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§1. Introduction.

By a torus fibration f:M— B is roughly meant a certain singular fibration
of an oriented smooth 4-manifold M over an oriented surface B with general
fiber the 2-torus. (For a precise definition, see [Definition 2.1.) Some special
types of such fibrations have been studied by Thornton and Zieschang
as a generalization of Seifert fibered spaces (into higher dimensions not neces-
sarily 4 in their articles), and other special types by Harer and Moishezon
as a smooth analog of Lefschetz’ pencils or Kodaira’s elliptic fiber spaces
[4]. (General fibers of Harer’s pencils need not be tori) The author gave a
general formulation of torus fibrations [6].

Among the possible types of singular fibers that torus fibrations can admit,
the simplest one would be of type I or /7. A singular fiber of type I (resp. I7)
consists of a smoothly immersed 2-sphere with a single transverse self-intersection
of sign +1 (resp. —1).

In this paper we will deal with torus fibrations over the 2-sphere whose
singular fibers are of type IT or Ii. Our goal will be to classify the (not
necessarily fiber preserving) diffeomorphism types of the total spaces of such
torus fibrations. The following is our main result.

THEOREM 1.1. Let f: M—S® be a torus fibration over the 2-sphere each of
whose singular fibers isof type It or I1. Suppose that the signature of M is not
zero. Then M is l-connected, and the diffeomorphism type of M is determined by
the euler number e(M) and the signature o(M).

REMARK. Assume that each singular fiber of a torus fibration f: M—S? is
of type IT or Iy, and that there are k. singular fibers of type /T and %_ singular
fibers of type I7. Then e¢(M) and o¢(M) are given by eM)=k.+k., (M)
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=(—2/3)(ks—Fk.), [1], [6, II1. Thus by [Theorem 1.7, the diffeomorphism type
of M is determined by two numbers k,, k_ provided k,+=k_.
Our theorem is an extension of Kas’ theorem [3] which is given an alter-

native, differential topological proof by Moishezon [9]. Let us state it in a
modified way:

THEOREM (Kas). Let V be an elliptic surface over CP; with no multiple
Jibers, with at least one singular fiber and with no exceptional curve contained in
a fiber. Then V is l-connected, and the diffeomorphism type of V is determined
by the euler number (V).

It is known ([3], [9]) that the fibering structure of such an elliptic surface
V can be deformed so that the resulting fibering has singular fibers only of type
IT. Thus the Kas-Moishezon theorem is considered as the diffeomorphism classi-
fication of the total spaces of torus fibrations over S? in which every singular
fiber is of type I'f, while our theorem allows two types of singular fibers IT and I5.

The euler number of an elliptic surface V as in Kas’ theorem is known to
be positive and divisible by 12 ([9]). Let V, denote an elliptic surface with
e(V,)=12k. By Kas’ theorem, the diffeomorphism type of V, is well-defined.
For example, it is known that V,=CP,#9CP, and V,=Kummer manifold. (V
denotes the manifold V with orientation reversed.) Also the signature ¢(V,)
is known to be equal to —8k (cf. [6, II]).

With the above notation, our result is stated more precisely as follows:

THEOREM 1.1, Let f: M—S* be as in Theorem 1.1. Then M is diffeomorphic
to V,81(SEXS?) or V,#1(S2XS? according as a(M)<0 or a(M)>0, where the
integers k and [ are related to a(M) and e(M) by |a(M)| =8k and |e(M)|=12k+21.

Let f;: M;— B;, 1=1, 2, be torus fibrations over closed surfaces. Following
Moishezon [9, Definition 7, p. 174], we define the direct sum f1Df.: MiEM,—
B.% B, as follows: Let D; be a 2-disk in B; such that f7!(D,) contains no
singular fibers. Let ¢:0(M,—Int f71(D,))—9d(M,—Int f3'(D,)) be an orientation
reversing and fiber preserving diffeomorphism which induces an orientation
reversing diffeomorphism ¢:d(B,—IntD,)—8(B,—Int D,). Glue M,—Intf7%D,)
and M,—Int f7'(D;) via ¢ to obtain a manifold denoted by M;P M, We get a
torus fibration fiDf.: MiBOM,— B, % B, by setting fiPf,|(M;—Int f73(D;))=
fil(My—Int f71(D;)), for :=1, 2. The diffeomorphism type of M,PM, possibly
depends on ¢.

Now let f,:V,—S% and f,:V,— S* be elliptic surfaces as in Kas' theorem
with e(V)=12a, ¢V, =12b. By the Kas-Moishezon theorem, we see that the
diffeomorphism type of V.V, is independent of the pasting diffeomorphism &
and is the same as that of V.., because e(V,PVy)=12(a+b), [9].

If we reverse the orientation of V, we obtain a torus fibration 7,: V,—S?
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whose singular fibers are of type I7.

COROLLARY TO THEOREM 1.1°. Suppose that a>b. The diffeomorphism type
of Vo®V, is independent of the pasting diffeomorphism, and is the same as that
of Vo o812b(52xS?).

PrROOF. By Novikov additivity of the signature, ¢(V,&V,)=—8a—b). Also
we have e(V D V,)=12(a+b)=12(a—b)+24b. Thus the corollary follows from
Theorem 1.1". O

In this paper we always assume that the signature of the total spaces is
not zero. However, what happens if it vanishes?

Let f: M—S? be a torus fibration whose singular fibers are of type I7 or
IT. Suppose that ¢(M)=0. Then by Theorems B.7] and 4.1 below (and by noting
that a singular fiber of type I1 or I7 contributes —2/3 or 2/3 to a(M), [1], [6,
II]), we can deform the fibering structure of f: M—S? so that in the resulting
fibration all the singular fibers are “twin”. (For the definition of a twin singular
fiber, see Definition 2.3)) Iwase [2] studies torus fibrations of this kind. He

proves the following :

THEOREM (Iwase). Suppose that e(M)+0, then the diffeomorphism type of
the total space of a torus fibration M—S® whose singular fibers are twin (and are
not multiple in the sense of §2) is determined by the 4 data: the fundamental
group m (M), the euler number e(M), the second Stiefel-Whitney class w,(M) and
the type of the intersection form on HyM ;Z) (even or odd).

For the proof, we refer the reader to [2].

Throughout the paper, all manifolds will be smooth and oriented. All dif-
feomorphisms will preserve orientations, unless otherwise stated.

Main results of this paper were announced in [7].

§ 2. Definitions.

Torus fibrations defined below will be good in the sense that their singular
fibers have only normal crossings. For a more general definition, see [6].

A proper map f: M— B between manifolds is a map such that the preimage
of each compact subset of B is compact and f-(0B)==dM.

DerFmNiTION 2.1. Let M and B be manifolds of dimension 4 and 2, respec-
tively, Let f: M— B be a proper, surjective and smooth map. Wecall f: M— B
a {(good) torus fibration if it satisfies the following conditions:

(i) near each point p=lnt M (resp. f(p)<Int B), there exist local complex
coordinates z,, z, with z,(p)=z,(p)=0 (resp. local complex coordinate & with
E(f(p)=0), so that f is locally written as &= f(z,, z,)=2z72z% or (Z,)™z%, where
m, n are non-negative integers with m-+n=1, and z, is the complex conjugate
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of z;

(ii) there exists a set I of isolated points of Int B so that f|f4B—1I"):
fN(B—IY—B—1TI is a smooth T*-bundle over B—1I".

We call f, M and B, the projection, the total space and the base space,
respectively. Given a (good) torus fibration f: M— B, those points p of Int M
at which m-+4-n=2 make a nowhere dense subset X¥. We may assume that f(X)
=JI". We call I" the set of critical values. The fiber F,=f"'(x) is a general or
singular fiber according as xeB—1I" or xel.

A singular fiber has a finite number of normal cressings. The complement
Fy— {normal crossings} is divided into a finite number of connected compo-
nents. The closure of each component is called an rreducible component of F,.
Irreducible components are smoothly immersed surfaces, and F, is the union of
them :

Fx=@1U U@s .

Each irreducible component is naturally oriented. Thus it represents a homology
class [0,] in H(f~YD,); Z), where D, (Clnt B) denotes a small 2-disk centered
at x such that D,NI'={x}. H(f"YD,);Z) is a free abelian group with basis
[6.], -+, [O,], with which the homology class [F,] of a nearby general fiber
F, (yeD,—{x}) is written as

[Fy]:m1[@1]+ —l‘m_g[@s] , m;=1.

The formal sum Xm;@; is called the divisor of the singular fiber F,. F, is
said to be simple or multiple according as ged(my, -+, my)=1 or >1.

Let F, be a general fiber over a base point x,=B—1I". Let!:[0, 1]—»B—1I"
be a loop based at x,. As is easily shown, there exists a map h:F,x[0, 1]
— M— f~YI") such that

(i) f(h(p, )=I(t) for all (p, HeF,x[0, 1];

(ii) the map h,: F,— I defined by h,(p)=h(p, ?) is a homeomorphism, where
Fo=7-1);

(ili) hy=identity of F,.

The isotopy class of h,:F,— F,=F, is determined by x, together with the
homotopy class [/]. A, induces an automorphism

(hx s Hi(Fy; Z2) > H(Fy; Z).

Fix an ordered basis (g, 4) of H,(F,;Z) so that it is compatible with the
orientation of F,. Then (h)s is represented by a matrix A called the monodromy
matrix. This gives a map

p: m(B—T, x,) — SL(2, Z).

Recalling that the product -/’ of loops is the loop which goes first round /
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and then [, we easily see that to make p a homomorphism we must adopt the

ﬂ to (o)

(R)x(=ap+bd,  (h)e(D)=cptda.

following rule when assigning A:[?

This rule is equivalent to considering that the monodromy acts on H,(F,; Z)
from the »ight. This convention coincides with the one in Moishezon but
is different from the one in or [7]. For this reason, monodromy matrices
here will be the transposed matrices of those in 71

A different basis (p', 1) gives a different homomorphism p’:z,(B—1I", x,)
—SL(2, Z). p’is related to p by p'=C"!-p-C, C being a matrix in SL(2, Z).
The conjugacy class of the matrix p([/]) is called the monodromy associated
with [/].

Let x be a point of I', D, a small disk in Int B such that D.N\I'={x}. Let
x’ be a point on 9D,. Then D, is considered as a loop based at x’. (The
direction of 6, is determined by the orientation of D,.) The monodromy asso-
ciated with the loop 9D, is called the local monodromy of the singular fiber F..

For a classification of singular fibers and their local monodromies, see [6],
[7].

To this paper omnly three types of singular fibers are relevant. They are
If, IT and Tw (twin). (These three types belong to the same class A in the

notation of [7].)

DEFINITION 2.2. A singular fiber is of fype IT (resp. type I7) if it is a
simple singular fiber consisting of a smooth immersed 2-sphere (in the total space)
which intersects itself transversely at one point, where the sign of the inter-
section is +1 (resp. —1). (Fig. 2.1).

Figure 2.1,

The local monodromy of a singular fiber of type I (resp. I7) is represented

by E (1)] (resp. [_}1 (1)]), [9], [7]. This is classically known as the Picard-

Lefschetz formula.
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DEFINITION 2.3. A singular fiber is of {ype Tw if it consists of two smocthly
embedded 2-spheres R, S intersecting each other transversely at two points p.,
p_. The sign of intersection at p, (resp. p_) is -1 (resp. —1). The divisor is
mR+nS. (Fig. 2.2).

+

m n

Tw
R S

Figure 2.2.

In what follows all singular fibers of type Tw will have divisor R--S (i.e.,
m=n=1) or R+nS.

Montesinos first studied two 2-spheres in S* which intersect each other
transversely at two points. Following him, we will call a singular fiber of type
Tw a twin singular fiber.

If F, is a twin singular fiber, the intersection numbers R-R, RS, S-S are
zero (cf. [7)). Therefore the neighborhood f~Y(D,) is obtained by plumbing

D*xS? and S*xD* according to the graph Ct‘_/ The boundary o(f~(D.)) is
diffeomorphic to 7¢=5'x S'x S* ([10]), and the local monodromy is trivial [(1) (1)}

It is proved that the 4-sphere S* can be fibered as a torus fibration S*—S?
with a single singular fiber of type Tw, [6].

§3. Elementary transformations.

In this section, we will extend the theorems of Livne and Moishezon [9]
on elementary transformations of monodromies so that they may cover torus
fibrations with If-singular fibers.

Let f: M— D* be a torus fibration over the 2-disk each singular fiber of
which is of type IT or I7. We assume in this section that the monodromy
around the boundary ¢D? is trivial.

Let I'={xy, x5 -+, x,} (CInt D* be the set of critical values of f. Let D,
(cInt D?) be a small 2-disk centered at x; such that D,N\'={x;}. We assume
that D,D;=@ for i+7. Take a base point x,=D*—\i.Int(D;) and points
xf, x5, -, x;, on 04Dy, 0D, ---, 0D,, respectively. Let 7, 75 -+, 7,: [0, 11—
D*—\_ji_,Int D, be paths joining x, and x7{, x4, ---, x, as shown in Fig. 3.1.



Torus fibrations 611

Figure 3.1.

Let /; denote the loop 7;-@D;)-yi?, i==1, ---, v, based at x,. Throughout the
argument we fix an ordered basis (g, 4) of H,(F,;Z), where F,=f"*(x,). The
basis gives the monodromy homomorphism p: 7, (D*—1I", xo)—SL(Z, Z). The
monodromy matrix p([/;]) is denoted by B,, =1, -, v.

Because of the triviality assumption on the monodromy around dD? we have

10
3.1) BB, - Bu—[O 1]‘
Since the singular fiber F;=/"*x,) is of type IT or I7, we see that
) . 10 1 0
(3.2) B; is conjugate to [1 l:l or [—1 1] ,

for each =1,2, -, p.

Following Moishezon [9, pp. 177-178], we now study the effect of rechocsing
the paths 7y, 72, *-+, 7» on the monodromy matrices B;, B, ---, B,. To examine
this, fix an integer j, 1=;7<v—1. Let 7}, 7% -+, 72 be the new paths defined
by 7i=ri G#J, 7+1), 7i=7ss1 and i =075 see Fig. 3.2.

’
Tin

| = 75
rj+1 Tj

Xo X
Figure 3.2.

Let 4, I}, ---, I, denote the corresponding loops: l;=7i-(0D;)-(yD}, =1, 2,
.+, v. Then the new v-tuple of the monodromy matrices (Bj, B;, -, B)) cor-
responding to {3, I3, -+, [ is given by
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Bi=B; (#j, j+1),

B_’f:Bij

B;‘ﬂ:BﬁlBijﬂ .
Clearly, the matrices Bj, B;, .-, B; satisfy the same conditions [3.1), (3.2) as
B,, B,, -, B, do.

Similarly, let 7%, 1%, -, 77 be the paths defined by y/=y; G#j, j+1),
1721741, 7Hi=7) see Fig. 3.3

17 "
7i+1 7

Xo

Figure 3.3

Let 1, 14, ---, I/ denote the corresponding loops: [/=y/-(@Dy)- (), i=1, 2, -, .
Then the new wv-tuple of the monodromy matrices (B, BY, ---, BI) is given by

Bi{=B; (+#j, j+1),
BY=B;B;.B7,
.B_;',..)q:Bj .

Again Bf, BY, ---, B satisfy the conditions [3.1), (3.2). These observations
motivate the following definition:

DerFINITION 3.1 ([9], p.223). Let G be a group. Let S, be the set of

v-tuples (g, gs -+, g.) of elements of G such that g,g.--- g,=1. Let sy be an
integer with 1<;<y—1,

The j-th elementary transformation R;: S,—S. is a map defined by
Rigs, ) 85-1 &1 Giv1s ivnr 5 Ev)
=(gy 'y Gi-1 i1, Bit1858 41 Gitey 0y &u) -
The j-th inverse transformation R;': S,—S, is defined by
RiWgy, s Gi-1 85 521 8iter 7 8)
=g s 8i-v &i8i+187 " & Giver s Qo)+

Both R; and R;?! are often called elementary itransformations.

Using the assumption g,g,--- g,=1, one can easily see that the cyclic per-

mutation (gy, g5, -+, 2)—(gs, -, gy, 1) 18 a product of elementary transformations
(=Ry_y - RoRy).
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The following is the main result of this section. Let X, Y always denote

the matrices [1 0] [1 _“1] respectivel
1 1) o 1 pectivey.

THEOREM 3.2. Let (By, B, -+, B)) be a v-tuple of matrices in SL(Z2, Z)
satisfying the conditions (3.1), (3.2). Then v is even, and by successive application
of elementary transformations, we can change (B, B,, -, B,) into a v-fuple in
one of the following normal forms, (1) or (2):

L W, Wi, e W, Wi, XY, XY, -, X, Y),
2y Wy, Wi, -, W, Wi, Y-, X2, Y- X - YV XY,
where 0ZI=v/2 and W,;SL(2, Z), for i=1, ---, [
Note that v—2/ is divisible by 12, because XY—:E _Z)l] has order 6 in

SL2, Z).

generalizes Lemma 8 of [9, p. 179]. Our proof is globally the
same as the one given in [9, pp. 180-188, pp. 223-2307]. However, it differs in
details. So we will give the full proof below.

Let A and B denote the matrices [(1) _11] and [

—1
have A3=B2:[-61 —(—)1] A and B generate theTgroup SL(2, Z). Note that

X=ABA, Y=BA? and Y is conjugate to X:Y=A"XA.
1 01 r—1 0
Now we pass to the modular group PSL(2, Z)=SL(2, Z) / {[0 J, [ . #J}.
Let #:SL(2, Z)—PSL(2, Z) be the quotient map. The images =(A), x(B), x(X)
and n(Y) will be denocted by the corresponding lowercase letters a, b, x, ¥
respectively. Clearly, we have x=aba, y=ba>
PSL(2, Z) has the presentation

1 _?1], respectively. We

PSL(Z, Z)=<a, b | a®*=b*=1).

In the proof below, we will always assume this presentation for PSL(Z, Z).
Each element g of PSL(2, Z) is expressed as a product f,---t, where f;==a,
a® or b, Moreover, unless g=1, the expression g=t,t,--- ¢, i$ unique, provided
that for each 7=1, ---, r—1 the set of two adjacent elements {f;, t;+,} coincides
with the set {a, b} or {a? b}. Such a product i;#,---1, is said to be reduced,
and r is called the /ength of the reduced product or of the element g which the
product represents. The length of g is denoted by /(g). For examples, /(x)
=l(aba)=3, [(y)=I1(ba®)=2. We define I(1)=0.

It is easy to see that, if g is conjugate to x (=aba) and [(g)=<3, then
g=a’h, aba or ba®. Also if g is conjugate to x7!' (=a®a®) and [(g)=3, then
g=ba, a®ba® or ab, We dencte these six elements as follows (cf. [9, p. 18070):
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se=ath, s,=aba (=x), s,=ba® (=y)

sgi=ba, sii=a*bat, s;l=ab.

Let g be conjugate to x or x~'. Following [9], we say that g is short if
it is one of the elements s, $;, Ss S¢!, sit, s;!'; otherwise it is long. If g is
long, then g is expressed by a reduced product of the form Q'a’ha’Q, where
d=1 or 2 and Q (#1) is a reduced product which begins with ». Thus /(g)=5.

LEMMA 3.3. Let g, gs -+, 8. be conjugate to x or x7'. Assume that
8182 Zv=1. Then there exists at least one i (1=:5v—1) for which [(gigi+1)
<max({(gs), {(gi+1))-

The proof of is the same as that of Assertion on p. 225 of [9],
so we omit it. The idea is to show that if we had /(g,g,+)=I(g:), (gi+,) for
each =1, ---, y—1, then g,g,-- g»=1 would not hold.

The next theorem is a slight extension of Livne's theorem ([9, Appendix I17).

THECREM 3.4. Let g1, g2 -+, & be conjugate to x or x7', and assume that
g1g: - @v=1. Then by successive application of elementary transformations, the
v-tuple (g, g2 -+, &) can be transformed into a v-tuple (hy, hy, ---, h.) such that
either every h; is short or hihy. =1 for at least one 1.

Proor. For completeness we will repeat the proof in [9] with necessary
modifications. The proof proceeds by induction on the total length I(gs, ---, gu)
=3v..lg). By there exists an 7 such that I(g;gi+;)<max({(g:),
l(gi+1)). We will fix such an ¢ for a while. There are three cases to be con-
sidered: Cases A.1, A.2, B.

Case A.1: g; is long and [(g,)={(gy).

In this case we have max{/(g;), {g:+1))={(g:), thus /(g;g:+:)<l{g;). First of
all, we prove the following

ASSERTION A.l.l. [(g,)>I(gs1) unless g,gs=1.

It will suffice to show that if {(g;)={{g;+), then g;g;+1=1. Assume that
{gy)=I(gi+1). Since g; is long, so is gy+;. Express g; and g;.; as reduced
products: g;=Q;'a’a’Q;, g;+1=Qi}1a°ba*Qisy, 8, e=1o0r 2. Since {(g;)=1(g:+1),
we have [(Q)=1(Q:.,) and g,g:+:=Q:'a’%a’Q,Q;}aba* Q... If the product Q,Q7l
does not cancel out, then we would have [(g,gii)>{(Q:)+6+I1(Qi1)>1(g:), a
contradiction. Therefore, Q;Q7i=1 and gig:+;=Q7'a’ha’*ba*Q;s,. If d+e+3,
then we would have [(g;g:+1)=1(Q:)+5+1(Qs+,)>1(g:), a contradiction. There-
fore, d+¢=3, and we have g;g:+,=1 as claimed.

ASSERTION A.L2. If {(ga)>{(gs1), then I(gitigigiss) <U(go).

To prove this assertion, we must consider two cases according as g;y; 18
short or long. First, suppose that g,., is short, namely, g,+1€ {Ss, S1, S3, S53, S1%, 521}
By the assumption of Case A.l, g; is long. Express g; as a reduced product:
g:i=0Q7'a*ba‘Q;, where e=1 or 2 and Q;+1.



Torus fibrations 615

If gisi=s,=a%, then Q, must be of the form & - ba, because /(g;g:,1) <I(g:).
Then, gihgigiri=ba(Q;'a*ba’*Q,)a*b=>ba(a® --- ba*ba®b --- ba)a’h, and we have
Hgit18:8i+0)=1(gs)—4<1(g;) as asserted.

If gis1=s,=aba, then Q, must be of the form b --- ba®, because [(g;g.+:)<I(g:).
Then, gilig:gi1=a*ba*ab --- ba*ba‘b --- ba*)aba, and we have l(giligigi+)=0(gs)
—2<{(g;) as asserted. The other cases when g,.,=s,, $5', sr, s;! are treated
similarly.

Secondly suppose that g;4; is long. Express g;;; as a reduced product:
Zi1=Q:1a’ha’Q,, ., where 6=1 or 2 and Q;,,#1. By the assumption of Asser-
tion A.1.2, we have [(g;)>{(g;+1), thus 1(Q,)>1(Q:+,). If Qii, were not canceled
out by part of @; in the product Q;Q;}!,, we would have [(g;g,+)>{(Q;)+3+
(Z(Qi)’—Z(Qi+1))+3+[(Qi+1)>l(gi), because gfgm:Q{la*bdeQithaabaaQiﬂ- This
is a contradiction. Thus we have Q;=Q}Q;s;, where Qj#1, and gig:s:
=Q;'a*ba*Q;a’ba’Q ;... If this were a reduced product, we would have /(gigi+1)
=[(Q:)+ 3+ Q) —HQi+0)) +3+1(Qi+1) > I(gs), a contradiction. Thus gigi+s
=Qi'a*ba*Q}a’ha’Q,,, is not a reduced product. This implies that Q) is of the
form Qi=b--ba*’. Then gilg:gir1=0Q:ha’%ba%Q) 'a*ba*Q;a’ba’Q,., and
we have [(gi12:8:+1) SHQu+ ) +3+U(Q ) —1{Qus ) +3+U(Q) —HQi+1)) +3+1(Q141)
—8=2/(Q,)+1<i(g;) as asserted. This proves Assertion A.l.Z.

By Assertions A.l.1, A.1l.2, we can conclude in Case A.l that the i-th
elementary transformation R, reduces the total length of the v-tuple (g, g, -,
g.), unless g,g.1=1.

Case A.2: gy is long and (g} ={(giv1).

In this case, one can prove the foilowing:

ASSERTION A.2.1. [(g;)<l(g:+.) unless g,8:+,=1

ASSERTION A.2.2. If i(g;)<l(gi+1), then [(gigis1g7") <Ugi+1)-

The proofs of these assertions are similar to those of previous assertions.
Combining Assertions A.2.1, A.2.2, we can conclude in Case A.Z that the
inverse of the ¢-th elementary transformation, R;!, reduces the total length of
(g1 8» +, &), unless gig;=1.

Case B: Both g, and g, are short.

Since I(gig+) <max(l(g:), I(g:+1))=3, the ordered pair (g;, g:+1) must be one
of the 12 pairs: (s, So), (So, S5%), (S, So), (81, s7Y), (3 $1), (83, s2), (s3%, So)s
(sg%, sTY, (stY, sy, (sTY szb), (s34 sol), (szY, s2). In case g;g:+,=1, we are done.
Thus we assume g;g:+1:+1. Then (g, g¢+1) is one of the 6 pairs: (s, SJ),
(51, So), (52, S1), (854 sih), (s7%, s5Y), (851, syt The first three are mutually trans-
formed by elementary transformations. In fact, (s, $2)—(Ss $2'Se82)=(Ss, Sy
(s, S7'sp81)==(sy, Sy). Similarly the second three are mutually transformed:
(55, sih)==> (51, si8osi)=(s1?, s31) {85!, sps7%s7")=(s2", sg").

If every g, in (g, ---, g.) is short, then we are done. Therefore, we may
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assume that there exist j such that g; is long. Moreover, after applying cyclic
permutations, if necessary, we may assume that j>:+1. (Recall that any cyclic
permutation is a product of elementary transformations.) Let j be the smallest
in the set of indices {j | 7>¢+1 and g; is long}. Let us denote the elements
Zi» Qi+1, -, &1 ID new notation yi, ys, -+, ¥u. Of course, u is equal to j—i.

ASSERTION B.1. For each v such that 2=v=u, one of the following three
statements holds :

(1) by applying elemeniary transformations on the v-tuple (yi, *+, ¥,), we
can change vy, into any element of {S,, Sy, Ss} we want;

(i) by applying elementary transformations on the v-tuple (yy, -+, v,), we can
change v, into any element of {sg?, si’, s;'} we want;

(ili) by applying elementary transformations on the v-tuple (vi -+, Vo), We
can transform it into a new v-tuple (yi, -+, Vy) Such that yiyi+,=1 for at least
one [ 1=I=v—1).

The proof proceeds by induction on v starting with v=2. If v=2, then
(¥1, ¥o)=(g:, Li+1), which can be transformed into either any of the 3 pairs
(Sg, S2), (81, So), (Sg, Sy) or any of the 3 pairs (s3?%, s7Y), (s73, szY), (s2%, sob), as we
remarked at the beginning of Case B. Therefore, (i) or (ii) holds. This proves
the assertion for v=2.

Assume inductively that Assertion B.1 is proved for some v (with v<u).
We will prove it for v41. Note that y,;, is short, because yy.1=g:+» and
i+v<i+u=j. First consider the case when y,::1E {S, S1, $2}. If (i) holds for
v, then change v, for s;, s, or s, according as Ve+1=S S; OF So. Then (vu, Voi1)
will become (s;, so), (Ss, S1) or (S, S»), and these 3 pairs can be mutually trans-
formed. Therefore (i) holds for v+1. If (ii) holds for v, then change y, for
sgl, s7* or s;! according as Vu41=S,, S; Or S,. Then y,y.,+1=1. Therefore (iii)
holds for v+1. If (iii) holds for v, trivially (iii) holds for v--1.

Secondly consider the case when y,. < {s5}, s7%, s;!}. However, this case
can be treated similarly as the first case.

Assertion B.1 is proved.

By Assertion B.1, one of the statements (i), (ii) or (iii) holds for the u-tuple
(v, =+, Yu)=(gs, ==, @;-1). If (iii) holds for this u-tuple, then we are done.
Thus we may assume that (i) or (ii) holds for the u-tuple (g:, Zi+1 5 &j-1)

Recall that g; is long, so that it is expressed as a reduced product: g,=
(;'a*ba*Q,;, where e=1 or 2 and @;#1. Obviously, @;' is equal to a®*h - b,
ab-bor b--b. This last case includes Q;'=b as a special case. Now by
applying elementary transformations to (g;, g+, -, £j-1), change g;-; into a
new gj-; as the following table indicates:
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‘. Q;z . ath - b | ab - b . b b

| |

the statement of Assertion | ; ‘ | l
i for 'the z(ffu(f;l))l’e whichholds 3y @iy | 1) G | D | G)
On 0=l g0 | ; | | |
| g5~ which | \ \ ‘ | | ‘
| gji-1 is changed into i 51 !

For example, if Q;'=a® --- b, and the statement (i) holds for (g, --+, g5-1),
change g;, into gj.,=s;=aba. Then gj_,g;=(aba)(a®b --- b)a*ba*(b:-- ba) has
shorter length than g; because of the cancellation (aba)(a®b--- b)=a --- b, and
we are led back to Case A.2. As is easily verified, we are similarly led to
Case A.2 in all the remaining cases of the table above.

Thus in Case B, we find that at least one of the following three assertions
holds :

(1) every g; in (gy, -, &) is short;

(2) by successive application of elementary transformations, the u-tuple
(g1, -+, g») can be transformed into a y-tuple (gi, ---, gi) in which gigi«,=1
holds for at least one [ (1={=v—1);

(3) the case is reduced to Case A.2.

Since is obviously true for a v-tuple with total length =3, we
complete the proof of by induction on the total length, combining
the conclusions of Cases A.1, A.2 and B. J

Moishezon proved the following theorem. (See [9, pp. 180-187].)

MOISHEZON’S THEOREM. Let v, -, vwe=PSL2, Z) be such that each vy,
i=1, -, v, 1s equal to one of the elements s,, S1, S and y,v; -+ y,=1. Then v=0
(mod 2) and there exists a finite sequence of elementary transformations starting
with some elementary transformation of (vy, Ve, -+, u) Such that if (z4, z, -, 2,)
is the resulting v-tuple, then for any j=1, 2, -+, v/2, z,;_1=81, 23;=Ss.

We will extend Moishezon’s theorem as follows:

THEOREM 3.5. Let vy, -, 2w&PSL(2, Z) be such that each v; i=1, -, v,
1S equal to one of the elements s, Sy, Sg Sg%, Sih, s3t and yyvs - vu=1. Then
v=0 (mod2) and there exists a finite sequence of elementary transformations
starting with some elementary transformation of (yy, -+, v.) such that if (z,, 2,
-, 2,) 1S the resulting v-tuple, then one of the three assertions holds for (zi, z,,
N OF

(1) for each j=1, 2, -+, v/2, 25;.1=5y, Z25=5,;

(ii) for each j=1, 2, -, v/2, z,;-1=53", 25;=s[*;

(iii) for at least one i, z;z;,,=1.
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Proor. Case I. For some k<={0, 1, 2}, both s, and s;' are contained in
{¥1, ¥ -+, »}. We may assume that y,=s, and y;=s;' (I:>1). Consider the
following sequence of elementary transformations:

-1 Ri'; -1 -1
(Sk: Yo 0y Vi-n Sk, ) (Sk7 Yoy vty ST, SpY¥i-1SkT, )
Ri~z R, 1 - 4
""" > (Skr Sk SkyZSk s TN 3k3’i—13k 3 ”') .

Then assertion (iii) holds.
Case II. For each k=0, 1, 2, either s, or s;' is not contained in {v), v,

Tt yD}-
There are 8 sub-cases to be considered according as

v
;_\le {yi}C{SO; Sl; SZ}) {SO) Sb 82_1}) {SO: Sl_ly SZ}! {80—1: Sl) SZ}’ {807 31—1: Sgl})

{s(;l’ Sh 32-1}1 {SE)_]: Sl_ls 52} or {Sal’ 51—1) SEI}'

Case 11.1. ’ {ve C {Se, S1, Sut.
=l

.

This case is nothing but the situation of Moishezon’s theorem.
Case 2. \J{yd Ciso 55 577}
i=1

If sz'& {yy, -, .}, the case is reduced to Case IL1. If s;'e{y;, -, W},
we may assume that y,=s;? {after applying cyclic permutations). Suppose that
there exists at least one :>1 for which y,=s;, y;11=35,, then by the 7-th inverse
elementary transformation, R;?, (v;, vi+1)=(8;, $o) is transformed into (s;s,87%, §,)
=(s,, 5;). Therefore, we come to the situation in which both s;! and s, are
contained in the resulting v-tuple. The case is reduced to Case L

Suppose that there exists no 7 such that y,=s,, v;;;=8,. Then the v-tuple
(vy, =+, yv) is of the form (s7%, ---, $3% So, =+, So, Sy, ==+, Sy, S5, ==+, S3%, Sq, 00,
Sgp Sy, =, Sy, S3Y, -, S3Y, So, +c, Sep S1, -+, S1, ---). In this sequence, the sub-
sequence $,, '+, Sy, for instance, may be empty. However, the product v, - y,
of the v-tuple (v;, ---, y,) of this form is not equal to 1. (Recall that s;'=ab,
sq=a®bh, s,=aba.) This contradicts the assumption v,y,--- y,=1.

Case 11.3. _Ql{yi}c{so, s, s}
Case 11.4. _\ijl{yi}C{Sal, S1, S}

Cases 11.3, 11.4 aré treated similarly to Case II.2.
Case 1L5. Q{yi}c{so, sit, 83

If so¢&{vy, ---, .}, the case is reduced to Case I1.8 below. If s, {y,, ---, .},



Torus fibrations 619

we may assume that y,=s,. Suppose that there exists at least one />1 for
which y;=s7', y;4:=5:7% then by the elementary transformation R;, (vi Yis1)
=(s7%, 57 is transformed into (s;*s;'s,, s;Y=(sy;%, si!). Therefore, the situation
is altered so that both s, and s;' are contained in the resulting v-tupte. The
case is reduced to Case 1. So suppose that there exists no 7 such that y,=si?,
¥i+1=5;". Then the u-tuple (y,, ---, v,) is of the form (so, :--, 5o, S3% -+, s35,
Sty v, STY, Sgp vty Se S3Y, eev, S3Y, S7Y o+, s7Y, +-). The product y;--- y, of the
v-tuple (yy, --+, v,) of this form is not equal to 1. (Recall that s,=a?b, s;'=ab,
s;i'=a%a?) This contradicts the assumption y,--- y,=1.

Case 11.6. gjl{yi}C{sal, sy, s7').
Case I.7. Iy} Ciss?, si', saf.

=1

Cases I1.6, 1.7 are treated similarly to Case IL5.
Case I8, \J{yd Clsi?, 7, s}

The situation of this case is “inverse” to that of Case IL1. So by the
“inverse” of Moishezon’s theorem, we can transform the v-tuple (v, -, v.)
into (z,, ---, z,) for which the assertion (ii) holds.

This completes the proof of O

Combining Theorems B.5, we have the following

THEOREM 3.6. Let gy, gs, -+, 3. PSL(Z, Z) be conjugates of x (=s,=aba)
or x7' (=s;*=a’bha®) satisfying g.g, - g&»=1. Then by successive application of
elementary transformations, the v-tuple (g,, g, -+, g.) can be transformed into a
y-tuple in one of the two normal forms, (1) or (2)':

(1) (wy, wit, <, Wy, Wi, Sy, Sz, S, Sa, ***, S1, Sa),
-1 1 o=1 =1 =1 -1 -1 -1
(2), (wly Wysy o, Wy, Wioy S27y 817, S27, Sy *tmy S22, 8y ):

where 0<I=v/2 and wy<PSL2, Z) for each i=1, -, L.

ProoF. The proof proceeds by induction on ». If y=1, then g,+1 and the
theorem is trivially true. Suppose that v=2. Then by the v-tuple
(g1, -+, &) is transformed into (h,, -+, A,) such that either every h; is short or
hihi=1 for at least one 7. If h;h;41=1 for an 7, then by cyclic permutation,
we may assume that h;h,=1. The remaining (v—2)-tuple (h,, -+, h,) satisfies
the condition hghy--- h,=1. Thus by the inductive hypothesis, (ks ---, k) can
be transformed into one of the two normal forms. If every h; of (hy -+, h,)
is short, then [Theorem 3.5 applies. We can transform (h,, -+, h,) into (z, -+, 2,)
such that either (z,, -+, z,)==(8,, Ss, **~, S1, So), (853, 7%, -, 854, s71) or there
exists an 7 for which z,z;.,=1 holds. If (z,, -+, 2,)=(S1, Sa, ***, Sy, Sy) Or (837,
s71, -, 87, s7Y), we are done. If there exists 7 such that z;z;,,=1, we may
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assume z,2,=1 by cyclic permutation. The remaining (v—2)-tuple (zs, =+, 2.)
satisfies the condition z;z,--- z,=1. Thus by the inductive hypothesis, (z;, ---, 2,)
can be transformed into one of the normal forms. 3

Now we are in a position to prove Let (B,, B,, -, B,) be

a v-tuple in SL(2, Z) such that BIBZ---B,,:[(I) ﬂ and such that each B; is
1 0

O, (| Let a=r(B)=PSLE, 2). Then by

the v-tuple (gy, ---, g,) can be transformed by a finite sequence of
elementary transformations into a v-tuple in one of the normal forms, (1)’ or (2)’.
An elementary transformation in PSL(2, Z) can be lifted to an elementary trans-
formation in SL(Z, Z).

Therefore, the v-tuple (B,, B,, ---, B,) can be transformed into a u-tuple
(Bi, B, -, B}) such that (z(B?Y), n(B3), ---, m(B})) is in one of the normal forms
(1) or (2).

. o o
conjugate to X= [1 1] or X —l:

CLaM 1. If m(B)a(Bi.)=1&PSL(2, Z) for some i, then B§B§+1=[(l) (1)]

The abelianization of PSL(2, Z) is a cyclic group of order 6 and x (=aba)
is taken as a generator of the cyclic group. Therefore, if x(B}) is conjugate to
x (or x7Y), then m(B;,,) is conjugate to x~' (or x). It follows that if B is
conjugate to X (or X~?!), then Bi,, is conjugate to X! (or X). It will suffice to
consider the case when DB;=A4;'XA;, Bi..=A;}L,X'4;y,. Then BiBi.=
APXA AL XA, belongs to the commutator subgroup [SL(2, Z), SL(2, Z)].
By the assumption =(B;Bi.;)=1, we have BgB;H:[l 0] or [“1 0 ] How-

10 0 1 0 —1

ever, it is known that | " ° |#[SL@, Z), SL@, Z)]. Therefore, BiBi.=

1 0 .
[O 1] as claimed.

Cramm 2. If m(Bi)=sy, Ss, s7ror $3t for some i, then Bi=X,Y, X-tor Y1,
accordingly.

Note that s;=x=aba and that z~'(s;)={X, —X}. Therefore, if x(B})=s,,
B; is equal to X or —X. But B;=—X is impossible, because —X is not con-
jugate to X*.L

The other cases can be treated similarly. (Recall that #(Y)=ba?=s, and that
Y is conjugate to X.) Claim 2 is proved.

By Claims 1 and 2, we conclude that if (B{, Bj, ---, B]) is a v-tuple such
that (z(B}), n{(B3), -+, w(B])) is in one of the normal forms (1)’ or (2)’ of Theo-
rem 3.6, then (B, Bi, -, B) is in one of the normal forms (1) or (2) in the
statement of This completes the proof of |

A geometric implication of is the following:

THEOREM 3.7. Let f: M- D* be a torus fibration over the 2-disk D® each of
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whose singular fibers is of type It or I7. Let I'={x,, -+, x,} be the set of
critical values. Suppose that the monodromy around the boundary 60D* is trivial.
Let xo€D*—I" be a base point, (g, A)) an ordered basis of H,(Fy; Z) compatible
with the orientation of Fo=f""x,). Let p:n(D*—1I", x,)—SL2, Z) be the mono-
dromy homomorphism determined by (go, Ao)-

Then v is even, and by relabeling the critical values xi, ---, x, and by
rechoosing the paths y,, -+, v. as shown in Fig. 3.1 appropriately, we can make
the v-tuple of monodromy matrices (p(y), ---, p(l,)) a v-tuple in one of the normal
forms, (1) or (2):

(1) (Wl; WII) oy Wl) Wl_l: X’ Y: X.' Y; T X: Y)!
(2) (WI: W;l: Tt Wl: Wl_ly Y_1: X_I: Y—li X-ly oy Y-I: X_l)}

where W, belongs to SL2, Z) for each i=1,2, -, 1, and X, Y denote E (1)]’
[(1) _11] respectively. (Recall that the order of XY in SL(Z, Z) is 6, and that
v—2[ is divisible by 12.)

§4. Deformation of fibrations.

Let f: M— B be a torus fibration each singular fiber of which is of type It
or I7. Suppose that there exists a 2-disk D in Int B which contains exactly two
critical values x,, xs in its interior and that the monodromy around 4D is
trivial.

THEOREM 4.1. We can deform the structure of torus fibration f|f ' (D):
f~YD)—D, without altering it in a neighborhood of 0(f~*(D)), so that the
resulting torus fibration f:f-YD)—D has a single singular fiber of type Tw
whose divisor is R+S.

PROOF. (A rough idea was sketched in [7].) The singular fibers over x,
and xg are denoted by F,, Fs, respectively. Since the monodromy around oD
is assumed to be trivial, one of them, say F,, is of type I and the other Fj is
of type I7.

Let D,, Dg be mutually disjoint 2-disks in Int D defined by

Do=1{a] [8al=e},  Dp={l 1651 =56,

where &, (resp. £5) is a local complex coordinate in IntD near x, (resp. xg)
which equals 0 at x, (resp. xp).

In the total space M, there are local complex coordinates z{, 2 (resp. z}, z3)
near the self-intersection point of F, (resp. Fg) with which the projection f is
written locally as &,=f(z}, 22)=zkz% (resp. &5=f(z}, z3)=Z}z3). We define
smooth 4-cells U,, Ug with corners in M as follows:
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Ua=1z4, 22) | 12223 =6, 221 =1, |23] £1},
Us={(z}, 25) | |Z323|=¢, |2} £1, |23 £1).

Furthermore, let us take a quadrilateral @ in Int D as shown in Fig, 4.1.

Figure 4.1.

Our proof below will split f~(D,\/@Q\/Dg) into two parts, say “upper” and
“lower” parts, and will show that the upper part (resp. the lower part) is dif-
feomorphic to U, (resp. Uj) via a fiber preserving diffeomorphism. (Here we
are’ speaking of the fibering structures induced by the projection f.) Thus
F (D, vQUDg), which is the union of the two parts, is diffeomorphic to U, WUy,
the manifold obtained by gluing U, and U; via an orientation reversing diffeo-
morphism gﬁ:T;UTﬁ—*T%UTI, where T, T2, T} T} are certain solid tori
embedded in the boundaries dU, and dUz. We will next deform the pasting
diffeomorphism ¢ by isotopy so that the resulting diffeomorphism ¢’ will match
the “section” of F, with that of F. This process will correspond to the defor-
mation of the fibration f|f ' (D.\VQ\UDs): f-Y(D.JQUDg— D, JQUDg which
will give at the last stage a fibration over D,\UQ\/D; with a single singular
fiber of type Tw.

Now we proceed into the details. Obviously, we have f(U,)=D, and f(Ug)
=Djs We denote Closure(f(D,)—U,) and Closure(f (Dg)—Ujz) by H, and Hp,
respectively. The intersection U,NH, consists of the two solid tori T2, T2
mentioned above. In terms of local coordinates, they are given as follows:

Ti={(zs, 23) | |za]=1, |25 Ze},
Ti={(zs, 22) | 125 =s, |22]=1}.

Similarly, the intersection UgN\Hjp consists of two solid tori denoted by
T4, T3

, 4 ge

Since the singular fiber F, is an immersed 2-sphere with a single self-inter-
section, Closure(F,—F,NU,) is an annulus. Being a tubular neighborhood of
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this annulus in M-Int(UU,), H, can be identified with D.xS'x[0, 1] so that
T and T are identified with D,xS"x {0} and D;xS*> {1}, respectively. Also
the projection f|H,:H.,— D, may be assumed to be the first projection D, xS!
x[0, 11— D,. Similarly Hz can be identified with D3xS'x[0, 1] and the pro-
jection f|Hy:Hz—Ds with DgxS'x[0, 1]—-Dg.

Let /., Js denote the arcs D,MNQ, DsN\@Q, and take a point x; (resp. xj)
in IntJ, (resp. IntJs). We will choose an ordered basis (g., 4.) (resp. (¢g, 45))
of Hi(f(x.);Z) (resp. Hi(f Y xp);Z)) as follows: Each fiber f~'(x) in f~(D.)
transversely intersects each of the solid tori T}, T2 in a circle. As p,, we
take the suitably oriented circle f~*(x,)NT., and as A,, a simple closed curve
in the fiber f~%x,) intersecting the circle f~*(x{)N\T§ transversely in a point,
If we choose an appropriate orientation for A,, the basis (g., 4.) gives the
natural orientation of f~'(x;). The basis (#3, 45) is constructed similarly.

With these bases, the local monodromy matrices of the singular fibers F,,

F; are computed as E ﬂ and [_11 (1)], respectively. (See [9], [7])

() being a 2-cell in IntD (Fig. 4.1), the restricted T*-bundle f|f Y(Q): f Q)
— () is trivial. Thus there is a trivialization

O FUQ) —> QX T

Our task below will to rechoose @ so that it preserves the “mid levels”
U.NH,, UgN\Hg and interchanges the upper and lower parts of f7'(/, and
those of f7'(J;) in a way soon clarified. Let us start with a given trivializa-
tion @.

Let ig,: f(x5)— f*(x}) be the diffeomorphism defined through the identity

pAP@N=0:(DPUsalg))),  Vge [ (xa),

where p,:QXT?*—T*? is the second projection. The isotopy class of iz, is

specified by a matrix B:[g 5] such that

(padslpta)=aps+bAs,  (gadxlda)=cprg+dAs.

By the hypothesis, the monodromy around 0(D,\/Q\UDy) is trivial. Thus

we have
R P

+
from which B:[_cl _81] follows. By replacing (u5, 45) by (—pp, —A4g) if nec-
essary, we may assume

Csadslpd=ps,  (gads(da)=cps+ag.
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This allows us to deform ig, by isotopy so that the resulting diffeomorphism
15, satisfies

Bl U INTO=FxNTS,  i5(F N T D= x5NT}.

Now “rotate” 73, in f~'(xj) through 180° along 2z The diffeomorphism
o " xa)— f(xp) thus obtained will satisfy

e[ NTO= " xNTE, g xINT=F"xpNTp.

Therefore

([T xNUD= T xpNHg, 15/ (xe)NHe) = (xp)NUs.

Via the use of these isotopies we can construct a desired trivialization
D fHQ)— QX T? satisfying

O HINUD=JaX A, O HIINH)=TaX A,
O(fHTDNU=Igx AP, O(fJNHp)=]px A,
where A A® are certain annuli on 72 with T?=AMUA®, AVNAP=gAY
=0A®.
Note that the fibration f|Hg: Hz— Dy (with fiber the annulus) is isomorphic
to the fibration (f|f-*(Ja)N\Hg)Xid: (f~(Jp) X Hp) X [0, 11— Jgx[0, 1] with cor-

ners rounded. Therefore, there exist diffeomorphisms (if the corners are
rounded) :

Ga: U (@) HQXAVYIH; —> U,
Pa . DaUQUDﬁ — Da

such that (f|UL)e@a=@as(f | Ul (D) HQ X APNIHp).
Likewise there exist diffeomorphisms

@p e H (0N HQ XA Ug—> Uy,
©0s: DQUQUDﬂ —_—> Dﬁ

such that (f|Up)@s=epg(f| H (D) HQXAP)IUp).
Let ¢: TLJT3;—T3UT} be the orientation reversing diffeomorphism defined
by ¢=¢p(6.|TLITE)?, and Ua\JUj the manifold obtained by gluing U, and
7

Ug via . We define a projection FiU\JUpg—Dg by setting
¢
gof(py  peU,
"(p)= .
/ { () peUy,

where ¢=¢ge¢:': D,— D3 As is easily verified, f’ is well-defined.
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We will see that f':U.,\J/Uz—Ds is a torus fibration isomorphic to

¢
FIFDLIQUDS) : fFHDLMIQUD )~ D UQUDs.
In fact, a diffeomorphism ¢ : f~(D, JQUDg)—U, U Ug given by
3

[ BalD) DEUBIHQXAVIUH,,
P(p)—{ 5(p) pEHaU(@I)_I(QXA(Z))UU,S
is well-defined and satisfies f'e¢g=¢3°f.

We now come to the last step of the proof. We will deform ¢ to get the
desired torus fibration with a single singular fiber.

First note that the solid tori T, TZ T}, T are foliated by circles as
follows. The solid torus T'; is foliated by the “sectional circles” {f~*(x)NT3} zep,,
each of which is parametrized as zl=¢'?, z2—=&.e"*¢, where 0=<8=2z and the
coordinate &, corresponds to x&D, The solid tori T3, T}, T3 are foliated
similarly. (In T}, the parametrization of a circle will be zj=e®?, z}=£&ze'?,
because f is given there by [f(z}, 23)=Z2}z3. Likewise for T3.)

Call fYxINTS fHx)NTE, fxpNTh, [ xs)NTE the distinguished
circles. They are nothing but the sections of the singular fibers F,, Fj.

Though ¢: TiUTE—TjUT} preserves the leaves of the “sectional folia-
tions”, it does not preserve the distinguished circles. This is the point to be
remedied.

In T3 the distinguished circle of T} and the image of that of T, are
situated as shown in Fig. 4.2

J(distinguished circle of T3)

. distinguished circle of T3

Figure 4.2,

The diffeomorphism ¢i:=§|T4:TLi—T}3 can be deformed via a leaf pre-
serving isotopy ($i).:Ti—T3, O0=t¢=1 so that the resulting diffeomorphism
(PO 1= (J1): maps fYx)NT4 (the distinguished circle of T}) to f~x)NT}
(the distinguished circle of T'3). The isotopy (¢1); may be assumed not to alter
¢4 near the boundary aT'..

Passing to the “ base disks ”, the isotopy (¢1); induces an isotopy (¢); : De— D3
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of ¢:D,—Djs Let ¢ be the last stage of this isotopy ¢’ := (¢);. This isotopy
(¢), in turn, induces a leaf preserving isotopy (§2).:Ti—T} of ¢2:=¢|TE,
the last stage (§2) := (¢2), of which maps f'(x,)NTZ (the distinguished circle
of T?) to f'xzNTp (the distinguished circle of T}). The isotopy (@)=
(@2 NP2 : TouTi—T3UTS of ¢ gives a family of manifolds U, \J U equipped

(¢
with the projection f; : U,\JUg— Dy, which is defined by
() g
, (D)o F(P) pEU,,
f:(p):{ @i/

£ pels.

It is not difficult to see that f::U.\JUg— Dy is a torus fibration for each .
B¢
Each manifold UaUUﬁ in the family is diffeomorphic to U,\JUs via a
(g %5
diffeomorphism which is the identity near the boundary. Also, near the bound-

ary, f: always restricts f’. Thus the family (U, kNJU g filoses: is considered as
(e
giving a deformation of f/:U,\JUs-—Ds. The last stage of this deformation is
¢

a torus fibration with a single singular fiber obtained by pasting f~'(x.)N\U. (two
disks intersecting transversely in a point with sign +1) and f~"(xg)N\Us (two
disks likewise intersecting with sign —1) along their boundaries (i. e. distinguished
circles). This is a twin.

Pull back the above deformation to f~*(D,\UQ\UD;g) under &: [~ '(D,\JQUDp)
—-U, k~jU 5, and extend the pulled back deformation by the identity to f~*(D).

¢

Then one obtains the desired deformation of f|f~'(D): fY(D)—D. This com-
pletes the proof of [Theorem 4.1 [
Reversing the whole process, we get the following :

THEOREM 4.2. Let f:N—D be a torus fibration with a singular fiber of type
Tw whoese divisor is R+S. Then we can deform the fibration without altering it
in a neighborhood of 0N so that the resulting fibration F:N—D has exactly two
singular fibers of types It and I7.

This deformation was first observed in the torus fibration S*—S* ([6], §4).

§5. Fibered surgery.

In this section we will show that surgery on an irreducible component S of
a singular fiber of type Tw (with divisor R+nS) will change the fiber to a
general one and that conversely surgery along a simple closed curve in a
general fiber will convert the fiber into a twin singular fiber. The two types
of surgery are the inverse of each other. Such surgical operations in torus
fibrations are not new. Iwase has made use of them. Our contribution here
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is only to make the framing precise.

First of all we prepare a standard model of “fibered neighborhood” of a
2-sphere. (See [2], §3.)

Let &, ¢ be positive numbers with 0<2e<6"<d<1 with n a fixed integer
=1, and define manifolds (with corners) U, V, U,, V, as follows:

U= {(uy, u)€C* | |uyut[=Ze, |ui] <2, |us[ =0},
V=|w, v.)eC* | vt =Ze, 0| <2, v, =6},
U= {(uy, us)cslU | |u,|>1/2},

Ve={v, voeV | [v] >1/2}.

The map ¢, ,:U,—V, given by
¢1,n(u1, uy)=(1/uy, us|u;|*™)

is an orientation preserving diffeomorphism, via which we glue U and V to
obtain a manifold N, ,=U\JV. The orientation of N, , is chosen so as to be

1,n

compatible with the orientations of I/ and V. Let D, denote the closed 2-disk
{£eC | [§]=el}.
Map U (resp. V) to D, by the correspondence

Foluy, ug)=wu,ut (resp. fy(v,, vo)=v0}).

Since fyéi, nlus, us)=fu{uts, uz) for all (u,, u,)el, we get a well-defined map
fi.n Ny, ,— D, which equals fiy on U and fy on V.
Let S, denote the 2-sphere {(u,, u,)€U | u,=0}\U {(vy, v5)=V | v,=0}.

DEerFINITION 5.1. We call f, ,: N, ,— D, the standard jibered neighborhood
of the 2-sphere S, with multiplicity (1, n). We will sometimes denote N, , by
Ny, 2(So).

The map f,, . is, in fact, the projection of a certain fibration, whose struc-
ture we study now. N, is a smooth manifold with corners. (Fig. 5.1). The
corners appear along the boundaries of the two solid tori

To={(us, upclU | |uul| e, |us] =0}
Ty=A{lw, v)eV | [vi|=Ze, |v,|=0}
contained in the boundary 9N, ,.
All the fibers f;'(§) are transverse to Ty and Ty A general fiber f74(%)

(6+0) is an annulus, and the singular fiber f7%(0) consists of S, and two 2-disks
Dy={(us, upelU | u,=0} and D_={(v,, vy)eV | v;=0}.
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v To

So

N

vV

Figure 5.1.

LEMMA 5.2. N, , is homeomorphic to S*X D%

PrROOF. Since N,,, is topologically a D*-bundle over S?% it suffices to show
that the self-intersection number [S,]-[S,] of the zero-section vanishes. Giving
the fibers f;%(&) the orientations determined by the ones of N, , and D, we

consider them as representing relative homology classes in Hx(Ny,,, To\JTy; Z).
It is easy to see

Lf1R@1=[D+]+n[S]+[D-] (E+0),

where [ ] denotes the relative homology class. Also the intersection numbers
between the sphere S, and the disks D. are given as follows:

[D.]-[S. =1, [D.]-[Se]=-1.
Since a general fiber f;%(§) and S, are disjoint,
Cf i@ -[Sel=(D+]+n[SI+[D-1)-[S:]1=0.

This, together with ([D,]-+[D-1)-[S,]=1—1=0, implies [S,]-[S,]=0, com-
pleting the proof. O

A circle which is the intersection of a general fiber f7%(§) with Ty (resp.
T) is parametrized as follows:

{(Ea_neqma, aew)EU} 058527 (resp. {(ga—neina, 5@”)EV} 0sfz2z)-
See Fig. 5.2.
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F&NTy
FiLONTy

(—n)-full twists T,

Figure 5.2,

Next we prepare another standard object denoted by N(C,), the standard
fibeved neighborhood of a circle C,. It is simply a product D. X C, %[0, 1] equipped
with the first projection f,: D, XCy %[0, 11— D.. All the fibers of f, are annuli.
Clearly N(C,) is homeomorphic to D*xS.

Returning to N, .(S;), note that the boundary 0N, ,(S,) is the union
Ty UV UTy,

where U'={(u,, u)eU | |uu?|=¢} and V-'={(v,, vy | |v,v}]|=¢}. Obviously
ToNU = {(uy, u)€U | |u;|=20"", |uz| =0} and Ty NV '={(vy, v) €V | 11| =ed"",
lvel=8}. If (u,, u,) (resp. (v, v,)) belongs to U (resp. V), then 2=|u,|=ed""
(resp. 2=|v,| =ed™™).

Now define a map h; ,:0N; ,(Se)—0N(C,) by setting

hy, n(uy, 0e*)=(u,0%e™?, 2% 1)e D, XCyx {1} for (u,, 0e'eTy,

By, a(ty, ug)=(uul, e7"u,ju,|V", (670" {u,])/(e7*0"—ed™™))

0D, X CyX [0, 1] for (u,, u)slU:,
Ry, o1, v3) =008, e vg 0| V7, (710"~ |vy| ")/ (e 0" —ed™™))

€0D.XCox [0, 1] for (v;, vV,
hy W(v1, 0et9)y=(7,0"e™?, ¢t 0)c D, xC,X {0} for (v, Ty .

The map h, , is well-defined and a piecewise smooth homeomorphism. In
fact, the first and the second (resp. the third and the fourth) expressions of 4, ,
coincide on TpyNU" (resp. TyN\V"), and we have h; ,@:, (U1, us)=hy (., us) On
U*. Moreover, hy ,|Ty: Ty—D . XCoX {1}, hy, U UV : U UV —>3dD,xCyx [0, 1]
and Ay ,|Ty:Ty— D, XCyx {0} are diffeomorphisms.

LEMMA 5.3. (1) hy,:0dNy (S —dN(Cy) s fiber preserving: that is



630 Y. MaTsuMoTO

(fl[aN(Co))"hl,n:fl.n!aNI,n(SO)-
(ii) If we appropriately identify N, ,(So) with S*XD? and N(C,) with D*xS!
respecting the projections to the factors so that

(DEXCGX Lo, 13~»co) (D3>fsl~+81)
4 = ,
D.x[0, 1] D?

then hy ,:S*XdD?*—38D*X S can be written as the n-time rotation:

haa(x, e9)=(pa (%) (x), &%)  (x, e)=S*XaD",
where p,:S*—S03) is the map defined by

cos nff —sin nf
p.(e)=|sin nf  cosnf
1

The statement (i} follows directly from the expressions of A, , To see
the second statement, Figure 5.2 would be helpful. The details are left to the
reader.

Let F, be a singular fiber of type Tw of a torus fibration f:M— B. Suppose
the divisor of F, is R--nS. We want to perform “fibered surgery” on S.
Recalling the definition of a singular fiber of type Tw (Definition 2.3), one can
easily check that there exists an orientation preserving smooth embedding
©1, 7t N1, 2(S¢)— M such that

(1) @ua(Se)=S;

(i) (DD )=RNE(N; A(Se);

(i) ., is fiber preserving: that is, identifying D, with an e-disk in B
centered at x,=f(F,), we have fop, ,=f, N, ,(Sp)— D.. (Fig. 5.3).

«— g, n([\rl, 2(So))
S

Figure 5.3.

Let M, denote Closure(M—g, »(N; »(So)). Glue M, and the standard fibered
neighborhood N(C,) along their boundaries via the composed diffeomorphism
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hy, neoitn 1 0M— 0N, ,(S))—=0N(C,). Let Xs(M)=M,\JIN(C,) denote the resuiting
manifold. Let Xs(f):Xs(M)— B denote the map which equals f|M, on M, and
fi1 on N(Cy). By the properties (i), (i), (i) of ¢;,, it is clear that Xs(f):
Xs(M)— B is a torus fibration in which the singular fiber F, has been replaced
by Fi=(R—RN@1, o(Ni, o(SONU{0} xCox [0, 1]), which is a general fiber. This
completes the description of fibered surgery on S. We summarize the above
process into the following

THEOREM 5.4. By performing fibered surgery on the irreducible component S
of a twin singular fiber Fy whose divisor is R4nS, we obtain a torus fibration
Ls(f): Xs(M)— B of the surgered manifold in which F, s replaced by a general
Jfiber F.

Conversely, let F, be a general fiber of a torus fibration f: M—B. Let C
be a smooth simple closed curve on F, which is not nuil-homotopic in F;. Then
there exists a smooth embedding ¢, : N(C;)— M such that

(1) GDl(Co)ZSM({O} XCox {1/2})=C;

(i) ¢, is fiber preserving: that is, identifying D, with an e-disk in B
centered at x,=f(F;), we have fe¢,=f,: N(C))— D..

Let M, denote Closure(M—¢(N(Co))), Xo(M) the manifold obtained by gluing
M, and N, ,(S,) along their boundaries via the composed diffeomorphism
hibeit: dM,—dN(Cy) = 0N, .(So). Let Xo(f):Xc(M)— B denote a map which
equals f|M; on M, and f, , on N, ,(S,). Then by the properties (i) (ii) of ¢,
Xc(f) 1 Xe(M)— B is a torus fibration, in which the general fiber F; has been
replaced by a twin singular fiber F]:= (F.—FiN@ (NCoN'U(DLUS D) whose
divisor is R+nS. (Note that R := (I\—FiNe(NC)))WDUD_and S:= 5,.) This
completes the description of fibered surgery of tvpe (1, n) on C.

The embedding ¢,: N(C,)— M is regarded as giving a normal framing of
the simple closed curve C, which we call the canonical framing determined by
the fibration f.

THEOREM 5.5. By performing fibered surgery of type (1, n) on an essential
simple closed curve C in a general fiber Fy,, we obtain a torus fibration Xc(f):
Xc(M)— B of the surgered manifold in which F; is replaced by a twin singular
Jiber F{ whose divisor is R+nS. The effect on the diffeomorphism type of M is
the same as that of doing surgery on CCM using a normal framing which twists n
times with respect to the canonical framing determined by the fibration.

The first assertion is obvious by the construction. The second assertion
about the framing follows from Lemma 5.3 (ii). Note that, since =,(SO3))=Z/2,
the effect of the surgery on M depends only on C and on the parity of n.

THEOREM 5.6, Let F, be a twin singular fiber whose divisor is R+nS n a
torus fibration f: M— B. Perform fibered surgery on S to obtain a torus fibration
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Ls(f): Xs(M)— B in which F, is replaced by a general fiber Fi. Let C be the
simple closed curve in F} which is the image of {0} XCy X {1/2} (CD.xCox [0, 1]
=N(Cy)). Then, again by performing framed surgery of iype (1, n) on the curve
C, we recover the original torus fibration f: M— B.

The proof is straightforward.

§6. Proof of Theorem 1.1°.

The final ingredient we need in proving [Theorem 1.1/ is Matumoto’'s exten-
sion theorem. Given three integers {, m, n, Matumoto constructed a 4-mani-
fold denoted by W{, m, n) as follows: Take a 3-torus T3?=S5!'X5'XS*' and
attach three 2-handles to 7°x[0, 1] along the disjoint standard circles
S {x} o {x, {#7} X STX ('}, {%"} X {*"} X8 in T®X {l} using framing numbers
{, m, n, respectively. The resulting manifold is W({, m, n).

In what follows we need only W(—1, —1, —1) which is denoted simply by W.

THEOREM (Matumoto [8, Theorem 11). Let a: T*X {0} > T*x {0} be an ori-
entation preserving diffeomorphism. Then there exists a diffeomorphism a&:W—W
such that &|T*X {0} =a and @&|(the other component of oW )=identity.

Matumoto’s next theorem states that W can be embedded in (CP,#9CP,—
Int(D*xT%). To state the result precisely, let us recall that CP,#9CP, (=V,
in the notation of §1) has the structure of an elliptic surface over S% Let
D?*xT* be a fibered neighborhood of a general fiber. Let N denote the closed
complement (CP, % 9CP,—Int(D* X T%).

THEOREM (Matumoto [8, Proposition 5.11). W can be embedded in N so that
ON=WNMNON=WNIN=T?*x {0}.

COROLLARY ([8, §7]). FEach orientation preserving diffeomorphism a :0N—aN
extends to a diffeomorphism a:N— N.

These results of Matumoto imply a lemma of the Dehn type. Following
Montesinos [10], we call a simple closed curve in T° a canonical curve if it is
the image of the standard circle S'X {*} X {*} under an orientation preserving
diffeomorphism «:7T°—T® For a canonical curve C, we define a natural
framing to be the image (under «) of the product framing of S*x {x} x {*} in
STXS'x S5*=T3% This terminology also applies to curves in a manifold diffeo-
morphic to T2

LEMMA 6.1. FEach canonical curve C in ON bounds a smoothly embedded disk
4 in N. Moreover we can take 4 so that if 4’ denotes a disk obtained by perturb-

ing 4 slightly in such a way that 04’ is pushed off 04 in the direction of natural
framing, then 4-4'=—1.
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ProOF. In the case when C is the standard circle S* X {x} X {#} CT?x {0} =oN,
the disk 4 can be taken as A=(S'x {¥} X {¥})x[0, 11\U(core of an attached
2-handle)CWCN. In the general case when C=a(S'X {¥} X {*}), a being a dif-

feomorphism a:dN—0N, we have only to take the disk @&(4), where @: N—N
is an extension of a. O

Proor or THEOREM 1.1°. Let f:M—S? be a torus fibration, each singular
fiber of which is of type IT or /7. Suppose that ¢(M)+0. Let I'={x;, x,,
.-+, x,} be the set of critical values of f. Take a base point x,=S*—1I". Also
take a disk D in S? which contains ["U{x,} in IntD. The restriction
flfH(SE=Int D): f~4(S*—Int D)—S*—Int D is a T?*-bundle over a disk S*—Int D,
hence is trivial. Therefore, the monodromy around 0D is trivial.

By we can permute x;, x, ---, x, if necessary and choose
paths 7y, 72, -, 7 in Int D joining x, to x,, x,, -+, x,, respectively, so that the
corresponding monodromy matrices (with respect to a certain basis (y,, 4o) of
H\(fYx,); Z)) are in one of the two normal forms:

(WI; Wflr WZ) W2_1’ Ty Wl; Wl_ly X’ Y! X: Y) Ty Xy Y)
or

(le Wl-ly W?: Wz-l, Tty Wl: Wi_lx Y-la X—l: Y-l) X—lr Tty Y-1: X—l) ’

10 1 —1
WMmI%ESMZZ)de_L J,Y—b 1}

If /=1, then applies. We can deform the fibration f: M—S?
so that the first two singular fibers f~'(x,), f~'(x,) (corresponding to W,, Wi
are fused together to make a single twin singular fiber. After repeating this
process [ times, we get a torus fibration M—S* which contains / twin singular
fibers Fy, F,, -+, F, instead of the first 2/ singular fibers f~(xy), f~*x,), -,
fYxa-1), [ x2). The divisor of each of these twin singular fibers is R+S
(Theorem 4.1)).

Perform fibered surgery on an irreducible component of each twin singular
fiber. Then all the twin singular fiber disappear (Theorem 5.4). Thus we obtain
a new manifold X(M) and a torus fibration X(f):X(M)—5? all of whose singular
fibers are of the same type (JT or I7). (Note that X and Y represent the
monodromy of If, and X!, Y-! the monodromy of I7.)

By [9, Theorem 9, p. 1751, the euler number ¢(X(M)) of the manifold X(M)
is divisible by 12, and

XM=V, or XM=V,

according as ¢(X(M))<0 or a(UM) >0, where k=e(X(M))/12. (Note that g(X(M))
=a(M)+0.)
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The original manifold M is recovered from X(M) by performing fibered
surgery of type (1, 1) on a simple closed curve in each of the / general fibers
F! Fj ---, F} obtained from the twin singular fibers Fy, F,, ---, F, (Theorem 5.6).
The framing used for the surgery twists once with respect to the canonical
framing determined by the fibration (Theorem 5.5).

Since X(M) (=V, or V,) is l-connected by Kas [3], surgery on a simple
closed curve in X(M) changes X(M) into X(M) § S* < S* or X(M) ¥ S*XS°, where
S S* denotes the non-trivial S*-bundle over S°. We will see which is the
case.

Consider the last 12 critical values of X(f):X(M)—5% Xi.11, Xy-105 *°* 5 Xse
The monodromy matrices of the corresponding singular fibers are

XY, XYV, XYV, XY, X, YV, XY,
or
Y-, X0, Y-y X-U Y-l X Yl XU YL XL YL XL

et D’ be a 2-disk in S® such that D'"I'={x,_11, Xu-10, -, x,}. The
monodromy around oD’ is trivial, because either of (XY)® and (Y-1X-H® is
trivial. Let N’ denote X(f) (D), the part of X(M) over D.

We will show that N’ is diffeomorphic to the manifold N=(CP,# 9CP,—
Int(D*xT%) or N (with orientation reversed).

Matumoto proves his theorems using the fact that the fibration N\ D?xT?
—>S? has two singular fibers of types I and II* (in Kodaira’s notation [4]). We
can deform the fibration N\UD?x T%— 52 by Moishezon’s lemma [9, Lemma 6,
p. 1551 so that in the resulting fibration all the singular fibers are of type I7.
During the deformation, general fibers are moved by isotopy. Since the euler
number e(N\UD?x T2 =e¢(CP, # 9CP,) equals 12, the number of the singular fibers
(of type IT1) is 12, and they can be arranged so that the corresponding monodromy
matrices are X, Y, X, Y, X, YV, X, V, X, V, X,V ([9, Lemma 8, p.179]). Thus
by [9, Lemma 7a, p. 1697, N/=X(f)"%(D’) is diffeomorphic to N or N.

Returning to our X(M), let Fi; be a general fiber on which we perform
fibered surgery of type (1, 1) along a simple closed curve C (CCFY).

Let v be an arc on S?® joining the value X(f)(F;) to a point p<aD’ and
missing all the other critical values of f. Also we assume yM\oD’={p}. Move
the simple closed curve C (CF;) along the path y to obtain (as the trace of
moving C) an annulus A embedded in X(M). Let C’=dA—C. Then C’ is a
canonical curve in dN’. By Lemma 6.1, C’ bounds a 2-disk 4 in N’ with
“relative ¥ self-intersection number +1 with respect to the natural framing of C’.

Recall that when performing fibered surgery of type (1, 1) on C, we used a
framing which turns once with respect to the canonical framing. Therefore, it
is easily seen that if D), denotes the “attached ” 2-disk along C by the surgery,
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the resulting 2-sphere D)\JAUA has an even self-intersection number. This
assures that the fibered surgery of type (1, 1) on C (CF}) changes XZ(M) into
X(M) & S*x S?, not X(M) ¥ S*xS* [12].

Repeating this process [ times, we recover the original manifold M by
which is diffeomorphic to Z(M) £ 1(S? X S?) by the above observation.

Therefore, M is diffeomorphic to V, #/(S*xS?) or V, £/(52xS? according
as o(M)<0 or ¢(M)>0. Obviously, we have |e(M)|=]|0(V,)|=8F and e(V})
=12k-+2/. This completes the proof of [Theorem I.1'. O

A simple twin singular fiber whose divisor is mR+nS is said to be even if

m+n=0(2) or odd if m+n=1(2). The following theorem generalizes
1.1,

THEOREM 6.2. Let f:M—S® be a torus fibration each of whose singular
fibers 1s of type IT, I7 or (simple) Tw. Suppose that a(M)+0. Then the diffeo-
morphism type of M is as follows:

(1) 2f f:M—S?% does not contain an odd twin singular fiber, then M=
Ve 21(S2x 8% or M=V, #1(5*xS? according as a¢(M)<0 or ¢(M)>0;

(ii) if f:M—S® contains an odd twin singular fiber, then M=k'CP,4 ! CP,

OUTLINE OF PROOF. By [7], any simple twin singular fiber which is odd (resp.
even) can be replaced without changing the diffeomorphism type of M by a twin
singular fiber whose divisor is R+2S (resp. R+S). Performing fibered surgery
on S, we can eliminate the twin singular fiber. The inverse fibered surgery
performed when recovering the twin singular fiber is of type (1, 2) or (1, 1)
according as the divisor of the eliminated twin singular fiber was R-}2S or
R-+S. Thus the recovered manifold is a connected sum with S?XS* or S*xS*
according as the twin singular fiber is odd or even. Once S*xS? (=CP, ¢ CP;)
appears, the whole manifold decomposes into k'CP,#1’CP, by Mandelbaum’s
theorem (applied to V, or V,). Details will be left to the reader.
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