
Vol.:(0123456789)1 3

Arabian Journal for Science and Engineering (2021) 46:9221–9235

https://doi.org/10.1007/s13369-021-05743-z

RESEARCH ARTICLE-COMPUTER ENGINEERING AND COMPUTER SCIENCE

TOSDS: Tenant-centric Object-based Software Defined Storage
for Multitenant SaaS Applications

Aditi Sharma
1
 · Parmeet Kaur

1

Received: 4 September 2020 / Accepted: 20 May 2021 / Published online: 16 June 2021

© King Fahd University of Petroleum & Minerals 2021

Abstract

Enormous amounts of unstructured data such as images, videos, emails, sensors’ data and documents of multiple types are

being generated daily by varied applications. Apart from the challenges related to collection or processing of this data, its

efficient storage is also a significant challenge since this data do not conform to any predefined storage model. Therefore,

any enterprise dealing with huge unstructured data requires a scalable storage system that can provide data durability and

availability at a low cost. The paper proposes a tenant-centric approach to develop an object-based software defined storage

system for SaaS multi-tenant applications. We present TOSDS (Tenant-centric Object-based Software Defined Storage), a

system that can efficiently meet the storage requirements of users or tenants with diverse needs who are using a multitenant

SaaS application. The experimental verification of TOSDS illustrates its effectiveness in storage utilization as well as tenant

isolation.

Keywords Multitenancy · Distributed database · Software defined storage · Location · Bin · Virtualization · Object storage

1 Introduction

The last decade has witnessed a focus on digitalization in all

types and scales of industries. With each passing year, com-

panies and individuals are moving their data from physical

storage to online storage. Furthermore, in the aftermath of

COVID-19 pandemic, even small industries have moved to

the digital world, thus adding more data to the existing pool

of Big Data [1]. In this digital era, it is more or less impos-

sible to store or process the humungous data on a single

machine; thereby leading to the need for distributed systems.

For faster processing, designing an efficient distributed stor-

age system is the need of the hour.

The most common existing and popularly used distributed

environments involve Cloud based solutions for data stor-

age [2]. Development and maintenance of system resources

such as data storage infrastructure are cost-inefficient for

individual users. On the other hand, since Cloud services

follow a pay-as-you-go model, a customer pays only for the

demanded services, thus reducing cost to a greater extent.

The various popular models of cloud service delivery

include Infrastructure as a service, Platform as a service and

Software as a service. Software defined technologies such

as SDNs (Software Defined Networks), SDDCs (Software

Defined Data Centers) and SDS (Software Defined Stor-

age) are leading to efficient implementation of the cloud

services. Of these, SDS is emerging as the focus area for

many research efforts due to its obvious importance in the

era of Big Data. Software Defined Storage is a well-organ-

ized storage approach that provides flexibility and scalability

in the system architecture along with better performance and

cost efficiency. This is possible because SDS separates the

software layer from the hardware of the processor. Software-

defined storage (SDS) is a kind of virtualization technology

for cloud storage. To improve availability of data, SDS uses

an additional control layer having required software to inte-

grate the resources [3].

System architecture of SDS has been depicted in Fig 1.

In a traditional storage system like Hard Disk Drive (HDD),

Phase Change Memory (PCM), Shingled Write Disk (SWD),

Solid State Drive (SSD) etc., there exists a storage interface

which needs to be changed depending on the dynamic envi-

ronment [4]. This implies that this storage interface needs

 * Aditi Sharma

 aditi.sharma@jiit.ac.in

 Parmeet Kaur

 parmeet.kaur@jiit.ac.in

1 Jaypee Institute of Information Technology, Noida, India

http://orcid.org/0000-0001-6504-5742
http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-021-05743-z&domain=pdf

9222 Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

to be updated for different user requests involving data of

varied types. Whereas, in SDS there is a control layer with

defined set of rules for different data types to handle varied

user requests with software APIs [5].

Motivated by the importance of SDS, this paper proposes

a generic architecture for improving storage in a multitenant

system using the concept of object-based software defined

storage. Multitenancy is the most commonly used approach

to build scalable SaaS applications. In case of SaaS model,

multi-tenant architecture can be a cost-effective choice over

a single-tenant architecture for building scalable applica-

tions. Further, a multi-tenant architecture can be used to

build scalable storage systems for shared access to resources

[6]. Multitenancy can effectively reduce the redundant data

of each system by avoiding storage of duplicate data and it

also avoids data inconsistency. Tenants use a common infra-

structure but may have varied data attributes or features.

Moreover, there can be variations in the data usage patterns,

data access frequency rate, priority, etc. among the tenants.

Considering this, it is postulated that segregation of these

diverse tenants based on their distinguished features will

lead to better storage allocation and improved system per-

formance [7, 8].

This paper proposes an implementation of TOSDS, a ten-

ant centric, software defined object-based storage system

for SaaS applications. The architecture is illustrated with

an example of an educational SaaS application, where it is

assumed that universities, colleges, institutions, schools are

the individual tenants. Apart from businesses, the educa-

tional sector has moved to digital platform during the Covid

19 pandemic [1, 9]. Earlier, it was just limited to Massive

Open Online Courses (MOOC); however, online education

will be a new normal in the near future. Thus, software as

a service (SaaS) model of cloud computing can bring great

advantage to the schools and universities. In a multi-tenant

architecture, multiple universities or schools, termed as ten-

ants, can work in a shared environment with access to shared

study materials and related resources [10]. Apart from edu-

cation, the presented work is suitable for other multitenant

SaaS applications as well, such as those storing data of cus-

tomers of various branches of banks; Event booking systems

with Movie halls, Conference/Workshop, Adventure parks

as tenants or a corporate with big data of its geographically

distributed offices, etc.

The highlights of TOSDS are as follows:

• Object based Software defined storage (SDS) is used for

implementation, thus ensuring durability and high avail-

ability.

• A tenant-centric approach for storage allows an enhanced

user experience in terms of response time.

• Storage allocation for tenants is possible statically as well

as dynamically.

The rest of the paper is structured as follows: The related

work is discussed in Sect. 2. Design of the proposed system,

TOSDS is presented in Sect. 3. Results of implementation

are described in Sect. 4. Consideration of privacy require-

ments of tenants within the proposed system is discussed in

Sect. 5. Finally, we conclude the article.

2 Background and Related Work

2.1 Object Based Software Defined Storage

Data storage was a straightforward task in traditional sys-

tems where applications involved limited size of structured

data. However, massive influx of documents, files, videos,

etc. into the digital world has sparked a debate to choose

an appropriate data storage which can handle such expo-

nentially growing volumes of unstructured data. There

are three basic types of storage being used now-a-days,

namely: File, Block and Object storage [4]. For a small

enterprise, with limited storage requirements, file storage

can be used to store data in a well-organized, hierarchi-

cal manner. It is user friendly, easy to operate and hence,

generally used for local archiving and file sharing appli-

cations. In block storage approach, data are divided into

blocks of fixed size, where each block has an individual

address. Mostly enterprises, databases, email servers,

Fig. 1 Software Defined Storage Architecture

9223Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

RAID, virtual machines employ block storage for better

scalability as compared to file storage. In contrast to block

storage, object storage strategy does not split data into

blocks [11]. Instead, objects, each with a unique identi-

fier, are used to encapsulate data and metadata. Due to

its scalability and flexibility to handle unstructured data,

popular online platforms, forums like Facebook, Amazon

S3, OpenStack or Spotify [12], etc. use object storage for

their implementation.

Unlike traditional storage, software defined storage

(SDS) abstracts the hardware layer from the software

layer of the system. In addition, it incorporates a control

layer for better processing of software with the hardware

[4]. Thus, an IT administrator has the flexibility to choose

hardware from different vendors in a single storage system.

This is in contrast to traditional storage systems where

hardware infrastructure of a fixed type was available with

any storage service. The advantage of SDS can be illus-

trated with a simple use case. Suppose there is a single

datastore in a system that is used for data storage, but

with time, data are exponentially growing, leading to the

requirement for scalability in storage. In order to increase

the storage capacity, traditional systems used the scale-up

technique which focuses on increasing the system capac-

ity by adding a new component such as disk, drive in the

existing system. Therefore, this datastore can be upgraded

to a more powerful and bigger datastore by adding more

drives, making it capable to handle more data. On the other

hand, SDS uses scaling-out method instead of scaling-up

for achieving scalability. Nodes are added in parallel one

at a time to the existing SDS cluster, i.e., scale-out method

focuses on adding more components in parallel rather than

just increasing a component’s capacity [13].

Software defined storage offers the following

advantages:(a) Elasticity: Since software and hardware

layers are independent of each other, it is straightforward

to upgrade or downgrade the system capacity. (b) Cost

Effectiveness: System can be upgraded without replacing

existing hardware. (c) Vendor Neutrality: IT administra-

tor is free to opt for hardware from different vendors for

building a single system. (d) Flexibility: Depending on the

application requirement, different hardware can be used for

different applications

Thus, the decoupling of hardware layer from the soft-

ware layer in SDS allows upgrading or downgrading hard-

ware without interfering with the storage system. Object

storage is seen as the de-facto choice when highly scalable

systems need to be developed for storage of unstructured

data. In comparison, File or Block storage are preferred if

data needs to be frequently fetched or updated. Therefore,

this work proposes a system for Object based Software

defined storage (SDS) system.

2.2 Literature Review

Education plays a very crucial role in the well-being of a

nation and hence, various countries are investing in infra-

structure such as cloud-based systems for the education

sector. Authors of the work presented in [2] have com-

prehensively surveyed the importance of Cloud Comput-

ing in the field of education. They have explored various

aspects including role of stakeholders such as faculties,

students, parents as well as that of a University in a cloud-

based education system. Unlike traditional education

resources, SaaS based cloud model has been found to be a

cost-efficient option as it follows pay-as-you-go model. It

decreases the carbon footprint and provides a highly avail-

able and scalable model. The concept of multitenancy is

quite popular with cloud storage; an example of which is

illustrated in a multi-cloud [14] setup. This setup provides

high availability, as different tenants’ data with customized

requirements is replicated and distributed between multi-

ple clouds. However, this architecture is quite complex and

hence, authors have presented a data management middle-

ware platform which is responsible to provide abstraction

between different cloud storage and designing policy for

data distribution among respective clouds. For designing

a multi-tenant architecture, different factors are considered

such as data isolation among different tenants, data secu-

rity, query optimization and query response time. It has

been observed by the authors [15] that there is a trade-off

between system performance and storage space.

SaaS applications are quite prevalent but still need to

address few significant concerns [16]. For enterprise SaaS

applications, authors of [16] have tried to explore three

such important issues. Firstly, they discuss implementation

of tenant context storage and propagation for which they

use a thread-specific storage to implement tenant specific

customization. The second issue considered in this work

is connecting different logical tables together, which the

authors address using schema-mapping. Lastly, the authors

discuss integration of ORM (object-relational mapping)

framework. A SaaS based Multitenant system architecture

for educational institutions has been proposed in [9]. It

considers various entities related to a University, such as

colleges, research institutes, student unions as individual

tenants. The proposed distributed database access platform

uses SQL, hibernate and J2EE technology for its imple-

mentation. A multi-tenant database architecture using a

column-based NoSQL datastore has been presented in our

previous work in [17]. Different tenants work in a shared

environment in the proposed multi-tenant system. In such

a scenario, apart from providing high availability and scal-

ability, isolation of these tenants is another important chal-

lenge. Therefore, this multitenant system architecture has

been implemented using the concept of Materialized views

9224 Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

in Cassandra; thus, providing a shared environment along

with a sense of isolation to the tenants.

The design of a scalable multi-tenant SDS system has

been proposed in [18]. Authors have introduced a Hierarchi-

cal Bin Packing algorithm for dynamic allocation of tenant

data load over the available storage space. This is a scalable

approach in which tenants are hierarchically clustered based

on multiple scenario-specific characteristics. Authors have

extended their work in [19], which presents a Multi-tenant

system for dynamic tenant load allocation. In this approach,

to minimize network latencies, tenants are hierarchically

arranged such that the tenants’ data are stored in proximity to

the designated application server. Instead of relational data,

authors have focused on allocation of blob data. Two hierar-

chical bin-packing approximation algorithms that can work

both for static and dynamic loads have been proposed in the

paper. First algorithm is Hierarchical First-Fit Decreasing

(HFFD) strategy and second one is the Hierarchical Greedy

Decreasing strategy (HGD). These algorithms work similar

to First- Fit Decreasing (FFD). Both of these algorithms

are quite similar in their layout but give distinct results on

execution over static data and dynamic data. This work also

focuses to minimize the migration of tenants’ data over time.

Authors have also proposed dynamic variants of these algo-

rithms; dHFFD and dHGD. It was concluded that dHFFD

is best suited for static allocation. For dynamic allocation

which may involve data migration between different bins,

dHGD reduced the number of migrations in comparison to

dHFFD. However, average bin usage of dHGD is signifi-

cantly lower than dHFFD, thus having higher operative cost.

The work in [20] presents an analytical model using

multi-core virtual machines hosting cloud SaaS applica-

tions. Every SaaS application provides some quality-of-

service parameters (QoS) such as availability, durability,

performance. Authors have proposed a model that can assess

and estimate the count of VM required corresponding to the

dynamic workload and can easily satisfy these QoS param-

eters. In this model, different SaaS applications are allocated

separate VMs; thus, providing ease of scalability as it is easy

to scale up by merely adding multi-core VMs and to scale

down by just removing VM.

In traditional storage systems, available storage space of

individual host server was required to be calculated before-

hand, prior to initializing the storing process. This situation

could become worse when it is required to check storage

space for all the hosts storage server, leading to time com-

plexity approximately equal to O(n) for n repositories. In

contrast, SDSs use a Function table which stores updated

available storage space for each individual host. This func-

tion table is kept at network switch. Thus, fetching avail-

able storage space is easier in the latter approach, which

takes only 0(1) time to complete this task [4]. In this paper,

authors have developed a SDS framework: “MinStor” which

is based on Mininet emulator-an OpenFlow-based SDN sim-

ulator. This work also highlights the concept of “Software

deployed” which is another associated concept to SDS. Sys-

tem resources and devices are controlled and managed by

a separate software in the software define storage. In com-

parison, software deployed systems do not use any separate

software or API to control and manage the resources; instead

the hardware object controls all of these. Unlike traditional

systems, in software deployed system the control layer can

control all the resources regardless of their vendor dispari-

ties. This is possible because in the data layer, resources are

substantially placed separately from the hardware.

SuperCell [21] is a SDS based system that uses IaaS

(Infrastructure as a Service) model. Authors have presented

a dynamic approach for handling growing data. This is a

Ceph-based distributed storage system, which initially allo-

cates basic requirements to the application with respect to

storage size and availability as well as the desired throughput

and response time. Post-deployment, SuperCell recommends

consequent changes after observing user’s requirement; thus,

providing scalability in a cost-effective manner.

With an increase in diverse amount of information, use

of traditional storage systems is not justifiable to overcome

data challenges of scalability, integration, and flexibility

[22]. With each passing year, growing storage space based

on estimated demand will be superseded. Another key con-

cern is to lower the overhead involved in handling hetero-

geneous storage system [23]. Authors have implemented a

cloud storage system to accomplish the notion of software

defined storage. This was achieved using heterogeneous stor-

age systems like Hadoop HDFS, Ceph and swift on Open

Stack, which were integrated using software APIs. A control

service was then implemented on the controller to handle

these storage services. In another work [24], authors have

used cubic spline interpolation and distribution mechanisms

to implement a scalable and on-demand cloud based SDS

system. This can be achieved by using Nova Compute which

is a component within the Open Stack.

Virtual machines in a cloud platform store data in the

form of large files on networked storage servers [25].

Software-defined file system (SDFS) is been proposed to

provide performance isolation by allocating resources at

per-image-file granularity. Like SDS, here SDFS also has

control plane and data plane. The control plane defines set

of system calls to map tenant’s performance requirement into

the metadata of image files and data plane has a file-based

scheduler which is used to handle storage resources custom-

ized according to tenant’s requirement.

The work in [26] proposes an application for storing

network-based digital evidence for crime scenes. For the

implementation, authors have used Ceph which is a soft-

ware defined storage, thus providing reliability, high scal-

ability and security from tampering the digital evidence.

9225Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

Another, recent application of SDS is optimizing resources

of distributed grid computing model: A Large Ion Col-

lider Experiment (ALICE) [27]. In this work, a SDS model

based on cloud and edge computing has been presented to

optimize the data storage of ALICE. Another software-

defined storage system: IOFlow has been proposed in

[28] for multitenant data centers. The main idea of this

system is that it abstracts the data plane from the control

plane. To implement this, the authors have used specific

layers termed as “stages” to enforce the input output flow

polices from the control plane. It offers low-level routing

and classification services to control flows and it also oper-

ates under I/O bandwidth limits. IOStack [29] is another

software-defined storage system for a multitenant object

store unlike IOFlow which supported file system storage.

Along with I/O policies, IOStack builds filters at the data

plane as discrete components which can be used for data

management techniques such as data reduction or data

optimization on incoming object requests. In [30], authors

have proposed Crystal: a multi-tenant software defined

storage architecture in object store, implemented in Open-

Stack Swift. Crystal is suitable to handle heterogeneous

applications with varied requirements as it decouples con-

trol policies from the data planes. In addition to policies

and filters, it uses two more abstractions: inspection trig-

gers and controller. Inspection trigger enables automatic

execution of filters with the help of real-time metrics and

metadata (size, type of the object etc.) from the objects.

Controller can either be a simple rule or a complex algo-

rithm to automate the execution of a filter. Distributed con-

trollers, DSL (Domain-Specific Language) and CrystalAPI

are used to build a centralized control plane.

The proposed system, TOSDS improves over the related

work described in this section as follows:

1) TOSDS is a tenant centric object-based software-defined

storage system that can handle both static as well as

dynamic data. Software-defined storage systems are

implemented to hasten and boost the performance of

the system with a minimum cost involved.

2) The proposed system’s main objective is to build an effi-

cient storage system for multiple tenants having distinct

data load with minimal data migration.

3) Most of the existing systems have not considered the

tenant load characteristics, apart from load size, while

allocating storage. The work closest to the proposed

system is Tenant Defined Storage [18, 19] which has

performed clustering of tenants based on only their loca-

tions. In comparison to [18, 19], our model focuses on

the storage-specific characteristics of the tenants’ data

loads such as load size, priority and frequency of access

of tenant’s data for clustering tenants.

A comparison of the features of the proposed system,

TOSDS, with existing systems is presented in Table 1.

3 Proposed System

In a multi-tenant system, different tenants with divergent

data requirements work in a shared environment. The pro-

posed data storage system follows a Shared Database, Same

Schema Multitenancy model. Multitenant system architec-

ture is generally more intricate than that of single tenant

architecture. This may be attributed to sharing of resources

by multiple tenants, while providing sense of data isolation

to each tenant. This paper highlights the application of such

a tenant-centric software defined architecture for educa-

tional SaaS applications. Different universities, colleges,

institutions, schools are assumed to be individual tenants in

this system. These tenants use a common infrastructure but

may possess varied data attributes or features; data access

frequency rate and priority. For instance, in a multitenant

SaaS application, some tenants, i.e., schools or colleges, may

use only the ERP services like fee collection, admissions,

Hostel allotment etc. These are generally one-time services

and their data is not fetched frequently from the storage.

Whereas, there could be handful of colleges/institutions

which are consuming content curation services, grading stu-

dents, conducting online classes, providing study material

etc. In the latter case, data will be frequently fetched from

the storage and some services may have higher priority than

the others. Considering this, it is essential to segregate these

diverse tenants based on their features and requirements.

The work presents TOSDS, a tenant-based storage allo-

cation model for a multitenant system. The underlying idea

is to firstly classify the tenants of the application based on

their features and storage requirements. Subsequently, stor-

age allocation is performed on the basis of this classification.

Each tenant is assumed to possess a set of attributes. Fig 2

shows the structure of the tenant node with the underlying

functions that have been used to implement the proposed

system. Each tenant has been assigned a unique identifier,

referred to as TNumber. Priority denotes the significance of

the tenant’s data load. It may be specified by the tenant and

vary as 1 (High), 2 (Medium) and 3 (Low); High, Medium

and Low, respectively. Frequency measures regularity in the

fetching of the data load which is scaled from 1 to 10. Class-

label attribute stores value 1 or 0 depending on the cluster to

which the tenant belongs. Dynamic array has been used to

store bin numbers assigned to store a tenant’s data.

The functionality of the proposed system is categorized

according to the type of tenant load. Initial experiments were

performed assuming tenant data load to be static. The sub-

sequent experiments also considered dynamic tenant data,

i.e., which shrinks or expands over time depending on tenant

9226 Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

requirements; this may lead to migration of data from one

bin to another.

3.1 Bin Allocation for Static Load

Firstly, we describe storage allocation for static tenant loads.

Fig 3 lists the algorithm showing working of the proposed

framework for static load. The proposed framework com-

prises of the following phases:

3.1.1 Clustering of the Tenants

Different tenants with varying requirements and specifica-

tions come together in a multitenant environment. With

respect to data storage, each tenant may have different fea-

tures such as size of data, priority of data, and access rate

or frequency of data access. In order to draw a fine line

between these tenants, the proposed approach employs a

feature-based clustering on the Tenant Load. In this phase,

tenants are classified into two groups: ACTIVE and PAS-

SIVE; encoded as “1” and “0”, respectively. ACTIVE ten-

ants are those who have higher data requirements than PAS-

SIVE tenants.

3.1.2 Allocation of Bins to the Tenant

After the clustering task is completed, the next phase assigns

storage bins to the tenant using a separate Bin allocation

policy for Active and Passive tenants.

For Active tenants (Algorithm 1 Fig. 3), the tenant load/

data is compared with a predefined metric, referred to as

the Allocation Threshold (Ʈ). Ʈ determines the maximum

amount of space that can be allocated for data storage in

a bin. It has been used to cater to dynamic load handling,

as discussed in the next section. We have assumed Ʈ as the

difference between the size of the bin (Size
Bi
) for storing a

tenant’s load and the data value of the Tenant with mini-

mum(MIN
T
) data load.

Ʈ is used to determine how much bin memory can be

allocated to these ACTIVE tenants. Remaining bin memory

has been termed as “Stash”, denoted by ʂ.

If tenant load is less than the allocation threshold, the

proposed approach allocates a dedicated bin to the tenant. In

this case, the assigned bin’s load is equivalent to the tenant’s

load (Steps 4 and 5 of Algorithm 1). However, if the tenant’s

load is higher than Ʈ, a dedicated bin is firstly assigned to

the tenant, using a value equal to allocation threshold as the

bin load (Step 6 of Algorithm 1). The remaining data load of

(1)

(2)

Ta
b

le
 1

 C

o
m

p
ar

is
o
n
 o

f
p
ro

p
o
se

d
 s

y
st

em
 w

it
h
 e

x
is

ti
n

g
 s

y
st

em
s

R
el

at
ed

 W
o
rk

s
T

y
p
e

o
f

S
to

ra
g
e

S
y
st

em
S

aa
S

A
p
p
li

ca
-

ti
o
n

H
an

d
le

s

d
y
n
am

ic
 d

at
a

lo
ad

S
p
ec

ia
l

co
n
si

d
er

at
io

n
 o

r

o
p
ti

m
iz

at
io

n

Im
p
le

m
en

ta
ti

o
n
 A

lg
o
-

ri
th

m
s

M
in

im
iz

e

d
at

a
m

ig
ra

-

ti
o
n

P
la

tf
o
rm

 f
o
r

S
im

u
-

la
ti

o
n
/

im
p
le

m
en

ta
-

ti
o
n

P
er

fo
rm

an
ce

 M
ea

su
re

s

T
en

an
t

D
efi

n
ed

 S
to

ra
g
e

[1
8
,
1
9
]

B
lo

b
 S

to
ra

g
e

Y
es

Y
es

T
en

an
ts

 a
re

 c
lu

st
er

ed

b
as

ed
 o

n
 t

h
ei

r
lo

ca
ti

o
n

H
ie

ra
rc

h
ic

al
 B

in
 P

ac
k-

in
g
 a

lg
o
ri

th
m

Y
es

C
A

v
er

ag
e

L
U

N
 u

ti
li

za
ti

o
n
,

re
al

lo
ca

ti
o
n
s

m
et

-

ri
cs

,
av

er
ag

e
d
is

ta
n
ce

b
et

w
ee

n
 t

h
e

n
o
d
es

S
D

S
to

ra
g
e

[4
]

S
to

ra
g
e

F
il

es
N

o
N

o
N

o
n
e

S
im

u
la

ti
o
n
 o

f
S

D
S

N
o

M
in

in
et

M
em

o
ry

 u
sa

g
e,

C
P

U
 t

im
e

Y
an

g
,
C

.
T

.,
 [

2
3
]

S
w

if
t

an
d
 C

ep
h

N
o

Y
es

N
o
n
e

C
u
b
ic

 s
p
li

n
e

in
te

rp
o
la

-

ti
o
n
 a

n
d
 d

is
tr

ib
u
ti

o
n

m
ec

h
an

is
m

s

N
o

O
p
en

S
ta

ck
N

et
w

o
rk

 t
h
ro

u
g
h
p
u
t

&
d
is

k
 w

ri
ti

n
g
 s

p
ee

d

C
ry

st
al

[3
0
]

O
b
je

ct
 S

to
re

N
o

Y
es

N
o
n
e

S
im

u
la

ti
o
n
 o

f
S

D
S

Y
es

O
p
en

S
ta

ck
 S

w
if

t
IO

 o
p
er

at
io

n
s

p
er

 s
ec

o
n
d
,

b
an

d
w

id
th

 u
sa

g
e

S
u
p
er

C
el

l
[2

1
]

C
ep

h
N

o
Y

es
N

o
n
e

R
ec

o
m

m
en

d
at

io
n

en
g
in

e

N
o

O
p
en

S
ta

ck
R

es
p
o
n
se

 t
im

e

O
u
r

M
o
d
el

 (
T

O
S

D
S

)
O

b
je

ct
 b

as
ed

Y
es

Y
es

T
en

an
ts

 a
re

 c
lu

st
er

ed

ac
co

rd
in

g
 t

o
 t

h
e

fe
a-

tu
re

s
o
f

th
e

d
at

a
lo

ad

B
in

-a
ll

o
ca

ti
o
n
 a

lg
o
-

ri
th

m
 f

o
r

S
ta

ti
c

&

D
y
n
am

ic
 d

at
a

Y
es

C
,
P

y
th

o
n

A
v
er

ag
e

B
in

 u
ti

li
za

ti
o
n
,

D
at

a
S

p
li

t
ra

ti
o
,
T

en
an

t

Is
o
la

ti
o
n
 R

at
io

9227Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

the tenant is again compared with Ʈ and the above allocation

process is repeated (Step 11 of Algorithm 1).

Similarly, bin allocation is performed for the passive ten-

ants by comparing its load with the allocation threshold, Ʈ. If

a passive tenant’s load is higher than Ʈ then a dedicated bin

is allocated for the load similar to the case of active tenant

and the process is repeated (Steps 18-21 of Algorithm 1).

However, if a passive tenant’s n this case, when the tenant

load value is less than that of allocation threshold, instead of

assigning a dedicated bin, the best fit bin packing algorithm

is applied, as illustrated in Algorithm 2 of Fig 3.

The best-fit bin packing technique [31], listed in Algo-

rithm 2 of Fig 3, can place multiple tenants in a single bin.

Here the tenant data is assigned strategically to that bin

which will have the smallest empty space after bin alloca-

tion. For accomplishing best fit binning, firstly the available

space in already existing bins is checked. If adequate space

is available in any single bin, the tenant is allocated that bin

itself and the bin’s space is updated accordingly (Steps 6-11

of Algorithm 2). Otherwise, if the tenant’s data is greater

than the available space in any of the bins, a new bin is

allocated and data are stored in that bin (Steps 12–14 of

Algorithm 2). If the bin contains space equivalent to alloca-

tion threshold, the value of available space in the bin and

information regarding the bin number allocated to the tenant

are updated (Steps 15–18 Algorithm 2). In the alternate case,

best fitting bin is selected for the tenant data (Steps 19–22

of Algorithm 2)

3.2 Bin Allocation for Dynamic Load

Cloud computing services are characterized by their abil-

ity to scale up or down depending on user requirements.

Therefore, it is expected that any SDS system will encoun-

ter dynamic data storage loads. This section addresses the

storage allocation policy of the proposed system when

tenant data is considered as dynamic, i.e., it may increase

or decrease over time. Dynamic load allocation can trig-

ger data migration during reallocation or deallocation of

the tenant data. At this stage, role of previously defined

parameter, Allocation threshold (Ʈ) comes into picture.

The definition of Ʈ ensures that adequate space is left unal-

located in each bin during static allocation. The size of this

unallocated space is equal to the minimum of all existing

tenants’ load. The assumption used here is that an increase

in any one tenant’s load will not exceed any other tenant’s

total load. Thus, to minimize the migration of data, it has

been assumed that during expansion of tenant’s load, the

growth of the data will be adjusted in the stash (ʂ) first and

then new bin will be allocated if required.

On the other hand, if shrinking of tenant data occurs,

storage needs to be deallocated and this implies that space

is now available in the tenant’s current bin. Hence, some

type of compaction is possible; either data can be migrated

from another bin to this bin or this tenant’s data can be

migrated to another bin. This compaction can lead to free-

ing up of resources in the system.

To explain it further, let’s take a scenario in Fig 4.

Suppose, in a Multitenant environment, with bin size of

1000 units and Ʈ as 700 units, there is a tenant “X” with

data load of 1200 units. Using our approach, this tenant

is clustered let’s say as an Active tenant. Initially, two

dedicated bins are allocated for this tenant with bin load

as 700 units and 500 units, respectively, using the static

allocation policy.

With time, X’s data start shrinking and its data load is

reduced to 900 units. Thus, the X’s data in the second bin

need to be deallocated and is reduced to 200 units. In the

proposed approach, at this time data of 200 units will be

migrated to Stash storage (which is 300 units in this case) of

the first assigned bin. Now, complete data of X is stored in a

single bin; thereby, increasing storage utilization.

struct node

{

int data;

int TNumber;

int Priority;

int frequency;

int Classlabel;

int *bin;

struct node *next;

};

void binallocation(int Ʈ);

int bestFit(int Ʈ);

// Tenant Load

// Tenant ID

// specifies data Priority of the Tenant

// specifies data fetching Frequency of the tenant

// ClassLabel assigned after clustering into ACTIVE(1)or PASSIVE(0)

//For storing bin(s)

// Points to the next tenant in the list

// Function to allocate bin to the Tenant

// Function implementing Best Fit Binning Algorithm

Fig. 2 Structure of a Tenant Node

9228 Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

Algorithm 1: Bin allocation using Best Fit binning

Input:

TenantLoad: Tenant Data Load

Priority and Frequency of Data Usage: Tenant information

Variables:

BinLoad: Amount of space allocated in a bin

LeftData: Data of a tenant remaining to be allocated

Ʈ: Allocation Threshold

Remaining_Data_list: list of nodes, each node stores amount of a tenant’s data left to be allocated

Output:

Average Bin Usage

1. Analyze Tenant Data (Priority, Frequency of Data) and Cluster Tenants into Active or Passive

2. For each Tenant do

3. If (Tenant ==ACTIVE TENANT) {

4. If (TenantLoad< Ʈ) {

5. Allocate Dedicated Bin

6. BinLoad=TenantLoad}

7. elseIf (TenantLoad>= Ʈ) {

8. Allocate Dedicated Bin

9. BinLoad= Ʈ

10. LeftData=TenantLoad-Ʈ

11. If (LeftData>=Ʈ) goto step 8

12. else {

13. Allocate Dedicated Bin

14. BinLoad = LeftData}

15. } //end ACTIVE TENANT

16. else If (Tenant == PASSIVE TENANT) {

17. If (TenantLoad>=Ʈ) {

18. Allocate Bin

19. BinLoad= Ʈ

20. LeftData=TenantLoad- Ʈ

21. If (LeftData>=Ʈ) goto step 18

22. else append LeftData to a list,Remaining_Data_list}

23. } //end PASSIVE TENANT

24. endFor

25. Apply Best Fit Bin Packing on Remaining_Data_list

26. Calculate Average Bin Usage

Algorithm 2: Best Fit binning

Input:

Remaining_Data_list: list of nodes, each node stores amount of a tenant’s data left to be allocated

Variables:

bi: current bin number

min: minimum space available in a bin

newnode: pointer to start of the list, Remaining_Data_list

avail_space: list of nodes corresponding to number of bins, each node stores amount of available space in a bin

Output:

binno: number of bins allocated for load

Fig. 3 Algorithm showing working of the proposed framework for static load

9229Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

4 Simulation Experiments and Results

The performance of TOSDS with respect to effective stor-

age utilization and tenant isolation has been evaluated using

simulation experiments. All experiments were executed on a

Windows server with an Intel Core i5 CPU (1.60 GHz) and 8

GB of DDR3 memory. A synthetic data set of 250 different

tenants with different data loads and requirements or features

has been used. The important tenant data load features taken

into account are size of data, priority of data and frequency

of data fetching. The initial step in the implementation was

to cluster the tenants into ACTIVE and PASSIVE catego-

ries according to their distinct data load features. Structure

of the tenant object has been explained in Fig 2. K-means

algorithm was used to perform clustering of tenants. Next

task was to perform bin allocation for the tenants’ data for

static as well as dynamic data loads.

1. Set binno = 0;

2. for each Tenant do

3. Initialize min = Ʈ + 1

4. Set bi = 0;

//Initialize minimum space left and index of best bin

5. for j = 0 to binno do

6. if(avail_space[j]>=newnode data &&(avail_space [j]-newnode data)<min) then

7. {bi = j;

8. min = avail_space [j]- newnode data;}

9. end For

10. if (min == Ʈ + 1) then //if the tenant’s data is greater than the available space in any of the bins,

11. {Allocate a new bin with number as binno

12. Add newnode->data to it

13. avail_space [binno] = Ʈ - (newnode data);

14. newnode bin= binno;

15. binno++; }

16. else

17. {Assign tenant’s data to the best fitting bin

18. avail_space [bi]=avail_space [bi] -newnode data;

19. newnode bin=bi;}

20. endFor;

Fig. 3 (continued)

Tenant X with 1200 units data Bin Size: 1000 units

Allocation Threshold (Ʈ): 700 units

Stash

Ʈ 700

Stash

500 700 200
900

Bin 1 Bin 2 Bin 1 Bin 2 Bin 1

Allocation of

Bin 1 & Bin 2

Migration of data

from Bin 2 to Bin 1
Deallocation of data

from Bin 2

Fig. 4 Migration of Active Tenant data during deallocation of bin storage

9230 Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

TOSDS proposes a bin allocation strategy for Active Ten-

ant data. In this approach, a dedicated bin is allocated to an

Active Tenant after comparing the data load with the Allo-

cation Threshold (Ʈ). This proposed bin allocation strategy

has been designed as such to minimize data migration that

may occur during dynamic load allocation. For the bin allo-

cation of Passive tenant data, the Best Fit Binning strategy

was used, in which the algorithm can allocate single bin

to multiple tenants. This algorithm is designed such that it

calculatingly assigns tenant’s data to that bin which has the

smallest empty space left after the bin allocation.

4.1 Evaluation Metrics for the Proposed System

This section discusses the different evaluation metrics that

have been used to evaluate the proposed system.

4.1.1 Average Bin utilization

There can be different measures or metrics to determine how

efficiently data storage of the system has been utilized. One

of the most commonly utilized evaluation metrics for this is

to calculate the average bin utilization which corresponds to

the ratio of sum of all tenants’ data load(s) to the total bin

storage used by the tenants.

where TD
i
 is the data of the tenants (1 ≤ i ≤ n), n is the num-

ber of tenants in the multitenant system and B corresponds

to the size of the bin.

For initial experiment, for static load, tenant data set

taken for the simulation ranges from 0–800 units for differ-

ent tenants, and average data was of 460 units. Considering

the average load size and the allocation threshold, bin sizes

have been varied starting from 700 units. This ensures that

the data of a tenant with average data load will fit into a

(3)Avg Bin Usage =

∑n

1
TD

i

binno × B

single bin, thereby avoiding splitting of data. Subsequent

experiments have been performed to assess scalability of the

system by increasing the average tenant load as well as the

bin sizes. The dynamic allocation method ensures that even

if the data size increases multiple times, it can be allocated

efficiently; as illustrated by the following results

It was observed (Fig 5) that bin usage firstly increased

when bin size was increased from 700 units and reached its

peak value at 1100 units. Bin size was taken as maximum

2000 units to show the effect of bin size from minimum load

size to up to three times the average load, which was approx-

imately 450 units. Even on increasing bin size beyond 2000

units bin utilization did not improved as can be observed in

Fig. 5. This is due to the fact that larger space was left unal-

located in each bin upon increasing the bin size. We have

used 1100 units, which we found empirically best for further

experiments. After evaluating this, it was concluded that by

merely increasing the bin size, desired average bin usage

cannot be achieved. During the experiments performed

under the proposed system for static data, the highest aver-

age bin utilization of around 76% is achieved for a bin size

of 1100 units. It was observed that the smaller to medium

bin sizes resulted in higher average bin usage in comparison

to larger bin sizes.

Next experiment accessed the scalability of the system by

taking dynamically increasing load. The effect of dynamic

data and load on average bin usage is depicted in results of

Fig 6. As expected, according to the proposed algorithm for

dynamic data handling, it was observed that initially, bin uti-

lization increased for smaller bin sizes and gradually started

decreasing. This is also illustrated in sect. 3.2, when data

load is increased dynamically, the growth of the data will

be adjusted in the stash (ʂ). Once the stash is full, only then

new bin will be allocated to the tenant. Thus, the proposed

system handles dynamic data with minimum migration.

The next experiment evaluated the average bin usage of

the system with respect to different types of data loads. Ten-

ant load has been categorized according to its size, namely

Fig. 5 Average Bin Usage w.r.t

varied Bin Size for Static Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

700 900 1000 1100 1300 1500 1700 1900 2000 2200 2500 3000 4000 5000

A
v

e
ra

g
e

 B
in

 U
�

li
za

�
o

n

Bin Size

9231Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

High, Medium and Low. From Fig 7, it may be observed

that average bin usage of tenants with low and medium data

load was approximately at par but was greater than that of

tenants having high data load. Subsequently, average bin

usage was also calculated for the two categories of tenants,

i.e., Active and Passive tenants. Fig 8 illustrates that aver-

age bin usage of Active tenants is lower by approximately

22%in comparison to Passive tenants. This is due to the fact

that Active tenants are expected to increase their loads with

time and hence, they are allocated dedicated bins; thereby,

lowering the bin usage. However, this lowered bin usage for

Active tenants is compensated by improved data isolation

and lower split ratio metrics, as will be seen subsequently.

The proposed system, TOSDS aims to utilize the least

number of bins possible for a given load and avoid data

migration. To illustrate this, the next experiments were

conducted considering data loads to be dynamic. During

the experiments, we decreased the Active tenant load, thus

resulting in deallocation of data from allocated bins. When

the data load of a tenant shrinks, the proposed system

attempts to migrate this tenant’s data from multiple bins to

single bin by using the available stash. Average bin usage

was calculated for this experiment and compared with the

same for best fit algorithm on the same data. As shown in

Fig 9, the average bin usage was approximately similar in

both the cases. Comparison between average bin usage for

TOSDS, as calculated before migration of active tenant’s

data and after migration, has also been shown in Fig 10.

4.1.2 Data Split Ratio

Tenants may have data loads greater than the size of a

single bin. In such cases, splitting of tenants’ data into

multiple bins is unavoidable. Data split ratio represents the

fraction of tenants whose data have been split into multiple

bins to the total number of tenants.

Fig. 6 Average Bin Usage w.r.t

varied Bin Size for Dynamic

Data v/s Static Data

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

A
v

e
ra

g
e

 B
in

 U
�

li
za

�
o

n

Bin Size

Dynamic Data Sta�c Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Low Load Medium

Load

High Load

A
v
er

a
g
e

B
in

 U
sa

g
e

Data Size

Fig. 7 Average Bin Usage v/s Load Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac�ve Tenant Passive Tenant

A
v
er

a
g
e

B
in

 U
sa

g
e

Tenant Class

Fig. 8 Average Bin Usage between Tenant Class

9232 Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

where TSplit corresponds to the number of tenants having data

distributed into different bins and T
N

 is the total number of

tenants in the system.

Split ratio has been considered as one of the important

evaluation metrics. Comparison between the spilt ratio of

static v/s dynamic data has been depicted in Fig 11, it can

be noted that split ratio of dynamic data is 24% higher than

that of static tenant’s data. In our architecture, there can be

multiple applications (tenants) such as different colleges,

universities. If the split ratio is more, this signifies that there

are more such tenants whose data have been split into multi-

ple bins and it may require more time to fetch complete data

(4)Ratio
S
=

TSplit

T
N

of a single University/college from multiple bins. Thus, as

the data increases, as in case of dynamic load, split ratio also

increases, thereby making it slower to fetch data.

4.1.3 Tenant Isolation Ratio

In the proposed SaaS application, different Universities/

colleges are the tenants working in a shared environment.

Along with shared data, different colleges may require to

store customized data as well. For instance, in a multiten-

ant application, shared services used by multiple tenants

can be ERP services like fee collection, admissions, Hostel

allotment, etc. Whereas, there could be handful of colleges/

institutions which want to use customized services like con-

tent curation services, grading students, conducting online

classes, providing study material, etc. In such a scenario,

isolation of data among these different colleges is of utmost

importance. We can calculate degree of isolation between

these tenants using this metric.

where T
S
 is the number of tenants sharing bins with other

tenants and T
D

 is the number of tenants having dedicated

bin for storage. The tenant isolation ratio metric helps us to

determine the degree of isolation among different tenants

on different data sets considered in the experiment, refer

Fig. 12.

Larger is the tenant isolation ratio, more will be the

degree of isolation; implying that tenants are more isolated

in the data set with higher tenant isolation ratio. It was

experimentally observed that for a given dataset, degree of

isolation remains unmodified regardless of the bin size or

(5)Ratio
1
=

T
D

T
s
+ T

D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed System Best Fit

A
v

e
ra

g
e

 B
in

 U
sa

g
e

Fig. 9 Average Bin usage after decreased Active Tenant load

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sta�c Data Dynamic data

A
V

E
R

A
G

E
 B

IN
 U

S
A

G
E

Fig. 10 Average Bin Usage for Static v/s Dynamic Data

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sta�c Data Dynamic Data

S
P

L
IT

 R
A

T
IO

Fig. 11 Split ratio for Static v/s Dynamic Data

9233Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

the nature of data. Hence, we calculated the tenant isolation

ratio for different data sets, varying in fraction of Active and

Passive tenants. It was observed that for TOSDS, the tenant

isolation ratio was highest for the dataset having more Active

tenants and least for the dataset with more Passive tenants.

Also, it can be seen from Fig 12 that dataset having Active

dominant tenants was 48 and 27% greater than that of Pas-

sive dominant tenants and balanced tenants, respectively.

5 SLA Requirement Privacy

TOSDS focuses on the characteristics of data load while

allocation of storage to tenants. Another important Ser-

vice Level Agreement (SLA) objective in a multi-tenant

environment is privacy; however, it can be ensured only at

a cost to the tenant. To provide privacy guarantees, TOSDS

services can be offered in three different categories. The

tenants can be classified according to their desired level of

privacy, namely- free service tier, basic service tier and pre-

mium service tier. To avail a higher level of privacy guaran-

tee, a tenant in the free trial phase can upgrade to a higher

tier by paying the corresponding price. Table 2 illustrates the

difference in privacy policy, bin sharing and data isolation

between tenants of different tiers. Free service tier is level

1 tier which is the most vulnerable tier since privacy is not

considered. Here, any number of tenants can have a shared

storage space, thus providing no isolation at all. On the other

hand, basic service tier is level 2 tier that provides privacy

since data are shared among some trusted tenants only.

Highest level tier is the premium service tier with highly

strict privacy policy. Here, each tenant’s data are stored in

isolation from other tenants’ data.

In a multitenant environment different tenants work in

a shared environment. Individual tenants can have differ-

ent SLA requirements like security, privacy, price, charac-

teristics of the data load, location of the tenants, response

time or budget, etc. of tenants in a cloud environment. The

proposed system currently is limited to consideration of the

characteristics of the data load such as load size, priority

and frequency of tenant’s data. We have not considered the

scenario where multiple tenants may have separate SLA

requirements. However, using the same approach, TOSDS

can be customized easily for satisfying other related SLA

requirements such as response time or budget of tenants in

a cloud environment.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Passive Dominant Ac�ve Dominant Balanced Data

IS
O

L
A

T
IO

N
 R

A
T

IO

Fig. 12 Tenant Isolation Ratio for varied data sets

Table 2 Privacy as the SLA requirement

Type of Tier Free service tier Basic service tier Premium service tier

Privacy policy No privacy policy defined Basic privacy provided Highest level Privacy policy

Bin Sharing Any number of tenants can share

bin

Only trusted or related tenants

may share bins

Dedicated bins for all the premium

members

Data Isolation Data isolated not guaranteed

among tenants

Data isolation between untrusted

or unrelated tenants

Data isolation is assured.Tenants

who opted for premium service

may have sensitive or confidential

data, thus data is isolated among

tenants, only authorised tenant

can access the data

Example- Consider an application

where large amounts of personal

and financial data about banks’

customers is required to be

handled. Here each bank with

corresponding branch will be

considered as a tenant

Shared bins can be allocated for

data of all the bank branches

Shared bins can be allocated for

data of different branches of the

same bank but data of different

banks is not allocated shared

bins

Data of each tenant is allocated

separately from other tenants

9234 Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

6 Conclusion

The paper presented TOSDS, an object-based software

defined storage approach for a multitenant system. In this

system, tenants have been placed into two clusters, Active

Tenants and Passive Tenants, according to the features of

their data loads. The system employs distinct strategies to

assign tenant’s data to bin(s); bin allocation for Active ten-

ants is performed differently from that of Passive tenants.

Novel bin allocation algorithms for determining appropri-

ate bin storage location for static as well as dynamic data

loads have been presented. The system performance has

been evaluated based on metrics of bin usage, data load’s

split ratio and tenant isolation ratio. It has been observed

that average bin usage of the system is comparable to

the Best-fit bin storage algorithm and improves in case

of dynamic data loads. Further, experiments performed

with respect to different data loads showed that average

bin usage of tenants with low and medium data load was

approximately at par but was greater than that of tenants

having high data loads. For a multitenant system architec-

ture, isolation among different tenants is essential. Simu-

lation experiments verified that within the same dataset,

degree of isolation is high and remains constant regardless

of the bin sizes or the nature of data. Although the system

cannot avoid splitting of data with size greater than bin

sizes, only 18% tenants’ data is split in case of static load

and 42% tenants’ data is split when data load is dynamic.

The future work will focus on further reducing data split

as well as data migration among bins for dynamic loads.

References

 1. Teräs, M.; Suoranta, J.; Teräs, H.; Curcher, M.: Post-Covid-19

education and education technology ‘Solutionism’: a seller’s

market. Postdigi. Sci. Educ. (2020). https:// doi. org/ 10. 1007/

s42438- 020- 00164-x

 2. Katiyar, N.; Bhujade, R.: A survey: adoption of cloud comput-

ing in education sector. Int. J. Comput. Trends Technol. 60(1),

15–25 (2018). https:// doi. org/ 10. 14445/ 22312 803/ ijctt- v60p1 02

 3. Parab, N.N.: Software defined storage. December 2018, 0–6

(2019). https:// doi. org/ 10. 13140/ RG.2. 2. 26934. 75848

 4. Darabseh, A.; Al-Ayyoub, M.; Jararweh, Y.; Benkhelifa, E.;

Vouk, M.; Rindos, A.: SDStorage: a software defined storage

experimental framework. In: Proceedings—2015 IEEE Inter-

national Conference on Cloud Engineering, IC2E 2015, pp.

341–346 (2015). https:// doi. org/ 10. 1109/ IC2E. 2015. 60

 5. Sahu, H.; Singh, N.: Software-defined storage. Innov. Softw.-

Defin. Netw. Netw. Funct. Virtualiz. 4874734, 268–290 (2018).

https:// doi. org/ 10. 4018/ 978-1- 5225- 3640-6. ch013

 6. Sellami, W.; Hadj Kacem, H.; Hadj Kacem, A.: Dynamic provi-

sioning of service composition in a Multi-Tenant SaaS environ-

ment. Springer, US (2020)

 7. Jia, R.; Yang, Y.; Grundy, J.; Keung, J.; Hao, L.: A system-

atic review of scheduling approaches on multi-tenancy cloud

platforms. Inf. Softw. Technol. 132, 106478 (2021). https:// doi.

org/ 10. 1016/j. infsof. 2020. 106478

 8. Kalra, S.; Prabhakar, T.V.: Multi-tenant quality attributes to

manage tenants in SaaS applications. In: Proceedings–2020

IEEE International Conference on Software Architecture Com-

panion, ICSA-C 2020, vol. 128, pp. 83–88 (2020). https:// doi.

org/ 10. 1109/ ICSA- C50368. 2020. 00025

 9. Xu, J.; Li, X.; Zhao, X.: Design of database architecture in

the saas-based multi-tenant educational information system.

In: ICCSE 2011—6th International Conference on Computer

Science and Education, Final Program and Proceedings,

128(Iccse), pp. 114–119 (2011). https:// doi. org/ 10. 1109/ ICCSE.

2011. 60285 97

 10. Fithri, D.L.; Utomo, A.P.; Nugraha, F.: Implementation of SaaS

cloud computing services on e-learning applications (case study:

PGRI foundation school). J. Phys. Conf. Ser. 1430(1), 012049

(2020). https:// doi. org/ 10. 1088/ 1742- 6596/ 1430/1/ 012049

 11. Contel Bradford.: Storage wars: file vs block vs object. Storage

Recovery Zone by StorageCraft (2020). https:// blog. stora gecra ft.

com/ object- stora ge- syste ms

 12. Thomas, P.: A guide to clouds: object, file, and block. Backblaze

(2020). https:// www. backb laze. com/ blog/ object- file- block- stora

ge- guide\

 13. https:// www. datac ore. com/ softw are- defin ed- stora ge/

 14. Rafique, A.; Van Landuyt D.; Lagaisse B.; Joosen W.: Policy-

driven data management middleware for multi-cloud storage in

multi-tenant SaaS. In: Proceedings-2015 2nd IEEE/ACM Inter-

national Symposium on Big Data Computing. BDC 2015, no. ii,

pp. 78–84 (2016). https:// doi. org/ 10. 1109/ BDC. 2015. 39.

 15. Ahamed, I.; Mohammed, A.; Abu-Elkheir, M.: A hybrid multi-

tenant database schema for multi-level quality of service. Int. J.

Adv. Comput. Sci. Appl. 5(11), 132–139 (2014). https:// doi. org/

10. 14569/ ijacsa. 2014. 051123

 16. Liao, C.F.; Chen, K.; Chen, J.J.: A service framework for multi-

tenant enterprise application in SaaS environments. In: ICSOFT-

EA 2014–Proceedings of 9th International Conference on Soft-

ware Engineering Applications, pp. 5–13 (2014). https:// doi. org/

10. 5220/ 00049 95300 050013.

 17. Sharma, A.; Kaur, P.: A multitenant data store using a column

based NoSQL database. In: 2019 12th International Conference

on Contemporary Computing, IC3 2019, ii, 1–5 (2019). https://

doi. org/ 10. 1109/ IC3. 2019. 88449 06

 18. Maenhaut, P.; Moens, H.; Volckaert, B.; Ongenae, V.; De Turck,

F.: Design of a hierarchical software-defined storage system for

data-intensive multi-tenant cloud applications. In: 2015 11th

International Conference on Network and Service Management

(CNSM), pp. 22–28 (2015). https:// doi. org/ 10. 1109/ CNSM. 2015.

73673 34

 19. Maenhaut, P.; Moens, H.; Volckaert, B.; Ongenae, V.; Turck, F.D.:

A dynamic Tenant-Defined Storage system for efficient resource

management in cloud applications. J. Netw. Comput. Appl. 93,

182–196 (2017)

 20. El Kafhali, S.; Salah, K.: Performance analysis of multi-core VMs

hosting cloud SaaS applications. Comput. Stand. Interfaces 55,

1339–1351 (2018). https:// doi. org/ 10. 1016/j. csi. 2017. 07. 001

 21. Uehara, K.; Xiang, Y.; Chen, Y.F.R.; Hiltunen, M.; Joshi, K.;

Schlichting, R.: Supercell: adaptive software-defined storage for

cloud storage workloads. In: Proceedings of 18th IEEE/ACM

International Symposium on Cluster, Cloud and Internet Com-

puting. CCGRID 2018, vol. 128, pp. 103–112 (2018). https:// doi.

org/ 10. 1109/ CCGRID. 2018. 00025.

 22. Peters, M.; Keane, M.: Key reasons to use software-defined stor-

age—and how to get started. ESG Inc., Milford, Connecticut,

White Paper (2015)

 23. Yang, C.T.; Chen, S.T.; Chan, Y.W.; Shen, Y.C.: On construction

of a cloud storage system with heterogeneous software-defined

https://doi.org/10.1007/s42438-020-00164-x
https://doi.org/10.1007/s42438-020-00164-x
https://doi.org/10.14445/22312803/ijctt-v60p102
https://doi.org/10.13140/RG.2.2.26934.75848
https://doi.org/10.1109/IC2E.2015.60
https://doi.org/10.4018/978-1-5225-3640-6.ch013
https://doi.org/10.1016/j.infsof.2020.106478
https://doi.org/10.1016/j.infsof.2020.106478
https://doi.org/10.1109/ICSA-C50368.2020.00025
https://doi.org/10.1109/ICSA-C50368.2020.00025
https://doi.org/10.1109/ICCSE.2011.6028597
https://doi.org/10.1109/ICCSE.2011.6028597
https://doi.org/10.1088/1742-6596/1430/1/012049
https://blog.storagecraft.com/object-storage-systems
https://blog.storagecraft.com/object-storage-systems
https://www.backblaze.com/blog/object-file-block-storage-guide
https://www.backblaze.com/blog/object-file-block-storage-guide
https://www.datacore.com/software-defined-storage/
https://doi.org/10.1109/BDC.2015.39
https://doi.org/10.14569/ijacsa.2014.051123
https://doi.org/10.14569/ijacsa.2014.051123
https://doi.org/10.5220/0004995300050013
https://doi.org/10.5220/0004995300050013
https://doi.org/10.1109/IC3.2019.8844906
https://doi.org/10.1109/IC3.2019.8844906
https://doi.org/10.1109/CNSM.2015.7367334
https://doi.org/10.1109/CNSM.2015.7367334
https://doi.org/10.1016/j.csi.2017.07.001
https://doi.org/10.1109/CCGRID.2018.00025
https://doi.org/10.1109/CCGRID.2018.00025

9235Arabian Journal for Science and Engineering (2021) 46:9221–9235

1 3

storage technologies. Hum.-Cent. Comput. Inf. Sci. (2019).

https:// doi. org/ 10. 1186/ s13673- 019- 0173-x

 24. Wan, J.; Tang, S.; Shu, Z.; Li, D.; Wang, S.; Imran, M.; Vasila-

kos, A.V.: Software-Defined Industrial Internet of Things in the

Context of Industry 40. IEEE Sens. J. 16(20), 7373–7380 (2016).

https:// doi. org/ 10. 1109/ JSEN. 2016. 25656 21

 25. Liu, J.; Wang, F.; Zeng, L.; Feng, D.; Zhu, T.: SDFS: A software-

defined file system for multitenant cloud storage. Softw.-Pract.

Exp. 49(3), 361–379 (2019). https:// doi. org/ 10. 1002/ spe. 2663

 26. Mohammad Faruq, A.; Mukhammad Andri, S.; Yudi, P.: Cluster-

ing storage method for digital evidence storage using software

defined storage. IOP Conf. Ser. Mater. Sci. Eng. 722(1), 012063

(2020). https:// doi. org/ 10. 1088/ 1757- 899X/ 722/1/ 012063

 27. Loncar, P.; Gotovac, S.: Software-defined storage optimization of

distributed ALICE resources. In: 2020 28th International Con-

ference on Software in Telecommunications and Computer Net-

works, SoftCOM 2020, vol. 128 (2020). https:// doi. org/ 10. 23919/

SoftC OM502 11. 2020. 92382 70

 28. Thereska, E.; et al.: Ioflow: a software-defined storage architec-

ture. In: Proceedings of ACM Symposium Operating Systems

Principles, pp. 182–196 (2013)

 29. Gracia-Tinedo, R.; et al.: IOStack: software-defined object storage.

IEEE Internet Comput. 20(3), 10–18 (2016). https:// doi. org/ 10.

1109/ MIC. 2016. 46

 30. Gracia-Tinedo, R.; Sampé, J.; Zamora, E.; Sánchez-Artigas, M.;

García-López, P.; Moatti, Y.; Rom, E.: Crystal: software-defined

storage for multi-tenant object stores. In: Proceedings of the 15th

USENIX Conference on File and Storage Technologies, FAST

2017, pp. 243–256 (2019)

 31. Korte, B.; Vygen, J.: Bin-Packing. In: Combinatorial Optimiza-

tion. Theory and Algorithms, vol. 21 of Algorithms and Combi-

natorics, pp. 407–422. Springer, Berlin (2000)

https://doi.org/10.1186/s13673-019-0173-x
https://doi.org/10.1109/JSEN.2016.2565621
https://doi.org/10.1002/spe.2663
https://doi.org/10.1088/1757-899X/722/1/012063
https://doi.org/10.23919/SoftCOM50211.2020.9238270
https://doi.org/10.23919/SoftCOM50211.2020.9238270
https://doi.org/10.1109/MIC.2016.46
https://doi.org/10.1109/MIC.2016.46

	TOSDS: Tenant-centric Object-based Software Defined Storage for Multitenant SaaS Applications
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Object Based Software Defined Storage
	2.2 Literature Review

	3 Proposed System
	3.1 Bin Allocation for Static Load
	3.1.1 Clustering of the Tenants
	3.1.2 Allocation of Bins to the Tenant

	3.2 Bin Allocation for Dynamic Load

	4 Simulation Experiments and Results
	4.1 Evaluation Metrics for the Proposed System
	4.1.1 Average Bin utilization
	4.1.2 Data Split Ratio
	4.1.3 Tenant Isolation Ratio

	5 SLA Requirement Privacy
	6 Conclusion
	References

