zp) in a single point. Since the
embedding i, is equivariant, this is equivalent to the fact that the (m — n)-dimensional subspace spanned
by wi,...,Wm_p is in general position with each n-face of the cube I™ that lies in the image of the
embedding ip (see (5)). But this is exactly the property (8). O

The above theorem gives us a new proof of the fact that Zp is a smooth manifold. Furthermore, the
following statement holds.

Corollary 2.9 There exists a smooth equivariant submanifold Zp C U(P™) C C™ with trivial normal
bundle such that the composition Zp — U(P™) — U(P™)/R'™" is a diffeomorphism. Any such manifold
s canonically homeomorphic to Zp.

Proof. Let R'™" C RY' be any subgroup defined by the set of vectors w,...,wn—, satisfying (8).
Consider (m — n) small shifts of the image i.(Zp) along the directions wy, ..., wmy_y. As it follows from
the previous theorem, this shifts define (m — n) independent sections of the normal bundle, which is
therefore trivial. [

12



Example 2.10 Let P" = A" (n-simplex). It can be easily seen that in this case m = n+ 1, U(P™) =
C"*1\{0} and R?™" can be taken to be Ry with the diagonal action of C"**. Thus, we have Zp = 521
(this could be also deduced from definition 1.6).

The property (8) relies only on the combinatorial type of a polytope P™. At the same time matrices (7)
satisfying (8) can be constructed starting from the polytope P™ itself, viewed as a subset in R™. More
precisely, by definition, a polytope P" is defined as a set of points x € R" satisfying m linear inequalities
(vi,z) < 1,1 <4 < m, where v; C (R™)* are the normal (co)vectors of facets. The set of (u1, ..., ftm)
such that piv1 + ... + gmv, = 0 form (m — n)-dimensional subspace in R™. We choose a basis w; =
(W1, yWms), 1 <4 < m —n, in this subspace and form the matrix of the type (7). Then it can be
readily checked that this matrix satisfy (8). Indeed, let us take the minor of this matrix that is obtained
by deleting the rows 41, ...,%,, where v = F;, N...N F;, for some vertex v € P". If this minor vanishes,
then one can find a zero nontrivial linear combination of the vectors v;,,...,v;, . But this is impossible
since the simplicity of P™ shows that the set of normal covectors of facets meeting at the same vertex
constitute a basis in R™.

Now suppose that all vertices of P™ belong to the integer lattice Z™ C R™. Such integral simple
polytope P" defines a projective toric variety M?" (cf. [Fu]). If we take the minimal integral (co)vectors
v; along the corresponding directions as normal (co)vectors to the facets of P™, then the following criterion
for the non-singularity of M?" holds: M?" is smooth if and only if for each vertex v = F;, N...N F;,
the vectors v;,,...,v;, constitute a basis in Z". In this case not only the subgroup R'™"™ C R} defined
via the vectors v; as above acts on U(P"™) freely, but this is also true for the similarly defined subgroup
D = (C*)™~" C (C*)™ isomorphic to (C*)™~". The toric manifold M?" is then the orbit space U(P™)/D
(cf. [Ba]). Thus, for any toric manifold M*" over P" we have a commutative diagram

Rr—n
Upr) ——  zZp
(C*)m_nl J/T'rnfn

M2n M2".

The above arguments show that for any subgroup RY'™" C R™ satisfying (8) the space U(P") is
homeomorphic to Zp x R}"™". Thus, all results about the cohomologies of Zp exposed below are equally
applicable for U(P™).

2.3 Homotopical properties of Zp and By P.

We start with two simple assertions.
Lemma 2.11 Let P™ be the product of two simple polytopes, P" = P"* x Py?. Then Zp = Zp, X Zp,.
Proof. This follows directly from the definition of Zp:

Zp = (I™ x P")/~ = ((T™ x P")/~) x (T™2 x P"2)/~) = Zp, x Zp,. 0

The next lemma also follows easily from the construction of Zp.

Lemma 2.12 If P/"* C P™ is a face of a simple polytope P™, then Zp, is a submanifold of Zp. O
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Below we invest the space B P defined by a simple polyhedral complex with a canonical cell structure.

We use the standard cell decomposition of BT™ = (CP>)™ (each CP has one cell in every even
dimension). This decomposition defines the cell cochain algebra C*(BT™), for which we have C*(BT™) =
H*(BT™) = klv1, ..., 0]

Theorem 2.13 The space By P = ET™ Xpm Zp defined by a simple polyhedral complex P can be realized
as a cell subcomplex in BT™. This subcomplex is defined as the union of subcomplexes BT} i\, over all
simplices A = (i1,...,1%) of the simplicial complex K}i_l dual to the boundary OP™. In this realization
we have C*(BrP) = H*(BrP) = k(P), and the inclusion i : BpP — BT™ induces the quotient

epimorphism C*(BT™) = kv, ...,vn] = k(P) = C*(BrP) (here k(P) denotes the face ring of P).

Proof. It follows from the definition of a simple polyhedral complex that P is a cone over the barycentric
subdivision of a certain simplicial complex K with m. We will construct the cell embedding ¢ : By P —
BT™ by induction on the dimension of K. If dim K = 0, then K is a disjoint union of vertices vy, ..., vm,
and P is the cone on K. In this case By P is a bouquet of m copies of CP>* and we have the obvious
inclusion ¢ : ByP — BT™ = (CP>)™. In degree zero C*(BrP) is just k, while in degrees > 1 it is
isomorphic to k[v1] @ - -+ @ k[vy,]. Therefore, C*(BrP) = k[vy,...,vy,]/I, where I is the ideal generated
by all square free monomials of degree > 2, and ¢* is the projection onto the quotient ring. Thus, the
theorem holds if dim K = 0.

Now, let dimK = k — 1. By inductive hypothesis, the theorem is true for the (k — 2)-skeleton
K’ C K and the corresponding simple polyhedral complex P’, i.e., i*C*(BT™) = C*(BrP') =
k(K') = kl[vi,...,v,]/I'. We add (k — 1)-simplices one at a time. Each added simplex A*~! with
vertices v;,,...,v;, results the adding to BpP' C BT™ all cells of the cell subcomplex BT} i =
BT} x...x BT} c BT™. It is clear then that C*(Bp P’ UBT} ) =k(K'UA* 1) =k[vy,...,vm]/1,
where I C I" and I' /T = (v;, i, ... v;,). It is also clear that if i : Bp P’ UBT} ;< BT™ is the natural
inclusion, then ¢* is the quotient projection. [J

In particular, we see that for Kp = A™~! (then P = R7') we have BrP = BT™.

Now we want to use the cell decomposition of By P for the description of the homotopy groups of
BTP and Zp.

A simple polytope P™ (or simple polyhedral complex) with m codimension-one faces is called g-
neighbourly [Br] if the (¢ — 1)-skeleton of the dual simplicial complex K}~! coincides with the (g — 1)-
skeleton of a (m — 1)-simplex (this means only that any ¢ codimension-one faces of P™ have non-empty
intersection). Note that any simple polytope is 1-neighbourly.

Theorem 2.14 For any simple polyhedral complex P™ with m codimension-one faces we have:
1. m(Zp) = m(BrP) =0;
2. m9(Zp) =0, mo(BrP) =Z™;
3. my(Zp) = my(BrP) for ¢ > 3;

4. if P" is g-neighbourly, then m(Zp) = 0 for i < 2¢ + 1, and maq41(Zp) is a free abelian group
with generators corresponding to monomials v;, ---v; ., € I (see the definition of the face ring; this
monomials correspond to primitive collections of g + 1 facets).
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Proof. The identities m (BrP) = 0 and mo(BrP) = Z™ follow from the cell decomposition of By P
described in the previous theorem. In order to calculate m1(Zp) and me(Zp) we consider the following
fragment of the exact homotopy sequence of the bundle p : By P — BT™ with fibre Zp:

0= 7T3(BTm) — 7T2(Zp) — 7T2(BTP) £> WQ(BTm) — 7T1(Zp) — 7T1(BTP) =0
I |

zm — zm

Then it follows from theorem 2.13 that p, here is an isomorphism, and, hence, 71 (Zp) = m2(Zp) = 0.
The third assertion of the theorem follows from the consideration of the fragment

7Tq+1(BTm) — Fq(Zp) — Wq(BTP) — Wq(BTm),

in which 7y(BT™) = mg41(BT™) = 0 for ¢ > 3. Finally, the cell structure of By P shows that if P
is g-neighbourly, then the (2q + 1)-skeleton of By P coincides with the (2g 4 1)-skeleton of BT™. Thus,
7 (BrP) = mp(BT™) if k < 2¢g + 1. Now, the last assertion of the theorem follows from the third one
and theorem 2.13. [

The above calculation of the homotopy groups of Zp and Br P, allows us to assume that Zp can be
a first killing space for BrP, i.e., Zp = BrP|3. It is really true, and in order to see this, we consider the
following commutative diagram of bundles obtained from (3):

Zp x ET" — ET™

! ! ®)

BrP —2 5 BT™,

Since ET™ is contractible, Zp x ET™ is homotopically equivalent to Zp. On the other hand, since
BT™ = K(Z™,2) and ma(BrP) = Z™, we deduce that Zp x ET™ is a first killing space for BrP by
definition. Thus, Zp has homotopy type of a first killing space By P|3 for BrP.

3 The Eilenberg-Moore spectral sequence.

In [EM] Eilenberg and Moore have developed a spectral sequence which turns out to be of great use in
our considerations. We follow [Sm] in the description of this spectral sequence.

Suppose that &, = (Eo, po, Bo, F’) is a Serre fibre bundle, By is simply connected and f : B — By is
a continuous map. We then can form the diagram

F F

| |

E —— E, (10)
S

B — B,

where £ = (E, p, B, F) is the induced fibre bundle. Under these assumptions the following theorem holds
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Theorem 3.1 (Eilenberg-Moore) There exists a spectral sequence of commutative algebras { E,., d,} with
1. E. = H*(E) (the spectral sequence converges to the cohomologies of E in the standard sense),
2. By = Tory- (g, (H*(B), H*(Ep)). O

The Eilenberg-Moore spectral sequence lives in the second quadrant and the differential d,- has bidegree
(r,1 —r). In the special case when B = % is a point (in this case F = F' is the fibre of &) we have

Corollary 3.2 Let F — E — B be a fibration over the simply connected space B. There exists a spectral
sequence of commutative algebras {E,.,d,} with

1. E, = H*(E),
2. EQZTOI'H*(B)(H*(E),]C). O

As the first application of the Eilenberg-Moore spectral sequence we will calculate the cohomology ring
of a quasitoric manifold M?" over a simple convex polytope P™ (this was already done in [DJ] by means
of other methods). Along with the ideal I such that k(P) = k[v1,...,vy]/I we define the ideal J C k(P)
as J = (A1,...,An), where A; are the elements of k(P) defined in theorem 1.13 from the characteristic
function A of the manifold M?". As it follows from theorem 1.13, A\; = X;j1v1 + XigV2 + ... + Xim U are
algebraically independent elements of degree 2 in k(P) and k(P) is a finite-dimensional free k[Ay, ..., \,]-

module. The inverse image of the ideal J under the projection k[v1, ..., v,] — k(P) is the ideal generated
by A\; = Ai1v1+. ..+ Xim v, considered as elements of k[vq, . . ., v,,]. This inverse image will be also denoted
by J.

Theorem 3.3 The following isomorphism of rings holds for any quasitoric manifold M?>™:
H*(M?*™) = k(P)/J = k[vi,...,vm] | T+J.
Proof. Consider the Eilenberg-Moore spectral sequence of the fibration

M?** — BrpP
1 I po
* — BI™
Then theorem 1.13 gives us the monomorphism

*

H*(BT™) = klt1,....t,] —% H*(BrP)=k(P)
ti — /\i,

so that Im p§ = k[A1, ..., An] C k(P). The E5 term of the Eilenberg-Moore spectral sequence is

By = Toryl ppuy(H*(BrP),k) = Tor;i\ - 1(k(P),k).

The right hand side above is a bigraded k-module (cf. [Ma, Sm]). The first (“external”) grading arises
from a projective resolution of H*(BrP) as a H*(BT"™)-module used in the definition of the functor Tor.
The second (“internal”) one arises from the gradings of H*(BT"™)-modules which enter the resolution;
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we assume that nonzero elements appear only in even internal degrees (since deg A; = 2). Since k(P) is
a free k[A1, ..., A\n]-module, we have
Tor 7y, g (E(P), k) = Tor%[f\hm’/\n](k(P), k) = k(P) ®k(py,... a0 k = k(P)/J.

Therefore, ES™ = k(P)/J and E;** = 0 if p > 0. From this we deduce that Ey = E., and H*(M?") =
k(P)/J. O

Corollary 3.4 H*(M?") = Tory, .. A, (k(P), k). O

4 The calculation of cohomologies of Zp

In this section we use the Eilenberg—Moore spectral sequence to describe the cohomology ring of Zp in
terms of the face ring k(P) and also obtain some additional results about this cohomologies in the case
where at least one quasitoric manifold exists over the polytope P. Throughout this section we assume
that k is a field.

4.1 The additive structure of cohomologies of Zp.

In this subsection we consider the Eilenberg-Moore spectral sequence of the bundle p : By P — BT™ with
fibre Zp (see (3)). This spectral sequence defines a decreasing filtration on H*(Zp), which we denote
{F~PH*(Zp)}, such that

E_ PP — PPH™(Zp)/FPH H"(Zp).

Proposition 4.1 FYH*(Zp) = H°(Zp) = k (here k is the ground field).

Proof. It follows from [Sm, Proposition 4.2] that for the Eilenberg-Moore spectral sequence of arbitrary
commutative square (10) one has FOH*(E) = Im{H*(B) ® H*(Ey) — H*(E)}. In our case we obtain
FH*(Zp) = Im{H*(BrP) — H*(Zp)}. Now, our proposition follows from the consideration of the
Leray—Serre spectral sequence of the bundle p : By P — BT"™ with fibre Zp and the fact that the map
p* : H*(BT™) — H*(BrP) is epimorphic (see theorem (1.12)). O

In the Eilenberg—-Moore spectral sequence of the bundle p : ByP — BT™ one has F; =

Tor[y,,....v,.] (K(P), k). Let us consider a free resolution of k(P) as a k[vy,. .., vy,]-module:
—h —h+4+1 —1 0
0 RMEL grrrd gt po gy o, (11)

It is convenient for our purposes to assume that R’ are numbered by non-positive integers, i.e. b > 0
above.

The minimal number h for which a resolution of the form (11) exists is called the homological dimension
of k(P) and is denoted by hdy[y, ... »,.](k(P)). By the Hilbert syzygy theorem, hdyy, ... .,.](K(P)) < m.
At the same time, since k(P) is a Cohen-Macaulay ring, it is known ([Se, Chapter IV]) that

hdggor .. o] (E(P)) = m —n,

where n is the Krull dimension (the maximal number of algebraically independent elements) of k(P). In
our case n = dim P.
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We will use a special free resolution (11) known as minimal resolution (cf. [Ad]), which is defined in the
following way. Let A be a graded connected commutative algebra and let N, N’ be modules over A. Set
I(A) =3 ~0Ag = {a € Aldega # 0} and J(N) = I(A) - N. The map f: N — N’ is called minimal, if
Ker f C J(N). The resolution (11) is called minimal, if all d* are minimal. One of the ways to construct a
minimal resolution is as follows: we construct the free A-modules R°, R=', ..., R~" successively and once
we constructed R and d* we take a minimal set of homogeneous generators of Ker d’ as a basis for Ri*!.
For any graded algebra A there is a natural way to choose a minimal set of generators for a A-module
R. This is done as follows. Let k; is the lowest degree in which R is nonzero. Choose in (R)*' a vector
space basis, say x1,...,zp,. Now let Ry = (21,...,2p) C R be the submodule generated by z1,...,zp. If
R = R; then we have constructed a minimal set of generators for R. Otherwise, consider the first degree
ko in which R # Ry; then in this degree we can choose a direct sum decomposition R = R; & R;. Now
choose in Ry a vector space basis €, 11, ..., Zp, and set Ry = (z1,...,2p,). If R = Ry we are done, if not
just continue to repeat the above process until we obtain the minimal set of generators for R. A minimal
set of generators for A-module R possesses the following property: no element zj could be decomposed
as xx = »_ a;x; with a; € A, dega; # 0. A minimal resolution is unique up to an isomorphism.

Now let (11) be a minimal resolution of k(P) as a k[v1, . . ., v;y]-module. Since the resolution is minimal,
in (11) we have h = m —n and R? is the free k[v1, ..., v,,]-module with one generator 1 of degree 0. The
set of generators for R! consists of elements v;, ;, of degree 2k such that {v;,,...,v;, } does not span a
simplex in K, while any proper subset of v;,,...,v;, do span a simplex in K. This means exactly that
the set {vi,,...,v;,} is a primitive collection in the sense of definition 2.6 (here as before v; are regarded
as vertices of the simplicial complex K"~1 dual to OP).

Note that the k[vy, ..., v,]-module structure in k is defined by the homomorphism k[vy,...,v,] — &,
v; — 0. Since the resolution (11) is minimal, all differentials d* in the complex

q—(m—n)

-1
0 —s R—(m—n) Okfos... EY— ... R! Oklvy,....vm] B 4, RO Okluvy,.. k—0 (12)

-7vnz] -7'U7n]

are trivial. The module R’ ®@k[oy,...,vm] b 18 a finite-dimensional vector space over k whose dimension is
equal to the dimension of R* as a free k[vq,. .., vy]-module:
dimy, R ®pf, ,....0,) k = dimy,

Lyeees m

Therefore, since all differentials in the complex (12) are trivial, the following equality holds for the minimal
resolution (11):

m—n
dimy Torgpu, ... v, ((P), k) = Y dimyge,, 0, B (13)
1=0

Now all is ready to describe the additive structure in the cohomologies of Zp.
Theorem 4.2 The following isomorphism of graded k-modules holds:
H*(ZP) = Tork['ul,...,vm] (k(P), k)

(the bigraded structure in the right hand side is turned to a single grading by taking the total degree). To
be more precise, there is a filtration {F~PH*(Zp)} in H*(Zp) such that

FPH*(Zp)/F P H*(Zp) = Tor, ” |(E(P), k).

k[vla“-vvm
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Proof. First, we show that
dimy H*(Zp) > dimy, Toryy, ... v, (k(P), k). (14)

To do this we consider the Leray—Serre spectral sequence of the bundle p : By P — BT™ with fibre Zp.
The first column of the Ey term of this spectral sequence is the cohomologies of fibre Zp: H*(Zp) = Eg’*.
We will assign to each generator of each k[vy,...,v,]-free module R! a certain generator of H*(Zp) in
such a way that the different generators of H*(Zp) will correspond to different generators of modules R!.

By theorem 1.12, nonzero elements can appear in the FE,, term only in the bottom line, and this
bottom line is the ring k(P) = H*(BpP):

EXP =0, p>0; B0 = k(P).

Therefore, all elements from the kernel of map d° : R® = k[vy, ..., v,] = E3Y — EX0 = k(P) from the
minimal resolution (11) must be killed by the differentials of the spectral sequence. We denoted this kernel
by I (it is an ideal in k[vq,...,vy]). Let (21, ...,2,) be a minimal basis of the ideal I constructed by the
described above procedure. Below we prove that the elements x; can be killed only by the transgression
(i.e. by the differentials from the first column). Suppose that the converse is true, so that x is an element
of the minimal basis of I that is killed by the non-transgressive differential: x = dyy for some k, where
y lies not in the first column. Then y is a cycle of all differentials up to di_1. This y arises from some
element ), l;a; in the Fy term, [; € ES’*, a; € Eg’o = k[v1,...,0n]. Assume at the first time that all
elements [; are transgressive (i.e. [; are cycles of all differentials d; for ¢ < k) and di(l;) = m;, m; € EZ’O.
Since all m; are killed by the differentials, their preimages in
E; belong to I. Hence, we have z = dpy = ), m;a;, m; € I,
which contradicts to the minimality of the basis (z1,...,z,).
l; y Therefore, our first assumption is false, and there are some
d, non-transgressive elements among [;, i.e., there exists p < k
and ¢ such that d,(l;) = m; # 0. Then this m; survives in
E, and, choosing from all such p the minimal one, we obtain
dp(y) = m;a; + ... # 0 — contradiction. This means that all
a; ‘ x ‘ elements from the minimal set of generators of I are killed by

m; di

the transgression, i.e. some (different) elements 11(1) € H*(Z)
correspond to them.

Since Fy = H*(Zp) ® k[vy,...,vy], the free k[vy, ..., vy]-module generated by the elements ll(l) is
included into the E, term as a submodule. Therefore, we have R~! C Ey and the map d=' : R~! —
R® = k[vy, ..., v, is defined by the differentials of the spectral sequence. The kernel of this map Kerd~!
can not be killed by the already constructed differentials. Using the previous argument, we deduce that
the generators of the minimal basis of Kerd=' € R™! can be killed only by some elements of the first
column, say z§2), ce lgz). Therefore, the free kfvy, ..., v,]-module generated by the elements l£2) is also
included into the E5 term as a submodule, i.e. R~2 C Fy. Proceeding with this procedure, at the end we
obtain ZZT;O" dimpy,,... 00m] R~ generators in the first column of the Ey term. Using (13), we get then
required inequality (14).

Now let us consider the Eilenberg—Moore spectral sequence of the bundle p : ByP — BT™ with
fibre Zp. For this spectral sequence we have Ey = Toryy, .. .,.](k(P), k), E, = H*(Z). It follows from
inequality (14) that Fy = F+, and this concludes the proof of our theorem. O

Let us consider again the Eilenberg-Moore filtration {FPH*(Zp)} in H*(Zp). It turns out that
the elements of F~1H*(Z) have very transparent geometric realization. Namely, the following statement
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holds:

Theorem 4.3 The cycles in H,(Zp) Poincaré dual to the elements of {F~*H*(Zp)} can be realized as
embedded submanifolds of Zp. Furthermore, this submanifold can be taken a sphere of odd dimension for
any generator of {F~1H*(Zp,7)}.

Proof. It follows from theorem 4.2 that
FYH*(2p)/F°H*(Zp) = Tor,;[})l o (R(P),E).

By proposition 4.1, FCH*(Zp) = HY(Zp). Take, as in the proof of theorem 4.2, the basis in
Tor,;[ihwvm](k(P),k) consisting of the elements wv;,. ;, of degree 2p such that the set of vertices
Vi, ..., v, of the simplicial complex Kp is a primitive collection. Geometrically, this means that the
corresponding subcomplex of K (i.e., the subcomplex consisting of all simplices whose vertices are among
Viy,...,0;,) is the simplicial complex consisting of all faces of a simplex except one of the highest di-
mension (i.e., it is the boundary of a simplex). In terms of the simple polytope P the element v;,. 4,
corresponds to the set {F;,,..., [, } of codimension-one faces such that Fj, N---N F; = @ though
any proper subset of {F; ,...,F; } has non-empty intersection. Note that the cycle corresponding to
Viy..ip, € Tor;[ih“wm}(k(P),k) has dimension 2p — 1 in H,(Z). Now take one point inside each face
F,.Nn-- -ﬂ}/’; N---NF; , 1 <r <p, (F;, is dropped); then we can embed the simplex AP~! on these points
into the polytope P so that the boundary OAP~! embeds into P (compare this with the construction of
the cubical decomposition of P in theorem 2.2). Consider the projection p : Zp = (T™ x P")/~ — P"
onto the orbit space; then it is easy to see that p~1(AP™1) = (TP x AP~1)/~) x TM—P = §2=1  Tm=p,
In this way we obtain an embedding S?P~! < Zp which realize the cycle in H, (Zp) dual to Viy.ipe U

4.2 The multiplicative structure of cohomologies of Zp.

Here we describe the ring H*(Zp).

In the previous subsection the bigraded k-module Tory,, ... .,.1(k(P), k) was calculated by means of
the minimal resolution of the face ring k(P) regarded as a k[vy, . . . , v ]-module. Below we use the another
approach based on the Koszul resolution of the k[vy,...,vy]-module k. As the result, the bigraded k-
module Tory(y, .. v,.](k(P), k) becomes the bigraded k-algebra whose total graded k-algebra is isomorphic
to the algebra H*(Zp). This approach also gives us the description of H*(Zp) as a cohomology algebra
of some differential (bi)graded algebra.

Let T' = k[y1, - .., yn], degy; = 2, be a graded polynomial algebra over k, and let Afuq, ..., u,] denote
an exterior algebra over k on generators uq, ..., u,. Consider the bigraded differential algebra

&= F®A[u1,...,un],
whose gradings and differential are defined by

and requiring that d be a derivation of algebras. The differential adds (1, 0) to bidegree, so the components
E74* form a cochain complex that will be also denoted &. It is well known that this complex defines a
I-free resolution of k (regarded as a I-module) called the Koszul resolution (cf. [Mal).
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Proposition 4.4 LetT' = k[y1,...,yn| and suppose that A is any T'-module, then
Torr (A, k) = HIA® Alua, ..., uy)], d],
where d is defined as d(a @ u;) = (y; -a) @ 1 for any a € A.
Proof. Let us consider the above I'-free Koszul resolution &€ =T' ® Aluq, ..., u,] of k. Then

Torr(A, k) = HIA®RrT'® Aluy, ..., un],dl = HIA® Aluy, ..., uy],dl. O

Now let us consider the principal T"*-bundle Zp x ET™ — BrP pulled back from the universal
T™-bundle by the map p : BrP — BT™ (see (9)). The following lemma holds.

Lemma 4.5 The following isomorphism describes the Eés)

(B, d,} of the bundle Zp x ET™ — By P:

term of the Leray—Serre spectral sequence

E:E)S) = Tork[vl -,--~7vm] (k(P)7 k)

Proof. First, we consider the Eés) term of the Leray—Serre spectral sequence of the given bundle. Since

H*(T™) = Alus, ..., up), H*(BrP) = k(P) = k[v1, ..., vm]/I, we have
ES = k(P) @ Alus, . . ., um)-

It can be easily seen that the differential dés) acts as follows

Uq

R A1 ou)=vo1, dw®1)=0.

Now, since Eés) =H [Eés), dé‘g)]7 our assertion follows from proposition 4.4 where
we put I' = k[vy,..., 0], A=k(P). O

Now we are ready to prove our main result on the cohomologies of Zp.
Theorem 4.6 The following isomorphism of graded algebras holds:
H*(Zp) = HIk(P) @ Aluy, ..., up),d],
bidegv; = (0,2), bidegu, = (—1,2),
Hence, the Leray—Serre spectral sequence of the T™-bundle Zp x ET™ — Br P collapses in the E3 term.

Proof. Let us consider the bundle p : By P — BT™ with fibre Zp. It follows from theorem 2.13 that the
correspondent cochain algebras are C*(BT™) = k[vy,...,vn] and C*(BrP) = k(P), and the action of
C*(BT™) on C*(BrP) is defined by the quotient projection. It was shown in [Sm, Proposition 3.4] that
there is an isomorphism of algebras

0" : TOI‘C*(BTm)(C*(BTP), ]6) — H*(Zp)
But it follows from above arguments and proposition 4.4 that
Torc«(prm)(C*(BrP), k) = H[k(P) ® Alug,. .., U], d],

which concludes the proof. [J
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4.3 The additional properties of the cohomologies of Zp determined by tori
actions.

First, we consider the case where the simple polytope P™ can be realized as the orbit space for some
quasitoric manifold (see subsection 1.3). The existence of this quasitoric manifold will allow us to reduce
the calculation of cohomologies of Zp to the calculation of cohomologies of an algebra which is much
smaller than that from theorem 4.6.

It was already discussed above that any quasitoric manifold M?2™ over P™ defines a principal 7™ "-
bundle Zp — M?". This bundle is induced from the universal 7~ "-bundle by a certain map f : M>" —
BT™ ™,

Theorem 4.7 Suppose M?" is a quasitoric manifold over a simple polytope P"; then the Eilenberg-Moore
spectral sequences of the following commutative squares

Zp x ET™ — ET™ Zp — ET™
1 1 and 1 +
BrP % BT™ M L, ppmen

are isomorphic.

Proof. Let {E,,d,} be the Eilenberg-Moore spectral sequence of the first commutative square and let
{E,,d,} be that of the second one. Then, as it follows from the results of [EM, Sm], the natural inclusions
BT™ ™ — BT™, ET™ ™ — ET™, M?>* — BrP and Zp — Zp x ET™ define a homomorphism of
spectral sequences: g : {E,,d,} — {E,,d,}. First, we prove that g, : E5 — FE5 is an isomorphism.

The map f* : H*(BT™ ") — H*(M?®") can be viewed in the following way. The ring H*(BT™ ") =
E[wi,...,Wm—n] can be represented as k[vi,...,vy]/J with J being the described above ideal, J =
(A1,..-,A,) (this is obtained from the inclusion BT™~" < BT™). By theorem 3.3 we have H*(M?") =
k[vi,...,vm] /I+J. Then f*: H*(BT™ ™) = klv1,...,vm]/J = k[v1,... 0]/ I+J = H*(M?") is the
quotient epimorphism.

Thus, we have Ey = Torg,, . .,.1(k(P), k) and E, = Toriwy,....wp ] (B(P)/ T, k).

To proceed further we need the following result.

Proposition 4.8 Let A be an algebra and I’ a subalgebra and set Q = A//T'. Suppose that A is a free I'-
module and we are given a right Q-module A and a left A-module C. Then there exists a spectral sequence
{Ey,d,} with

E, = Torp(A,C), EY? = Tork (A, Tork(C,k)).

Proof. See [CE, p.349]. O

The next proposition is a modification of one assertion from [Sm)].

Proposition 4.9 Suppose f : klv1,...,vm] = A is an epimorphism of graded algebras, degv; = 2, and
J C A is an ideal generated by a length n reqular sequence of degree-two elements of A. Then the following
isomorphism holds:

Tork[vl,...,vm] (A, k}) = Tork[wl,.“,wmfn] (A/J, k)
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Proof. Let J = (A1,...,\,), degX; = 2, and {\1,...,\,} is a regular sequence. Choose \ €
klv1,...,vm], 1 <i <mn, to be preimages of \; of degree 2, i.e., f(\;) = N\i; Ai = A\iav1 + ... + Aimvp, and

rk(Xi;) = n. Let us take elements w1, ..., wn—n of degree two such that
k[’Ul, ce ,’Um] = k[j\l, ey S\H,wl, ce ,wm_n],
and put I' = k[j\l, R ;\n] Then kfv1,...,vn] is a free I'-module, and so, by proposition 4.8, we have a

spectral sequence
E,. = Tory[y, ... v (A k), Ea = Torg(Torr(4,k), k),
where Q = k[vy,...,v5]//T = kw1, ..., Wn_n]-
Since Aq1,..., A, is a regular sequence, A is a free I'-module. Therefore,
Torp(A,k) = A®rk=A/J and Torf (A k)=0 for ¢q+#0,
= EPI=0 for q+#0,
= Tork[vl,...,vm] (A, /4}) = TOTk[wl,...,w,,L,n] (A/J, k‘),
which concludes the proof of the proposition. [

Now, we return to the proof of theorem 4.7. Setting A = k(P) in proposition 4.9 we deduce that
g2 : B3 — Es is an isomorphism. It follows also from the form of the F5 terms of both spectral sequences
that each of them contains only finite number of non-zero modules in each term. In this situation it is
true that if a homomorphism ¢ define an isomorphism in the E5 terms, then g is the isomorphism of the
spectral sequences (cf. [Ma, XI, theorem 1.1]). Thus, theorem 4.7 is proved. O

Corollary 4.10 H*(Zp) = Toryw, ... w,m_n] (H*(M?"), k) for any quasitoric manifold M>*™ over a simple
polytope P™.

Proof. By theorem 4.6, H*(Zp) = Toryy, ... v,.](k(P), k). Hence, our assertion follows from the isomor-
phism between the E5 terms of the spectral sequences from theorem 4.7. [

Let us turn again to the principal 7™ "-bundle Zp — M?" defined for any quasitoric manifold M?".
The following statement similar to lemma 4.5 holds for this bundle (it can be also proved in the similar

way).

Lemma 4.11 For the Leray-Serre spectral sequence of the bundle Zp — M?" the following isomorphism
holds:
E) = Torgp, ) (H (M), k) = Ttk a1 (K(P) /T k),

where EP()S) is the E3 term of the Leray—Serre spectral sequence, and a k[wy, ..., Wm—yn]-module structure
in H*(M?") is defined by the map

Ewi, ..., wm_n] =k[v1,...,0m]/J = klv1,... 0]/ I+] = H*(M*). O

Theorem 4.12 Suppose M>" is a quasitoric manifold over P™. Then the Leray-Serre spectral sequence
of the principle T™ "-bundle Zp — M?" collapses in the Es term, i.e., B3 = Es. Furthermore, the
following isomorphism of algebras holds

H*(2p) = HI((P)T) @ Alus, - o), ],
bidega = (0,dega), bidegu; = (—1,2);
dl@u;) =w;®1, dle®1)=0,

where a € k(P)/J = kw1, ..., wWm—n]/I and Auy, ..., Um—y] is an exterior algebra.

23



Proof. The cohomology algebra H[(k(P)/J) @ Afu1, ..., Um—n],d] is exactly the E3 term of the Leray—
Serre spectral sequence for the bundle Zp — M?". At the same time, it follows from proposition 4.4 that
this cohomology algebra is isomorphic to Tork[wlw’wmfn](H*(MQ"), k). From corollary 4.10 we deduce
that this is exactly H*(Zp). Since the Leray—Serre spectral sequence converges to H*(Zp), it follows
that it collapses in the F3 term. [

The algebra (k(P)/J) ® Alui, ..., um—y] from theorem 4.12 is significantly smaller than the algebra
E(P) ® Alui, ..., up] from general theorem 4.6, which allows to calculate the cohomologies of Zp more
efficiently.

In the rest of this subsection we study free actions on Zp of tori of arbitrary rank, not necessarily
m —n as in the case of quasitoric manifolds.

The existence of a quasitoric manifold M?2" over the simple polytope P™ means that one can find a
subgroup H C T™ isomorphic to 7™ " that acts freely on the corresponding manifold Zp. (Then M?" =
Zp/H.) In the general case, such a subgroup may fail to exist; however, one still could find a subgroup of
dimension less than m — n that acts freely on Zp. In this case the corresponding quotient Zp/H would
be a smooth manifold. So, let H =2 T* acts on Zp freely. Then the inclusion s : H < T™ is defined by
an integer (m x k)-matrix S = (s;;) such that the Z-module spanned by its columns s; = (s1;,.. ., Smj),
j =1,k is a direct summand in Z™. Choose any basis t; = (ti1y - tim), ¢ = 1,...,m — k in the kernel
of the dual map s* : (Z™)* — (ZF)*. Then we have the following result describing the cohomology ring
of the manifold V) = Zp/H and generalizing simultaneously corollary 3.4 and theorem 4.2.

Theorem 4.13 The following isomorphism of algebras holds:
H*(y(k)) = Tork[tl,...,tm,k](k(P)ﬂ k)v
where the action k[ty, ..., tm—r] on k(P) = k[v1,...,vy]/I is defined by the map

k[tl,...,tm_k] — k[’Ul,...,Um]
ti — tivi+ ...+ timUm.

Proof. The inclusion of the subgroup H ~ T* — T™ defines a map of classifying spaces h : BT* — BT™.
Let us consider the bundle pulled back by this map from the bundle p : By P — BT"™ with fibre Zp. It
follows directly from the construction of By P (see subsection 1.2) that the total space of this bundle has
homotopy type V) (more precisely, it is homeomorphic to V) x ET*). Hence, we have a commutative
square

y(k) — BrP

+ +
BT* — BT™.

The corresponding Eilenberg-Moore spectral sequence converges to the cohomologies of ;) and has the
following E5 term
Ey = Toryy, ... v, (E(P), k[wy, . .., wi]),

where the action of k[vy, ..., v,] on k[wy, ..., wg] is defined by the map s*, i.e., v; = sjywy + .. . + SiWg.
Using [Sm, proposition 3.4] in the similar way as in the proof of theorem 4.6, we show that the spectral
sequence collapses in the Fy term and the following isomorphism of algebras holds:

H*(y(k)) = Tork[vhm,vm](k(P), k[wl, ey wk]). (15)
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Now set A = k[v1,...,vm], T = k[t1,... ,tm—k], A = k[wy,...,wg] and C = k(P) in the proposition 4.8.
Since A here is a free I-module and Q = A//T" = kfwy, ..., wy], this gives us a spectral sequence {E,, d,}
converging to Toryy, . v,.](k(P), k[wi, ..., wy]) whose Ey term is

ES? = Tor}) A,Torz[tl’m (k(P),k)).

[wl,m,wk]( 7tm,—k]

But since A is a free k[wy, ..., wy]-module with one generator 1, we have

EYT=0 forp#0, Eg?=Tor] k(P), k).

[tl,...,tm,k](

Thus, the spectral sequence collapses in the Ey term and we have the isomorphism of algebras:
Tork[vhm’vm](k‘(P), k‘[wl, e ,wk]) ~ Tork[tl,...,tm_k](k(P)v k),

which together with the isomorphism (15) proves the theorem. O

Below we characterize subgroups H C T™ that act on Zp freely.

Let us consider again the integral (m x k)-matrix S defining the subgroup H C T™ of rank k. For
each vertex v = F;, N--- N F; of the polytope P™ we take the (m — n) x k-submatrix S;, _;, of S,
which is obtained by deleting the rows i1, ...,,. In this way we construct r = f,_; submatrices of the
size (m —n) x k. Then the following criterion for the freeness of the action of H on Zp holds.

Lemma 4.14 The action of the subgroup H C T™ defined by an integral (mxk)-matriz S on the manifold
Zp s free if and only if for any vertex v = F;, N...NF; of P" the corresponding (m —n) X k-submatriz
Sis,....in, defines a direct summand Zk czm".

Proof. It follows from definition 1.6 that the orbits of the action of 7™ on Zp corresponding to the
vertices v = F;, N...NF; of P™ have maximal (rank n) isotropy subgroups. This isotropy subgroups are
the coordinate subgroups 77}, CT™. A subgroup H acts freely on Zp if and only if it has only unit
in the intersection with each isotropy subgroup. This means that the m x (k + n)-matrix obtained by
adding to S of n columns (0,...,0,1,0,...,0)T with 1 on the place ij, j = 1,n defines a direct summand
Zk+tn C Z™ (this matrix correspond to the subgroup H x T} ., CT™). But this is equivalent to the

52
requirements of the lemma. [

In particular, for subgroups of the maximal possible for the free action rank m — n we obtain

Corollary 4.15 The action of the rank m — n subgroup H C T™ defined by an integral m x (m — n)-
matriz S on the manifold Zp is free if and only if for any vertex v=F;, N...NF; of P" the minor of
S obtained by deleting the rows iy, ...,1, equals £1. [

This corollary is “an integer analog” of theorem 2.8, which gives the criterion of freeness for the action
of a subgroup R'"™" C R’ on the set U(P™) C C™. However, unlike the situation of theorem 2.8, the
subgroup H ~ T™~™ satisfying the condition of corollary 4.15 may fail to exist.

It can be easily seen that the condition from corollary 4.15 is equivalent to the following: the map
7™ — 7" defined by factorizing by the image of the inclusion s : Z™~™ — Z™ is a characteristic function
in the sense of definition 1.11. Thus, we obtained the another interpretation of the fact that quasitoric
manifolds exists over P" if and only if it is possible to find a subgroup H ~ T™~" that acts on Zp freely.

It also follows from lemma 4.14 that the one-dimensional subgroup H ~ T! corresponding to the
diagonal map T' C T™ always acts on Zp freely. Indeed, in this situation the matrix S is a column of
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m units and the condition from lemma 4.14 is obviously satisfied. Theorem 4.13 gives us the following
formula for the cohomologies of the corresponding manifold Yy = Zp/H:

H* (V1)) = Tory,,. b, 1) (k(P), k), (16)
where the action of k[tq, ..., tm—1] on k(P) = k[vy,...,vy]/I is defined by the homomorphism

k[tl,...,tm_l] — k’[’l}h...,’l)m],
ti — UV, — Up.

The principal T'-bundle Zp — Yy is pulled back from the universal T'-bundle by a certain map
¢: Yay = BT' = CP>. Since H*(CP>) = k[v], v € H*(CP>), we can consider the element ¢*(v) €
H?(Y(1y). Then, the following statement holds.

Lemma 4.16 A polytope P™ is q-neighbourly if and only if (¢*(v))? # 0.

Proof. The map c¢* takes the ring k[v] of cohomologies of CP> to the subring k(P) ®pj,
Torg[tlwqtmfl](k(P),k) of the cohomology ring of Yy (see (16)). This subring is isomorphic to the
quotient ring k(P)/{vi = ... = v;,}. Now, the assertion follows from the fact that a polytope P™ is
g-neighbourly if and only if the ideal I from the definition of k(P) does not contain monomials of degree
less than ¢+ 1. O

tmfl] k =

.....

Now we return to the general case of a subgroup H ~ T* acting on Zp freely. For such a subgroup
we have

BrP = Zp xpm ET™ = ((Z2p/T*) xpm-rx ET™ %) x ET* = (V) xpm-x ET™ %) x ET*.
Hence, there is defined a principal 7~ *-bundle Yy X ET™ — BpP.

Theorem 4.17 The Leray-Serre spectral sequence of the T™ % -bundle Yy X ET™ — B P collapses in
the E5 term, i.e., B3 = Eo,. Furthermore,

H*YVwy) = H[EP) @A, ... up—gl,d,
dl®u;)) = (tnvi+...+timvm)®1, dla®1) =0, bidega = (0,dega), bidegu, = (—1,2),
where a € k(P) = klv1,...,v,)/I and Auy, ..., um—g] is an exterior algebra.

Proof. We can prove in the similar way as in lemma 4.5 that the E3 term of the spectral sequence is

E3 = H[k(P) ® Alu, ..., U], d] = Toryp, . 1(k(P), k).

Slm—k

Theorem 4.13 shows that this is exactly H* (V). O

Theorem 4.6 and corollary 3.4 can be obtained from this theorem by setting k = 0 and k = m —n
respectively.
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4.4 The explicit calculation of H*(Zp) for some particular polytopes.

1. Our first example shows how the above methods work in the simple case where P is a product of

simplices. So, let us consider P™ = A x A2 x ... x A%, where A’ is a i-simplex and Y, iy, = n. This

P™ has n + k facets, i.e., m = n + k. Hence, we deduce from lemma 2.11 that Zp = Zxi; X ... X Zpiy.
The minimal resolution (11) of k(P;) in the case P; = A' is as follows

0— RIS R D k(B 0,

where R, R™! are free one-dimensional k[vy, ..., v;11]-modules and d~! is the multiplication by vy - ... -
vi+1. Hence, we have the isomorphism of algebras

Tork[v,,... .11 (k(P;), k) = Ala], bidega = (—1,2i + 2),
where Ala] is an exterior k-algebra on one generator a. Now, theorem 4.6 shows that
H*(Zp:) = Ala], dega=2i+1,
Thus, the cohomologies of Zp = Zxi; X ... X Zpi, are
H*(Zp) = Alay, ..., ax], dega; =2i;+ 1.

Actually, example 2.10 shows that in our situation Zp = S?1+1x. .. x §?»+1 However, our calculation
of cohomology does not use the geometrical constructions from section 2.

2. In our next example we consider the case of plane polygons, i.e., n = 2. Let P? be a convex m-gon.
Then the corresponding manifold Zp has dimension m + 2. First, we compute the Betti numbers of these
manifolds.

Let us consider the Ey term of the LeraySerre spectral sequence of the bundle p : Zp — M* with
fibre T2 for some toric manifold M* over P? (it could be easily seen that there exists at least one toric
manifold over any polygon). From theorem 3.3 we deduce that H?(M?*) has rank m — 2, and the ring
H*(M*) is multiplicativelly generated by the basis w1, . . . , Wy, _o of H?(M*). At the same time, H*(T™~2)
is the exterior algebra on generators uq, ..., u;,—2 and the second
differential of the spectral sequence takes u; to w; (more precisely,
m—2 do(u;®1) = 1®@w;). Furthermore, the map p* : H*(M*) — H*(Zp)
is zero homomorphism in degrees > 0. This follows from the fact
that the map f* : H*(BT™ 2) — H*(M*) is epimorphic (see the
proof of theorem 4.7) and the commutative diagram

Zp — ET™2

0, % 2, %
~+d> ~+4 pl lpo

u;
M+ L prm-2,

Using all these facts and corollary 4.12 (which gives EF3 = FE),
0 9 4 we deduce that all differentials dg’* are monomorphisms, and all
differentials dg’* are epimorphisms.
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Now, using theorem 4.12 we obtain by easy calculations the following formulae for the Betti numbers
bz(Zp)
W(Z2)=bmt23(2) =1,
VH(Z)=b*(2) =b"(Z) =b"H1(Z) =0, (17)
c m— m— m— m— —k
bh(2) = (m-2)(375) - (i) - (029 = (05 m(kth L, 3<k<m—1
In the small dimensions the above formulae give us the following;:

m=3: b (Z°) =0°(2% =1 and others are 0,
m=4: b(Z% =b5(2% =1, b3(Z° =2 and others are 0.

Both this cases are covered by the previous example, since for m = 3 we have P? = A%, and for m = 4
we have P? = Al x Al. As it was pointed out above, in this cases Z3 = S°, Z§ = 53 x $3. Further,

m=>5: b(ZT)=b"(Z7) =1, b*(Z27) = b*(Z7) = 5, and others are 0,
m==6: b'(Z% =b3(2%) =1, b3(28) =b°(28) =9, v¥(Z28) = 16, and others are 0,

and so on.
Now we want to describe the ring structure in the cohomologies. Theorem 4.6 gives us the isomorphism

of algebras
H*(Z%?) = Toryy, ... 0 (K(P?), k) = H[k(P?) @ Alug, . .., un), d]. (18)

If m = 3, then k(P) = Ek[v1,ve, v3]/v1v9vs; if m > 3 we have k(P) = k[vy,...,vy]/I, where I is generated
by the monomials v;v; such that i # j £ 1 (here we use the agreement vy, 1; = v; v;—p, = v;). Below we
give the complete description of multiplication in the case m = 5. The general case is similar but more
involved. It is easy to check that five generators of H3(Zp) are represented by the cocycles v; ® u; 2,
i = 1,5 in the algebra k(P?) ® Afui,...,u,], and five generators of H*(Zp) are represented by the
cocycles v; ® uj42uj43, j = 1,5. The product of cocycles v; ® u;12 and v; ® uj42u;43 represents a non-
trivial cohomology class in H'(Zp) if and only if the set {i,i + 2,4, + 2,7 + 3} is the whole index set
{1,2,3,4,5}. Hence, for each cohomology class [v; ® u;42] there is a unique (Poincaré dual) cohomology
class (which can be written as [v; ® uj42u;43]) such that the product with it is non-trivial. This only non-
trivial product defines a fundamental cohomology class of Zp (for example, this class can be represented
by the cocycle v1v3 ® uzugqus). In the next section we will prove the similar statement in the general case.
In our situation all other product in the cohomology algebra H*(Z}) are trivial.

5 The cohomologies of Zp and the combinatorics of simple poly-
topes

Theorem 4.6 shows that the cohomologies of Zp is naturally a bigraded algebra. The Poincaré dual-
ity in H*(Zp) regards this bigraded structure. More precisely, the Poincaré duality has the following
combinatorial interpretation.

Lemma 5.1 In the bigraded differential algebra [k(P) ® Aluq, ..., un],d] from theorem 4.6

1. the fundamental cocycle of Zp is represented by any element of type v, ---vi, @ Uj, =+ Uj, .,
J1 < ... < Jm—n, where (i1,...,i,) is the index set of all codimension-one faces meeting in some
vertetv € P, and {i1,...,in,j1,- -+ Jm-n} = {1,...,m}.
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2. two cocycles vy, - - vy, Quj, -+ uj, and vk, - - Vg, Quy, -+ -y, represent the Poincaré dual cohomology
classes in H*(Zp) if and only if p+s=mn,r+t=m—mn, {i1,...,ip, k1,...,ks} is the index set of
facets meeting in some vertex v € P™, and {i1,...,%p, 1, e k1, ks, b, Ly = {1, ... ,m}.

Proof. The first assertion follows from the fact that the cohomology class described in 1) is a genera-
tor of the module Tork[(m ™), 2™ (k(P), k), which is isomorphic to H™Fn(Z7H) (see theorem 4.6). The

V]
second assertion holds since two cohomology classes are Poincar’e dual if and only if their product is the

fundamental cohomology class. [

In the sequel we will use the following short notations: 7° = Torg[lv1 vm](k(P),k) and T2 —

Tork[:f] o (B(P), k). We define the bigraded Betti numbers of Zp as

b~ (Zp) = dimy, Tor, ™ (k(P), k). (19)

Then theorem 4.2 can be reformulated as b*(Zp) = Do iz b=%2i(Zp). The second part of lemma 5.1

shows that b=%27(Zp) = b= (m=7=0:20m=3)(Zp) for all i, j. These equalities can be written as the following
identities for the Poincaré series F(T%,t) = Y. b~ """ of T

F(T t) =¢"F (T™ "' 1), (20)

It is well known in commutative algebra that the above identity holds for the so-called Gorenstein rings
(cf. [St]). The face ring of a simplicial subdivision of sphere is a Gorenstein ring. In particular, the ring
k(P™) is Gorenstein for any simple polytope P™.

A simple combinatorial argument (cf. [St, part II, §1]) shows that for any (n—1)-dimensional simplicial
complex K the Poincaré series F'(k(K),t) can be written as follows

n—-1 2(i4+1)
fit
F(k(K —1+Z a @

where (fo,..., fn—1) is the f-vector of K. This series can be also expressed in terms of the h-vector
(ho,...,hn) (see (1)) as:
ho + hit? + ... + hpt?"
(1—¢t2)n
On the other hand, the Poincaré series of the k[vy, ..., vy]-module k(P) (or k(K)) can be calculated
from any free resolution of k(P). More precisely, the following general theorem holds (see e.g., [St]).

F(k(K),t) = (21)

Theorem 5.2 Let M be a finitely generated graded klvi, ..., vy]-module, degv; = 2, and there is given
a finite free resolution of M :

h+1 d

0 Rl g d S g1 dgo Doy o,

Suppose that the free k[vi, ..., v,]-modules R™" have their generators in dimensions di;, ..., dq,:, where
qi = dimgy, | 0,0 R~%. Then the Poincaré series of M can be calculated by the following formula:

Sty (L) (M 4 4 )

1—2)m H

F(M,t) =
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Now let us apply this theorem to the minimal resolution (11) of k(P) = k[v1, ..., vy]/I. Since all differ-
entials of the complex (12) are trivial, we obtain

F(k(P),t) = (1 —1t%) oy ¢ ). (22)
z:O

Combining this with (20), we get

F(k(P) ) 1—t mz t2mF Jm—n— i 1)
1=0

|

= (1= (=)D ()T L) = (1) F(k(P), 1)
§=0

Substituting here the expressions from the right hand side of (21) for F(k(P),t) and F(k(P), 1), we
finally deduce
hi = hp_;. (23)

These are the well-known Dehn—Sommerville equations [Br] for simple (or simplicial) polytopes.
Thus, we see that the algebraic duality (20) and the combinatorial Dehn—Sommerville equations (23)
follows from the Poincaré duality for the manifold Zp. Furthermore, combining (21) and (22) we obtain

Y (CLIE(T 1) = (1= 85)™ " h(t?), (24)

=0
where h(t) = Y7 hit.

Along with the cochain complex [k(P) ® Aluq, ..., un],d] from theorem 4.6 we will consider its sub-
complex A defined as follows. As a k-module A is generated by the monomials v;, ...v;, ®uj, ... u;, and
1 ®uy, ... uy, such that {v;,...,v; } generates a simplex in Kp and {i1,...,ip} N {j1,...,Jq} = @. It
can be easily checked that d(A) C A and, therefore, A is a cochain subcomplex. Moreover, A inherits
the bigraded module structure from k(P) ® Aluy, ..., uy] with differential d adding (1, 0) to bidegree.

Lemma 5.3 The cochain complexes [k(P)® Aluq, ..., un],d] and [A,d] have same cohomologies. Hence,
the following isomorphism of k-modules holds:

]:I[.A7 d] = Tork[l,hwvm](k(P), k)

Proof. It is sufficient to prove that any cocycle w = v’ .. .UZ:’ ®uj, ... uj, from k(P)®Afuy, ..., un] that

does not lie in A is a coboundary. To do this we note that if there is any iy € {i1,..., 5} N {j1,---,Jq}>
then dw contains the summand v{" ... vfl‘c’“ﬂ . .vf;p ®uj, ... Uy, ... uj,, hence, dw # 0 — a contradiction.
Therefore, {i1,...,ip} N{j1,...,Jq} = . If w contains at least one v with degree ay > 1, then since
(Xk—l

dw =0, we have w = £d (v ... v

« .
i ;" @ Uiy Uy, - .ujq). Now, our assertion follows from the fact

that all nonzero elements of k(P) of the type v;, ...v;, correspond to simplices of Kp. [

Now let us introduce the submodules A*?" C A, 7 = 0, ..., m generated by the monomials v;, ...v; ®

P
uj, ... uj, € A such that p+ ¢ = r. Hence, A*?" is the submodule in A consisting of all elements of

q
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internal degree 2r (i.e., for any w € A*?" one has bidegw = (*,2r); remember that the internal degree

corresponds to the second grading). It is clear that Zi;no A*?" = A. Since the differential d does not

change the internal degree, all A*?" are subcomplexes in .A. The cohomologies of this complexes are
exactly 752" and their dimensions are the bigraded Betti numbers b=%2"(Zp). Let us consider the Euler
characteristics of these subcomplexes:

m m

Xr o= X(AW) =) (=1)7dimy A% =" (=1)%" 17" (Zp),

q=0 q=0
and define .
X(t) =3 xt (25)
r=0

Then it follows from lemma 5.3 that

X(t) = 3orlo Yglo(—1)T dimy AT2E20 = 5700 ((—1)9 377 dimy, H—9[AS2]E%" =

= D gm0 (1)1 32y dimy T2 = 3700 (= 1)7F (T, 1),

q=0

where 792" = H=92"[k(P) @ Alug, ..., uyl,d = Tor;[f)’f’:' o) (E(P), k). Combining this with formula
(24), we get
X(t) = (1= )" h(t?). (26)

This formula can be also obtained directly from the definition of x,. Indeed, it can bee easily seen that

m

. —q.27 m-—r+ — m—1q
dimy, A~ = f( q)7 =3 (-1) ffj_l( :7), (27)
q = r—J
(here we set (]) = 0 if k < 0). Then
X(1) = 2o xrt™ = 2 S T I(=1)I f o (7)) = T £t (- ) =

(28
= Q=) fia(t?—1)7. .

Further, it follows from (1) that
n .
AT = (= D)"Y fiat—1)7"
i=0
Substituting here t=2 for ¢ and taking into account (28), we finally obtain
x(t) _ tTPR(E) _ h(t?)

Q=)™ (2= (11—t

which is equivalent to (26).
Formula (26) allows to express the h-vector of a simple polytope P™ in terms of the bigraded Betti
numbers b~%2"(Zp) of the corresponding manifold Zp.
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Lemma 5.4 The Poincaré series F(A™*, 7,t) =3 dimg A=92r =927 of the bigraded module A** is
as follows

t2 m—j )
F(A*’*aT’ t) = ij71 (1 + 7—) tQJ.
J

Proof. Using formula (27), we calculate
S dimp AT T2 = 5T fo g (M) e = 1, fa () e =

=5, 5 (1+2)" T O

The bigraded Betti numbers b~%%/(Zp) can be calculated either by means of theorem 4.6 and the
results of subsection 4.3 (as we did before) or by means of the following theorem, which reduces their

calculation to the calculation of cohomologies of subcomplexes of the simplicial complex K"~ ! dual to
oP™.

Theorem 5.5 (Hochster, cf. [St, Ho]) Let K be a simplicial complex on the vertex set V = {v1,...,vm},

let k(K) be its face ring, and T' = Tory s, o (K(K), k). Then

F(T 1) =Y (dimy, Hyy)—io 1 (Kw)) 2™,
wCv

where Ky is the subcomplex of K consisting of all simplices with vertices in W. [

However, easy examples show that the calculation based on the above theorem becomes very involved
even for small complexes K. It can be shown also that the discussed above result of [GM] applied to
U(P"™) (see subsection 2.2) gives the same description of H*(U(P")) as that of H*(Zp) given by the
Hochster theorem (which of course conforms with our results from subsection 2.2).

Lemma 5.6 For any simple polytope P holds

Tor, 42"

K[oa,.... Um}(k(P),k) =0 for 0 <r <gq.

Proof. This can be seen either directly from the construction of the minimal resolution (11), or
from 5.5. O

Theorem 5.7 1. H'(Zp) = H*(Zp) = 0.

2. The rank of the third cohomology group of Zp (i.e., the third Betti number b*(Zp)) equals to the
number of pairs of vertices of the simplicial complex K™ that are not connected by an edge. Hence,
if fo = m is the number of vertices of K and f, is the number of edges, then

m—1)

b (zp) = ™ — — h
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Proof. It follows from theorem 4.2 and lemma 5.6 that

.....

H3(Z) = Tor;[i’f o) (F(P) k) = TH%

By theorem 5.5,
b_1’4(Zp) = dimy T1’4 = Z dimy, E[o(Kw)
WCV,|W|=2

Now the theorem follows from the fact that dimy Ho(Ky ) = 0 if Ky is an edge of K, and dimy, Ho(Kw) =
1 if Ky is a pair of disjoint points. [

Remark. Combining theorems 4.2, 5.5 and lemma 5.6 we can also obtain that

b'(2) =dim, 7%= Y dimy Hy(Kw).
WCV,|W|=3

Manifolds Zp allow to give a nice interpretation not only to the Dehn—Sommerville equations (23) but
also to a number of other combinatorial properties of simple polytopes. In particular, using formula (26)
one can express the well-known MacMullen inequalities, the upper and lower bound conjectures (see. [Br])
in terms of the cohomologies of Zp. We review here only two examples.

The first non-trivial MacMullen inequality for a simple polytope P™ can be written as hy < ho, if n > 3.
In terms of the f-vector this means that f; > mn — ("$'). Theorem 5.7 shows that b*(Zp) = (7) — f1.
Hence, we have the following upper bound for b3(Zp):

B (Zp) < (m N ") if n > 3. (29)

The upper bound conjecture for the number of faces of a simple polytope can be formulated in terms

of the h-vector as .
hi<(m‘”.+" ) (30)
1

1 \"" &S (m—nti—1\
- — =t
(=) =2 ()

we deduce from (26) and (30) that

Using the decomposition

x(t) < 1. (31)
It would be interesting to obtain the purely topological proof of the inequalities (29) and (31).
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