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Abstract. We propose a spectral curve describing torus knots and links in
the B-model. In particular, the application of the topological recursion to
this curve generates all their colored HOMFLY invariants. The curve is
obtained by exploiting the full Sl(2, Z) symmetry of the spectral curve of
the resolved conifold, and should be regarded as the mirror of the topolog-
ical D-brane associated with torus knots in the large N Gopakumar–Vafa
duality. Moreover, we derive the curve as the large N limit of the matrix
model computing torus knot invariants.

1. Introduction

One of the most surprising consequences of the Gopakumar–Vafa duality [21]
is that Chern–Simons invariants of knots and links in the three-sphere can be
described by A-model open topological strings on the resolved conifold [45]
(see [41] for a recent review). The boundary conditions for the open strings
are set by a Lagrangian submanifold associated to the knot or link. By mirror
symmetry, an equivalent description should exist in terms of open strings in the
B-model, where the boundary conditions are set by holomorphic submanifolds.

This conjectural equivalence between knot theory and Gromov–Witten
theory has been implemented and tested in detail for the (framed) unknot and
the Hopf link. For the framed unknot there is a candidate Lagrangian subman-
ifold in the A-model [45]. Open Gromov–Witten invariants for this geometry
can be defined and calculated explicitly by using for example the theory of the
topological vertex [2], and they agree with the corresponding Chern–Simons
invariants (see for example [54] for a recent study and references to earlier
work). The framed unknot can be also studied in the B-model [3,42]. As usual
in local mirror symmetry, the mirror is an algebraic curve in C

∗ × C
∗, and the

invariants of the framed unknot can be computed as open topological string
amplitudes in this geometry using the formalism of [8,40]. The Hopf link can be
also understood in the framework of topological strings and Gromov–Witten
theory (see for example [24]).
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In spite of all these results, there has been little progress in extending
the conjectural equivalence between knot theory and string theory to other
knots and links. There have been important indirect tests based on integrality
properties (see [41] for a review), but no concrete string theory calculation
of Chern–Simons invariants of knots and links has been proposed beyond the
unknot and the Hopf link, even for the trefoil (which is the simplest non-trivial
knot).

In this paper we make a step to remedy this situation, and we provide a
computable, B-model description of all torus knots and links. Torus knots and
links are very special and simple, but they are an important testing ground in
knot theory and Chern–Simons theory. As we will see, our B-model descrip-
tion does not involve radically new ingredients, but it definitely extends the
string/knot dictionary beyond the simple examples known so far.

Our proposal is a simple and natural generalization of [3]. It is known
that for B-model geometries that describe mirrors of local Calabi–Yau three-
folds, and are thus described by a mirror Riemann surface, there is an Sl(2, Z)
action that rotates the B-model open string moduli with the reduction of the
holomorphic three-form on the spectral curve; this action is a symmetry of the
closed string sector. For open strings, it was proposed in [3] that the unknot
with f units of framing is obtained by acting with the Sl(2, Z) transformation
T f on the spectral curve of the resolved conifold (here T denotes the standard
generator of the modular group), but no interpretation was given for a more
general modular transformation. As we will show in this paper, the B-model
geometry corresponding to a (Q,P ) torus knot is simply given by a general

Sl(2, Z) transformation of the spectral curve describing the resolved conifold.
This proposal clarifies the meaning of general symplectic transformations of
spectral curves, which play a crucial rôle in the formalism of [19]. Moreover,
it is in perfect agreement with the Chern–Simons realization of the Verlinde
algebra. In this realization, one shows [31] that torus knots are related to the
(framed) unknot by a general symplectic transformation. Our result can be
simply stated by saying that the natural Sl(2, Z) action on torus knots in the
canonical quantization of Chern–Simons theory is equivalent to the Sl(2, Z)
reparametrization of the spectral curve.

In practical terms, the above procedure associates a spectral curve to
each torus knot or link. Their colored U(N) invariants can then be computed
systematically by applying the topological recursion of [19] to the spectral
curve, exactly as in [8]. In this description, the (P,Q) torus knot comes nat-
urally equipped with a fixed framing of QP units, just as in Chern–Simons
theory [31]. As a spinoff of this study, we obtain a formula for the HOMFLY
polynomial of a (Q,P ) torus knot in terms of q-hypergeometric polynomials
and recover the results of [22].

Our result for the torus knot spectral curve is very natural, but on top
of that we can actually derive it. This is because the colored U(N) invariants
of torus knots admit a matrix integral representation, as first pointed out in
the SU(2) case in [35]. The calculation of [35] was generalized to U(N) in the
unpublished work [39] (see also [16]), and the matrix integral representation
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was rederived recently in [6,28] by a direct localization of the path integral.
We show that the spectral curve of this matrix model agrees with our natural
proposal for the B-model geometry. Since this curve is a symplectic transfor-
mation of the resolved conifold geometry, and since symplectic transformations
do not change the 1/N expansion of the partition function [19,20], our result
explains the empirical observation of [6,16] that the partition functions of the
matrix models for different torus knots are all equal to the partition function
of Chern–Simons theory on S

3 (up to an unimportant framing factor).
This paper is organized as follows. In Sect. 2, we review the construction

of knot operators in Chern–Simons theory, following mainly [31]. In Sect. 3
we focus on the B-model point of view on knot invariants. We briefly review
the results of [3] on framed knots, and we show that a general Sl(2, Z) trans-
formation of the spectral curve provides the needed framework to incorporate
torus knots. This leads to a spectral curve for torus knots and links, which
we analyze in detail. We compute some of the invariants with the topologi-
cal recursion and we show that they agree with the knot theory counterpart.
Finally, in Sect. 4, we study the matrix model representation of torus knots
and we show that it leads to the spectral curve proposed in Sect. 3. We con-
clude in Sect. 5 with some implications of our work and prospects for future
investigations. In the Appendix we derive that the loop equations satisfy by
the torus knot matrix model.

2. Torus Knots in Chern–Simons Theory

First of all, let us fix some notations that will be used in the paper. We will
denote by

UK = P exp

∮

K

A (2.1)

the holonomy of the Chern–Simons connection A around an oriented knot K,
and by

WK
R = TrR UK (2.2)

the corresponding Wilson loop operator in representation R. Its normalized
vev will be denoted by

WR(K) =

〈

TrR

⎛

⎝P exp

∮

K

A

⎞

⎠

〉

. (2.3)

In the U(N) Chern–Simons theory at level k, these vevs can be calculated in
terms of the variables [52]

q = exp

(

2πi

k + N

)

, c = qN/2. (2.4)
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When R = is the fundamental representation, (2.3) is related to the HOM-
FLY polynomial H(K) of the knot K as [52]

W (K) =
c − c−1

q1/2 − q−1/2
H(K). (2.5)

Finally, we recall as well that the HOMFLY polynomial of a knot H(K) has
the following structure (see for example [36]),

H(K) =
∑

i≥0

pi(c
2)z2i, z = q1/2 − q−1/2. (2.6)

Torus knots and links have a very explicit description [31] in the context
of Chern–Simons gauge theory [52]. This description makes manifest the nat-
ural Sl(2, Z) action on the space of torus knot operators, and it implements
it in the quantum theory. It shows in particular that all torus knots can be
obtained from the trivial knot or unknot by an Sl(2, Z) transformation. We
now review the construction of torus knot operators in Chern–Simons theory,
referring to [31] for more details.

Chern–Simons theory with level k and gauge group SU(N) can be canon-
ically quantized on three-manifolds of the form Σ × R, where Σ is a Riemann
surface [52]. The resulting Hilbert spaces can be identified with the space
of conformal blocks of the U(N) Wess–Zumino–Witten theory at level k on
Σ. When Σ = T

2 has genus one, the corresponding wave functions can be
explicitly constructed in terms of theta functions on the torus [5,9,18,34]. The
relevant theta functions are defined as

Θl,p(τ, a) =
∑

ν∈Λr

exp

[

iπτl
(

ν +
p

l

)2

+ 2πil
(

ν +
p

l

)

· a

]

, (2.7)

where τ is the modular parameter of the torus T
2, Λr is the root lattice of

SU(N), a ∈ Λr ⊗ C and p ∈ Λw, the weight lattice. Out of these theta func-
tions, we define the function

ψl,p(τ, a) = exp

(

πl

2Im τ
a2

)

Θl,p(τ, a). (2.8)

Notice that, under a modular S-transformation, a transforms as

a → a/τ. (2.9)

A basis for the Hilbert space of Chern–Simons theory on the torus is given by
the Weyl antisymmetrization of these functions,

λl,p(τ, a) =
∑

w∈W

ǫ(w)ψl,w(p)(τ, a), (2.10)

where W is the Weyl group of SU(N), and

l = k + N. (2.11)

The only independent wave functions obtained in this way are the ones where p
is in the fundamental chamber Fl, and they are in one-to-one correspondence
with the integrable representations of the affine Lie algebra associated with
SU(N) with level k. We recall that the fundamental chamber Fl is given by
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Figure 1. The path integral over a solid torus with the inser-
tion of the Wilson line in representation R gives the wave
function defined in (2.10)

Λw/lΛr, modded out by the action of the Weyl group. For example, in SU(N)
a weight p =

∑r
i=1 piλi is in Fl if

r
∑

i=1

pi < l, and pi > 0, i = 1, . . . , r (2.12)

where r = N − 1 is the rank of the gauge group. The wave functions (2.10),
where p ∈ Fl, span the Hilbert space Hl(T

2) associated to Chern–Simons the-
ory on T

2. The state described by the wave function λl,p has a very simple
representation in terms of path integrals in Chern–Simons gauge theory [52].
Let us write

p = ρ + ΛR, (2.13)

where ρ is the Weyl vector and ΛR is the highest weight associated with a
representation R. Let us consider the path integral of Chern–Simons gauge
theory on a solid torus MT2 with boundary ∂MT2 = T

2, and let us insert a
circular Wilson line

W(1,0)
R = TrR

⎛

⎜

⎝
P exp

∮

K1,0

A

⎞

⎟

⎠
(2.14)

along the non-contractible cycle K1,0 of the solid torus (see Fig. 1). This pro-
duces a wave function Ψ(A), where A is a gauge field on T

2. Let us now denote
by ω(z) the normalized holomorphic Abelian differential on the torus, and let

H =

R
∑

i=1

Hiλi (2.15)

where Hi, λi are the Cartan matrices and fundamental weights of SU(N),
respectively. A gauge field on the torus can be parametrized as

Az = (uau)
−1

∂z (uau) , Az̄ = (uau)
−1

∂z̄ (uau) , (2.16)

where

u : T
2 → SU(N)C (2.17)
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is a single-valued map taking values in the complexification of the gauge group,
and

ua = exp

⎛

⎝

iπ

Im τ

z̄
∫

ω(z′)a · H − iπ

Im τ

z
∫

ω(z′)a · H

⎞

⎠ . (2.18)

In this way, the gauge field is written as a complexified gauge transformation
of the complex constant connection

r
∑

i=1

aiHi. (2.19)

After integrating out the non-zero modes of the gauge connection [18,31], one
obtains an effective quantum mechanics problem where wave functions depend
only on a, and they are given precisely by (2.10). In particular, the empty solid
torus corresponds to the trivial representation with ΛR = 0, and it is described
by the “vacuum” state

λl,ρ. (2.20)

We will also represent the wave functions (2.10) in ket notation, as |R〉, and
the vacuum state (2.20) will be denoted by |0〉.

Torus knots can be defined as knots that can be drawn on the surface
of a torus without self-intersections. They are labelled by two coprime inte-
gers (Q,P ), which represent the number of times the knot wraps around the
two cycles of the torus, and we will denote them by KQ,P . Our knots will
be oriented, so the signs of Q, P are relevant. We have a number of obvious
topological equivalences, namely

KQ,P ≃ KP,Q, KQ,P ≃ K−Q,−P . (2.21)

If we denote by K∗ the mirror image of a knot, we have the property

K∗
Q,P = KQ,−P . (2.22)

This means that, in computing knot invariants of torus knots, we can in prin-
ciple restrict ourselves to knots with, say, P > Q > 0. The invariants of the
other torus knots can be computed by using the symmetry properties (2.21)
as well as the mirror property (2.22), together with the transformation rule
under mirror reflection

〈Tr UK∗〉 (q, c) = 〈Tr UK〉 (q−1, c−1). (2.23)

All the knots K1,f , with f ∈ Z, are isotopic to the trivial knot or unknot.
The simplest non-trivial knot, the trefoil knot, is the (2, 3) torus knot. It is
depicted, together with the more complicated (3, 8) torus knot, in Fig. 2.

Since torus knots can be put on T
2, a (Q,P ) torus knot in a representa-

tion R should lead to a state in Hl(T
2). As shown in [31], these states can be

obtained by acting with a knot operator

W
(Q,P )
R : Hl(T

2) → Hl(T
2), (2.24)
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Figure 2. The trefoil knot, shown on the left, is the (2,3)
torus knot. The knot shown on the right is the (3,8) torus
knot (these figures courtesy of Wikipedia)

on the vacuum state (2.20). If we represent the states as wave functions of the
form (2.10), torus knot operators can be explicitly written as [31]

W
(Q,P )
R =

∑

µ∈MR

exp

(

− π

Im τ
(Qτ + P ) a · µ +

Qτ + P

l
µ · ∂

∂a

)

, (2.25)

where MR is the space of weights associated with the representation R. In the
above description, the integers (Q,P ) do not enter in a manifestly symmetric
way, since Q labels the number of times the knot wraps the non-contract-
ible cycle of the solid torus, and P labels the number of times it wraps the
contractible cycle. However, knot invariants computed from this operator are
symmetric in P, Q; this is in fact a feature of many expressions for quantum
invariants of torus knots, starting from Jones’ computation of their HOMFLY
polynomials in [27]. From (2.25) one finds,

W
(Q,P )
R λl,p =

∑

µ∈MR

exp

[

iπµ2 PQ

l
+ 2πi

P

l
p · µ

]

λl,p+Qµ. (2.26)

The torus knot operators (2.25) have many interesting properties,
described in detail in [31]. First of all, we have

W
(1,0)
R λl,ρ = λl,ρ+ΛR

, (2.27)

which is an expected property since the knot K1,0 leads to the Wilson line
depicted in Fig. 1. Second, they transform among themselves under the action
of the modular group of the torus Sl(2, Z). One finds [31]

MW
(Q,P )
R M−1 = W

(Q,P )M
R , M ∈ Sl(2, Z), (2.28)

where (Q,P )M is the natural action by right multiplication. Since the torus
knot (Q,P ) = (1, 0) is the trivial knot or unknot, we conclude that a generic
torus knot operator can be obtained by acting with an Sl(2, Z) transformation
on the trivial knot operator. Indeed,

MQ,P W
(1,0)
R M−1

Q,P = W
(Q,P )
R , (2.29)
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where MQ,P is the Sl(2, Z) transformation

MQ,P =

(

Q P
γ δ

)

(2.30)

and γ, δ are integers such that

Qδ − Pγ = 1. (2.31)

Since P,Q are coprimes, this can be always achieved thanks to Bézout’s lemma.
The final property we will need of the operators (2.25) is that they make

it possible to compute the vacuum expectation values of Wilson lines associ-
ated with torus knots in S

3. In fact, to construct a torus knot in S
3, we can

start with an empty solid torus, act with the torus knot operator (2.25) to
create a torus knot on its surface, and then glue the resulting geometry to
another empty solid torus after an S transformation. We conclude that

WR (KQ,P ) =
〈0|SW

(Q,P )
R |0〉

〈0|S|0〉 , (2.32)

where we have normalized by the partition function of S
3. When performing

this computation, we have to remember that Chern–Simons theory produces
invariants of framed knots [52], and that a change of framing by f units is
implemented as

WR (K) → e2πifhRWR (K) (2.33)

where

hR =
ΛR · (ΛR + 2ρ)

2(k + N)
. (2.34)

For knots in S
3, there is a standard framing, and as noticed already in [31],

torus knot operators naturally implement a framing of QP units, as compared
to the standard framing. For example, the knot operator

W
(1,f)
R , f ∈ Z, (2.35)

creates a trivial knot, but with f units of framing [26,31], see Fig. 3. As we
will see, the same natural framing QP appears in the B-model for torus knots
and in the matrix model representation obtained in [6,35,39].

The vev (2.32) can be computed in various ways, but the most efficient
one was presented in [47] and makes contact with the general formula for these
invariants due to Rosso and Jones [46]. One first considers the knot operator

W
(Q,0)
R (2.36)

which can be regarded as the trace of the Q-th power of the holonomy around
K1,0. It should then involve the Adams operation on the representation ring,
which expresses a character of the Q-th power of a holonomy in terms of other
characters,

chR(UQ) =
∑

V

cV
R,QchV (U). (2.37)
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Figure 3. The knot operator with labels (1, f) creates a
Wilson line which winds once around the noncontractible
cycle of the solid torus, and f times around the contractible
cycle. This corresponds to an unknot with f “ribbons,” i.e.,
to an unknot with f units of framing

Indeed, one finds [47]

W
(Q,0)
R =

∑

V

cV
R,QW

(1,0)
V . (2.38)

If we introduce the diagonal operator [47]

DP/Q|R〉 = e2πiP/QhR |R〉 (2.39)

we can write an arbitrary torus knot operator as

W
(Q,P )
R = DP/QW

(Q,0)
R D

−1
P/Q = TP/Q

W
(Q,0)
R T−P/Q, (2.40)

where

TP/Q =

(

1 P/Q
0 1

)

(2.41)

is a “fractional twist,” in the terminology of [43]. The above identity can be
interpreted by saying that the holonomy creating a (Q,P ) torus knot is equiv-
alent to the Q-th power of the holonomy of a trivial knot, together with a
fractional framing P/Q (implemented by the operator DP/Q). As we will see,
the same description arises in the B-model description of torus knots. Since

〈0|S|R〉
〈0|S|0〉 = dimq(R), (2.42)

the quantum dimension of the representation R, we find from (2.40) that the
vev (2.32) is given by

WR (KQ,P ) =
∑

V

cV
R,Qe2πiP/QhV dimq(V ). (2.43)

This is precisely the formula obtained by Rosso and Jones in [46] (see also [37]
for a more transparent phrasing). As pointed out above, in this formula the
torus knot comes with a natural framing of QP units.

The formalism of torus knot operators can be also used to understand
torus links. When Q and P are not coprimes, we have instead a link LQ,P with
L = gcd(Q,P ) components. From the point of view of the above formalism,
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the operator creating such a link can be obtained [26,32] by considering the
product of L torus knot operators with labels (Q/L,P/L), i.e.,

W
(Q,P )
R1,...,RL

=

L
∏

j=1

W
(Q/L,P/L)
Rj

. (2.44)

As explained in [33], this can be evaluated by using the fact that the torus
knot operators provide a representation of the fusion rules of the affine Lie
algebra [31]; therefore, we can write

W
(Q,P )
R1,...,RL

=
∑

Rs

NRs

R1,...,RL
W

(Q/L,P/L)
Rs

, (2.45)

where the coefficients in this sum are defined by

R1 ⊗ . . . ⊗ RL =
∑

Rs

NRs

R1,...,RL
Rs (2.46)

and can be regarded as generalized Littlewood–Richardson coefficients. The
problem of torus links reduces in this way to the problem of torus knots.
Notice that in this formalism, each component of the torus link has a natural
framing QP/L2.

3. The B-Model Description of Torus Knots

3.1. Preliminaries

Before discussing the B-model picture, we will recall the standard dictionary
relating the correlators obtained in the knot theory side with the generating
functions discussed in the B-model (see, for example, Appendix A in [8]). In
the knot theory side, we consider the generating function

F (V) = log Z(V), Z(V) =
∑

R

WR(K)TrR V (3.1)

where V is a U(∞) matrix, and we sum over all the irreducible representations
R (starting with the trivial one). It is often convenient to write the free energy
F (V ) in terms of connected amplitudes on the basis labeled by vectors with
nonnegative entries k = (k1, k2, . . .). In this basis,

F (V) =
∑

k

1

zk

W
(c)
k

Υk(V) (3.2)

where

Υk(V) =
∞
∏

j=1

(TrVj)kj , zk =
∏

j

kj !j
kj . (3.3)

The functional (3.1) has a well-defined genus expansion,

F (V) =

∞
∑

g=0

∞
∑

h=1

g2g−2+h
s A

(g)
h (z1, . . . , zh). (3.4)
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In this equation, gs is the string coupling constant (3.8), and we have written

Tr Vw1 · · · Tr Vwh ↔ mw(z) =
∑

σ∈Sh

h
∏

i=1

zwi

σ(i) (3.5)

where mw(z) is the monomial symmetric polynomial in the zi and Sh is
the symmetric group of h elements. After setting zi = p−1

i , the functionals

A
(g)
h (z1, . . . , zh) are given by

A
(g)
h (p1, . . . , ph) =

∫

dp1 · · · dphWg,h(p1, . . . , ph), (3.6)

where the functionals Wg,h are the ones appearing naturally in the B-model
through the topological recursion.

3.2. Symplectic Transformations in the Resolved Conifold

We now briefly review the B-model description of the framed unknot proposed
in [3].

According to the Gopakumar–Vafa large N duality and its extension to
Wilson loops in [45], knot and link invariants are dual to open topological
string amplitudes in the resolved conifold

O(−1) ⊕ O(−1) → P
1 (3.7)

with boundary conditions set by Lagrangian A-branes. We recall the basic
dictionary of [21]: the string coupling constant gs is identified with the renor-
malized Chern–Simons coupling constant,

gs =
2πi

k + N
, (3.8)

while the Kähler parameter of the resolved conifold is identified with the
’t Hooft parameter of U(N) Chern–Simons theory,

t =
2πiN

k + N
= gsN. (3.9)

The unknot and the Hopf link correspond to toric A-branes of the type intro-
duced in [4,45] and their Chern–Simons invariants can be computed in the dual
A-model picture by using localization [29] or the topological vertex [2,24,54].

By mirror symmetry, there should be a B-model version of the
Gopakumar–Vafa large N duality. We recall (see for example [3] and refer-
ences therein) that the mirror of a toric Calabi–Yau manifolds is described by
an algebraic curve in C

∗ × C
∗ (also called spectral curve) of the form

H (eu, ev) = 0. (3.10)

We will denote

U = eu, V = ev (3.11)

The mirrors to the toric branes considered in [4] boil down to points in this
curve, and the disk amplitude for topological strings is obtained from the func-
tion v(u) that solves the equation (3.10). Different choices of parametrization
of this point lead to different types of D-branes, as we will discuss in more
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detail. According to the conjecture of [8,38], higher open string amplitudes for
toric branes can be obtained by applying the topological recursion of [19] to
the spectral curve (3.10).

The mirror of the resolved conifold can be described by the spectral curve
(see [3,8])

H(U, V ) = V − c−1UV + cU − 1 = 0, (3.12)

where

c = et/2. (3.13)

By mirror symmetry, t corresponds to the Kähler parameter of the resolved
conifold. Due to the identification in (3.9), the variable c appearing in the spec-
tral curve is identified with the Chern–Simons variable introduced in (2.4). The
mirror brane to the unknot with zero framing, K1,0, is described by a point in
this curve, parametrized by U , and the generating function of disk amplitudes

− log V (U) = − log

(

1 − cU

1 − c−1U

)

=
∑

n≥0

〈Tr Un
K1,0

〉g=0U
n, (3.14)

can be interpreted as the generating function of planar one-point correlators
for the unknot.

As pointed out in [3], in writing the mirror curve (3.10), there is an
ambiguity in the choice of variables given by an Sl(2, Z) transformation,

X = UQV P ,

Y = UγV δ,
(3.15)

where Q,P, γ, δ are the entries of the Sl(2, Z) matrix (2.30). However, only
modular transformations of the form

M1,f =

(

1 f
0 1

)

, f ∈ Z, (3.16)

were considered in [3]. In the case of the mirror of the resolved conifold, they
were interpreted as adding f units of framing to the unknot. It was argued
in [3] that only these transformations preserve the geometry of the brane at
infinity. The resulting curve can be described as follows. We first rescale the
variables as

U, X → cfU, cfX. (3.17)

The new curve is defined by,

X = U

(

1 − cf+1U

1 − cf−1U

)f

,

V =
1 − cf+1U

1 − cf−1U
,

(3.18)

and as proposed in [8,40], the topological recursion of [19] applied to this curve
gives all the Chern–Simons invariants of the framed unknot.

The general symplectic transformation (3.15) plays a crucial rôle in the
formalism of [8,19], where it describes the group of symmetries associated with
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the closed string amplitudes derived from the curve (3.10). It is natural to ask
what is the meaning of these, more general transformation. In the case of the
resolved conifold, and in view of the modular action (2.29) on torus knot oper-
ators, it is natural to conclude that the transformation associated with the
matrix MQ,P leads to the mirror brane to a torus knot. We will now give some
evidence that this is the case. In the next section, we will derive this statement
from the matrix model representation of torus knot invariants.

3.3. The Spectral Curve for Torus Knots

Let us look in some more detail at the general modular transformation (3.15).
We first redefine the X,U variables as

U → cP/QU, X → cP X. (3.19)

This generalizes (3.17) and it will be convenient in order to match the knot
theory conventions. The first equation in (3.15) reads now

X = UQ

(

1 − cP/Q+1U

1 − cP/Q−1U

)P

(3.20)

and it defines a multivalued function

U = U(X) = X1/Q + · · · (3.21)

Equivalently, we can define a local coordinate ζ in the resulting curve as

ζ ≡ X1/Q = U

(

1 − cP/Q+1U

1 − cP/Q−1U

)P/Q

. (3.22)

Combining (3.21) with the equation for the resolved conifold (3.12), we obtain
a function V = V (X). After re-expressing U in terms of X in the second equa-
tion of (3.15), and using (2.31), we find that the dependence of Y on the new
coordinate X is of the form

log Y =
γ

Q
log X +

1

Q
log V (X). (3.23)

The term log V (X) in this equation has an expansion in fractional powers of
X of the form n/Q, where n ∈ Z+. By comparing (3.22) to (3.18), we conclude
that the integer powers of X appearing in the expansion of log V (X) are the
integer powers of ζQ in the curve (3.18), but with fractional framing

f = P/Q. (3.24)

This is precisely the description of (Q,P ) torus knots appearing in (2.40)! It
suggests that the integer powers of X in the expansion of log V (X) encode
vevs of torus knot operators.

Notice from (3.23) that log Y differs from log V in a term which is not
analytic at ζ = 0 (plus a rescaling by Q). Although the presence of a loga-
rithmic piece in (3.23) modifies the geometry of the B-model background, it
leaves unaffected not only the instanton expansion of the disc function, but
also the rest of the full B-model theory (both the annulus function (3.54) and
the recursion kernel (3.55) are insensitive to this term). The presence of a clas-
sically ambiguous logarithmic piece for the superpotential is a known fact in
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the mirror symmetry context, and it reflects the ambiguity in the definition
of constant maps contribution for non-compact open string backgrounds on
the A-model side. Therefore, for the purpose of calculating the invariants, the
spectral curve given by log Y is equivalent to the one given by log V . If we
want a manifestly analytic function of ζ at the origin, as is the case in the
context of the matrix model describing torus knots, we can then consider the
spectral curve in the (X,V ) variables defined by

X = UQ

(

1 − cP/Q+1U

1 − cP/Q−1U

)P

,

V =
1 − cP/Q+1U

1 − cP/Q−1U
.

(3.25)

This curve can be also written as

HQ,P (X,V ) = V P (V − 1)Q − cP−QX(V − c2)Q = 0. (3.26)

Notice that, when Q = 1, P = 0 (i.e., for the unknot with zero framing)
we recover the standard equation (3.12) for the resolved conifold, and for
Q = 1, P = f we recover the curve of the framed unknot (3.18). In the curve
(3.25), X is the right local variable to expand in order to obtain the invariants.
The topological recursion of [19], applied to the above curve, leads to generat-
ing functionals which can be expanded in powers of X1/Q around X = 0. The
coefficients of the integer powers of X in these expansions give the quantum
invariants of the (Q,P ) torus knot, in the QP framing.

When Q and P are not coprimes, the above curve describes a torus link
with L = gcd(Q,P ) components. Up to a redefinition of the local variable of
the curve, the disk invariants have the same information of the disk invariants
of the (Q/L,P/L) torus knot. However, as we will see in a moment, the L-
point functions obtained from the topological recursion compute invariants of
the torus link.

3.4. One-Holed Invariants

3.4.1. Disk Invariants. The simplest consequence of the above proposal is that
the integer powers of X in the expansion of − log V (X) give the invariants

〈

Tr Um
K(Q,P )

〉

g=0
. (3.27)

We will now compute in closed form the generating function − log V (X). The
equation (3.22) defines the local coordinate ζ as a function of U , and it can be
easily inverted (by using for example Lagrange inversion) to give,

U =

∞
∑

n=1

anζn, (3.28)
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where a1 = 1 and

an =
P

Q

c(n−1)P/Q

(n − 1)!

n−1
∑

k=0

(−1)k

(

n − 1
k

) k−1
∏

j=−n+k+2

(

Pn

Q
− j

)

cn−1−2k, n ≥ 2.

(3.29)

This is essentially the result obtained in [42, Eq. (6.6)], in the context of framed
knots, but with a fractional framing P/Q. From this expansion, it is easy to
obtain

− log V (X) =
∑

n≥1

Wn(c)Xn/Q, (3.30)

where

Wn(c) =
1

n!

n
∑

ℓ=0

(−1)n+ℓ

(

n
ℓ

)

c2ℓ+n(P/Q−1)
n−1−ℓ
∏

j=−ℓ+1

(

nP

Q
− j

)

, (3.31)

which is again essentially the result obtained in Eq. (6.7) of [42]. Integer pow-
ers of X correspond to n = Qm, m ∈ N, and we conclude that the the planar
limit of (3.27) for the (Q,P ) torus knot with framing QP should be given by

〈

Tr Um
KQ,P

〉

g=0
=

1

mQ!

mQ
∑

ℓ=0

(−1)mQ+ℓ

(

mQ
ℓ

)

c2ℓ+m(P−Q)

mQ−1−ℓ
∏

j=−ℓ+1

(mP − j)

=
(−1)mQcm(P−Q)(mP − 1)!

(mP − mQ)!(mQ)!

×2F1

(

mP,−mQ;mP − mQ + 1; c2
)

. (3.32)

This can be verified for the very first values of Q,P . For example, we obtain:
〈

Tr UK2,3

〉

g=0
= c − 3c3 + 2c5,

〈

Tr UK2,5

〉

g=0
= c3

(

3c4 − 5c2 + 2
)

, (3.33)
〈

Tr UK3,5

〉

g=0
= c2

(

7c6 − 15c4 + 10c2 − 2
)

,

which give the correct result for the genus zero knot invariants. In particular,
the above expression turns out to be symmetric under the exchange of Q and
P , although this is not manifestly so.

The expression (3.32) can be written in various equivalent ways, and it
is closely related to a useful knot invariant. Indeed, the vev

〈Tr UK〉g=0 (c) (3.34)

is, up to an overall factor of c − c−1, the polynomial p0(c
2) appearing in the

expansion (2.6). This polynomial plays a distinguished rôle in knot theory, and
this seems to be closely related to the fact that it is the leading term in the
large N expansion (this was first pointed out in [13]). The polynomial p0(c

2)
of torus knots appears in the work of Traczyk [51] on periodicity properties of
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knots, but a closed expression as a function of Q,P does not seem to be avail-
able in the literature. Using the above results, and performing various simple
manipulations, we find the following expression, valid for Q,P > 0:

p
K(Q,P )

0 (c2) = c(P−1)(Q−1) (P + Q − 1)!

P !Q!
2F1

(

1 − P, 1 − Q, 1 − P − Q; c2
)

.

(3.35)

Here 2F1 (a, b, c;x) is the standard Gauss’ hypergeometric function. Of
course, since the indices are negative, the r.h.s. is a polynomial in c2. In writ-
ing (3.35), which is manifestly symmetric under the exchange of P and Q, we
have implemented two small changes w.r.t. (3.32). First of all, invariants of
knots in S

3 are usually presented in the standard framing, while the results
obtained for the spectral curve correspond to a torus knot with framing QP .
In order to restore the standard framing, we have to multiply the expression
(3.32) by c−PQ. Second, our labeling of the torus knot does not agree with the
standard conventions in the literature: what we call the (Q,P ) torus knot is
usually regarded as a (Q,−P ) torus knot. This means that we have to apply
the mirror transformation (2.23) to our invariant, which implies in particular
that

pK∗

0 (c2) = pK
0 (c−2). (3.36)

After implementing these changes, one obtains (3.35) from (3.32). Of course,
if (Q,P ) are not both positive or both negative, we can use (3.36) to compute
the invariant.

The spectral curve (3.25) gives, on top of the invariants of torus knots,
information about other invariants associated with the torus knot, encoded in
the coefficients of the fractional powers of X. They correspond to fractional
powers of the holonomy around the knot. As we will see in Sect. 4, these
invariants have a natural interpretation in the matrix model for torus knots.

3.4.2. All-Genus Invariants. Even more remarkably, the close relation of the
invariants of the (P, Q) torus knots to the ones of the unknot at fractional
framing can be further pushed to derive an all-genus completion of (3.35)
in terms of q-hypergeometric polynomials. To see this, notice that one-holed
invariants at winding number m receive contributions from vevs in hook rep-
resentations Rr,s

〈Tr Um
K 〉 =

∑

R

χR(km)WR(K) =
∑

Rm,s

(−1)sWRm,s
(K) (3.37)

where km is the conjugacy class of a length m cycle in Sm, and Rr,s denotes
a hook representation with s + 1 rows. For the framed unknot, we have that

〈

Tr Um
K1,f

〉

=
∑

Rm,s

(−1)sq2πifhRm,s dimq(Rm,s). (3.38)
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The quantum dimension of the representation Rm.s can be written as

dimq(Rm,s) =
qm(m−1)/4−sm/2

[m][m − s − 1]![s]!
c2m

m−s
∏

i=1

(

1 − 1

qi−1c2

) s
∏

i=1

(

1 − qi

c2

)

(3.39)

where for n ∈ N the q-number [n] and the q-factorial [n]! are defined as

[n] = qn/2 − q−n/2, [n]! = [n][n − 1] . . . [1]. (3.40)

Upon applying the Cauchy binomial formula
m
∑

s=0

tsqs(m+1)/2

[

m
s

]

=

m
∏

j=1

(1 + tqj) (3.41)

we obtain the finite sum
〈

Tr Um
K1,f

〉

=
m
∑

ℓ=0

c2ℓ+mf−m(−1)m+ℓ 1

[m − ℓ]![ℓ]!

[mf + ℓ − 1]!

[mf − m + ℓ]!
, (3.42)

for the framed unknot at winding number m with f units of framing, which
can be regarded as a q-deformed version of the formulae of [42] for the framed
disc. Following exactly the same line of reasoning as we did for the planar
case, the full un-normalized HOMFLY polynomial for (Q, P ) torus knots is
obtained from (3.42) upon sending f → P/Q, m → Q:

〈

Tr UKQ,P

〉

=

Q
∑

ℓ=0

(−1)Q+ℓc2ℓ+P−Q 1

[Q − ℓ]![ℓ]!

[P + ℓ − 1]!

[P − Q + ℓ]!

=
(−1)QcP−Q[P − 1]!

[P − Q]![Q]!
2φ1

(

P,−Q;P − Q + 1; c2
)

, (3.43)

where the q-analogue of Gauss’ hypergeometric function is defined by

2φ1 (a, b, c; q, z) =

∞
∑

n=0

(a; q)n(b : q)n

(q; q)n(c; q)n
zn, (3.44)

and the q-Pochhammer symbol is given as (a, q)n = [a+n− 1]!/[a− 1]!. Upon
taking the q → 1 limit, we recover (3.32). The natural q-extension of (3.35)
leads to the following expression for the HOMFLY polynomial of a torus knot,

1

q1/2 − q−1/2
H(KQ,P )

= c(P−1)(Q−1) [P + Q − 1]!

[P ]![Q]!
2φ1

(

1 − P, 1 − Q, 1 − P − Q; q, c2
)

. (3.45)

Again, since P > 0 and Q > 0, the series truncates to a degree d = min(P −
1, Q − 1) polynomial in c2. It can be also written as

1

q1/2 − q−1/2
H(KQ,P )

= c(P−1)(Q−1) 1

[P ][Q]

d
∑

k=0

[P + Q − k − 1]!

[P − k − 1]![Q − k − 1]![k]!
(−1)kc2k. (3.46)



1890 A. Brini et al. Ann. Henri Poincaré

which is the result obtained in [22] for the HOMFLY polynomial of a torus
knot.

With (3.45) at hand, we can straightforwardly extract the higher genus
corrections to (3.35). Expanding the q-factorials around q = 1

[n]! = (−1)nn!(1 − q)nq− 1
4 n(n+1)

(

1 +
1

4

(

n2 − n
)

(q − 1) +

(

1

18
(n −2)(n −1)n

+
1

96
(n − 2)(n − 1)(3n − 1)n

)

(q − 1)2 + O(q − 1)3

)

, (3.47)

we obtain for example the closed expression

p
KQ,P

1 (c2) = − c2

48

d2p
KQ,P

0 (c)

dc2
+

c + 3c3

48(1 − c2)

dp
KQ,P

0 (c)

dc

+
1

48

(

P 2
(

Q2 − 1
)

− Q2 − 3
)

p
KQ,P

0 (c)

=
c(P−1)(Q−1)(P + Q − 1)!

24P !Q!

(

2c2(P − 1)P (Q − 1)Q

P + Q − 1

×2F1

(

2 − P, 2 − Q;−P − Q + 2; c2
)

+(P 2Q − P 2 + PQ2 − PQ − Q2 − 1)

×2F1

(

1 − P, 1 − Q;−P − Q + 1; c2
)

)

. (3.48)

We get for instance

p
K2,3

1 (c2) =
1

12
c2
(

c2 + 10
)

, (3.49)

p
K2,5

1 (c2) = − 5

12
c4
(

2c2 − 9
)

, (3.50)

p
K3,5

1 (c2) =
5

12
c8
(

2c4 − 32c2 + 49
)

. (3.51)

in complete agreement with explicit computations using the Rosso–Jones for-
mula (2.43).

3.5. Higher Invariants from the Spectral Curve

Let us now move to the case of higher invariants by applying the Eynard–
Orantin recursion [19] to the spectral data (3.25) or (3.15). Let ΓQ,P ≃ CP

1

be the projectivization of the affine curve (3.26). We will take U as an
affine co-ordinate on CP

1 and we will keep using X,Y for the meromor-
phic extensions X,Y : ΓQ,P → CP

1 of (3.25); we will finally call {qi} the

quadratic ramification points of the X → CP
1 covering map. Following [19],

we recursively define a doubly infinite sequence of meromorphic differentials
ωg,h(U1, . . . , Uh)dX(U1) . . . dX(Uh) ∈ Mh(Symh(ΓQ,P )), g ≥ 0, h ≥ 1 on the
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hth symmetric product of ΓQ,P as

ω0,2(U1, U2) = B(U1, U2), (3.52)

ωg,h+1(U0, U1 . . . , Uh) =
∑

qi

Res
Z=qi

K(U0, U)
(

Wg−1,h+2(U,U,U1, . . . , Uh)

+

g
∑

l=0

′
∑

J⊂H

W
(g−l)
|J|+1(U,UJ )W

(l)
|H|−|J|+1(U,UH\J)

)

.

(3.53)

In (3.52), B(z, w)dzdw is the Bergmann kernel of ΓQ,P , namely, the unique
double differential with a double pole at z = w and holomorphic elsewhere.
Since ΓP,Q ≃ CP

1, it reads simply

B(U1, U2) =
1

(U1 − U2)2
. (3.54)

On the r.h.s. of (3.53), U is the conjugate point to U near U = qi under the
X projection (i.e., X(U) = X(U), U = U), the recursion kernel K(U1, U2) is
defined as

K(U1, U2) = − X(U2)

2X ′(U2)

∫ U2

U2
B(U1, U

′)dU ′

log Y (U2) − log Y (U2)
, (3.55)

with I ∪ J = {U1, . . . , Uh}, I ∩ J = ∅, and
∑′

denotes omission of the terms
(h, I) = (0, ∅) and (g, J).

The identification of (3.25) as the spectral curve associated with (P, Q)
torus knots in S

3 entails the identification of the differentials ωg,h(U(X1), . . . ,
U(Xh))dX1 . . . dXh with the connected generating functions Wg,h(U(X1),
. . . , U(Xh))dX1 . . . dXh of (3.6) for all (g, h) = (0, 2); in the exceptional case
(g, h) = (0, 2), the annulus function is obtained from the Bergmann kernel
upon subtraction of the double pole in the X co-ordinate

W0,2(X1, X2) = B(X1, X2) − 1

(X1 − X2)2
. (3.56)

With (3.25) and (3.52)–(3.53) at hand, it is straightforward to apply the
topological recursion to compute higher invariants for torus knots. For the
annulus function, we obtain from (3.52) and (3.56) that

W0,2(U1, U2) =
1

(U1 − U2)2
− X ′(U1)X

′(U2)

(X(U1) − X(U2))2
. (3.57)

The planar part of connected knot invariants (3.2) in the conjugacy class basis

W
(c)
k

, where
∑

i ki = 2 for the annulus function, can then be straightforwardly
computed as

W
(c)
k

∣

∣

∣

g=0
= ResU1=∞ResU2=∞X(U1)

nX(U2)
mW0,2(U1, U2)dU1dU2, (3.58)



1892 A. Brini et al. Ann. Henri Poincaré

with ki = δin + δim. We find explicitly for Q = 2

W
(c)
(2,0,0,...)

∣

∣

∣

g=0
=

1

4
(c2 − 1)Pc2P−4

(

c2(P + 1) − P + 1
)

×
(

c4(P + 1)(P + 2) − 2c2P 2 + P 2 − 3P + 2
)

(3.59)

W
(c)
(1,1,0,0,...)

∣

∣

∣

g=0
=

1

9
Pc3P−6

[

6
(

c12 − 1
)

+ 4
(

c2 − 1
)6

P 5

+24
(

c2 + 1
) (

c2 − 1
)5

P 4 +
(

55c4 + 82c2 + 55
) (

c2 − 1
)4

P 3

+12
(

5c6 + 8c4 + 8c2 + 5
) (

c2 − 1
)3

P 2

+
(

31c8 + 44c6 + 48c4 + 44c2 + 31
) (

c2 − 1
)2

P

]

(3.60)

and for Q = 3

W
(c)
(2,0,0,...)

∣

∣

∣

g=0

=
1

24
Pc2P−6

(

c12(P + 1)2(P + 2)2(P + 3) − 6c10P (P + 1)2(P + 2)2

+3c8P (P + 1)2(5P (P + 1) − 4)4c6P
(

5P 4 − 7P 2 + 2
)

+ 3c4(P − 1)2P

×(5(P − 1)P − 4) − 6c2P
(

P 2 − 3P + 2
)2

+ (P − 3)
(

P 2 − 3P + 2
)2

)

,

(3.61)

in agreement with the corresponding knot invariants; notice that the case of
torus links is also encompassed as soon as gcd(P,Q) > 1, with the Hopf link
invariants appearing as the (P,Q) = (2, 2) case.

To compute higher order generating functions, we resort to (3.53). The
regular branch points are

q± =
c

P
Q

−1(±
√

c2 − 1
√

(c2 − 1)P 2 + 2(c2 + 1)PQ + (c2 − 1)Q2

2Q

+(c2 − 1)P + c2Q + Q)

2Q
(3.62)

and as will see they are precisely the ramification points that lie on the physical
sheet of the spectral curve. For the case g = 1, h = 1 we obtain

ω1,1(U) =

(

c2 − 1
)

c
P+Q

Q

(

U2 − c
2P
Q

)

24
(

Qc
2P
Q

+1 − U ((c2 − 1) P + c2Q + Q) cP/Q + cQU2
)4

×
[

Q4c
4P
Q

+2 + c2Q4U4 + 2QU
(

2
(

c2 − 1
)

P 3

+ 3
(

c2 + 1
)

P 2Q + 2
(

c2 − 1
)

PQ2 +
(

c2 + 1
)

Q3
)

c
P+Q

Q
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×
(

−c
2P
Q − U2

)

+ U2
(

4
(

c4 − 1
)

P 3Q + 4
(

c4 − 1
)

PQ3

+
(

c2 − 1
)2

P 4 + 6
(

c2 + 1
)2

P 2Q2 +
(

c4 + 4c2 + 1
)

Q4
)

c
2P
Q

]

(3.63)

and it is immediate to extract genus one, 1-holed knot invariants as

Wk

∣

∣

∣

g=1
= ResU=∞X(U)nω1,1(U)dU, (3.64)

where in this case ki = δin. For example

W(1,0,0,...)

∣

∣

∣

g=1
= − 1

24

(

c2 − 1
)

cP−1 Q = 1

W(1,0,0,...)

∣

∣

∣

g=1
=

1

48

(

c2 − 1
)

cP−2
(

c2(P + 1)(P (P + 2) − 4)

+ (1 − P )((P − 2)P − 4)) Q = 2

W(1,0,0,...)

∣

∣

∣

g=1
=

1

144
cP−3

(

c6(P + 1)(P + 2)(2P (P + 3) − 9) − 3c4P (P + 1)

×(2P (P + 1)Q = 3 − 5)3c2(P − 1)P (2(P − 1)P − 5)

+(2 − P )(P − 1)(2(P − 3)P − 9)

)

(3.65)

which reproduce (3.48) at fixed Q. Similarly, higher winding invariants can be
found to reproduce the correct knot invariants.

4. The Matrix Model for Torus Knots

In this section, we study the matrix model representation for quantum, colored
invariants of torus knots. We first give a derivation of the matrix model which
emphasizes the connection to the Rosso–Jones formula (2.43), and then we use
standard techniques in matrix models to derive the spectral curve describing
the planar limit of the invariants.

4.1. A Simple Derivation of the Matrix Model

The colored quantum invariants of torus knots admit a representation in terms
of an integral over the Cartan algebra of the corresponding gauge group. Such
a representation was first proposed for SU(2) in [35], and then extended to
simply laced groups in [39] (see also [16]). More recently, the matrix integral
for torus knots was derived by localization of the Chern–Simons path integral
[6] (another localization procedure which leads to the same result has been
recently proposed in [28]).

The result obtained in these papers reads, for any simply-laced group G,

WR(KQ,P ) =
1

ZQ,P

∫

du e−u2/2ĝs

∏

α>0

4 sinh
u · α

2P
sinh

u · α

2Q
chR(eu). (4.1)
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In this equation,

ZQ,P =

∫

du e−u2/2ĝs

∏

α>0

4 sinh
u · α

2P
sinh

u · α

2Q
, (4.2)

the coupling constant ĝs is

ĝs = PQgs, gs =
2πi

k + y
, (4.3)

y is the dual Coxeter number of G, and u is an element in Λw ⊗ R. α > 0 are
the positive roots. Notice that, although Q,P are a priori integer numbers,
the integral formula above makes sense for any Q,P .

The easiest way to prove (4.1) is by direct calculation. In order to do
that, we first calculate the integral

∫

du e−u2/2g̃s

∏

α>0

4 sinh
u · α

2
sinh

u · α

2f
chR(eu), g̃s = fgs, (4.4)

where f is arbitrary. We will also denote

Z1,f =

∫

du e−u2/2g̃s

∏

α>0

4 sinh
u · α

2
sinh

u · α

2f
. (4.5)

Let ΛR be the highest weight associated with the representation R. Weyl’s
denominator formula and Weyl’s formula for the character give,

∏

α>0

2 sinh
u · α

2
=

∑

w∈W

ǫ(w)ew(ρ)·u,

chR(eu) =

∑

w∈W ǫ(w)ew(ρ+ΛR)·u

∑

w∈W ǫ(w)ew(ρ)·u
,

(4.6)

and the integral (4.4) becomes a sum of Gaussians,

∑

w,w′∈W

ǫ(w)ǫ(w′)

∫

du exp

{

− u2

2g̃s
+ w(ρ + ΛR) · u + w′(ρ) · u/f

}

. (4.7)

Up to an overall factor which is independent of ΛR (and which will drop after
normalizing by Z1,f ), this equals

exp

[

gsf

2
(ΛR + ρ)

2

]

∑

w∈W

ǫ(w) exp (gsρ · w(ρ + ΛR)) . (4.8)

We then obtain

1

Z1,f

∫

du e−u2/2ĝs

∏

α>0

4 sinh
u · α

2
sinh

u · α

2f
chR(eu)

= exp

[

gsf

2

(

(ΛR + ρ)
2 − ρ2

)

]
∑

w∈W ǫ(w) exp (gsρ · w(ρ + ΛR))
∑

w∈W ǫ(w) exp (gsρ · w(ρ))

= e2πifhRdimq(R). (4.9)



Vol. 13 (2012) Torus Knots and Mirror Symmetry 1895

With this result, it is trivial to evaluate (4.1). The change of variables u = Qx
leads to

WR(KQ,P ) =
1

Z1,f

∫

dx e−x2/2g̃s

∏

α>0

4 sinh
x · α

2
sinh

x · α

2f
chR(eQx), (4.10)

where

f = P/Q. (4.11)

We can now expand chR(eQx) by using Adams’ operation (2.37). The resulting
sum can be evaluated by using (4.9), and one obtains

WR(KQ,P ) =
∑

V

cV
R,Qe2πiP/QhV dimq(V ), (4.12)

which is exactly (2.43).1 Therefore, (4.1) is manifestly equal to the knot the-
ory result, and in particular to the formula of Rosso and Jones for torus knots
invariants. Notice that this matrix integral representation also comes with the
natural framing QP for the (Q,P ) torus knot. A similar calculation for ZQ,P

shows that, up to an overall framing factor of the form

exp

[

gs

2

(

P

Q
+

Q

P

)

ρ2

]

, (4.13)

the partition function (4.2) is independent of Q,P . This can be also deduced
from the calculation in [16].

We also note that there is an obvious generalization of the matrix model
representation (4.1) to the torus link (Q,P ), given by

W(R1,...,RL)(LQ,P )

=
1

ZQ/L,P/L

∫

du e−u2/2ĝs

∏

α>0

4 sinh
u · α

2P/L
sinh

u · α

2Q/L

L
∏

j=1

chRj
(eui).

(4.14)

Since (4.1) can be calculated exactly at finite N , and the result is identi-
cal to (2.43), what is the main interest of such a matrix model representation?
As in the case of the Chern–Simons partition function on S

3, it makes possible
to extract a geometric, large N limit of the torus knot correlation functions,
as we will now see. The fact that ZQ,P is independent of Q,P up to a framing
factor strongly suggests that the spectral curves for different Q,P should be
symplectic transforms of each other. We will verify this and derive in this way
the results proposed in Sect. 3.

1 A direct calculation of the integral (4.1) is presented in [50] by using the formalism of
biorthogonal polynomials. The result seems to agree with the above calculations, but the
framing factor is not clearly identified.
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4.2. Saddle-Point Equations

We will now solve the matrix model (4.1), for the gauge group U(N), and at
large N . The first step is to derive the saddle-point equations governing the
planar limit. An alternative route, which provides of course much more infor-
mation, is to write full loop equations of the matrix model and then specialize
them to the planar part. This is presented in the Appendix.

As in [49,50], we first perform the change of variables

ui = PQ log xi, (4.15)

which leads to

N
∏

i=1

duie
−
∑

i u2
i /2ĝs

∏

i<j

(

2 sinh
ui − uj

2P

)(

2 sinh
ui − uj

2Q

)

= (PQ)N
N
∏

i=1

dxi

∏

i<j

(

xQ
i − xQ

j

)

(

xP
i − xP

j

)

×
N
∏

i=1

exp

[

−PQ

2gs
(log xi)

2 −
(

P + Q

2
(N − 1) + 1

)

log xi

]

. (4.16)

The matrix integral can then be written as

Z = (PQ)N

∫

RN
+

N
∏

i=1

dxi

∏

i<j

(

xQ
i − xQ

j

)

(

xP
i − xP

j

)

×
N
∏

i=1

exp

[

−PQ

2gs
(log xi)

2 −
(

P + Q

2
(N − 1) + 1

)

log xi

]

, (4.17)

where the variables xi = eui/PQ are thought of as the eigenvalues of a hermi-
tian matrix M of size N × N , with only real positive eigenvalues (xi ∈ R+).

Define now the resolvent

G(x) = Tr
x

x − M
=

N
∑

i=1

x

x − xi
. (4.18)

Our observables are expectation values of product of resolvents, and their
expansion into powers of gs. The 1-point function is

W (x) = 〈G(x)〉 =

∞
∑

g=0

g2g−1
s Wg(x) (4.19)

and its leading term W0(x) is called the spectral curve of the matrix model.
The 2-point function is

W2(x1, x2) = 〈G(x1)G(x2)〉(c)

= 〈G(x1)G(x2)〉 − 〈G(x1)〉 〈G(x2)〉 =

∞
∑

g=0

g2g
s Wg(x1, x2) (4.20)
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and, similarly, the connected n-point correlation function is the cumulant of
the expectation value of the product of n resolvents

Wn(x1, . . . , xn) = 〈G(x1)G(x2) . . . G(xn)〉(c) =
∞
∑

g=0

g2g+n−2
s Wg(x1, . . . , xn).

(4.21)

We will denote in the following

ω = exp

(

2πi

PQ

)

(4.22)

and the ’t Hooft parameter of the matrix model is, as usual,

t = gsN. (4.23)

The saddle-point equations for the matrix integral (4.17) are simply

∑

j �=i

[

PxP
i

xP
i − xP

j

+
QxQ

i

xQ
i − xQ

j

]

=
PQ

gs
log xi +

P + Q

2
(N − 1) + 1. (4.24)

If we use the identity

PxP−1

xP − yP
=

P−1
∑

k=0

1

x − ω−kQy
, (4.25)

we can write the first term in (4.24) as

∑

j �=i

2xi

xi − xj
+

P−1
∑

k=1

∑

j �=i

xi

xi − ω−kQxj
+

Q−1
∑

k=1

∑

j �=i

xi

xi − ω−kP xj
. (4.26)

But

∑

j �=i

xi

xi − ω−kQxj
=

N
∑

j=1

xi

xi − ω−kQxj
− 1

1 − ω−kQ

=
1

gs
W0(xiω

kQ) − 1

1 − ω−kQ
, (4.27)

and the equation of motion reads, at leading order in 1/N ,

PQ log x +
P + Q

2
t

= W0(x + i0) + W0(x − i0) +

P−1
∑

k=1

W0(xωkQ) +

Q−1
∑

k=1

W0(xωkP ). (4.28)

This is the equation we will now solve.
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4.3. Solving the Saddle-Point Equations

The resolvent W0(x) is analytic in C\C, where C is a finite set of cuts in the
complex plane. It satisfies

lim
x→0

W0(x) = 0, (4.29)

and

lim
x→∞

W0(x) = t. (4.30)

We now write the exponentiated version of the resolvent as

y = C0 x e− P+Q
P Q

W0(x) (4.31)

where

C0 = − e
P+Q
2P Q

t. (4.32)

y is analytic in C\C and satisfies the equation,

y(x + i0)

P−1
∏

k=1

y(xωkQ)

Q−1
∏

k=1

y(xωkP ) =
1

y(x − i0)
, (4.33)

as well as the boundary conditions

y(x) ∼ C0x, x → 0, (4.34)

and

y(x) ∼ C−1
0 x, x → ∞. (4.35)

Notice that y vanishes only at x = 0 and diverges only at x = ∞.
We now introduce the P + Q functions

Fk(x) =
P−1
∏

l=0

y(x ωkP+lQ), 0 ≤ k ≤ Q − 1,

FQ+l(x) =

Q−1
∏

k=0

1

y(x ωkP+lQ)
, 0 ≤ l ≤ P − 1.

(4.36)

If we assume that y(x) has a single-cut C on an interval [a, b], then Fk has
cuts through the rotations of this cut by angles which are integer multiples of
2π/PQ.

If 0 ≤ k ≤ Q − 1 and 0 ≤ l ≤ P − 1, both Fk and FQ+l have a cut across
ωkP+lQC, and according to (4.33), under crossing the cut we have

Fk(x − i0) = FQ+l(x + i0). (4.37)

This implies that the function

S(x, f) =

P+Q−1
∏

k=0

(f − Fk(x)) (4.38)

has no cut at all in the complex plane:

S(x + i0, f) = S(x − i0, f). (4.39)
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Its only singularities may occur when y = ∞ or when y = 0 (indeed y appears
in the denominator in (4.36)), and thus the only singularities are poles at x = 0
or x = ∞. If we write

S(x, f) =

P+Q
∑

k=0

(−1)k Sk(x) fP+Q−k (4.40)

then each Sk(x) is a Laurent polynomial of x. Besides, it is clear that

S(ωx, f) = S(x, f), (4.41)

therefore each Sk(x) is in fact a Laurent polynomial in the variable xPQ. We
clearly have

S0(x) = 1 , SP+Q(x) =

P+Q−1
∏

k=0

Fk(x) = 1, (4.42)

as well as the boundary conditions

0 ≤ k ≤ Q − 1 Fk(x) ∼ − (−1)P ωkP 2

CP
0 xP , x → 0,

Fk(x) ∼ − (−1)P ωkP 2

C−P
0 xP , x → ∞, (4.43)

0 ≤ l ≤ P − 1 FQ+l(x) ∼ − (−1)Q ω−lQ2

C−Q
0 x−Q , x → 0,

FQ+l(x) ∼ − (−1)Q ω−lQ2

CQ
0 x−Q , x → ∞. (4.44)

This shows that the symmetric functions Sk of the Fks must satisfy

x → 0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 ≤ k ≤ P − 1, Sk(x) = O(x−kQ),

k = P, Sk(x) = (−1)P+Q C−PQ
0 x−PQ

× (1 + O(x)) ,
P + 1 ≤ k ≤ P + Q − 1, Sk(x) = O

(

x−PQx(k−P )P
)

,

(4.45)

and

x → ∞s

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 ≤ k ≤ Q − 1, Sk(x) = O(xkP ),

k = Q, Sk(x) = (−1)P+Q C−PQ
0 xPQ

× (1 + O(1/x)) ,
Q + 1 ≤ k ≤ P + Q − 1, Sk(x) = O

(

xPQx−(k−Q)Q
)

.

(4.46)

Since Sk(x) are functions of xPQ, the above behavior implies the following
form for S(x, f):

S(x, f) = fP+Q + 1 + (−1)QC−PQ
0 x−PQ fQ

+(−1)P C−PQ
0 xPQ fP +

P+Q−1
∑

k=1

skfk (4.47)

where sk are constants. The functions f = Fk(x) and f = FQ+l(x) must all
obey this algebraic relationship between xPQ and f :

S(x, f) = 0. (4.48)

We still have to determine the coefficients sk.
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4.4. Derivation of the Spectral Curve

Our matrix model (4.1) can be regarded as a perturbation of a Gaussian matrix
integral, and thus the resolvent should have only one cut, i.e., the spectral curve
must be rational. This determines the coefficients sk.

Saying that an algebraic equation S̃(xPQ, f) = 0 is rational means that
there exists a rational parametrization of the solution. Since the equation is
of degree 2 in xPQ, this means that, for each f , we have two possible values
for xPQ, i.e., two points on the spectral curve. In other words, f is a rational
function of degree 2 of an auxiliary parametric variable which we call V (later
we shall see that it indeed coincides with the function V (x) defined in (3.25)).
Upon a Moebius change of variable on V , we can always fix 3 points, and
assume that f has a pole at V = ∞ and at V = 1, and a zero at V = 0, i.e.,
we write it

f = A V
1 − c−2 V

1 − V
, (4.49)

where the location of the second zero c2 is to be determined later, but will
eventually agree with the value given by the definition (3.13). Since the equa-
tion is of degree P + Q in f , this means that, for each xPQ, we have P + Q
values for f , i.e., P + Q points on the spectral curve. We conclude that xPQ

is a rational function of degree P + Q of the auxiliary parametric variable V

xPQ = RP+Q(V ), (4.50)

where RP+Q is a rational function with P + Q poles. Moreover, the behavior
at x → 0 (i.e., at V → 0 or V → c2) can be of the form

f = Fk = O(xP ) = O(x
P Q
Q ). (4.51)

Since f is a rational function, it cannot behave like a fractional power; there-
fore, xPQ must have a zero of an order which is a multiple of Q, let us say at
V = c2. The behavior of

f = FQ+l = O(x−Q) (4.52)

implies that xPQ must have a pole of an order which is a multiple of P , let
us say at V = 0. Similarly, the behaviors at x → ∞, i.e., V → 1 or V → ∞,
imply that xPQ has a pole of an order which is a multiple of Q and a zero
of an order which is a multiple of P . Since the total degree of xPQ is P + Q,
this means that the orders of the poles and zeroes must be exactly P and Q,
respectively, and there are no other possible poles and zeroes. We have then
obtained that

xPQ = B V −P

(

1 − c−2V

1 − V

)Q

. (4.53)

Matching the behaviors of (4.43) and (4.44) gives the values of the coefficients
A, c,B:

A = −1, c = et/2, B = cP+Q, (4.54)
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and in particular identifies c = et/2 with the variable introduced in (3.13). We
finally obtain,

xPQ = cP+QV −P

(

1 − c−2V

1 − V

)Q

,

f = − V
1 − c−2 V

1 − V
.

(4.55)

Notice that the relation between X = x−PQ and V is precisely (3.26).
To complete the derivation of our spectral curve, let us recall the rela-

tionship between f and the resolvent. We have, by definition of the resolvent,

W (x) = 〈G(x)〉 =

〈

Tr
x

x − M

〉

=

∞
∑

k=0

x−k
〈

TrMk
〉

=

∞
∑

k=0

x−k

〈

N
∑

i=1

ekui/PQ

〉

(4.56)

and

P−1
∑

l=0

W (ωlQx) =

P−1
∑

l=0

〈

Tr
x

x − ω−lQM

〉

= P

〈

Tr
xP

xP − MP

〉

= P
∞
∑

k=0

x−kP

〈

N
∑

i=1

ekui/Q

〉

. (4.57)

In the planar limit we obtain,

〈

Tr
xP

xP − MP

〉

g=0

=
1

P

P−1
∑

l=0

W0(ω
lQx)

= − 1

P

P−1
∑

l=0

PQ

P + Q
ln

y(ωlQx)

C0 ωlQ x

= − Q

P + Q
ln

F0(x)

(−1)P−1 CP
0 xP

= − 1

P + Q
ln

(−F0(x))Q

(−C0)PQ xPQ
. (4.58)

In other words, the resolvent of MP is (up to trivial terms), the log of F0(x),
which is one branch of the algebraic function f . From our explicit solution
(4.55), we find that

(−f)Q

(−C0)PQ xPQ
= (V e−t)P+Q (4.59)

therefore

∞
∑

k=0

x−kP

〈

N
∑

i=1

ekui/Q

〉

=

〈

Tr
xP

xP − MP

〉

g=0

= t − lnV (x). (4.60)
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We have then proved that t − lnV (x) is the resolvent of MP . It allows to
compute expectation values of traces of powers of M which are multiples of
P . Our derivation also shows that the X in (3.30) is

X = x−PQ. (4.61)

Since the relation between X = x−PQ and V is precisely (3.26), we have
derived the torus knot spectral curve from the matrix model.

We can also deduce from this derivation an interpretation for the coeffi-
cients of the fractional powers of X appearing in the calculations of Sect. 3:
they compute the correlators of the more general operators

chR

(

eu/Q
)

(4.62)

in the matrix model, which should correspond to “fractional holonomies”
around torus knots in Chern–Simons theory. Finally, we should mention that
the same method used to derive the spectral curve makes possible in principle
to compute the 2-point function (3.56), and to prove the topological recursion
(3.52).

5. Conclusions and Prospects for Future Work

In this paper, we have proposed and derived a spectral curve describing torus
knots and links in the B-model. The curve turns out to be a natural gener-
alization of [3]: one has just to consider the full Sl(2, Z) group acting on the
standard curve describing the resolved conifold. Our result fits in very nicely
with the construction of torus knot operators in Chern–Simons gauge theory,
and with the matrix model representation of their quantum invariants.

As we mentioned in the introduction, the ingredients we use to deal with
torus knots are the same ones that were used to deal with the framed unknot.
Going beyond torus knots in the context of topological string theory (for exam-
ple, the figure-eight knot) will probably require qualitatively new ingredients
in the construction, but this is already the case in Chern–Simons gauge theory,
where the colored invariants of generic knots involve the quantum 6j coeffi-
cients [14,53]. We hope that the results for torus knots obtained in this paper
will be useful to address the more general case.

The structure we have found for the invariants of torus knots should have
an A-model counterpart. In the A-model, framing arises as an ambiguity asso-
ciated with the choice of localization action in the moduli space of maps with
boundaries [29], and the open string invariants depend naturally on an integer
parametrizing this ambiguity. Our analysis indicates that there should be a
two-parameter family of open string invariants generalizing the computations
made for the unknot. These open string invariants can be in principle com-
puted in terms of intersection theory on the moduli space of Riemann surfaces.
As an example of this, consider the coefficient of the highest power of c (which
is P +Q) in the HOMFLY invariant of the (Q,P ) torus knot (3.31) with fram-
ing QP . This coefficient, which we call aP+Q(q), can be expanded in a power
series in gs:
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aP+Q(q) =
∑

g≥0

a
(g)
P+Qg2g−1

s . (5.1)

It is easy to see from the results of [29,42] that the coefficients a
(g)
P+Q are given

by:

a
(g)
P+Q =

(−1)gQ

(Q − 1)!

Q−1
∏

j=1

(j + P )Resu=0

×
∫

Mg,1

cg(E
∨(u))cg(E

∨((−P/Q − 1)u))cg(E
∨(Pu/Q))

u2(u − Qψ1)
. (5.2)

In this formula, as in [29,42], Mg,1 is the Deligne–Mumford compactification
of the moduli space of genus g, 1-pointed Riemann surfaces, ψ1 is the Chern
class of the tautological line bundle L1 → Mg,1, E is the Hodge bundle over

Mg,1, and we denote

cg(E
∨(u)) =

g
∑

i=0

cg−i(E
∨)ui. (5.3)

Although we have written down an example with h = 1, the generalization to
higher h invariants, in the spirit of [42], is immediate. Perhaps these formulae
can lead to an explicit A-model description of torus knot invariants, and in
particular shed some light on the proposals for the corresponding Lagrang-
ian submanifolds made in [30,33,48]. Notice that, according to our descrip-
tion, the A-model invariants should involve some sort of fractional framing.
Such framings, in the context of A-model localization, have been considered
in [10,11,15]. In particular, the close relation of torus knots with non-triv-
ial lens spaces strongly suggests that localization formulae for orbifolds could
shed light on the appearance of the fractional powers in the expansion of torus
knots amplitudes (3.30); this should be related to considering a quotient of the
theory of the conifold, with the fractional invariants arising from vevs of an
appropriate number of twisted observables in the relevant boundary CFT. Of
course, it should be possible to implement the general symplectic transforma-
tion we are considering directly in the topological vertex.

Although in this paper we have focused on the spectral curve of the
resolved conifold, one can consider general Sl(2, Z) transformations of open
string amplitudes defined by arbitrary spectral curves. In some cases, these
transformations have a knot theory interpretation. For example, the outer
brane in local P

1 × P
1 describes the unknot in L(2, 1) = RP

3 [8], and its gen-
eral modular transformations should describe torus knots in this manifold. It
would be also interesting to see what is the relation between the approach to
torus knots in this paper and the recent work based on Hilbert schemes of
singularities in C

2 [44].
The topological recursion of [19], which computes open and closed topo-

logical string amplitudes in toric Calabi–Yau manifolds, might have a gener-
alization which gives the mirror of the refined topological vertex [25] (recent
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work in this direction can be found in [1]). If the only data entering in this
generalization turn out to be the same ones appearing in the original recursion
(i.e., if the refinement only requires the knowledge of the spectral curve and of
the natural differential on it, as it happens for example in the β deformation
[12]), then one should be able to use our spectral curve (3.25) to refine the
colored HOMFLY polynomial of torus knots. The resulting refinement should
provide interesting information on the Khovanov homology of torus knots and
might lead to a computation of their “superpolynomial” [17,23], as well as of
its generalizations to higher representations.

Finally, the techniques developed in this paper to analyze the matrix
model for torus knots will probably be very useful in order to understand the
large N limit of the more general matrix models for Seifert spheres introduced
in [38]. Such a large N limit would give a way to derive the dual string geom-
etries to Chern–Simons theory in more general rational homology spheres—a
dual which has remained elusive so far.
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Albrecht Klemm, Sébastien Stevan and Pawel Traczyk for useful discussions
and correspondence. The work of A. B. and M. M. is supported in part by
FNS. The work of B. E. is partly supported by the ANR project GranMa
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Appendix A. Loop Equations

In this Appendix, we derive the loop equations for the matrix integral (4.17).
In the following, it is useful to notice that the resolvent G(x) defined in (4.18)
satisfies

Q−1
∑

a=0

G(ωaP+bQx) =
∑

i

Q (ωbQx)Q

(ωbQx)Q − xQ
i

(A.1)

As it is well known, the method of loop equations consists in observing
that an integral is unchanged under change of variables. In our case, we shall
perform the infinitesimal change of variable xi → xi + ǫδxi + O(ǫ2) where

δxi =

Q−1
∑

a=0

P−1
∑

b=0

ωaP+bQ x xi

ωaP+bQ x − xi
. (A.2)

The loop equation, which computes the term of order 1 in ǫ, can be written as
〈

δ ln ∆(xQ
i ) + δ ln ∆(xP

i ) +
∑

i

∂δxi

∂xi

〉

=

〈

∑

i

V ′(xi) δxi

〉

(A.3)
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where

V ′(x) =
PQ

gs

lnx

x
+

(

P + Q

2
(N − 1) + 1

)

1

x
. (A.4)

We thus have to compute

δ ln ∆(xQ
i ) = Q

P−1
∑

b=0

∑

i<j

(ωbQx)Q

QxQ
i

(ωbQ x)Q−xQ
i

− QxQ
j

(ωbQ x)Q−xQ
j

xQ
i − xQ

j

= Q2
P−1
∑

b=0

∑

i<j

(ωbQx)2Q 1

(ωbQ x)Q − xQ
i

1

(ωbQ x)Q − xQ
j

=
1

2

Q−1
∑

a=0

Q−1
∑

a′=0

P−1
∑

b=0

G(ωaP+bQx)G(ωa′P+bQx)

−Q2

2

P−1
∑

b=0

∑

i

(ωbQx)2Q 1

((ωbQ x)Q − xQ
i )2

. (A.5)

We also have

∑

i

∂δxi

∂xi
=

P−1
∑

b=0

Q−1
∑

a=0

∑

i

∂

∂xi

(

(ωaP+bQx)2

ωaP+bQx − xi
− ωaP+bQx

)

=
P−1
∑

b=0

Q−1
∑

a=0

∑

i

(ωaP+bQx)2

(ωaP+bQx − xi)2

= −x2 ∂

∂x

P−1
∑

b=0

Q−1
∑

a=0

∑

i

ωaP+bQ

(ωaP+bQx − xi)

= −x2 ∂

∂x

P−1
∑

b=0

∑

i

ωbQ Q (ωbQx)Q−1

((ωbQx)Q − xQ
i )

=

P−1
∑

b=0

∑

i

Q2 (ωbQx)2Q

((ωbQx)Q − xQ
i )2

−
P−1
∑

b=0

∑

i

Q(Q − 1) (ωbQ x)Q

((ωbQx)Q − xQ
i )

=

P−1
∑

b=0

∑

i

Q2 (ωbQx)2Q

((ωbQx)Q − xQ
i )2

− (Q − 1)

Q−1
∑

a=0

P−1
∑

b=0

G(ωaP+bQx).

(A.6)

The loop equation then gives

1

2

Q−1
∑

a=0

Q−1
∑

a′=0

P−1
∑

b=0

〈

G(ωaP+bQx)G(ωa′P+bQx)
〉

+
1

2

Q−1
∑

a=0

P−1
∑

b=0

P−1
∑

b′=0

〈

G(ωaP+bQx)G(ωaP+b′Qx)
〉
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=

Q−1
∑

a=0

P−1
∑

b=0

〈

∑

i

(

xiV
′(xi) +

P + Q − 2

2

)

ωaP+bQx

ωaP+bQx − xi

〉

, (A.7)

i.e.,

1

2

Q−1
∑

a=0

Q−1
∑

a′=0

P−1
∑

b=0

〈

G(ωaP+bQx)G(ωa′P+bQx)
〉

+
1

2

Q−1
∑

a=0

P−1
∑

b=0

P−1
∑

b′=0

〈

G(ωaP+bQx)G(ωaP+b′Qx)
〉

=

Q−1
∑

a=0

P−1
∑

b=0

〈

∑

i

(

PQ

gs
lnxi +

P + Q

2
N

)

ωaP+bQx

ωaP+bQx − xi

〉

=

Q−1
∑

a=0

P−1
∑

b=0

(

PQ

gs
ln (ωaP+bQx) +

P + Q

2
N

)

〈

G(ωaP+bQx)
〉

−
Q−1
∑

a=0

P−1
∑

b=0

PQ

gs
ωaP+bQx

〈

∑

i

ln (ωaP+bQx) − lnxi

ωaP+bQx − xi

〉

. (A.8)

This is then our main loop equation:

1

2

Q−1
∑

a=0

Q−1
∑

a′=0

P−1
∑

b=0

〈

G(ωaP+bQx)G(ωa′P+bQx)
〉

+
1

2

Q−1
∑

a=0

P−1
∑

b=0

P−1
∑

b′=0

〈

G(ωaP+bQx)G(ωaP+b′Qx)
〉

=

Q−1
∑

a=0

P−1
∑

b=0

(

PQ

gs
ln (ωaP+bQx) +

P + Q

2
N

)

〈

G(ωaP+bQx)
〉

−
Q−1
∑

a=0

P−1
∑

b=0

PQ

gs
ωaP+bQx

〈

∑

i

ln (ωaP+bQx) − lnxi

ωaP+bQx − xi

〉

. (A.9)

We deduce that the spectral curve W0(x) satisfies

1

2

Q−1
∑

a=0

Q−1
∑

a′=0

P−1
∑

b=0

W0(ω
aP+bQx)W0(ω

a′P+bQx)

+
1

2

Q−1
∑

a=0

P−1
∑

b=0

P−1
∑

b′=0

W0(ω
aP+bQx)W0(ω

aP+b′Qx)

= gs

Q−1
∑

a=0

P−1
∑

b=0

(

PQ

gs
ln (ωaP+bQx) +

P + Q

2
N

)

W0(ω
aP+bQx) − P (x),

(A.10)
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where

P (x) =

Q−1
∑

a=0

P−1
∑

b=0

PQ ωaP+bQx

〈

∑

i

ln (ωaP+bQx) − lnxi

ωaP+bQx − xi

〉

. (A.11)

We will now assume that W0(x) has only one cut C in the complex plane. P (x)
has no discontinuity through C,

P (x + i0) = P (x − i0), (A.12)

and the functions W0(ω
aP+bQx) with (a, b) = (0, 0) have no cut either, so it

follows that

W0(x + i0)2 +

Q−1
∑

a′=1

W0(x + i0)W0(ω
a′P x) +

P−1
∑

b′=1

W0(x + i0)W0(ω
b′Qx)

−
(

PQ lnx +
P + Q

2
t

)

W0(x + i0)

= W0(x − i0)2 +

Q−1
∑

a′=1

W0(x − i0)W0(ω
a′P x) +

P−1
∑

b′=1

W0(x + i0)W0(ω
b′Qx)

−
(

PQ lnx +
P + Q

2
t

)

W0(x − i0), (A.13)

i.e., if we put all terms in the left hand side and divide by W (x+i0)−W (x−i0),
we get the equation (4.28) which we derived with the saddle-point method.
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91191 Gif-sur-Yvette Cedex, France
e-mail: bertrand.eynard@cea.fr

Communicated by Krzysztof Gawȩdzki.
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