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\S 1. Introduction.

By a torus fibration $f:Marrow B$ is roughly meant a certain singular fibration
of an oriented smooth 4-manifold $M$ over an oriented surface $B$ with general

fiber the 2-torus. (For a precise definition, see Definition 2.1.) Some special

types of such fibrations have been studied by Thornton [11] and Zieschang [13]

as a generalization of Seifert fibered spaces (into higher dimensions not neces-
sarily 4 in their articles), and other special types by Harer [1] and Moishezon
[9] as a smooth analog of Lefschetz’ pencils or Kodaira’s elliptic fiber spaces
[4]. (General fibers of Harer’s pencils need not be tori.) The author gave a
general formulation of torus fibrations [6].

Among the possible types of singular fibers that torus fibrations can admit,

the simplest one would be of type $I_{1}^{+}$ or $I_{1}^{-}$ . A singular fiber of type $I_{1}^{+}$ (resp. $I_{1}^{-}$ )

consists of a smoothly immersed 2-sphere with a single transverse self-intersection

of sign +1 (resp. $-1$ ).

In this paper we will deal with torus fibrations over the 2-sphere whose
singular fibers are of type $I_{1}^{+}$ or $I_{1}^{-}$ . Our goal will be to classify the (not

necessarily fiber preserving) diffeomorphism types of the total spaces of such

torus fibrations. The following is our main result.

THEOREM 1.1. Let $f;Marrow S^{2}$ be a torus fibration over the 2-sphere each of
whose srngular fibers is of type $I_{1}^{+}$ or $I_{1}^{-}.$ SuPpose that the stgnature of $M$ is not

zero. Then $M$ is l-connected, and the diffeomorPhsm type of $M$ is determined by

the euler number $e(M)$ and the signature $\sigma(M)$ .

REMARK. Assume that each singular fiber of a torus fibration $f:Marrow S^{2}$ is
of type $I_{1}^{+}$ or $I_{1}^{-}$, and that there are $k_{+}$ singular fibers of type $I_{1}^{+}$ and k-singular

fibers of type $I_{1}^{-}$ . Then $e(M)$ and $\sigma(M)$ are given by $e(M)=k_{+}+k_{-},$ $\sigma(M)$
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$=(-2/3)(k_{+}-k_{-}),$ $[1],$ [ $6$ , II]. Thus by Theorem 1.1, the diffeomorphism type

of $M$ is determined by two numbers $k_{+},$ $k_{-}$ provided $k_{+}\neq k_{-}$ .
Our theorem is an extension of Kas’ theorem [3] which is given an alter-

native, differential topological proof by Moishezon [9]. Let us state it in a
modified way:

THEOREM (Kas). Let $V$ be an elliptic surface over $CP_{1}$ with no multiple

fibers, with at least one singular fiber and wiih no exceptional curve contazned in
a fiber. Then $V$ is l-connected, and the diffeomorPfusm type of $V$ is determined
by the euler number $e(V)$ .

It is known ([3], [9]) that the fibering structure of such an elliptic surface
$V$ can be deformed so that the resulting fibering has singular fibers only of type
$I_{1}^{+}$ . Thus the Kas-Moishezon theorem is considered as the diffeomorphism classi-
Pcation of the total spaces of torus fibrations over $S^{2}$ in which every singular

fiber is of type $I_{1}^{+}$, while our theorem allows two types of singular fibers $I_{1}^{+}$ and $I_{1}^{-}$ .
The euler number of an elliptic surface $V$ as in Kas’ theorem is known to

be positive and divisible by 12 ([9]). Let $V_{k}$ denote an elliptic surface with
$e(V_{k})=12k$ . By Kas’ theorem, the diffeomorphism type of $V_{k}$ is well-defined.

For example, it is known that $V_{1}\cong CP_{2}\# 9\overline{CP_{2}}$ and $V_{2}\cong Kummer$ manifold. (V

denotes the manifold $V$ with orientation reversed.) Also the signature $\sigma(V_{k})$

is known to be equal to $-8k$ (cf. [6, II]).

With the above notation, our result is stated more precisely as follows:

THEOREM 1.1’. Let $f$ : $Marrow S^{2}$ be as in Theorem 1.1. Then $M$ is diffeomorPhic
to $V_{k}\# l(S^{2}\cross S^{2})$ or $\overline{V}_{k}\# l(S^{2}\cross S^{2})$ according as $\sigma(M)<0$ or $\sigma(M)>0$ , where the

integers $k$ and 1 are related to $\sigma(M)$ and $e(M)$ by $|\sigma(M)|=8k$ and $|e(M)|=12k+2l$ .
Let $f_{i}$ : $M_{i}arrow B_{i},$ $i=1,2$ , be torus fibrations over closed surfaces. Following

Moishezon [9, DePnition 7, p. 174], we define the direct sum $f_{1}\oplus f_{2}$ : $M_{1}\oplus M_{2}arrow$

$B_{1}\# B_{2}$ as follows: Let $D_{i}$ be a 2-disk in $B_{i}$ such that $f_{i}^{-1}(D_{i})$ contains no
singular fibers. Let $\tilde{\varphi}$ : $\partial$ ($M_{1}-$ Int $f_{1}^{-1}(D_{1})$ ) $arrow\partial$ ( $M_{2}$–Int $f_{2}^{-1}(D_{2})$ ) be an orientation
reversing and fiber preserving diffeomorphism which induces an orientation
reversing diffeomorphism $\varphi:$

$\partial$ ( $B_{1}$–Int $D_{1}$ ) $arrow\partial$ ( $B_{2}-$ Int $D_{2}$). Glue $M_{1}$–Int $f_{1}^{-1}(D_{1})$

and $M_{2}-$ Int $f_{2}^{-1}(D_{2})$ via $\tilde{\varphi}$ to obtain a manifold denoted by $M_{1}\oplus M_{2}$ . We get a
torus fibration $f_{1}\oplus f_{2}$ : $M_{1}\oplus M_{2}arrow B_{1}\# B_{2}$ by setting $f_{1}\oplus f_{2}|$ ($M_{i}-$ Int $f_{i}^{-1}(D_{i})$ ) $=$

$f_{i}|$ ( $M_{i}$ –Int $f_{i}^{-1}(D_{i})$ ), for $i=1,2$ . The diffeomorphism type of $M_{1}\oplus M_{2}$ possibly

depends on $\tilde{\varphi}$

Now let $f_{a}$ : $V_{a}arrow S^{2}$ and $f_{b}$ : $V_{b}arrow S^{2}$ be elliptic surfaces as in Kas’ theorem

with $e(V_{a})=12a,$ $e(V_{b})=12b$ . By the Kas-Moishezon theorem, we see that the

diffeomorphism type of $V_{a}\oplus V_{b}$ is independent of the pasting diffeomorphism $\tilde{\varphi}$

and is the same as that of $V_{a+b}$ , because $e(V_{a}\oplus V_{b})=12(a+b),$ $[9]$ .
If we reverse the orientation of $V_{b}$ , we obtain a torus fibration $\overline{f}_{b}$ : $\overline{V}_{b}arrow S^{2}$
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whose singular fibers are of type $I_{1}^{-}$ .

COROLLARY TO THEOREM 1.1’. Suppose that $a>b$ . The diffeomorphsm type

of $V_{a}\oplus\overline{V}_{b}$ is independent of the pasting diffeomorphism, and is the same as that

of $V_{a-b}\# 12b(S^{2}\cross S^{2})$ .
PROOF. By Novikov additivity of the signature, $\sigma(V_{a}\oplus\overline{V}_{b})=-8(a-b)$ . Also

we have $e(V_{a}\oplus\overline{V}_{b})=12(a+b)=12(a-b)+24b$ . Thus the corollary follows from

Theorem 1.1’. $\square$

In this paper we always assume that the signature of the total spaces is
not zero. However, what happens if it vanishes ?

Let $f:Marrow S^{2}$ be a torus fibration whose singular fibers are of type $I_{1}^{+}$ or
$I_{1}^{-}$ . Suppose that $\sigma(M)=0$ . Then by Theorems 3.7 and 4.1 below (and by noting

that a singular fiber of type $I_{1}^{+}$ or $I_{1}^{-}$ contributes $-2/3$ or 2/3 to $\sigma(M),$ $[1],$ $[6$ ,

II]), we can deform the fibering structure of $f:Marrow S^{2}$ so that in the resulting

fibration all the singular fibers are “ twin “. (For the definition of a twin singular

fiber, see Definition 2.3.) Iwase [2] studies torus fibrations of this kind. He
proves the following:

THEOREM (Iwase). Supp0se that $e(M)\neq 0$ , then the diffeomorphism type of
the total space of a torus fibration $Marrow S^{2}$ whose singular fibers are twin (and are
not multiple in the sense of \S 2) is determined by the 4 data: the fundamental
group $\pi_{1}(M)$ , the euler number $e(M)$ , the second Stiefel-Whitney class $w_{2}(M)$ and

the type of the intersection form on $H_{2}(M;Z)$ (even or odd).

For the proof, we refer the reader to [2].

Throughout the paper, all manifolds will be smooth and oriented. All dif-
feomorphisms will preserve orientations, unless otherwise stated.

Main results of this paper were announced in [7].

\S 2. Definitions.

Torus fibrations defined below will be good in the sense that their singular

fibers have only normal crossings. For a more general definition, see [6].

A Proper map $f:Marrow B$ between manifolds is a map such that the preimage

of each compact subset of $B$ is compact and $f^{-1}(\partial B)=\partial M$.

DEFINITION 2.1. Let $M$ and $B$ be manifolds of dimension 4 and 2, respec-
tively. Let $f:Marrow B$ be a proper, surjective and smooth map. We call $f:Marrow B$

a (good) torus fibration if it satisfies the following conditions:
(i) near each point $p\in IntM$ (resp. $f(p)\in IntB$ ), there exist local complex

coordinates $z_{1},$ $z_{2}$ with $z_{1}(p)=z_{2}(p)=0$ (resp. local complex coordinate $\xi$ with
$\xi(f(p))=0)$ , so that $f$ is locally written as $\xi=f(z_{1}, z_{2})=z_{1}^{m}z_{2}^{n}$ or $(\overline{z}_{1})^{m}z_{2}^{n}$ , where
$m,$ $n$ are non-negative integers with $m+n\geqq 1$ , and $\overline{z}_{1}$ is the complex conjugate
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of $z_{1}$ ;

(ii) there exists a set $\Gamma$ of isolated points of Int $B$ so that $f|f^{-1}(B-\Gamma)$ :
$f^{-1}(B-\Gamma)arrow B-\Gamma$ is a smooth $T^{2}$-bundle over $B-\Gamma$.

We call $f,$ $M$ and $B$ , the projection, the total space and the base space,
respectively. Given a (good) torus fibration $f:Marrow B$ , those points $P$ of Int $M$

at which $m+n\geqq 2$ make a nowhere dense subset $\Sigma$ . We may assume that $f(\Sigma)$

$=\Gamma$. We call $\Gamma$ the set of critical values. The fiber $F_{x}=f^{-1}(x)$ is a general or
singular fiber according as $x\in B-\Gamma$ or $x\in\Gamma$.

A singular fiber has a finite number of normal crossings. The complement
$F_{x}-$ {$normal$ crossings} is divided into a finite number of connected compo-

nents. The closure of each component is called an irreducible componenf of $F_{x}$ .
Irreducible components are smoothly immersed surfaces, and $F_{x}$ is the union of

them:
$F_{x}=\Theta_{1}\cup\cdots\cup\Theta_{s}$ .

Each irreducible component is naturally oriented. Thus it represents a homology

class $[\Theta_{i}]$ in $H_{2}(f^{-1}(D_{x});Z)$ , where $D_{x}(\subset IntB)$ denotes a small 2-disk centered
at $x$ such that $D_{x}\cap\Gamma=\{x\}$ . $H_{2}(f^{-1}(D_{x});Z)$ is a free abelian group with basis
$[\Theta_{1}],$ $\cdots$ , $[\Theta_{s}]$ , with which the homology class $[F_{y}]$ of a nearby general fiber
$F_{y}(y\in D_{x}-\{x\})$ is written as

$[F_{y}]=m_{1}[\Theta_{1}]+\cdots+m_{s}[\Theta_{s}]$ , $m_{i}\geqq 1$ .

The formal sum $\sum m_{i}\Theta_{i}$ is called the divisor of the singular fiber $F_{x}$ . $F_{x}$ is
said to be simple or multiple according as $gcd(m_{1}, \cdots , m_{s})=1$ or $>1$ .

Let $F_{0}$ be a general fiber over a base point $x_{0}\in B-\Gamma$. Let $l:[0,1]arrow B-\Gamma$

be a loop based at $x_{0}$ . As is easily shown, there exists a map $h:F_{0}\cross[0,1]$

$arrow M-f^{-1}(\Gamma)$ such that
(i) $f(h(p, t))=l(t)$ for all $(p, t)\in F_{0}\cross[0,1]$ ;

(ii) the map $h_{t}$ : $F_{0}arrow F_{t}$ defined by $h_{t}(p)=h(p, t)$ is a homeomorphism, where
$F_{t}=f^{-1}(l(t))$ ;

(iii) $h_{0}=identity$ of $F_{0}$ .
The isotopy class of $h_{1}$ : $F_{0}arrow F_{1}=F_{0}$ is determined by $x_{0}$ together with the

homotopy class $[l]$ . $h_{1}$ induces an automorphism

$(h_{1})_{*}:$ $H_{1}(F_{0} ; Z)arrow H_{1}(F_{0} ; Z)$ .

Fix an ordered basis $(\mu, \lambda)$ of $H_{1}(F_{0} ; Z)$ so that it is compatible with the
orientation of $F_{0}$ . Then $(h_{1})_{*}$ is represented by a matrix $A$ called the monodromy
matrix. This gives a map

$\rho:\pi_{1}(B-\Gamma, x_{0})arrow SL(2, Z)$ .

Recalling that the product $l\cdot l’$ of loops is the loop which goes first round $l$
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and then 1’, we easily see that to make $\rho$ a homomorphism we must adopt the

following rule when assigning $A=\{\begin{array}{ll}a bc d\end{array}\}$ to $(h_{1})_{*};$

$(h_{1})_{*}(\mu)=a\mu+b\lambda$ , $(h_{1})_{*}(\lambda)=c\mu+d\lambda$ .

This rule is equivalent to considering that the monodromy acts on $H_{1}(F_{0} ; Z)$

from the right. This convention coincides with the one in Moishezon [9] but

is different from the one in [4] or [7]. For this reason, monodromy matrices
here will be the transposed matrices of those in [4], [7].

A different basis $(\mu’, \lambda’)$ gives a different homomorphism $\rho’$ : $\pi_{1}(B-\Gamma, x_{0})$

$arrow SL(2, Z)$ . $\rho’$ is related to $\rho$ by $\rho’=C^{-1}\cdot\rho\cdot C,$ $C$ being a matrix in $SL(2, Z)$ .
The conjugacy class of the matrix $\rho([l])$ is called the monodromy associated
with $[l]$ .

Let $x$ be a point of $\Gamma,$ $D_{x}$ a small disk in IntB such that $D_{x}\cap\Gamma=\{x\}$ . Let
$x’$ be a point on $\partial D_{x}$ . Then $D_{x}$ is considered as a loop based at $x’$ . (The

direction of $\partial D_{x}$ is determined by the orientation of $D_{x}.$ ) The monodromy asso-
ciated with the loop $\partial D_{x}$ is called the local monodromy of the singular fiber $F_{x}$ .

For a classification of singular fibers and their local monodromies, see [6],

[7].

To this paper only three types of singular fibers are relevant. They are
$I_{1}^{+},$ $I_{1}^{-}$ and $Tw$ (twin). (These three types belong to the same class $\tilde{A}$ in the

notation of [7].)

DEFINITION 2.2. A singular fiber is of tyPe $I_{1}^{+}$ (resp. type $I_{1}^{-}$ ) if it is a
simple singular fiber consisting of a smooth immersed 2-sphere (in the total space)

which intersects itself transversely at one point, where the sign of the inter-
section is +1 (resp. $-1$ ). (Fig. 2.1).

$\int_{I_{1}^{+}}+$ $\int_{I_{1}^{-}}-$

Figure 2.1.

The local monodromy of a singular fiber of type $I_{1}^{+}$ (resp. $I_{1}^{-}$ ) is represented

by $\{\begin{array}{ll}l 0l 1\end{array}\}$ (resp. $\{\begin{array}{ll}1 0-1 l\end{array}\}$ ), $[9],$ $[7]$ . This is classically known as the Picard-

Lefschetz formula.
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DEFINITION 2.3. A singular fiber is of type $Tw$ if it consists of two smoothly

embedded 2-spheres $R,$ $S$ intersecting each other transversely at two points $p_{+}$ ,

p-. The sign of intersection at $p_{+}$ (resp. $p_{-}$ ) is +1 (resp. $-1$ ). The divisor is

$mR+nS$ . (Fig. 2.2).

Figure 2.2.

In what follows all singular fibers of type $Tw$ will have divisor $R+S(i.e.$ ,

$m=n=1)$ or $R+nS$ .
Montesinos [10] first studied two 2-spheres in $S^{4}$ which intersect each other

transversely at two points. Following him, we will call a singular fiber of type
$Tw$ a twin singular fiber.

If $F_{x}$ is a twin singular fiber, the intersection numbers $R\cdot R,$ $R\cdot S,$ $S\cdot S$ are
zero (cf. [7]). Therefore the neighborhood $f^{-1}(D_{x})$ is obtained by plumbing

$D^{2}\cross S^{2}$ and $S^{2}\cross D^{2}$ according to the graph $=+-\cdot$ The boundary $\partial(f^{-1}(D_{x}))$ is

diffeomorphic to $T^{3}=S^{1}\cross S^{1}\cross S^{1}$ ([10]), and the local monodromy is trivial $\{\begin{array}{ll}1 00 1\end{array}\}$ .

It is proved that the 4-sphere $S^{4}$ can be fibered as a torus fibration $S^{4}arrow S^{2}$

with a single singular fiber of type $Tw,$ $[6]$ .

\S 3. Elementary transformations.

In this section, we will extend the theorems of Livne and Moishezon [9]

on elementary transformations of monodromies so that they may cover torus

fibrations with I’i-singular fibers.
Let $f:Marrow D^{2}$ be a torus fibration over the 2-disk each singular fiber of

which is of type $I_{1}^{+}$ or $I_{1}^{-}$ . We assume in this section that the monodromy

around the boundary $\partial D^{2}$ is trivial.
Let $\Gamma=\{x_{1}, x_{2}, \cdots , x_{\nu}\}(\subset IntD^{2})$ be the set of critical values of $f$ . Let $D_{i}$

$(\subset IntD^{2})$ be a small 2-disk centered at $x_{i}$ such that $D_{i}\cap\Gamma=\{x_{i}\}$ . We assume
that $D_{i}\cap D_{j}=\emptyset$ for $i\neq j$ . Take a base point $x_{0}\in D^{2}-U_{l=1}^{v}Int(D_{i})$ and points
$x_{1}’,$ $x_{2}’,$ $\cdots$ , $x_{\nu}’$ on $\partial D_{1},$ $\partial D_{2},$ $\cdots$ , $\partial D_{\nu}$ , respectively. Let $\gamma_{1},$ $\gamma_{2},$

$\cdots$ , $\gamma_{\nu}$ : $[0,1]arrow$

$D^{2}- \bigcup_{i=1}^{v}IntD_{i}$ be paths joining $x_{0}$ and $x_{1}’,$ $x_{2}’,$ $\cdots$ , $x_{\nu}’$ as shown in Fig. 3.1.
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Figure 3.1.

Let $l_{i}$ denote the loop $\gamma_{i}\cdot(\partial D_{i})\cdot\gamma_{i}^{-1},$ $i=1,$ $\cdots$ , $v$ , based at $x_{0}$ . Throughout the
argument we fix an ordered basis $(\mu, \lambda)$ of $H_{1}(F_{0} ; Z)$ , where $F_{0}=f^{-1}(x_{0})$ . The
basis gives the monodromy homomorphism $\rho:\pi_{1}(D^{2}-\Gamma, x_{0})arrow SL(2, Z)$ . The
monodromy matrix $\rho([l_{i}])$ is denoted by $B_{i},$ $i=1,$ $\cdots$ , $\nu$ .

Because of the triviality assumption on the monodromy around $\partial D^{2}$ , we have

(3.1) $B_{1}B_{2}\cdots B_{\nu}=\{\begin{array}{ll}1 00 1\end{array}\}$ .

Since the singular fiber $F_{i}=f^{-1}(x_{i})$ is of type $I_{1}^{+}$ or $I_{1}^{-}$ , we see that

(3.2) $B_{t}$ is conjugate to $\{\begin{array}{ll}1 01 1\end{array}\}$ or $\{\begin{array}{ll}1 0-1 1\end{array}\}$ ,

for each $i=1,2,$ $\cdots$ , $\nu$ .
Following Moishezon [9, pp. 177-178], we now study the effect of rechoosing

the paths $\gamma_{1},$ $\gamma_{2},$
$\cdots$ , $\gamma_{\nu}$ on the monodromy matrices $B_{1},$ $B_{2},$ $\cdots$ , B.. To examine

this, fix an integer $j,$ $1\leqq$ ] $\leqq\nu-1$ . Let $\gamma_{1}’,$ $\gamma_{2}’,$ $\cdots$ , $\gamma_{\nu}’$ be the new paths defined

by $\gamma_{i}’=\gamma_{i}(i\neq j, j+1),$ $\gamma_{j}’=\gamma_{j+1}$ and $\gamma_{j+1}’\simeq l_{f+1}^{-1}\cdot\gamma_{j}$ , see Fig. 3.2.

$\Rightarrow$

$X_{0}$
$X_{0}$

Figure 3.2.

Let $l_{1}’,$ $l_{2}’,$ $\cdots$ , $1_{\nu}’$ denote the corresponding loops: $l_{i}’=\gamma_{i}’\cdot(\partial D_{i})\cdot(\gamma_{i}’)^{-1},$ $i=1,2$ ,

... , $\nu$ . Then the new v-tuple of the monodromy matrices $(B_{1}’, B_{2}’, \cdots , B_{v}’)$ cor-
responding to $l_{1}’,$ $l_{2}’,$ $\cdots$ , $l_{v}’$ is given by
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$B_{i}’=B_{i}$ $(i\neq j, j+1)$ ,

$B_{j}’=B_{j+1}$ ,

$B_{j+1}’=B_{j+1}^{-1}B_{j}B_{j+1}$ .

Clearly, the matrices $B_{1}’,$ $B_{2}’,$ $\cdots$ , $B_{\nu}’$ satisfy the same conditions (3.1), (3.2) as
$B_{1},$ $B_{2},$ $\cdots$ $B_{v}$ do.

Similarly, let $\gamma_{1}’’,$ $\gamma_{2}’’,$ $\cdots$ , $\gamma_{\nu}’’$ be the paths defined by $\gamma_{i}’’=\gamma_{i}$ $(i\neq j, j+1)$ ,

$\gamma_{j}’’\simeq l_{j}\cdot\gamma_{j+1},$ $\gamma_{j+1}’’=\gamma_{j}$ , see Fig. 3.3.

$\Rightarrow$

$x_{0}$

$x_{0}$

Figure 3.3.

Let $l_{1}’’,$ $l_{2}’’,$ $\cdots$ , $1_{\nu}’’$ denote the corresponding loops: $l_{i}’’=\gamma_{i}^{fJ}\cdot(\partial D_{i})\cdot(\gamma_{i}’’)^{-1},$ $i=1,2,$ $\cdots$ , $\nu$ .
Then the new v-tuple of the monodromy matrices $(B_{1}’’, B_{2}’’, \cdots , B_{\nu}’’)$ is given by

$B_{i}’’=B_{i}$ $(i\neq j, j+1)$ ,

$B_{j}’’=B_{j}B_{j+1}B_{j}^{-1}$ ,

$B_{j+1}’’=B_{j}$ .
Again $B_{1}’’,$ $B_{2}’’,$ $\cdots$ , $B_{\nu}’’$ satisfy the conditions (3.1), (3.2). These observations

motivate the following definition:

DEFINITION 3.1 ([9], p. 223). Let $G$ be a group. Let $S_{\nu}$ be the set of
v-tuples $(g_{1}, g_{2}, \cdots , g_{\nu})$ of elements of $G$ such that $g_{1}g_{2}\cdots g_{\nu}=1$ . Let $j$ be an
integer with $1\leqq!\leqq\nu-1$ .

The j-th elementary transformation $R_{j}$ ; $S_{\nu}arrow S_{\nu}$ is a map defined by

$R_{j}(g_{1}, \cdots g_{j-1}, g_{j}, g_{j+1}, g_{j+2}, \cdots g_{\nu})$

$=(g_{1}, \cdots g_{j-1}, g_{j+1}, g_{j+1}^{-1}g_{j}g_{j+1}, g_{j+2}, \cdots g_{\nu})$ .

The j-th inverse transformation $R_{j}^{-1}$ ; $S_{\nu}arrow S_{\nu}$ is defined by

$R_{j}^{-1}(g_{1}, \cdots g_{j-1}, g_{j}, g_{j+1}, g_{j+2}, \cdots g_{\nu})$

$=(g_{1}, \cdots g_{j-1}, g_{j}g_{j+1}g_{j}^{-1}, g_{j}, g_{j+2}, \cdots g_{\nu})$ .
Both $R_{j}$ and $R_{f}^{-1}$ are often called elementary transformations.

Using the assumption $g_{1}g_{2}\cdots g_{\nu}=1$ , one can easily see that the cyclic per-

mutation $(g_{1}, g_{2}, \cdots, g_{\nu})arrow(g_{2}, g_{\nu}, g_{1})$ is a product of elementary transformations
$(=R_{\nu-1}\cdots R_{2}R_{1})$ .
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The following is the main result of this section. Let $X,$ $Y$ always denote

the matrices $\{\begin{array}{ll}1 01 1\end{array}\},$ $\{\begin{array}{ll}1 -10 1\end{array}\}$ respectively.

THEOREM 3.2. Let $(B_{1}, B_{2}, \cdots , B_{\nu})$ be a v-tuple of mairices in $SL(2, Z)$

satisfying the conditions (3.1), (3.2). Then $\nu$ is even, and by successive applicatjon

of elementary transformations, we can change $(B_{1}, B_{2}, \cdots , B_{\nu})$ into a v-tuple in

one of the following normal forms, (1) or (2):

(1) $(W_{1}, W_{1}^{-1}, \cdots , W_{l}, W_{l}^{-1}, X, Y, X, Y, \cdots , X, Y)$ ,

(2) $(W_{1}, W_{1}^{-1}, \cdots , W_{l}, W_{l}^{-1}, Y^{-1}, X^{-1}, Y^{-1}, X^{-1}, \cdots , Y^{-1}, X^{-1})$ ,

where $0\leqq 1\leqq\nu/2$ and $W_{i}\in SL(2, Z)$ , for $i=1,$ $\cdots$ , $l$ .

Note that $\nu-2l$ is divisible by 12, because $XY=\{\begin{array}{ll}1 -l1 0\end{array}\}$ has order 6 in

$SL(2, Z)$ .
Theorem 3.2 generalizes Lemma 8 of [9, p. 179]. Our proof is globally the

same as the one given in [9, pp. 180-188, pp. 223-230]. However, it differs in

details. So we will give the full proof below.

Let $A$ and $B$ denote the matrices $\{\begin{array}{l}0-111\end{array}\}$ and $\{\begin{array}{l}21-1-1\end{array}\}$ , respectively. We

have $A^{3}=B^{2}=\{\begin{array}{ll}-l 00 -l\end{array}\}$ . $A$ and $B$ generate the $\lrcorner rgroupSL(2, Z)$ . Note that

$X=ABA,$ $Y=BA^{2}$ and $Y$ is conjugate to $X:Y=A^{-1}XA$ .

Now we pass to the modular group $PSL(2, Z)=SL(2, Z)/\{\{\begin{array}{ll}1 00 1\end{array}\},$ $\{\begin{array}{ll}-1 00 -1\end{array}\}\}$ .

Let $\pi:SL(2, Z)arrow PSL(2, Z)$ be the quotient map. The images $\pi(A),$ $\pi(B),$ $\pi(X)$

and $\pi(Y)$ will be denoted by the corresponding lowercase letters $a,$ $b,$ $x,$ $y$

respectively. Clearly, we have $x=aba,$ $y=ba^{2}$ .
$PSL(2, Z)$ has the presentation

$PSL(2, Z)=\langle a, b|a^{3}=b^{2}=1\rangle$ .

In the proof below, we will always assume this presentation for $PSL(2, Z)$ .
Each element $g$ of $PSL(2, Z)$ is expressed as a product $t_{1}t_{2}\cdots t_{r}$ , where $t_{i}=a$ ,
$a^{2}$ or $b$ . Moreover, unless $g=1$ , the expression $g=t_{1}t_{2}\cdots t_{r}$ is unique, provided

that for each $i=1,$ $\cdots$ , $r-1$ the set of two adjacent elements $\{t_{i}, t_{i+1}\}$ coincides

with the set $\{a, b\}$ or $\{a^{2}, b\}$ . Such a product $t_{1}t_{2}\cdots t_{r}$ is said to be reduced,

and $r$ is called the length of the reduced product or of the element $g$ which the
product represents. The length of $g$ is denoted by $l(g)$ . For examples, $1(x)$

$=l(aba)=3,$ $l(y)=l(ba^{2})=2$ . We define $l(1)=0$ .
It is easy to see that, if $g$ is conjugate to $x(=aba)$ and $1(g)\leqq 3$ , then

$g=a^{2}b$ , aba or $ba^{2}$ . Also if $g$ is conjugate to $x^{-1}(=a^{2}ba^{2})$ and $l(g)\leqq 3$ , then
$g=ba,$ $a^{2}ba^{2}$ or $ab$ . We denote these six elements as follows (cf. [9, p. 180]):
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$s_{0}=a^{2}b$ , $s_{1}=aba(=x)$ , $s_{2}=ba^{2}(=y)$

$s_{0}^{-1}=ba$ , $s_{1}^{-1}=a^{2}ba^{2}$ , $s_{2}^{-1}=ab$ .

Let $g$ be conjugate to $x$ or $x^{-1}$ . Following [9], we say that $g$ is short if

it is one of the elements $s_{0},$ $s_{1},$ $s_{2},$
$s_{0}^{-1},$ $s_{1}^{-1},$ $s_{2}^{-1}$ ; otherwise it is long. If $g$ is

long, then $g$ is expressed by a reduced product of the form $Q^{-1}a^{\delta}ba^{\delta}Q$ , where
$\delta=1$ or 2 and $Q(\neq 1)$ is a reduced product which begins with $b$ . Thus $l(g)\geqq 5$ .

LEMMA 3.3. Let $g_{1},$ $g_{2},$
$\cdots$ , $g_{\nu}$ be conjugate to $x$ or $x^{-1}$ . Assume that

$g_{1}g_{2}\cdots g_{\nu}=1$ . Then there exists at least one $i(1\leqq i\leqq\nu-1)$ for which $l(g_{i}g_{i+1})$

$< \max(l(g_{i}), l(g_{i+1}))$ .
The proof of Lemma 3.3 is the same as that of Assertion on p. 225 of [9],

so we omit it. The idea is to show that if we had $l(g_{i}g_{i+1})\geqq l(g_{i}),$ $l(g_{i+1})$ for

each $i=1,$ $\cdots$ , $\nu-1$ , then $g_{1}g_{2}\cdots g_{v}=1$ would not hold.

The next theorem is a slight extension of Livne’s theorem ([9, Appendix II]).

THEOREM 3.4. Let $g_{1},$ $g_{2},$
$\cdots$ , $g_{\nu}$ be conjugate to $x$ or $x^{-1}$ , and assume that

$g_{1}g_{2}\cdots g_{\nu}=1$ . Then by successrve aPplication of elementary transformations, the

v-tuple $(g_{1}, g_{2}, -- , g_{v})$ can be transformed into a v-tuple $(h_{1}, h_{2}, \cdots , h_{\nu})$ such that

ather every $h_{i}$ is short or $h_{i}h_{i+1}=1$ for at least one $i$ .
PROOF. For completeness we will repeat the proof in [9] with necessary

modifications. The proof proceeds by induction on the total length $l(g_{1}, \cdots , g_{\nu})$

$= \sum_{i=1}^{\nu}l(g_{i})$ . By Lemma 3.3, there exists an $i$ such that $l(g_{i}g_{i+1})< \max(l(g_{i})$ ,

$l(g_{t+1}))$ . We will Px such an $i$ for a while. There are three cases to be con-
sidered: Cases A. 1, A.2, B.

Case A. 1: $g_{i}$ is long and $l(g_{i})\geqq l(g_{i+1})$ .
In this case we have $\max(l(g_{i}), l(g_{i+1}))=l(g_{i})$ , thus $l(g_{i}g_{i+1})<l(g_{i})$ . First of

all, we prove the following

ASSERTION A. 1.1. $l(g_{i})>l(g_{i+1})$ unless $g_{i}g_{i+1}=1$ .
It will suffice to show that if $l(g_{t})=l(g_{i+1})$ , then $g_{i}g_{i+1}=1$ . Assume that

$l(g_{i})=l(g_{i+1})$ . Since $g_{i}$ is long, so is $g_{i+1}$ . Express $g_{i}$ and $g_{i+1}$ as reduced
products: $g_{i}=Q_{i}^{-1}a^{\delta}ba^{\delta}Q_{i},$ $g_{i+1}=Q_{i+1}^{-1}a^{\epsilon}ba^{\epsilon}Q_{i+1},$ $\delta,$ $\epsilon=1$ or 2. Since $l(g_{i})=l(g_{i+1})$ ,

we have $l(Q_{i})=l(Q_{i+1})$ and $g_{i}g_{i+1}=Q_{i}^{-1}a^{\delta}ba^{\delta}Q_{i}Q_{i+1}^{-1}a^{\epsilon}ba^{\epsilon}Q_{i+1}$ . If the product $Q_{i}Q_{t+1}^{-1}$

does not cancel out, then we would have $l(g_{i}g_{i+1})>l(Q_{i})+6+l(Q_{i+1})>l(g_{i})$ , a
contradiction. Therefore, $Q_{i}Q_{i+1}^{-1}=1$ and $g_{i}g_{i+1}=Q_{i}^{-1}a^{\delta}ba^{\delta+\epsilon}ba^{\epsilon}Q_{i+1}$ . If $\delta+\epsilon\neq 3$ ,

then we would have $l(g_{i}g_{i+1})=l(Q_{i})+5+l(Q_{i+1})>l(g_{i})$ , a contradiction. There-
fore, $\delta+\epsilon=3$ , and we have $g_{i}g_{i+1}=1$ as claimed.

ASSERTION A.1.2. If $l(g_{i})>l(g_{i+1})$ , then $l(g_{i+1}^{-1}g_{i}g_{i+1})<l(g_{i})$ .
To prove this assertion, we must consider two cases according as $g_{i+1}$ is

short or long. First, suppose that $g_{i+1}$ is short, namely, $g_{i+1}\in\{s_{0}, s_{1}, s_{2}, s_{0}^{-1}, s_{1}^{-1}, s_{2}^{-1}\}$ .
By the assumption of Case A. 1, $g_{i}$ is long. Express $g_{i}$ as a reduced product:

$g_{i}=Q_{i}^{-1}$ a $ba^{\epsilon}Q_{i}$ , where $\epsilon=1$ or 2 and $Q_{i}\neq 1$ .
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If $g_{i+1}=s_{0}=a^{2}b$ , then $Q_{i}$ must be of the form $b\cdots ba$ , because $l(g_{i}g_{i+1})<l(g_{i})$ .
Then, $g_{i+1}^{-1}g_{i}g_{i+1}=ba(Q_{i}^{-1}a^{\epsilon}ba^{\epsilon}Q_{i})a^{2}b=ba(a^{2}b\cdots ba^{\epsilon}ba^{\epsilon}b\cdots ba)a^{2}b$ , and we have
$l(g_{t+1}^{-1}g_{i}g_{i+1})\leqq l(g_{i})-4<l(g_{i})$ as asserted.

If $g_{i+1}=s_{1}=aba$ , then $Q_{i}$ must be of the form $b\cdots ba^{2}$ , because $l(g_{i}g_{i+1})<l(g_{i})$ .
Then, $g_{i+1}^{-1}g_{i}g_{i+1}=a^{2}ba^{2}(ab\cdots ba^{\epsilon}ba^{\epsilon}b\cdots ba^{2})aba$ , and we have $l(g_{l+1}^{1}g_{i}g_{i+1})\leqq l(g_{i})$

$-2<l(g_{i})$ as asserted. The other cases when $g_{i+1}=s_{2},$
$s_{0}^{-1},$ $s_{1}^{-1},$ $s_{2}^{-1}$ are treated

similarly.

Secondly suppose that $g_{i+1}$ is long. Express $g_{i+1}$ as a reduced product:
$g_{i+1}=Q_{i+1}^{-1}a^{\delta}ba^{\delta}Q_{i+1}$ , where $\delta=1$ or 2 and $Q_{i+1}\neq 1$ . By the assumption of Asser-
tion A.1.2, we have $l(g_{i})>l(g_{i+1})$ , thus $l(Q_{i})>l(Q_{t+1})$ . If $Q_{i+1}^{-1}$ were not canceled
out by part of $Q_{i}$ in the product $Q_{i}Q_{i+1}^{-1}$ , we would have $l(g_{i}g_{i+1})>l(Q_{i})+3+$

$(l(Q_{i})-l(Q_{i+1}))+3+l(Q_{i+1})>l(g_{i})$ , because $g_{i}g_{i+1}=Q_{i}^{-1}a^{\epsilon}ba^{\epsilon}Q_{i}Q_{i+1}^{-1}a^{\delta}ba^{\delta}Q_{i+1}$ . This
is a contradiction. Thus we have $Q_{i}=Q_{i}’Q_{i+1}$ , where $Q_{i}’\neq 1$ , and $g_{i}g_{i+1}$

$=Q_{i}^{-1}a^{\epsilon}ba^{\epsilon}Q_{i}’a^{\delta}ba^{\delta}Q_{i+1}$ . If this were a reduced product, we would have $l(g_{i}g_{i+1})$

$=l(Q_{i})+3+(l(Q_{i})-l(Q_{i+1}))+3+l(Q_{i+1})>l(g_{i})$ , a contradiction. Thus $g_{i}g_{i+1}$

$=Q_{i}^{-1}a^{\epsilon}ba^{\epsilon}Q_{i}’a^{\delta}ba^{\delta}Q_{i+1}$ is not a reduced product. This implies that $Q_{i}’$ is of the
form $Q_{i}’=b\cdots ba^{3-\delta}$ . Then $g_{i+1}^{-1}g_{i}g_{i+1}=Q_{i+1}^{-1}a^{3-\delta}ba^{3-\delta}(Q_{i}’)^{-1}a^{\epsilon}ba^{\epsilon}Q_{i}’a^{\delta}ba^{\delta}Q_{i+1}$ and

we have $l(g_{i+1}^{-1}g_{i}g_{i+1})\leqq l(Q_{i+1})+3+(l(Q_{i})-l(Q_{i+1}))+3+(l(Q_{i})-l(Q_{i+1}))+3+l(Q_{i+1})$

$-8=2l(Q_{i})+1<l(g_{i})$ as asserted. This proves Assertion A. 1.2.
By Assertions A. 1.1, A. 1.2, we can conclude in Case A. 1 that the i-th

elementary transformation $R_{i}$ reduces the total length of the v-tuple $(g_{1},$ $g_{2},$
$\cdots$ ,

$g_{v})$ , unless $g_{i}g_{i+1}=1$ .
Case A.2: $g_{i+1}$ is long and $l(g_{i})\leqq l(g_{i+1})$ .

In this case, one can prove the following:

ASSERTION A.2.1. $l(g_{i})<l(g_{i+1})$ unless $g_{i}g_{i+1}=1$ .
ASSERTION A.2.2. If $l(g_{i})<l(g_{i+1})$ , then $l(g_{\ell}g_{i+1}g_{i}^{-1})<l(g_{i+1})$ .
The proofs of these assertions are similar to those of previous assertions.

Combining Assertions A.2.1, A.2.2, we can conclude in Case A.2 that the

inverse of the i-th elementary transformation, $R_{i}^{-1}$ , reduces the total length of
$(g_{1}, g_{2}, \cdots , g_{\nu})$ , unless $g_{i}g_{i+1}=1$ .

Case $B$ : Both $g_{i}$ and $g_{i+1}$ are short.

Since $l(g_{i}g_{+1})< \max(l(g_{i}), l(g_{i+1}))\leqq 3$ , the ordered pair $(g_{i}, g_{i+1})$ must be one
of the 12 pairs: $(s_{0}, s_{2})$ , $(s_{0}, s_{0}^{-1})$ , $(s_{1}, s_{0})$ , $(s_{1}, s_{1}^{-1})$ , $(s_{2}, s_{1})$ , $(s_{2}, s_{2}^{-1})$ , $(s_{0}^{-1}, s_{0})$ ,

$(s_{0}^{-1}, s_{1}^{-1}),$ $(s_{1}^{-1}, s_{1}),$ $(s_{1}^{-1}, s_{2}^{-1}),$ $(s_{2}^{-1}, s_{0}^{-1}),$ ( $s_{2}^{-1}$ , S2). In case $g_{i}g_{i+1}=1$ , we are done.

Thus we assume $g_{i}g_{i+1}\neq 1$ . Then $(g_{i}, g_{i+1})$ is one of the 6 pairs: $(s_{0}, s_{2})$ ,
$(s_{1}, s_{0}),$ $(s_{2}, s_{1}),$ $(s_{0}^{-1}, s_{1}^{-1}),$ $(s_{1}^{-1}, s_{2}^{-1}),$ $(s_{2}^{-1}, s_{0}^{-1})$ . The first three are mutually trans-

formed by elementary transformations. In fact, $(s_{0}, s_{2})-(s_{2}, s_{2}^{-1}s_{0}s_{2})=(s_{2}, s_{1})\mapsto$

$(s_{1}, s_{1}^{-1}s_{2}s_{1})=(s_{1}, s_{0})$ . Similarly the second three are mutually transformed:
$(s_{0}^{-1}, s_{1}^{-1})->(s_{1}^{-1}, s_{1}s_{0}^{-1}s_{1}^{-1})=(s_{1}^{-1}, s_{2}^{-1})arrow(s_{2}^{-1}, s_{2}s_{1}^{-1}s_{2}^{-1})=(s_{2}^{-1}, s_{0}^{-1})$ .

If every $g_{j}$ in $(g_{1}, \cdots , g_{\nu})$ is short, then we are done, Therefore, we may
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assume that there exist $j$ such that $g_{j}$ is long. Moreover, after applying cyclic

permutations, if necessary, we may assume that $j>i+1$ . (Recall that any cyclic

permutation is a product of elementary transformations.) Let $j$ be the smallest

in the set of indices {$j|j>i+1$ and $g_{j}$ is long}. Let us denote the elements
$g_{i},$ $g_{i+1},$

$\cdots$ , $g_{j-1}$ in new notation $y_{1},$ $y_{2},$
$\cdots$ , $y_{u}$ . Of course, $u$ is equal to $j-i$ .

ASSERTION B. 1. For each $v$ such that $2\leqq v\leqq u$ , one of the following three

statements holds:
(i) by applying elementary transformations on the $v$-tuple $(y_{1}, \cdots , y_{v})$ , we

can change $y_{v}$ into any element of $\{s_{0}, s_{1}, s_{2}\}$ we want;

(ii) by applying elementary transformations on the v-tuple $(y_{1}, \cdots , y_{v})$ , we can
change $y_{v}$ into any element of $\{s_{0}^{-1}, s_{1}^{-1}, s_{2}^{-1}\}$ we want;

(iii) by aPplying elementary transformations on the $v$-tuple $(y_{1}, \cdots , y_{v})$ , we
can transform it into a new $v$-tuple $(y_{1}’, \cdots , y_{v}’)$ such that $y_{l}’y_{l+1}’=1$ for at least

one $l(1\leqq l\leqq v-1)$ .
The proof proceeds by induction on $v$ starting with $v=2$ . If $v=2$ , then

$(y_{1}, y_{2})=(g_{i}, g_{i+1})$ , which can be transformed into either any of the 3 pairs
$(s_{0}, s_{2}),$ $(s_{1}, s_{0}),$ $(s_{2}, s_{1})$ or any of the 3 pairs $(s_{0}^{-1}, s_{1}^{-1}),$ $(s_{1}^{-1}, s_{2}^{-1}),$ $(s_{2}^{-1}, s_{0}^{-1})$ , as we
remarked at the beginning of Case B. Therefore, (i) or (ii) holds. This proves

the assertion for $v=2$ .
Assume inductively that Assertion B. 1 is proved for some $v$ (with $v<u$ ).

We will prove it for $v+1$ . Note that $y_{v+1}$ is short, because $y_{v+1}=g_{i+v}$ and
$i+v<i+u=j$ . First consider the case when $y_{v+1}\in\{s_{0}, s_{1}, s_{2}\}$ . If (i) holds for
$v$ , then change $y_{v}$ for $s_{1},$ $s_{2}$ , or $s_{0}$ according as $y_{v+1}=s_{0},$ $s_{1}$ or $s_{2}$ . Then $(y_{v}, y_{v+1})$

will become $(s_{1}, s_{0}),$ $(s_{2}, s_{1})$ or $(s_{0}, s_{2})$ , and these 3 pairs can be mutually trans-

formed. Therefore (i) holds for $v+1$ . If (ii) holds for $v$, then change $y_{v}$ for
$s_{\overline{0}}^{1},$ $s_{1}^{-1}$ or $s_{2}^{-1}$ according as $y_{v+1}=s_{0},$ $s_{1}$ or $s_{2}$. Then $y_{v}y_{v+1}=1$ . Therefore (iii)

holds for $v+1$ . If (iii) holds for $v$ , trivially (iii) holds for $v+1$ .
Secondly consider the case when $y_{v+1}\in\{s_{0}^{-1}, s_{1}^{-1}, s_{2}^{-1}\}$ . However, this case

can be treated similarly as the first case.
Assertion B. 1 is proved.

By Assertion B. 1, one of the statements (i), (ii) or (iii) holds for the u-tuple
$(y_{1}, \cdots , y_{u})=(g_{i}, \cdots , g_{j-1})$ . If (iii) holds for this u-tuple, then we are done.

Thus we may assume that (i) or (ii) holds for the u-tuple $(g_{i}, g_{i+1}, \cdots , g_{j-1})$ .
Recall that $g_{j}$ is long, so that it is expressed as a reduced product: $g_{j}=$

$Q_{j}^{-1}a^{\epsilon}ba^{\epsilon}Q_{j}$ , where $\epsilon=1$ or 2 and $Q_{j}\neq 1$ . Obviously, $Q_{j}^{-1}$ is equal to $a^{2}b\cdots b$ ,

ab $\cdots b$ or $b\cdots b$ . This last case includes $Q_{j}^{-1}=b$ as a special case. Now by

applying elementary transformations to $(g_{i}, g_{i+1}, \cdots , g_{j-1})$ , change $g_{j-1}$ into a
new $g_{j- 1}’$ as the following table indicates:
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For example, if $Q_{j}^{-1}=a^{2}b\cdots b$ , and the statement (i) holds for $(g_{i}, \cdots , g_{j-1})$ ,

change $g_{j-1}$ into $g_{j-1}’=s_{1}=aba$ . Then $g_{j-1}’g_{j}=(aba)(a^{2}b\cdots b)a^{\epsilon}ba^{\epsilon}(b\cdots ba)$ has
shorter length than $g_{j}$ , because of the cancellation $(aba)(a^{2}b\cdots b)=a\cdots b$ , and
we are led back to Case A.2. As is easily verified, we are similarly led to

Case A.2 in all the remaining cases of the table above.
Thus in Case $B$ , we find that at least one of the following three assertions

holds:
(1) every $g_{f}$ in $(g_{1}, \cdots , g_{v})$ is short;

(2) by successive application of elementary transformations, the v-tuple
$(g_{1}, \cdots , g_{\nu})$ can be transformed into a v-tuple $(g_{1}’, \cdots , g_{\nu}’)$ in which $g_{l}’g_{l+1}’=1$

holds for at least one 1 $(1\leqq 1\leqq\nu-1)$ ;

(3) the case is reduced to Case A.2.
Since Theorem 3.4 is obviously true for a v-tuple with total length $\leqq 3$ , we

complete the proof of Theorem 3.4 by induction on the total length, combining

the conclusions of Cases A. 1, A.2 and B. $\square$

Moishezon proved the following theorem. (See [9, pp. 180-187].)

MOISHEZON’S THEOREM. Let $y_{1},$
$\cdots$ , $y_{\nu}\in PSL(2, Z)$ be such that each $y_{i}$ ,

$i=1,$ $\cdots$ , $\nu$ , is equal to one of the elements $s_{0},$ $s_{1},$ $s_{2}$ and $y_{1}y_{2}\cdots y_{\nu}=1$ . Then $\nu\equiv 0$

$(mod 2)$ and there exests a finite sequence of elementary transformations starting

with some elementary transformation of $(y_{1}, y_{2}, \cdots y_{\nu})$ such that if $(z_{1}, z_{2}, \cdots , z_{\nu})$

is the resulting $\nu- tuple$ , then for any $j=1,2,$ $\cdots$ , $\nu/2,$ $z_{2j-1}=s_{1},$ $z_{2j}=s_{2}$ .
We will extend Moishezon’s theorem as follows:

THEOREM 3.5. Let $y_{1},$
$\cdots$ , $y_{\nu}\in PSL(2, Z)$ be such that each $y_{i},$ $i=1,$ $\cdots$ , $\nu$ ,

is equal to one of the elements $s_{0},$ $s_{1},$ $s_{2},$
$s_{0}^{-1},$ $s_{1}^{-1},$ $s_{2}^{-1}$ and $y_{1}y_{2}\cdots y_{\nu}=1$ . Then

$\nu\equiv 0(mod 2)$ and there exests a finite sequence of elementary transformations
starting with some elementary transformation of $(y_{1}, \cdots y_{\nu})$ such that if $(z_{1},$

$z_{2}$ ,

. , $z_{\nu}$) is the resulting $\nu- tuple$ , then one of the three assertions holds for $(z_{1},$
$z_{2}$ ,

... , $z_{\nu}$):

(i) for each $j=1,2,$ $\cdots$ , $\nu/2,$ $z_{2j- 1}=s_{1},$ $z_{2j}=s_{2}$ ;

(ii) for each $j=1,2,$ $\cdots$ , $\nu/2,$ $z_{2f-1}=s_{2}^{-1},$ $z_{2j}=s_{1}^{-1}$ ;

(iii) for at least one $i,$ $z_{i}z_{i+1}=1$ .



618 Y. MATSUMOTO

PROOF. Case I. For some $k\in\{0,1,2\}$ , both $s_{k}$ and $s_{k}^{-1}$ are contained in
$\{y_{1}, y_{2}, \cdots y_{\nu}\}$ . We may assume that $y_{1}=s_{k}$ and $y_{i}=s_{k}^{-1}(\exists i>1)$ . Consider the
following sequence of elementary transformations:

$(s_{k}, y_{2}, \cdots y_{i- 1}, s_{k}^{-1}, )\geq(s_{k}\underline{R_{i-1}}y_{2}, \cdots s_{k}^{-1}, s_{k}y_{i- 1}s_{k}^{-1}, )$

$\underline{R_{i-2}}$ ...... $\underline{R_{2}}$
$(s_{k}, s_{k}^{-1}, s_{k}y_{2}s_{k}^{-1}, \cdot .. , s_{k}y_{i- 1}s_{k}^{-1}, \cdot )$ .

Then assertion (iii) holds.

Case II. For each $k=0,1,2$ , either $s_{k}$ or $s_{k}^{-1}$ is not contained in $\{y_{1},$
$y_{2}$ ,

.., , $y_{\nu}$}.
There are 8 sub-cases to be considered according as

$\bigcup_{l=1}^{\nu}\{y_{i}\}\subset\{s_{0}, s_{1}, s_{2}\},$ $\{s_{0}, s_{1}, s_{2}^{-1}\},$ $\{s_{0}, s_{1}^{-1}, s_{2}\},$ $\{s_{0}^{-1}, s_{1}, s_{2}\},$ $\{s_{0}, s_{1}^{-1}, s_{2}^{-1}\}$ ,

$\{s_{0}^{-1}, s_{1}, s_{2}^{-1}\},$ $\{s_{0}^{-1}, s_{1}^{-1}, s_{2}\}$ or $\{s_{0}^{-1}, s_{1}^{-1}, s_{2}^{-1}\}$ .

Case II. 1. $\bigcup_{i=1}^{\nu}\{y_{i}\}\subset\{s_{0}, s_{1}, s_{2}\}$ .

This case is nothing but the situation of Moishezon’s theorem.

Case II.2. $\bigcup_{i=1}^{\nu}\{y_{i}\}\subset\{s_{0}, s_{1}, s_{2}^{-1}\}$ .

If $s_{2}^{-1}\not\in\{y_{1}, \cdots , y_{\nu}\}$ , the case is reduced to Case II. 1. If $s_{2}^{-1}\in\{y_{1}, \cdots , y_{\nu}\}$ ,

we may assume that $y_{1}=s_{2}^{-1}$ (after applying cyclic permutations). Suppose that
there exists at least one $i>1$ for which $y_{i}=s_{1},$ $y_{i+1}=s_{0}$ , then by the i-th inverse
elementary transformation, $R_{i}^{-1},$ $(y_{i}, y_{i+1})=(s_{1}, s_{0})$ is transformed into $(s_{1}s_{0}s_{1}^{-1}, s_{1})$

$=(s_{2}, s_{1})$ . Therefore, we come to the situation in which both $s_{2}^{-1}$ and $s_{2}$ are
contained in the resulting v-tuple. The case is reduced to Case I.

Suppose that there exists no $i$ such that $y_{i}=s_{1},$ $y_{i+1}=s_{0}$ . Then the v-tuple
$(y_{1}, \cdots y_{\nu})$ is of the form ( $s_{2}^{-1},$ $\cdots$ , $s_{2}^{-1},$

$s_{0},$
$\cdots$ , $s_{0},$ $s_{1},$

$\cdots$ , $s_{1},$ $s_{2}^{-1},$ $\cdots$ , $s_{2}^{-1},$
$s_{0},$

$\cdots$ ,

$s_{0},$ $s_{1},$
$\cdots$ , $s_{1},$

$s_{2}^{-1},$ $\cdots$ , $s_{2}^{-1},$
$s_{0},$ $\cdots,$ $s_{0},$ $s_{1},$

$\cdots$ , $s_{1},$
$\cdots$ ). In this sequence, the sub-

sequence $s_{0},$
$\cdots$ , $s_{0}$ , for instance, may be empty. However, the product $y_{1}\cdots y_{\nu}$

of the p-tuple $(y_{1}, \cdots , y_{\nu})$ of this form is not equal to 1. (Recall that $s_{2}^{-1}=ab$ ,

$s_{0}=a^{2}b,$ $s_{1}=aba.$ ) This contradicts the assumption $y_{1}y_{2}\cdots y_{\nu}=1$ .

Case II.3. $\bigcup_{i=1}^{\nu}\{y_{i}\}\subset\{s_{0}, s_{1}^{-1}, s_{2}\}$ .

Case II.4. $\bigcup_{i=1}^{\nu}\{y_{i}\}\subset\{s_{0}^{-1}, s_{1}, s_{2}\}$ .

Cases II.3, II.4 are treated similarly to Case II.2.

Case II.5. $\bigcup_{i=1}^{v}\{y_{i}\}\subset\{s_{0}, s_{1}^{-1}, s_{2}^{-1}\}$ .

If $s_{0}\not\in\{y_{1}, \cdots , y_{\nu}\}$ , the case is reduced to Case II.8 below. If $s_{0}\in\{y_{1}, \cdots , y_{\nu}\}$ ,
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we may assume that $y_{1}=s_{0}$ . Suppose that there exists at least one $i>1$ for

which $y_{i}=s_{1}^{-1},$ $y_{i+1}=s_{2}^{-1}$ , then by the elementary transformation $R_{i}^{-1},$ $(y_{i}, y_{i+1})$

$=(s_{1}^{-1}, s_{2}^{-1})$ is transformed into $(s_{1}^{-1}s_{2}^{-1}s_{1}, s_{1}^{-1})=(s_{0}^{-1}, s_{1}^{-1})$ . Therefore, the situation
is altered so that both $s_{0}$ and $s_{0}^{-1}$ are contained in the resulting v-tuple. The
case is reduced to Case I. So suppose that there exists no $i$ such that $y_{i}=s_{1}^{-1}$ ,

$y_{i+1}=s_{2}^{-1}$ . Then the v-tuple $(y_{1}, \cdots , y_{\nu})$ is of the form ( $s_{0},$
$\cdots$

$s_{0},$
$s_{2}^{-1},$ $\cdots$ , $s_{2}^{-1}$ ,

$s_{1}^{-1},$ $\cdots$ , $s_{1}^{-1},$
$s_{0},$

$\cdots$ , $s_{0},$
$s_{2}^{-1},$ $\cdots$ , $s_{2}^{-1},$ $s_{1}^{-1},$ $\cdots$ $s_{1}^{-1},$ ). The product $y_{1}\cdots y_{\nu}$ of the

v-tuple $(y_{1}, \cdots , y_{\nu})$ of this form is not equal to 1. (Recall that $s_{0}=a^{2}b,$ $s_{2}^{-1}=ab$ ,

$s_{1}^{-1}=a^{2}ba^{2}.)$ This contradicts the assumption $y_{1}\cdots y_{\nu}=1$ .

Case II.6. $i=1U^{\nu}\{y_{i}\}\subset\{s_{0}^{-1}, s_{1}, s_{2}^{-1}\}$ .

Case II.7. $i=1U^{\nu}\{y_{\ell}\}\subset\{s_{0}^{-1}, s_{1}^{-1}, s_{2}\}$ .

Cases II.6, II.7 are treated similarly to Case II.5.

Case II.8. $i=1U^{\nu}\dagger y_{i}$ } $\subset\{s_{0}^{-1}, s_{1}^{-1}, s_{2}^{-1}\}$ .

The situation of this case is “ inverse ‘’ to that of Case II. 1. So by the
“ inverse “ of Moishezon’s theorem, we can transform the v-tuple $(y_{1}, \cdots , y_{\nu})$

into $(z_{1}, \cdots z_{\nu})$ for which the assertion (ii) holds.

This completes the proof of Theorem 3.5. $\square$

Combining Theorems 3.4, 3.5, we have the following

THEOREM 3.6. Let $g_{1},$ $g_{2},$
$\cdots$ , $g_{v}\in PSL(2, Z)$ be conjugates of $x(=s_{1}=aba)$

or $x^{-1}(=s_{1}^{-1}=a^{2}ba^{2})$ satisfying $g_{1}g_{2}\cdots g_{\nu}=1$ . Then by successrve appljcatiOn of
elementary transformations, the $\nu$-tuPle $(g_{1}, g_{2}, \cdots , g_{\nu})$ can be transformed into a
$\nu$-tuPle in one of the two normal forms, (1) or (2) :

(1) $(w_{1}, w_{1}^{-1}, \cdots w_{l}, w_{l}^{-1}, s_{1}, S_{2}, s_{1}, s_{2}, \cdots s_{1}, s_{2})$ ,

(2) $(w_{1}, w_{1}^{-1}, \cdots W_{l}w_{l}^{-1}, s_{2}^{-1}, s_{1}^{-1}, s_{2}^{-1}, s_{1}^{-1}, \cdots s_{2}^{-1}, s_{1}^{-1})$ ,

where $0\leqq l\leqq\nu/2$ and $w_{i}\in PSL(2, Z)$ for each $i=1,$ $\cdots,$
$l$ .

PROOF. The proof proceeds by induction on $\nu$ . If $\nu=1$ , then $g_{1}\neq 1$ and the

theorem is trivially true. Suppose that $\nu\geqq 2$ . Then by Theorem 3.4, the v-tupIe
$(g_{1}, \cdots , g_{\nu})$ is transformed into $(h_{1}, \cdots , h_{\nu})$ such that either every $h_{i}$ is short or
$h_{i}h_{i+1}=1$ for at least one $i$ . If $h_{i}h_{i+1}=1$ for an $i$ , then by cyclic permutation,

we may assume that $h_{1}h_{2}=1$ . The remaining $(\nu-2)$-tuple $(h_{3}, \cdots h_{\nu})$ satisfies

the condition $h_{3}h_{4}\cdots h_{\nu}=1$ . Thus by the inductive hypothesis, $(h_{3}, \cdots h_{\nu})$ can
be transformed into one of the two normal forms. If every $h_{i}$ of $(h_{1}, \cdots , h_{\nu})$

is short, then Theorem 3.5 applies. We can transform $(h_{1}, \cdots h_{\nu})$ into $(z_{1}, \cdots z_{\nu})$

such that either $(z_{1}, \cdots z_{\nu})=(s_{1}, s_{2}, \cdots , s_{1}, s_{2})$ , $(s_{2}^{-1}, s_{1}^{-1}, \cdots , s_{2}^{-1}, s_{1}^{-1})$ or there

exists an $i$ for which $z_{i}z_{i+1}=1$ holds. If $(z_{1}, \cdots z_{\nu})=(s_{1}, s_{2}, \cdots , s_{1}, s_{2})$ or $(s_{2}^{-1}$ ,

$s_{1}^{-1},$ $\cdots$ , $s_{2}^{-1},$ $s_{1}^{-1}$), we are done. If there exists $i$ such that $z_{i}z_{i+1}=1$ , we may
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assume $z_{1}z_{2}=1$ by cyclic permutation. The remaining $(\nu-2)$ -tuple $(z_{3}, \cdots , z_{\nu})$

satisfies the condition $z_{3}z_{4}\cdots z_{\nu}=1$ . Thus by the inductive hypothesis, $(z_{3}, \cdots , z_{\nu})$

can be transformed into one of the normal forms. $\square$

Now we are in a position to prove Theorem 3.2. Let $(B_{1}, B_{2}, \cdots , B_{\nu})$ be

a v-tuple in $SL(2, Z)$ such that $B_{1}B_{2}\cdots B_{\nu}=\{\begin{array}{ll}1 00 1\end{array}\}$ and such that each $B_{i}$ is

conjugate to $X=\{\begin{array}{ll}1 01 1\end{array}\}$ or $X^{-1}=\{\begin{array}{ll}1 0-1 1\end{array}\}$ . Let $g_{i}=\pi(B_{i})\in PSL(2, Z)$ . Then by

Theorem 3.6, the v-tuple $(g_{1}, \cdots , g_{\nu})$ can be transformed by a finite sequence of
elementary transformations into a v-tuple in one of the normal forms, (1) or (2).

An elementary transformation in $PSL(2, Z)$ can be lifted to an elementary trans-

formation in $SL(2, Z)$ .
Therefore, the v-tuple $(B_{1}, B_{2}, \cdots B_{\nu})$ can be transformed into a v-tuple

$(B_{1}’, B_{2}^{f}, \cdots , B_{\nu}’)$ such that $(\pi(B_{1}’), \pi(B_{2}^{f}),$ $\cdots$ $\pi(B_{\nu}’))$ is in one of the normal forms
(1) or (2).

CLAIM 1. If $\pi(B_{i}’)\pi(B_{i+1}’)=1\in PSL(2, Z)$ for some $i$ , then $B_{i}’B_{i+1}’=\{\begin{array}{ll}1 00 1\end{array}\}$ .

The abelianization of $PSL(2, Z)$ is a cyclic group of order 6 and $x(=aba)$

is taken as a generator of the cyclic group. Therefore, if $\pi(B_{i}’)$ is conjugate to
$x$ (or $x^{-1}$), then $\pi(B_{i+1}’)$ is conjugate to $x^{-1}$ (or $x$ ). It follows that if $B_{i}’$ is
conjugate to $X$ (or $X^{-1}$), then $B_{i+1}’$ is conjugate to $X^{-1}$ (or $X$ ). It will suffice to

consider the case when $B_{i}’=A_{i}^{-1}XA_{i}$ , $B_{i+1}’=A_{i+1}^{-1}X^{-1}A_{i+1}$ . Then $B_{i}’B_{i+1}’=$

$A_{i}^{-1}XA_{i}A_{i+1}^{-1}X^{-1}A_{i+1}$ belongs to the commutator subgroup $[SL(2, Z), SL(2, Z)]$ .

By the assumption $\pi(B_{i}’B_{i+1}’)=1$ , we have $B_{i}’B_{i+1}’=\{\begin{array}{ll}1 00 l\end{array}\}$ or $\{\begin{array}{ll}-1 00 -1\end{array}\}$ . How-

ever, it is known that $\{\begin{array}{ll}-1 00 -1\end{array}\}\not\in[SL(2, Z), SL(2, Z)]$ . Therefore, $B_{i}’B_{i+1}’=$

$\{\begin{array}{ll}1 00 1\end{array}\}$ as claimed.

CLAIM 2. If $\pi(B_{i}’)=s_{1},$ $s_{2},$
$s_{1}^{-1}$ or $s_{2}^{-1}$ for some $i$ , then $B_{i}’=X,$ $Y,$ $X^{-1}$ or $Y^{-1}$ ,

accordingly.

Note that $s_{1}=x=aba$ and that $\pi^{-1}(s_{1})=\{X, -X\}$ . Therefore, if $\pi(B_{i}’)=s_{1}$ ,
$B_{i}’$ is equal to $X$ or -X. But $B_{i}=-X$ is impossible, because -X is not con-
jugate to $X^{\pm 1}$ .

The other cases can be treated similarly. (Recall that $\pi(Y)=ba^{2}=s_{2}$ and that
$Y$ is conjugate to $X.$ ) Claim 2 is proved.

By Claims 1 and 2, we conclude that if $(B_{1}’, B_{2}’, \cdots B_{\nu}’)$ is a v-tuple such
that $(\pi(B_{1}’), \pi(B_{2}’),$ $\cdots$ , $\pi(B_{\nu}’))$ is in one of the normal forms (1) or (2) of Theo-
rem 3.6, then $(B_{1}’, B_{2}’, \cdots B_{\nu}’)$ is in one of the normal forms (1) or (2) in the
statement of Theorem 3.2. This completes the proof of Theorem 3.2. $\square$

A geometric implication of Theorem 3.2 is the following:

THEOREM 3.7. Let $f:Marrow D^{2}$ be a torus fibration over the 2-disk $D^{2}$ each of
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whose srngular fibers is of type $I_{1}^{+}$ or $I_{1}^{-}$ . Let $\Gamma=\{x_{1}, \cdots , x_{\nu}\}$ be the set of
cntical values. Supp0se that the monodromy around the boundary $\partial D^{2}$ is trivial.
Let $x_{0}\in D^{2}-\Gamma$ be a base point, $(\mu_{0}, \lambda_{0})$ an ordered basis of $H_{1}(F_{0} ; Z)$ compatible
with the orientation of $F_{0}=f^{-1}(x_{0})$ . Let $\rho;\pi_{1}(D^{2}-\Gamma, x_{0})arrow SL(2, Z)$ be the mono-
dromy homomorphism determined by $(\mu_{0}, \lambda_{0})$ .

Then $\nu$ is even, and by relabeling the critical values $x_{1},$
$\cdots$ , $x_{\nu}$ and by

$rechoo\alpha ng$ the paths $\gamma_{1},$
$\cdots$

$\gamma_{v}$ as shown in Fig. 3.1 appropriately, we can make
the v-tuple of monodromy matrices $(\rho(l_{1}), \cdots , \rho(l_{\nu}))$ a v-tuple in one of the normal
forms, (1) or (2):

(1) $(W_{1}, W_{1}^{-1}, W_{l}, W_{l}^{-1}, X, Y, X, Y, \cdots , X, Y)$ ,

(2) $(W_{1}, W_{1}^{-1}, \cdots , W_{t}, W_{l}^{-1}, Y^{-1}, X^{-1}, Y^{-1}, X^{-1}, \cdots , Y^{-1}, X^{-1})$ ,

where $W_{i}$ belongs to $SL(2, Z)$ for each $i=1,2,$ $\cdots$ $l$ , and $X,$ $Y$ denote $\{\begin{array}{ll}1 01 1\end{array}\}$ ,

$\{\begin{array}{l}1-10 1\end{array}\}$ , respectively. (Recall that the order of $XY$ in $SL(2, Z)$ is 6, and that

$v-2l$ is divisible by 12.)

\S 4. Deformation of fibrations.

Let $f:Marrow B$ be a torus fibration each singular fiber of which is of type $I_{1}^{+}$

or $I_{1}^{-}$ . Suppose that there exists a 2-disk $D$ in Int $B$ which contains exactly two
critical values $x_{a},$ $x_{\beta}$ in its interior and that the monodromy around $\partial D$ is
trivial.

THEOREM 4.1. We can deform the structure of torus fibration $f|f^{-1}(D)$ ;

$f^{-1}(D)arrow D$, without altering it in a neighborhood of $\partial(f^{-1}(D))$ , so that the

resulting torus fibration $f;f^{-1}(D)arrow D$ has a single singular fiber of type $Tw$

whose divisor is $R+S$.
PROOF. (A rough idea was sketched in [7].) The singular fibers over $x_{\alpha}$

and $x_{\beta}$ are denoted by $F_{a},$ $F_{\beta}$ , respectively. Since the monodromy around $\partial D$

is assumed to be trivial, one of them, say $F_{\alpha}$ , is of type $I_{1}^{+}$ and the other $F_{\beta}$ is
of type $I_{1}^{-}$ .

Let $D_{\alpha},$ $D_{\beta}$ be mutually disjoint 2-disks in Int $D$ defined by

$D_{\alpha}=\{\xi_{a}||\xi_{\alpha}|\leqq\epsilon\}$ , $D_{\beta}=\{\xi_{\beta}||\xi_{\beta}|\leqq\epsilon\}$ ,

where $\xi_{a}$ (resp. $\xi_{\beta}$ ) is a local complex coordinate in Int $D$ near $x_{\alpha}$ (resp. $x_{\beta}$ )

which equals $0$ at $x_{\alpha}$ (resp. $x_{\beta}$ ).

In the total space $M$, there are local complex coordinates $z_{\alpha}^{1},$ $z_{a}^{2}$ (resp. $z_{\beta}^{1},$ $z_{\beta}^{2}$ )

near the self-intersection point of $F_{\alpha}$ (resp. $F_{\beta}$ ) with which the projection $f$ is
written locally as $\xi_{a}=f(z_{a}^{1}, z_{a}^{2})=z_{\alpha}^{1}z_{\alpha}^{2}$ (resp. $\xi_{\beta}=f(z_{\beta}^{1},$ $z_{\beta}^{2})=\overline{z}_{\beta}^{1}z_{\beta}^{2}$ ). We dePne
smooth 4-cells $U_{\alpha},$ $U_{\beta}$ with corners in $M$ as follows:
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$U_{a}=\{(z_{\alpha}^{1}, z_{\alpha}^{2})||z_{a}^{1}z_{\alpha}^{2}|\leqq\epsilon, |z_{\alpha}^{1}|\leqq 1, |z_{\alpha}^{2}|\leqq 1\}$ ,

$U_{\beta}=\{(z_{\beta^{1}}, z_{\beta}^{2})||\overline{z}_{\beta}^{1}z_{\beta}^{2}|\leqq\epsilon, |z_{\beta^{1}}|\leqq 1, |z_{\beta}^{2}|\leqq 1\}$ .

Furthermore, let us take a quadrilateral $Q$ in Int $D$ as shown in Fig. 4.1.

Figure 4.1.

Our proof below will split $f^{-1}(D_{\alpha}\cup Q\cup D_{\beta})$ into two parts, say “upper” and
“lower” parts, and will show that the upper part (resp. the lower part) is dif-
feomorphic to $U_{\alpha}$ (resp. $U_{\beta}$ ) via a fiber preserving diffeomorphism. (Here we
areTspeaking of the fibering structures induced by the projection $f.$ ) Thus
$f^{-1}(D_{\alpha}\cup Q\cup D_{\beta})$ , which is the union of the two parts, is diffeomorphic to $U_{\alpha}\cup U_{\beta}$ ,

the manifold obtained by gluing $U_{\alpha}$ and $U_{\beta}$ via an orientation reversing diffeo-
morphism $\tilde{\psi}:T_{\alpha}^{1}\cup T_{\alpha}^{2}arrow T_{\beta}^{2}\cup T_{\beta}^{1}$ , where $T_{\alpha}^{1},$ $T_{\alpha}^{2},$ $T_{\beta}^{2},$ $T_{\beta}^{1}$ are certain solid tori
embedded in the boundaries $\partial U_{a}$ and $\partial U_{\beta}$ . We will next deform the pasting

diffeomorphism $\tilde{\psi}$ by isotopy so that the resulting diffeomorphism $\tilde{\psi}^{f}$ will match

the “section” of $F_{a}$ with that of $F_{\beta}$ . This process will correspond to the defor-
mation of the fibration $f|f^{-1}(D_{a}\cup Q\cup D_{\beta}):f^{-1}(D_{\alpha}\cup Q\cup D_{\beta})arrow D_{a}\cup Q\cup D_{\beta}$ which
will give at the last stage a fibration over $D_{\alpha}\cup Q\cup D_{\beta}$ with a single singular

fiber of type $Tw$ .
Now we proceed into the details. Obviously, we have $f(U_{\alpha})=D_{\alpha}$ and $f(U_{\beta})$

$=D_{\beta}$ . We denote Closure $(f^{-1}(D_{\alpha})-U_{\alpha})$ and Closure $(f^{-1}(D_{\beta})-U_{\beta})$ by $H_{\alpha}$ and $H_{\beta}$ ,

respectively. The intersection $U_{\alpha}\cap H_{a}$ consists of the two solid tori $T_{a}^{1},$ $T_{\alpha}^{2}$

mentioned above. In terms of local coordinates, they are given as follows:

$T_{a}^{1}=\{(z_{a}^{1}, z_{\alpha}^{2})||z_{\alpha}^{1}|=1, |z_{\alpha}^{2}|\leqq\epsilon\}$ ,

$T_{a}^{2}=\{(z_{\alpha}^{1}, z_{\alpha}^{2})||z_{\alpha}^{1}|\leqq\epsilon, |z_{\alpha}^{2}|=1\}$ .
Similarly, the intersection $U_{\beta}\cap H_{\beta}$ consists of two solid tori denoted by

$T_{\beta}^{1},$ $T_{\beta}^{2}$ .
Since the singular fiber $F_{\alpha}$ is an immersed 2-sphere with a single self-inter-

section, Closure $(F_{\alpha}-F_{\alpha}\cap U_{\alpha})$ is an annulus. Being a tubular neighborhood of
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this annulus in $M-Int(U_{\alpha})$ , $H_{\alpha}$ can be identified with $D_{\alpha}\cross S^{1}\cross[0,1]$ so that
$T_{\alpha}^{1}$ and $T_{a}^{2}$ are identified with $D_{a}\cross S^{1}\cross\{0\}$ and $D_{\beta}\cross S^{1}\cross\{1\}$ , respectively. Also

the projection $f|H_{\alpha}$ : $H_{\alpha}arrow D_{\alpha}$ may be assumed to be the first projection $D_{\alpha}\cross S^{1}$

$\cross[0,1]arrow D_{\alpha}$ . Similarly $H_{\beta}$ can be identified with $D_{\beta}\cross S^{1}\cross[0,1]$ and the pro-

jection $f|H_{\beta}$ : $H_{\beta}arrow D_{\beta}$ with $D_{\beta}\cross S^{1}\cross[0,1]arrow D_{\beta}$ .
Let $J_{\alpha},$ $J_{\beta}$ denote the arcs $D_{\alpha}\cap Q,$ $D_{\beta}\cap Q$ , and take a point $x_{\alpha}’$ (resp. $x_{\beta}’$ )

in $IntJ_{\alpha}$ (resp. $IntJ_{\beta}$ ). We will choose an ordered basis $(\mu_{\alpha}, \lambda_{a})$ (resp. $(\mu_{\beta},$ $\lambda_{\beta})$ )

of $H_{1}(f^{-1}(x_{\alpha});Z)$ (resp. $H_{1}(f^{-1}(x_{\beta});Z)$ ) as follows: Each fiber $f^{-1}(x)$ in $f^{-1}(D_{\alpha})$

transversely intersects each of the solid tori $T_{\alpha}^{1},$ $T_{\alpha}^{2}$ in a circle. As $\mu_{\alpha}$ , we
take the suitably oriented circle $f^{-1}(x_{\alpha}’)\cap T_{a}^{1}$ , and as $\lambda_{\alpha}$ , a simple closed curve
in the fiber $f^{-1}(x_{\alpha}’)$ intersecting the circle $f^{-1}(x_{\alpha}’)\cap T_{a}^{1}$ transversely in a point.

If we choose an approPriate orientation for $\lambda_{\alpha}$ , the basis $(\mu_{\alpha}, \lambda_{\alpha})$ gives the

natural orientation of $f^{-1}(x_{a}’)$ . The basis $(\mu_{\beta}, \lambda_{\beta})$ is constructed similarly.

With these bases, the local monodromy matrices of the singular fibers $F_{\alpha}$ ,

$F_{\beta}$ are computed as $\{\begin{array}{ll}1 01 1\end{array}\}$ and $\{\begin{array}{ll}1 0-1 1\end{array}\}$ , respectively. (See [9], [7].)

$Q$ being a 2-cell in IntD (Fig. 4.1), the restricted $T^{2}$-bundle $f|f^{-1}(Q):f^{-1}(Q)$

$arrow Q$ is trivial. Thus there is a trivialization

$\Phi$ : $f^{-1}(Q)arrow Q\cross T^{2}$ .

Our task below will to rechoose $\Phi$ so that it preserves the “ mid levels ”

$U_{\alpha}\cap H_{\alpha},$ $U_{\beta}\cap H_{\beta}$ and interchanges the upper and lower parts of $f^{-1}(J_{\alpha})$ and
those of $f^{-1}(J_{\beta})$ in a way soon clarified. Let us start with a given trivializa-

tion $\Phi$ .
Let $i_{\beta\alpha}$ : $f^{-1}(x_{a}’)arrow f^{-1}(x_{\beta}’)$ be the diffeomorphism defined through the identity

$p_{2}(\Phi(q))=p_{2}(\Phi(i_{\beta\alpha}(q)))$ , $\forall q\in f^{-1}(x_{\alpha}’)$ ,

where $p_{2}$ ; $Q\cross T^{2}arrow T^{2}$ is the second projection. The isotopy class of $i_{\beta\alpha}$ is

specified by a matrix $B=\{\begin{array}{ll}a bc d\end{array}\}$ such that

$(i_{\beta\alpha})_{*}(\mu_{\alpha})=a\mu_{\beta}+b\lambda_{\beta}$ , $(i_{\beta\alpha})_{*}(\lambda_{\alpha})=c\mu_{\beta}+d\lambda_{\beta}$ .

By the hypothesis, the monodromy around $\partial(D_{\alpha}\cup Q\cup D_{\beta})$ is trivial. Thus
we have

$\{\begin{array}{ll}1 01 1\end{array}\}B\{\begin{array}{ll}1 0-1 1\end{array}\}B^{-1}=\{\begin{array}{ll}1 00 1\end{array}\}$ ,

from which $B=\{\begin{array}{ll}\pm 1 0c \pm 1\end{array}\}$ follows. By replacing $(\mu_{\beta}, \lambda_{\beta})$ by $(-\mu_{\beta}, -\lambda_{\beta})$ if nec-

essary, we may assume

$(i_{\beta\alpha})_{*}(\mu_{\alpha})=\mu_{\beta}$ , $(i_{\beta\alpha})_{*}(\lambda_{\alpha})=c\mu_{\beta}+\lambda_{\beta}$ .
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This allows us to deform $i_{\beta\alpha}$ by isotopy so that the resulting diffeomorphism
$j_{\beta\alpha}’$ satisfies

$i_{\beta\alpha}’(f^{-1}(x_{a}’)\cap T_{a}^{1})=f_{\overline{\beta}^{1}}(x_{\beta}’)\cap T\not\in$ , $i_{\beta\alpha}’(f^{-1}(x_{a}’)\cap T_{\alpha}^{2})=f^{-1}(x_{\beta}’)\cap T\not\in$ .

Now ” rotate “
$j_{\beta\alpha}’$ in $f^{-1}(x_{\beta}’)$ through 180’ along $\lambda_{\beta}$ . The diffeomorphism

$i_{\beta\alpha}’’$ : $f^{-1}(x_{\alpha}’)arrow f^{-1}(x_{\beta}’)$ thus obtained will satisfy

$i_{\beta a}’’(f^{-1}(x_{a}’)\cap T_{a}^{1})=f^{-1}(x_{\beta}’)\cap T\not\in$ , $j_{\beta\alpha}’’(f^{-1}(x_{a}’)\cap T_{a}^{2})=f^{-1}(x_{\beta}’)\cap T\beta$ .

Therefore

$i_{\beta\alpha}^{\prime f}(f^{-1}(x_{\alpha}’)\cap U_{\alpha})=f^{-1}(x_{\beta}’)\cap H_{\beta}$ , $i_{\beta\alpha}’’(f^{-1}(x_{\alpha}’)\cap H_{a})=f^{-1}(x_{\beta}’)\cap U_{\beta}$ .

Via the use of these isotopies we can construct a desired trivialization
$\Phi’$ : $f^{-1}(Q)arrow Q\cross T^{2}$ satisfying

$\Phi^{f}(f^{-1}(J_{a})\cap U_{\alpha})=J_{a}\cross A^{(1)}$ , $\Phi’(f^{-1}(J_{\alpha})\cap H_{\alpha})=J_{\alpha}\cross A^{(2)}$ ,

$\Phi’(f^{-1}(J_{\beta})\cap U_{\beta})=J_{\beta}\cross A^{(2)}$ , $\Phi^{f}(f^{-1}(J_{\beta})\cap H_{\beta})=J_{\beta}\cross A^{(1)}$ ,

where $A^{(1)},$ $A^{(2)}$ are certain annuli on $T^{2}$ with $T^{2}=A^{(1)}\cup A^{(2)},$ $A^{(1)}\cap A^{(2)}=\partial A^{(1)}$

$=\partial A^{(2)}$ .
Note that the fibration $f|H_{\beta}$ : $H_{\beta}arrow D_{\beta}$ (with fiber the annulus) is isomorphic

to the fibration $(f|f^{-1}(J_{\beta})\cap H_{\beta})\cross id;(f^{-1}(J_{\beta})\cross H_{\beta})\cross[0,1]arrow J_{\beta}\cross[0,1]$ with cor-
ners rounded. Therefore, there exist diffeomorphisms (if the corners are
rounded):

$\tilde{\varphi}_{\alpha}$ : $U_{\alpha}\cup(\Phi’)^{-1}(Q\cross A^{(1)})\cup H_{\beta}arrow U_{\alpha}$ ,

$\varphi_{\alpha}$ : $D_{\alpha}\cup Q\cup D_{\beta}arrow D_{\alpha}$

such that $(f|U_{\alpha})\circ\tilde{\varphi}_{\alpha}=\varphi_{\alpha^{Q}}(f|U_{a}\cup(\Phi’)^{-1}(Q\cross A^{(1)})\cup H_{\beta})$ .
Likewise there exist diffeomorphisms

$\tilde{\varphi}\beta:H_{\alpha}\cup(\Phi^{f})^{-1}(Q\cross A^{(2)})\cup U_{\beta}arrow U_{\beta}$ .
$\varphi_{\beta}$ : $D_{\alpha}\cup QUD_{\beta}arrow D_{\beta}$

such that $(f|U_{\beta})\circ\tilde{\varphi}\beta=\varphi_{\beta^{Q}}(f|H_{\alpha}U(\Phi’)^{-1}(Q\cross A^{(2)})\cup U_{\beta})$ .
Let $\tilde{\psi}:T_{\alpha}^{1}\cup T_{\alpha}^{2}arrow T_{\beta}^{2}\cup T\phi$ be the orientation reversing diffeomorphism defined

by $\tilde{\psi}=\tilde{\varphi}\beta^{\circ(\tilde{\varphi}_{\alpha}}|T_{\alpha}^{1}\cup T_{\alpha}^{2})^{-1}$ , and $U_{a}\cup U_{\beta}$ the manifold obtained by gluing $U_{\alpha}$ and
$\tilde{\psi}$

$U_{\beta}$ via $\tilde{\psi}$ . We define a projection $f’$ :
$U_{\alpha}UU_{\beta}\tilde{\psi}arrow D_{\beta}$

by setting

$f’(p)=\{\psi\circ f(p)f(p)$ $p\in U_{\alpha}p\in U_{\beta}$

,

where $\psi=\varphi_{\beta}\circ\varphi_{a}^{-1}$ : $D_{\alpha}arrow D_{\beta}$ . As is easily verified, $f’$ is well-defined.
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We will see that $f’$ : $U_{\alpha}UU_{\beta}arrow D_{\beta}$ is a torus fibration isomorphic to
$\tilde{\psi}$

$f|f^{-1}(D_{a}\cup Q\cup D_{\beta}):f^{-1}(D_{\alpha}\cup Q\cup D_{\beta})arrow D_{\alpha}\cup Q\cup D_{\beta}$ .
In fact, a diffeomorphism $\tilde{\varphi}$ : $f^{-1}(D_{a}\cup Q\cup D_{\beta})arrow U_{\alpha}UU_{\beta}$ given by

a
$\tilde{\varphi}(p)=\{\tilde{\varphi}\beta\tilde{\varphi}_{\alpha}(p)(p)$

$p\in U_{a}\cup(\Phi’)^{-1}(Q\cross A^{(1)})\cup H_{\beta}$ ,

$p\in H_{\alpha}\cup(\Phi’)^{-1}(Q\cross A^{(2)})\cup U_{\beta}$

is well-defined and satisfies $f’\circ\tilde{\varphi}=\varphi_{\beta^{Q}}f$ .
We now come to the last step of the proof. We will deform $\tilde{\psi}$ to get the

desired torus fibration with a single singular fiber.

First note that the solid tori $T_{\alpha}^{1},$ $T_{\alpha}^{2},$ $T_{\beta}^{1},$ $T_{\beta}^{2}$ are foliated by circles as
follows. The solid torus $T_{\alpha}^{1}$ is foliated by the “sectional circles” $\{f^{-1}(x)\cap T_{\alpha}^{1}\}_{x\in D_{a}}$ ,

each of which is parametrized as $z_{\alpha}^{1}=e^{\mathfrak{t}\theta},$ $z_{a}^{2}=\xi_{a}e^{-i\theta}$ , where $0\leqq\theta\leqq 2\pi$ and the

coordinate $\xi_{\alpha}$ corresponds to $x\in D_{\alpha}$ . The solid tori $T_{a}^{2},$ $T_{\beta}^{1},$ $T_{\beta}^{2}$ are foliated
similarly. (In $T_{\beta}^{1}$ , the parametrization of a circle will be $z_{\beta^{1}}=e^{i\theta},$ $z_{\beta}^{2}=\xi_{\beta}e^{i\theta}$ ,

because $f$ is given there by $f(z_{\beta^{1}}, z_{\beta}^{2})=\overline{z}_{\beta^{1}}z_{\beta}^{2}$ . Likewise for $T_{\beta}^{2}.$ )

Call $f^{-1}(x_{\alpha})\cap T_{\alpha}^{1},$ $f^{-1}(x_{a})\cap T_{\alpha}^{2},$ $f^{-1}(x_{\beta})\cap T_{\beta}^{1},$ $f^{-1}(x_{\beta})\cap T_{\beta}^{2}$ the distinguished

circles. They are nothing but the sections of the singular fibers $F_{\alpha},$ $F_{\beta}$ .
Though $\tilde{\psi}:T_{a}^{1}\cup T_{\alpha}^{2}arrow T_{\beta}^{2}\cup T_{\beta}^{1}$ preserves the leaves of the “ sectional folia-

tions ‘’, it does not preserve the distinguished circles. This is the point to be

remedied.
In $T_{\beta}^{2}$ , the distinguished circle of $T_{\beta}^{2}$ and the image of that of $T_{\alpha}^{1}$ are

situated as shown in Fig. 4.2.

Figure 4.2.

The diffeomorphism $\tilde{\psi}_{\alpha}^{1}$ $:=\tilde{\psi}|T_{\alpha}^{1}$ : $T_{\alpha}^{1}arrow T_{\beta}^{2}$ can be deformed via a leaf pre-

serving isotopy $(\tilde{\psi}_{\alpha}^{1})_{t}$ : $T_{\alpha}^{1}arrow T_{\beta}^{2}$ , $0\leqq t\leqq 1$ so that the resulting diffeomorphism
$(\tilde{\psi}_{a}^{1})’$ $:=(\tilde{\psi}_{\alpha}^{1})_{1}$ maps $f^{-1}(x_{\alpha})\cap T_{\alpha}^{1}$ (the distinguished circle of $T_{a}^{1}$ ) to $f^{-1}(x_{\beta})\cap T_{\beta}^{2}$

(the distinguished circle of $T_{\beta}^{2}$ ). The isotopy $(\tilde{\psi}_{\alpha}^{1})_{t}$ may be assumed not to alter
$\tilde{\psi}_{\alpha}^{1}$ near the boundary $\partial T_{\alpha}^{1}$ .

Passing to the “ base disks “, the isotopy $(\tilde{\psi}_{\alpha}^{1})_{t}$ induces an isotopy $(\psi)_{t}$ : $D_{a}arrow D_{\beta}$
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of $\psi:D_{a}arrow D_{\beta}$ . Let $\psi’$ be the last stage of this isotopy $\psi’$ $:=(\psi)_{1}$ . This isotopy
$(\psi)_{t}$ , in turn, induces a leaf preserving isotopy $(\tilde{\psi}_{\alpha}^{2})_{t}$ : $T_{\alpha}^{2}arrow T_{\beta}^{1}$ of $\tilde{\psi}_{\alpha}^{2}$ $:=\tilde{\psi}|T_{a}^{2}$ ,

the last stage $(\tilde{\psi}_{a}^{2})’$ $:=(\tilde{\psi}_{\alpha}^{2})_{1}$ of which maps $f^{-1}(x_{\alpha})\cap T_{\alpha}^{2}$ (the distinguished circle

of $T_{\alpha}^{2}$ ) to $f^{-1}(x_{\beta})\cap T_{\beta}^{1}$ (the distinguished circle of $T_{\beta}^{1}$ ). The isotopy $(\tilde{\psi})_{t}=$

$(\tilde{\psi}_{\alpha}^{1})_{t}\cup(\tilde{\psi}_{a}^{2})_{t}$ : $T_{\alpha}^{1}\cup T_{\alpha}^{2}arrow T_{\beta}^{2}\cup T_{\alpha}^{1}$ of $\tilde{\psi}$ gives a family of manifolds
$U_{\alpha} \bigcup_{t(\tilde{\psi})}U_{\beta}$

equipped

with the projection $f_{t}’$ :
$U_{\alpha}UU_{\beta}(\tilde{\psi})_{t}arrow D_{\beta}$

, which is defined by

$f_{l}’(p)=\{\begin{array}{l}(\psi)_{t}\circ f(p) p\in U_{\alpha},f(p) p\in U_{\beta}.\end{array}$

It is not difficult to see that $f_{t}’$ : $U_{\alpha}UU_{\beta}arrow D_{\beta}$ is a torus fibration for each $t$ .
$(\tilde{\psi})_{t}$

Each manifold
$U_{\alpha}UU_{\beta}(\tilde{\psi})_{t}$

in the family is diffeomorphic to
$U_{a}UU_{\beta}\tilde{\psi}$

via a

diffeomorphism which is the identity near the boundary. Also, near the bound-
ary, $f_{t}’$ always restricts $f’$ . Thus the family $(U_{\alpha}UU_{\beta}, f_{t}’)_{0\leqq t\leqq 1}$ is considered as

$(\tilde{\psi})_{t}$

giving a deformation of $f^{f}$ :
$U_{\alpha}UU_{\beta}\tilde{\psi}arrow D_{\beta}$

. The last stage of this deformation is

a torus fibration with a single singular fiber obtained by pasting $f^{-1}(x_{\alpha})\cap U_{\alpha}$ (two

disks intersecting transversely in a point with sign +1) and $f^{-1}(x_{\beta})\cap U_{\beta}$ (two

disks likewise intersecting with sign $-1$ ) along their boundaries ( $i$ . $e$ . distinguished

circles). This is a twin.
Pull back the above deformation to $f^{-1}(D_{\alpha}\cup Q\cup D_{\beta})$ under $\tilde{\varphi}$ : $f^{-1}(D_{\alpha}\cup Q\cup D_{\beta})$

$arrow U_{a}\bigcup_{\tilde{\psi}}U_{\beta}$
, and extend the pulled back deformation by the identity to $f^{-1}(D)$ .

Then one obtains the desired deformation of $f|f^{-1}(D):f^{-1}(D)arrow D$ . This com-
pletes the proof of Theorem 4.1. $\square$

Reversing the whole process, we get the following:

THEOREM 4.2. Let $f:Narrow D$ be a torus fibration with a singular fiber of type
$Tw$ whose divisor is $R+S$ . Then we can deform the fibration without altering it
in a neighborhood of $\partial N$ so that the resulting fibration $f;Narrow D$ has exactly two

singular fibers of types $I_{1}^{+}$ and $I_{1}^{-}$ .
This deformation was first observed in the torus fibration $S^{4}arrow S^{2}$ ([6], \S 4).

\S 5. Fibered surgery.

In this section we will show that surgery on an irreducible component $S$ of
a singular fiber of type $Tw$ (with divisor $R+nS$ ) will change the fiber to a
general one and that conversely surgery along a simple closed curve in a
general fiber will convert the fiber into a twin singular fiber. The two types

of surgery are the inverse of each other. Such surgical operations in torus

fibrations are not new. Iwase [2] has made use of them. Our contribution here
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is only to make the framing precise.

First of all we prepare a standard model of “ fibered neighborhood “ of a
2-sphere. (See [2], \S 3.)

Let $\epsilon,$

$\delta$ be positive numbers with $0<2\epsilon<\delta^{n}<\delta<1$ with $n$ a fixed integer
$\geqq 1$ , and define manifolds (with corners) $U,$ $V,$ $U_{0},$ $V_{0}$ as follows:

$U=\{(u_{1}, u_{2})\in C^{2}||u_{1}u_{2}^{n}|\leqq\epsilon, |u_{1}|<2, |u_{2}|\leqq\delta\}$ ,

$V=\{(v_{1}, v_{2})\in C^{2}||v_{1}v_{2}^{n}|\leqq\epsilon, |v_{1}|<2, |v_{2}|\leqq\delta\}$ ,

$U_{0}=\{(u_{1}, u_{2})\in U||u_{1}|>1/2\}$ ,

$V_{0}=\{(v_{1}, v_{2})\in V||v_{1}|>1/2\}$ .

The map $\phi_{1.n}$ : $U_{0}arrow V_{0}$ given by

$\phi_{1.n}(u_{1}, u_{2})=(1/u_{1}, u_{2}|u_{1}|^{2/n})$

is an orientation preserving diffeomorphism, via which we glue $U$ and $V$ to

obtain a manifold $N_{1,n}=U\cup V\phi_{1.n}$
The orientation of $N_{1.n}$ is chosen so as to be

compatible with the orientations of $U$ and $V$ . Let $D_{\epsilon}$ denote the closed 2-disk
$\{\xi\in C||\xi|\leqq\epsilon\}$ .

Map $U$ (resp. $V$ ) to $D_{\epsilon}$ by the correspondence

$f_{U}(u_{1}, u_{2})=u_{1}u_{2}^{n}$ (resp. $f_{V}(v_{1},$ $v_{2})=\overline{v}_{1}v_{2}^{n}$).

Since $f_{V}\phi_{1.n}(u_{1}, u_{2})=f_{U}(u_{1}, u_{2})$ for all $(u_{1}, u_{2})\in U_{0}$ , we get a well-defined map
$f_{1,n}$ : $N_{1,n}arrow D_{\epsilon}$ which equals $f_{U}$ on $U$ and $f_{V}$ on $V$ .

Let $S_{0}$ denote the 2-sphere $\{(u_{1}, u_{2})\in U|u_{2}=0\}\cup\{(v_{1}, v_{2})\in V|v_{2}=0\}$ .

DEFINITION 5.1. We call $f_{1,n}$ : $N_{1,n}arrow D_{\epsilon}$ the standard fibered neighborhood

of the 2-sphere $S_{0}$ with multiplicity $(1, n)$ . We will sometimes denote $N_{1,n}$ by

$N_{1,n}(S_{0})$ .
The map $f_{1.n}$ is, in fact, the projection of a certain fibration, whose struc-

ture we study now. $N_{1,n}$ is a smooth manifold with corners. (Fig. 5.1). The
corners appear along the boundaries of the two solid tori

$T_{U}=\{(u_{1}, u_{2})\in U||u_{1}u_{2}^{n}|\leqq\epsilon, |u_{2}|=\delta\}$

$T_{V}=\{(v_{1}, v_{2})\in V||v_{1}v_{2}^{n}|\leqq\epsilon, |v_{2}|=\delta\}$

contained in the boundary $\partial N_{1.n}$ .
All the fibers $f_{1.n}^{-1}(\xi)$ are transverse to $T_{U}$ and $T_{V}$ . A general fiber $f_{1.n}^{-1^{\vee}}(\xi)$

$(\xi\neq 0)$ is an annulus, and the singular fiber $f_{1.n}^{-1}(0)$ consists of $S_{0}$ and two 2-disks
$D_{+}=\{(u_{1}, u_{2})\in U|u_{1}=0\}$ and $D_{-}=\{(v_{1}, v_{2})\in V|v_{1}=0\}$ .
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Figure 5.1.

LEMMA 5.2. $N_{1,n}$ is homeomorphic to $S^{2}\cross D^{2}$ .
PROOF. Since $N_{1.n}$ is topologically a $D^{2}$-bundle over $S^{2}$ , it suffices to show

that the self-intersection number $[S_{0}]\cdot[S_{0}]$ of the zero-section vanishes. Giving

the fibers $f_{1.n}^{-1}(\xi)$ the orientations determined by the ones of $N_{1.n}$ and $D_{\epsilon}$ , we
consider them as representing relative homology classes in $H_{2}(N_{1.n}, T_{U}\cup T_{V} ; Z)$ .
It is easy to see

$[f_{\overline{i}_{n}^{1}}.(\xi)]=[D_{+}]+n[S_{0}]+[D_{-}]$ $(\xi\neq 0)$ ,

where $[]$ denotes the relative homology class. Also the intersection numbers
between the sphere $S_{0}$ and the disks $D_{\pm}$ are given as follows:

$[D_{+}]\cdot[S_{0}]=1$ , $[D_{-}]\cdot[S_{0}]=-1$ .

Since a general fiber $f_{1.n}^{-1}(\xi)$ and $S_{0}$ are disjoint,

$[f_{1.n}^{-1}(\xi)]\cdot[S_{0}]=([D_{+}]+n[S_{0}]+[D_{-}])\cdot[S_{0}]=0$ .

This, together with $([D_{+}]+[D_{-}])\cdot[S_{0}]=1-1=0$ , implies $[S_{0}]\cdot[S_{0}]=0$ , com-
pleting the proof. $\square$

A circle which is the intersection of a general fiber $f_{1.n}^{-1}(\xi)$ with $T_{U}$ (resp.

$T_{V})$ is parametrized as follows:

$\{(\xi\delta^{-n}e^{-in\theta}, \delta e^{i\theta})\in U\}_{0\leqq\theta}\xi 2\pi$ (resp. $\{(\xi\delta^{-n}e^{in\theta},$ $\delta e^{i\theta})\in V\}_{0\leq\theta\leq 2\pi}$ ).

See Fig. 5.2.
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Figure 5.2.

Next we prepare another standard object denoted by $N(C_{0})$ , the standard

fibered neighborhood of a circle $C_{0}$ . It is simply a product $D_{\epsilon}\cross C_{0}\cross[0,1]$ equipped

with the first projection $f_{1}$ : $D_{\epsilon}\cross c_{0}\cross[0,1]arrow D_{\epsilon}$ . All the fibers of $f_{1}$ are annuli.

Clearly $N(C_{0})$ is homeomorphic to $D^{3}\cross S^{1}$ .
Returning to $N_{1.n}(S_{0})$ , note that the boundary $\partial N_{1.n}(S_{0})$ is the union

$T_{U}\cup U\cup V\cup T_{V}$ ,

where $U=\{(u_{1}, u_{2})\in U||u_{1}u_{2}^{n}|=\epsilon\}$ and $V=\{(v_{1}, v_{2})||v_{1}v_{2}^{n}|=\epsilon\}$ . Obviously
$T_{U}\cap U=\{(u_{1}, u_{2})\in U||u_{1}|=\epsilon\delta^{-n}, |u_{2}|=\delta\}$ and $T_{V}\cap V=\{(v_{1}, v_{2})\in V||v_{1}|=\epsilon\delta^{-n}$ ,

$|v_{2}|=\delta\}$ . If $(u_{1}, u_{2})$ (resp. $(v_{1},$ $v_{2})$ ) belongs to $U$ (resp. $V$ ), then $2\geqq|u_{1}|\geqq\epsilon\delta^{-n}$

(resp. $2\geqq|v_{1}|\geqq\epsilon\delta^{- n}$).

Now define a map $h_{1.n}$ : $\partial N_{1,n}(S_{0})arrow\partial N(C_{0})$ by setting

$h_{1.n}(u_{1}, \delta e^{i\theta})=(u_{1}\delta^{n}e^{in\theta}, e^{i\theta}, 1)\in D_{\epsilon}\cross C_{0}\cross\{1\}$ for $(u_{1}, \delta e^{i\theta})\in T_{U}$ ,

$h_{1.n}(u_{1}, u_{2})=(u_{1}u_{2}^{n}, \epsilon^{-1/n}u_{2}|u_{1}|^{1/n}, (\epsilon^{-1}\delta^{n}-|u_{1}|)/(\epsilon^{-1}\delta^{n}-\epsilon\delta^{-n}))$

$\in\partial D_{\epsilon}\cross C_{0}\cross[0,1]$ for $(u_{1}, u_{2})\in U$ ,

$h_{1.n}(v_{1}, v_{2})=(\overline{v}_{1}v_{2}^{n}, \epsilon^{-1/n}v_{2}|v_{1}|^{1/n}, (\epsilon^{-1}\delta^{n}-|v_{1}|^{-1})/(\epsilon^{-1}\delta^{n}-\epsilon\delta^{-n}))$

$\in\partial D_{\epsilon}\cross C_{0}\cross[0,1]$ for $(v_{1}, v_{2})\in V$ ,

$h_{1.n}(v_{1}, \delta e^{i\theta})=(\overline{v}_{1}\delta^{n}e^{in\theta}, e^{i\theta}, 0)\in D_{\epsilon}\cross c_{0}\cross\{0\}$ for $(v_{1}, \delta e^{i\theta})\in T_{V}$ .

The map $h_{1.n}$ is well-defined and a piecewise smooth homeomorphism. In

fact, the first and the second (resp. the third and the fourth) expressions of $h_{1.n}$

coincide on $T_{U}\cap U$ (resp. $T_{V}\cap V$ ), and we have $h_{1.n}\phi_{1.n}(u_{1}, u_{2})=h_{1.n}(u_{1}, u_{2})$ on
$U$ . Moreover, $h_{1,n}|T_{U}$ : $T_{U}arrow D_{\epsilon}\cross c_{0}\cross\{1\},$ $h_{1,n}|U\cup V$ : $U\cup Varrow\partial D_{\epsilon}\cross C_{0}\cross[0,1]$

and $h_{1.n}|T_{V}$ : $T_{V}arrow D_{\epsilon}\cross C_{0}\cross\{0\}$ are diffeomorphisms.

LEMMA 5.3. (i) $h_{1.n}$ : $\partial N_{1.n}(S_{0})arrow\partial N(C_{0})$ is fiber preserving: that is
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$(f_{1}|\partial N(C_{0}))\circ h_{1.n}=f_{1.n}|\partial N_{1,n}(S_{0})$ .
(ii) If we appr0priately identify $N_{1.n}(S_{0})$ with $S^{2}\cross D^{2}$ , and $N(C_{0})$ with $D^{3}\cross S^{1}$

respecting the projeciions to the factors so that

$(\downarrow 1]arrow C_{0})$ $\cong$ $(\begin{array}{l}D^{3}\cross S^{1}arrow S^{1}D^{3}\downarrow\end{array})$ ,

then $h_{1.n}$ : $S^{2}\cross\partial D^{2}arrow\partial D^{3}\cross S^{1}$ can be written as the n-time rotation:

$h_{1,n}(x, e^{i\theta})=(\rho_{n}(e^{i\theta})(x), e^{i\theta})$ $(x, e^{i\theta})\in S^{2}\cross\partial D^{2}$ ,

where $\rho_{n}$ : $S^{1}arrow SO(3)$ is the map defined by

$\rho_{n}(e^{i\theta})=(\begin{array}{lll}\cos n\theta -\sin n\theta \sin n\theta \cos n\theta 1\end{array})$ .

The statement (i) follows directly from the expressions of $h_{1,n}$ . To see
the second statement, Figure 5.2 would be helpful. The details are left to the

reader.

Let $F_{0}$ be a singular fiber of type $Tw$ of a torus fibration $f:Marrow B$ . Suppose

the divisor of $F_{0}$ is $R+nS$ . We want to perform “ fibered surgery “ on S.
Recalling the definition of a singular fiber of type $Tw$ (Definition 2.3), one can
easily check that there exists an orientation preserving smooth embedding
$\varphi_{1,n}$ : $N_{1,n}(S_{0})arrow M$ such that

(i) $\varphi_{1,n}(S_{0})=S$ ;

(ii) $\varphi_{1.n}(D_{+}\cup D_{-})=R\cap\varphi(N_{1.n}(S_{0}))$ ;

(iii) $\varphi_{1,n}$ is fiber preserving: that is, identifying $D_{\epsilon}$ with an $\epsilon$ -disk in $B$

centered at $x_{0}=f(F_{0})$ , we have $f\circ\varphi_{1,n}=f_{1,n}$ : $N_{1,n}(S_{0})arrow D_{\epsilon}$ . (Fig. 5.3).

Figure 5.3.

Let $M_{0}$ denote Closure($M-(0_{1.n}(N_{1.n}(S_{0})))$ . Glue $M_{0}$ and the standard fibered
neighborhood $N(C_{0})$ along their boundaries via the composed diffeomorphism
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$h_{1,n}\circ\varphi_{1.n}^{-1}$ : $\partial\Lambda I_{0}arrow\partial N_{1,n}(S_{0})arrow\partial N(C_{0})$ . Let $\chi_{S}(M)=M_{0}\cup N(C_{0})$ denote the resulting

manifold. Let $\chi_{s}(f);x_{s}(M)arrow B$ denote the map which equals $f|M_{0}$ on $M_{0}$ and
$f_{1}$ on $N(C_{0})$ . By the properties (i), (ii), (iii) of $\varphi_{1,n}$ , it is clear that $\chi_{S}(f)$ :
$\chi_{s}(M)arrow B$ is a torus fibration in which the singular fiber $F_{0}$ has been replaced

by $F_{0}’=(R-R\cap\varphi_{1.n}(N_{1,n}(S_{0})))\cup(\{0\}\cross C_{0}\cross[0,1])$ , which is a general fiber. This
completes the description of fibered surgery on $S$ . We summarize the above
process into the following

THEOREM 5.4. By perf0rming fibered surgery on the irreducible comp0nent $S$

of a twin srngular fiber $F_{0}$ whose divisor is $R+nS$ , we obtain a torus fibration
$\chi_{S}(f);\chi_{S}(M)arrow B$ of the surgered manifold in which $F_{0}$ is replaced by a general

fiber $F_{0}’$ .
Conversely, let $F_{1}$ be a general fiber of a torus fibration $f:Marrow B$ . Let $C$

be a smooth simple closed curve on $F_{1}$ which is not null-homotopic in $F_{1}$ . Then

there exists a smooth embedding $\varphi_{1}$ : $N(C_{0})arrow M$ such that
(i) $\varphi_{1}(C_{0})=\varphi_{1}(\{0\}\cross c_{0}\cross\{1/2\})=C$ ;

(i1) $\varphi_{1}$ is fiber preserving: that is, identifying $D_{\epsilon}$ with an $\epsilon$ -disk in $B$

centered at $x_{1}=f(F_{1})$ , we have $f\circ\varphi_{1}=f_{1}$ ; $N(C_{0})arrow D_{\epsilon}$ .
Let $M_{1}$ denote Closure $(M-\varphi_{1}(N(C_{0}))),$ $\chi_{c}(M)$ the manifold obtained by gluing

$M_{1}$ and $N_{1.n}(S_{0})$ along their boundaries via the composed diffeomorphism
$h_{1.n}^{-1}\circ\varphi_{1}^{-1}$ : $\partial M_{1}arrow\partial N(C_{0})arrow\partial N_{1,n}(S_{0})$ . Let $\chi_{c}(f);x_{c}(M)arrow B$ denote a map which
equals $f|M_{1}$ on $M_{1}$ and $f_{1,n}$ on $N_{1,n}(S_{0})$ . Then by the properties (i) (ii) of $\varphi_{1}$ ,

$\chi_{c}(f);\chi_{c}(M)arrow B$ is a torus fibration, in which the general fiber $F_{1}$ has been
replaced by a twin singular fiber $F_{1}’$ $:=(F_{1}-F_{1}\cap\varphi_{1}(N(C_{0})))\cup(D_{+}\cup S_{0}\cup D_{-})$ whose

divisor is $R+nS$ . (Note that $R:=(F_{1}-F_{1}\cap\varphi_{1}(N(C_{0})))\cup D_{+}\cup D$ -and $S:=S_{0}.$ ) This
completes the description of fibered surgery of type (1, n) on $C$ .

The embedding $\varphi_{1}$
; $N(C_{0})arrow M$ is regarded as giving a normal framing of

the simple closed curve $C$ , which we call the canonical framing determined by

the fibration $f$.

THEOREM 5.5. By perf0rming fibered surgery of type (1, n) on an essential

simple closed curve $C$ in a general fiber $F_{1}$ , we obtain a torus fibration $\chi_{c}(f)$ ;

$\chi_{c}(M)arrow B$ of the surgered manifold in which $F_{1}$ is replaced by a twin singular

fiber $F_{1}’$ whose divisor is $R+nS$ . The effect on the diffeomorphism type of $M$ is
the same as that of doing surgery on $C\subset M$ using a normal framing which twists $n$

times with respect to the canonical framing determined by the fibration.
The first assertion is obvious by the construction. The second assertion

about the framing follows from Lemma 5.3 (ii). Note that, since $\pi_{1}(SO(3))=Z/2$ ,

the effect of the surgery on $M$ depends only on $C$ and on the parity of $n$ .

THEOREM 5.6. Let $F_{0}$ be a twin singular fiber whose divisor is $R+nS$ in a
torus fibration $f:Marrow B$ . Perform fibered surgery on $S$ to obtain a torus fibration
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$\chi_{S}(f);x_{s}(M)arrow B$ in which $F_{0}$ is replaced by a general fiber $F_{0}’$ . Let $C$ be the

simple closed curve in $F_{0}’$ wfuch is the image of $\{0\}\cross C_{0}\cross\{1/2\}(\subset D_{\epsilon}\cross C_{0}\cross[0,1]$

$=N(C_{0}))$ . Then, again by perf0rming framed surgery of fype (1, n) on the curve
$C$, we recover the original torus fibration $f:Marrow B$ .

The proof is straightforward.

\S 6. Proof of Theorem 1.1’.

The final ingredient we need in proving Theorem 1.1’ is Matumoto’s exten-

sion theorem. Given three integers $l,$ $m,$ $n$ , Matumoto [8] constructed a 4-mani-
fold denoted by $W(l, m, n)$ as follows: Take a 3-torus $T^{3}=S^{1}\cross S^{1}\cross S^{1}$ and
attach three 2-handles to $T^{3}\cross[0,1]$ along the disjoint standard circles
$S^{1}\cross\{*\}\cross t*\},$ $\{*’\}\cross S^{1}\cross t*^{f}\},$ $\{*^{f\prime}\}\cross\{*’\}\cross S^{1}$ in $T^{3}\cross\{1\}$ using framing numbers
$l,$ $m,$ $n$ , respectively. The resulting manifold is $W(l, m, n)$ .

In what follows we need only $W(-1, -1, -1)$ which is denoted simply by $W$.

THEOREM (Matumoto [8, Theorem 1]). Let $\alpha:T^{3}\cross\{0\}arrow T^{3}\cross\{0\}$ be an ori-

entation preserving diffeomorphism. Then there exzsts a diffeomorphism $\tilde{\alpha}$ : $Warrow W$

such that a $|T^{\}\cross\{0\}=\alpha$ and $\tilde{\alpha}|$ (the other comp0nent of $\partial W$) $=identity$ .
Matumoto’s next theorem states that $W$ can be embedded in $(CP_{2}\# 9\overline{CP}_{2}-$

$Int(D^{2}\cross T^{2}))$ . To state the result precisely, let us recall that $CP_{2}\# 9\overline{CP_{2}}(\cong V_{1}$

in the notation of \S 1) has the structure of an elliptic surface over $S^{2}$ . Let
$D^{2}\cross T^{2}$ be a fibered neighborhood of a general fiber. Let $N$ denote the closed

complement $(CP_{2}\# 9\overline{CP_{2}}-Int(D^{2}\cross T^{2}))$ .

THEOREM (Matumoto [8, Proposition 5.1]). $W$ can be embedded in $N$ so that
$\partial N=W\cap\partial N=\partial W\cap\partial N=T^{3}\cross\{0\}$ .

COROLLARY ([8, \S 7]). Each orientation preserving diffeomorphism $\alpha;\partial Narrow\partial N$

extends to a diffeomorphism $\tilde{\alpha}$ : $Narrow N$.
These results of Matumoto imply a lemma of the Dehn type. Following

Montesinos [10], we call a simple closed curve in $T^{3}$ a canonical curve if it is
the image of the standard circle $S^{1}\cross\{*\}\cross t*\}$ under an orientation preserving
diffeomorphism $\alpha:T^{3}arrow T^{3}$ . For a canonical curve $C$, we define a natural

framing to be the image (under $\alpha$) of the product framing of $S^{1}\cross\{*\}\cross\{*\}$ in
$S^{1}\cross S^{1}\cross S^{1}=T^{3}$ . This terminology also applies to curves in a manifold diffeo-
morphic to $T^{3}$ .

LEMMA 6.1. Each canonical curve $C$ in $\partial N$ bounds a smoothly embedded disk
$\Delta$ in N. Moreover we can take $\Delta$ so that if $\Delta’$ denotes a disk obtained by perturb-

ing $\Delta$ slightly in such a way that $\partial\Delta’$ is pushed off $\partial\Delta$ in the direction of natural

framing, then $\Delta\cdot\Delta’=-1$ .
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PROOF. In the case whenC is the standard circle S $\cross\{*\}\cross\{*\}\subset T^{3}\cross\{0\}=\partial N$,

the disk $\Delta$ can be taken as $\Delta=(S^{1}\cross\{*\}\cross\{*\})\cross[0,1]\cup(core$ of an attached
$2- handle)\subset W\subset N$. In the general case when $C=\alpha(S^{1}\cross\{*\}\cross t*\}),$ $\alpha$ being a dif-
feomorphism $\alpha;\partial Narrow\partial N$, we have only to take the disk $\tilde{\alpha}(\Delta)$ , where $\tilde{\alpha}$ : $Narrow N$

is an extension of $a$ . $\square$

PROOF OF THEOREM 1.1’. Let $f:Marrow S^{2}$ be a torus fibration, each singular

fiber of which is of type $I_{1}^{+}$ or $I_{1}^{-}$ . Suppose that $\sigma(M)\neq 0$ . Let $\Gamma=\{x_{1},$ $x_{2}$ ,

$\ldots,$ $x_{\nu}$ } be the set of critical values of $f$. Take a base point $x_{0}\in S^{2}-\Gamma$. Also
take a disk $D$ in $S^{2}$ which contains $\Gamma\cup\{x_{0}\}$ in $IntD$ . The restriction
$f|f^{-1}$ ( $S^{2}$–Int $D$) $:$ $f^{-1}$ ( $S^{2}$ –Int $D$) $arrow S^{2}$–Int $D$ is a $T^{2}$-bundle over a disk $S^{2}$ –Int $D$ ,

hence is trivial. Therefore, the monodromy around $\partial D$ is trivial.
By Theorem 3.7, we can permute $x_{1},$ $x_{2},$

$\cdots$
$x_{\nu}$ if necessary and choose

paths $\gamma_{1},$ $\gamma_{2},$
$\cdots$

$\gamma_{\nu}$ in Int $D$ joining $x_{0}$ to $x_{1},$ $x_{2},$
$\cdots$ , $x_{\nu}$ , respectively, so that the

corresponding monodromy matrices (with respect to a certain basis $(\mu_{0}, \lambda_{0})$ of
$H_{1}(f^{-1}(x_{0});Z))$ are in one of the two normal forms:

$(W_{1}, W_{1}^{-1}, W_{2}, W_{2}^{-1}, \cdots W_{l}, W_{l}^{-1}, X, Y, X, Y, \cdots , X, Y)$

or
$(W_{1}, W_{1}^{-1}, W_{2}, W_{2}^{-1}, \cdots W_{t}, W_{t}^{-1}, Y^{-1}, X^{-1}, Y^{-1}, X^{-1}, \cdots Y^{-1}, X^{-1})$ ,

where $W_{i}\in SL(2, Z)$ and $X=\{\begin{array}{ll}1 01 1\end{array}\},$ $Y=\{\begin{array}{l}l-10 1\end{array}\}$ .

If $1\geqq 1$ , then Theorem 4.1 applies. We can deform the fibration $f:Marrow S^{2}$

so that the first two singular fibers $f^{-1}(x_{1}),$ $f^{-1}(x_{2})$ (corresponding to $W_{1},$ $W_{1}^{-1}$ )

are fused together to make a single twin singular fiber. After repeating this
process $l$ times, we get a torus fibration $Marrow S^{2}$ which contains 1 twin singular

fibers $F_{1},$ $F_{2},$ $\cdots$ $F_{l}$ instead of the first $2l$ singular fibers $f^{-1}(x_{1}),$ $f^{-1}(x_{2}),$ $\cdots$ ,

$f^{-1}(x_{2l-1}),$ $f^{-1}(x_{2l})$ . The divisor of each of these twin singular fibers is $R+S$

(Theorem 4.1).

Perform fibered surgery on an irreducible comPonent of each twin singular

fiber. Then all the twin singular fiber disappear (Theorem 5.4). Thus we obtain
a new manifold $\chi(M)$ and a torus fibration $\chi(f);x(M)arrow S^{2}$ all of whose singular

fibers are of the same tyPe ( $I_{1}^{+}$ or $I_{1}^{-}$ ). (Note that $X$ and $Y$ represent the
monodromy of $I_{1}^{+}$ , and $X^{-1},$ $Y^{-1}$ the monodromy of $I_{1}^{-}.$ )

By [9, Theorem 9, p. 175], the euler number $e(\chi(M))$ of the manifold $\chi(M)$

is divisible by 12, and

$\chi(M)\cong V_{k}$ or $\chi(M)\cong\overline{V}_{k}$

according as $\sigma(\chi(M))<0$ or $\sigma(\chi(M))>0$ , where $k=e(\chi(M))/12$ . (Note that $\sigma(\chi(M))$

$=\sigma(M)\neq 0.)$
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The original manifold $M$ is recovered from $\chi(M)$ by performing fibered

surgery of type $(1, 1)$ on a simple closed curve in each of the $l$ general fibers
$F_{1}’,$ $F_{2}’,$ $\cdots$ $F_{l}’$ obtained from the twin singular fibers $F_{1},$ $F_{2},$ $\cdots$ $F_{l}$ (Theorem 5.6).

The framing used for the surgery twists once with respect to the canonical
framing determined by the fibration (Theorem 5.5).

Since $\chi(M)$ ( $\cong V_{k}$ or $\overline{V}_{k}$ ) is l-connected by Kas [3], surgery on a simple

closed curve in $\chi(M)$ changes $\chi(M)$ into $\chi(M)\# S^{2}\cross S^{2}$ or $\chi(M)\# S^{2}\cross S^{2}\sim$
’ where

$S^{2}\cross S^{2}\sim$ denotes the non-trivial $S^{2}$-bundle over $S^{2}$ . We will see which is the

case.
Consider the last 12 critical values of $\chi(f);x(M)arrow S^{2},$ $x_{\nu-11},$ $x_{\nu-10},$

$\cdots$
$x_{\nu}$ .

The monodromy matrices of the corresponding singular fibers are

$X,$ $Y,$ $X,$ $Y,$ $X,$ $Y,$ $X,$ $Y,$ $X,$ $Y,$ $X,$ $Y$ ,

or
$Y^{-1},$ $X^{-1},$ $Y^{-1},$ $X^{-1},$ $Y^{-1},$ $X^{-1},$ $Y^{-1},$ $X^{-1},$ $Y^{-1},$ $X^{-1},$ $Y^{-1},$ $X^{-1}$ .

Let $D^{f}$ be a 2-disk in $S^{2}$ such that $D^{f}\cap\Gamma=\{x_{\nu-11}, x_{\nu-10}, \cdots x_{\nu}\}$ . The

monodromy around $\partial D’$ is trivial, because either of $(XY)^{6}$ and $(Y^{-1}X^{-1})^{6}$ is

trivial. Let $N’$ denote $\chi(f)^{-1}(D^{f})$ , the part of $\chi(M)$ over $D’$ .
We will show that $N’$ is diffeomorphic to the manifold $N=(CP_{2}\# 9\overline{CP}_{2}-$

$Int(D^{2}\cross T^{2}))$ or $\overline{N}$ (with orientation reversed).

Matumoto proves his theorems using the fact that the fibration $N\cup D^{2}\cross T^{2}$

$arrow S^{2}$ has two singular fibers of types II and $II^{*}$ (in Kodaira’s notation [4]). We

can deform the fibration $N\cup D^{2}\cross T^{2}arrow S^{2}$ by Moishezon’s lemma [9, Lemma 6,

p. 155] so that in the resulting fibration all the singular fibers are of type $I_{1}^{+}$ .
During the deformation, general fibers are moved by isotopy. Since the euler

number $e(N\cup D^{2}\cross T^{2})=e(CP_{2}\# 9\overline{CP_{2}})$ equals 12, the number of the singular fibers
(of type $I_{1}^{+}$ ) is 12, and they can be arranged so that the corresponding monodromy

matrices are $X,$ $Y,$ $X,$ $Y,$ $X,$ $Y,$ $X,$ $Y,$ $X,$ $Y,$ $X,$ $Y$ ([9, Lemma 8, p. 179]). Thus
by [9, Lemma $7a$ , p. 169], $N^{f}=x(f)^{-1}(D’)$ is diffeomorphic to $N$ or $\overline{N}$.

Returning to our $\chi(M)$ , let $F_{i}’$ be a general fiber on which we perform

fibered surgery of type $(1, 1)$ along a simple closed curve $C(\subset F_{i}’)$ .
Let $\gamma$ be an arc on $S^{2}$ joining the value $\chi(f)(F_{i}’)$ to a point $p\in\partial D’$ and

missing all the other critical values of $f$. Also we assume $\gamma\cap\partial D’=\{p\}$ . Move
the simple closed curve $C(\subset F_{i}’)$ along the path $\gamma$ to obtain (as the trace of
moving $C$) an annulus $A$ embedded in $\chi(M)$ . Let $C’=\partial A-C$. Then $C’$ is a
canonical curve in $\partial N’$ . By Lemma 6.1, $C’$ bounds a 2-disk $\Delta$ in $N’$ with
“ relative “ self-intersection number $\pm 1$ with respect to the natural framing of $C’$ .

Recall that when performing fibered surgery of tyPe $(1, 1)$ on $C$, we used a
framing which turns once with respect to the canonical framing. Therefore, it
is easily seen that if $D_{0}$ denotes the “ attached “ 2-disk along $C$ by the surgery,
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the resulting 2-sphere $D_{0}\cup A\cup\Delta$ has an even self-intersection number. This
assures that the fibered surgery of type $(1, 1)$ on $C(\subset F_{i}’)$ changes $\chi(M)$ into
$\chi(M)\# S^{2}\cross S^{2}$ , not $\chi(M)\# S^{2}\cross S^{2}\sim[12]$ .

Repeating this process $l$ times, we recover the original manifold $M$ by

Theorem 5.6, which is diffeomorphic to $\chi(M)\# l(S^{2}\cross S^{2})$ by the above observation.
Therefore, $M$ is diffeomorphic to $V_{k}\# l(S^{2}\cross S^{2})$ or $\overline{V}_{k}\# l(S^{2}\cross S^{2})$ according

as $\sigma(M)<0$ or $\sigma(M)>0$ . Obviously, we have $|\sigma(M)|=|\sigma(V_{k})|=8k$ and $e(V_{k})$

$=12k+2l$ . This completes the proof of Theorem 1.1 $f$

$\square$

A simple twin singular fiber whose divisor is $mR+nS$ is said to be even if
$m+n\equiv 0(2)$ or odd if $m+n\equiv 1(2)$ . The following theorem generalizes Theorem
1.1’.

THEOREM 6.2. Let $f:Marrow S^{2}$ be a torus fibration each of whose singular

fibers is of tyPe $I_{1}^{+},$ $I_{1}^{-}$ or (srmple) $Tw$ . SuPpose that $\sigma(M)\neq 0$ . Then the diffeo-
morPhism rype of $M$ is as follows:

(i) if $f:Marrow S^{2}$ does not contain an odd twin singular fiber, then $M\cong$

$V_{k}\# l(S^{2}\cross S^{2})$ or $M\cong\overline{V}_{k}\# l(S^{2}\cross S^{2})$ according as $\sigma(M)<0$ or $\sigma(M)>0$ ;

(ii) if $f:Marrow S^{2}$ contains an odd twin singular fiber, then $M\cong k’CP_{2}\# l’\overline{CP}_{2}$ .

OUTLINE OF PROOF. By [7], any simple twin singular fiber which is odd (resp.

even) can be replaced without changing the diffeomorphism type of $M$ by a twin
singular fiber whose divisor is $R+2S$ (resp. $R+S$). Performing Pbered surgery

on $S$ , we can eliminate the twin singular fiber. The inverse fibered surgery
performed when recovering the twin singular fiber is of type $(1, 2)$ or $(1, 1)$

according as the divisor of the eliminated twin singular fiber was $R+2S$ or
$R+S$ . Thus the recovered manifold is a connected sum with $S^{2}\cross S^{2}\sim$ or $S^{2}\cross S^{2}$

according as the twin singular fiber is odd or even. Once $S^{2}\cross S^{2}\sim(=CP_{2}\#\overline{CP_{2}})$

appears, the whole manifold decomposes into $k’CP_{2}\# l’\overline{CP_{2}}$ by Mandelbaum’s
theorem [5] (applied to $V_{k}$ or $\overline{V}_{k}$ ). Details will be left to the reader.
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