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Abstract. This paper presents a theoretical study of stellar coronagraphy with apodized entrance apertures. The
study is restricted to a perfect telescope operating in space, and a monochromatic on-axis unresolved star. It is
shown that linear prolate functions are the optimal apodizers for rectangular apertures in stellar coronagraphy.
With the phase mask technique (Roddier & Roddier 1997), prolate functions can produce a total extinction of the
star light. For Lyot’s coronagraphy, the extinction is not complete, but prolate apodizations lead to an optimal
star residual intensity with surprising interesting properties: the residual star light and the planet enjoy the same
apodized intensity pattern (but different dynamic) with the optimal light concentration. With this technique, very
high rejection rates can be obtained for Lyot’s coronagraphy, with smaller mask sizes.
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1. Introduction

Coronagraphy was first invented by Lyot (1930, 1939) for
solar corona observations without eclipses. The interest
in Stellar Coronagraphy arose later, for the study of the
vicinity of stars (Bonneau et al. 1975; Smith & Terrile
1984; Malbet 1996; Mouillet 1997; Beuzit et al. 1997;
Mouillet et al. 1997). Nowadays, coronagraphy is mainly
studied for the direct detection of exoplanets, which is
principally limited by the intensity ratio between the star
and the planet, roughly of 106 in the infrared, and up to
109 in the visible. The aim of stellar coronagraphy is to
remove, as best is possible, the star diffracted light at the
position of the planet and several variants of the tech-
nique have been studied up to now (Gay & Rabbia 1996;
Roddier & Roddier 1997; Baudoz et al. 2000a,b; Rouan
et al. 2000; Abe et al. 2001).

It has been recently demonstrated (Abe et al. 2002)
that the four quadrant coronagraph can perform a total
extinction of a monochromatic unresolved on-axis star, for
a perfect circular aperture operated in space. We show in
this paper that a total extinction can similarly be obtained
for Phase Mask coronagraphy, using an entrance apodized
aperture.
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Lyot’s stellar coronagraphy consists of setting a small
opaque mask at the center of the star image. The diffrac-
tion pattern of this mask appears in negative amplitude
on an image of the entrance pupil. There, a diaphragm
(Lyot’s stop) is set to remove the light diffracted outside
the telescope aperture image. Inside this diaphragm, di-
rect and diffracted light interfere destructively. This tech-
nique was improved by Roddier & Roddier (1997), replac-
ing the opaque mask by a π phase mask. The efficiency
of the destructive interference is about twice as good as
for the classical Lyot technique, but the technique is more
difficult to implement. For the two techniques (Lyot and
Roddier), most of the residual light appears at the edges
of the exit pupil, and the extinction is not total, even for
a perfect instrument. A well-known empirical solution is
to use a Lyot’s stop smaller than the pupil.

This pupil reduction can be avoided by the use of an
apodized entrance pupil, as proposed independently by
Guyon & Roddier (2000) and Baudoz (1999). Guyon &
Roddier (2000) shown numerically that a reduction factor
of up to 107 could be obtained with a circular aperture.
We recently described similar reduction factors by means
of interferometric apodizations for rectangular apertures
(Aime et al. 2001a).

In the present paper, we further analyse in depth
some theoretical aspects of the association of an entrance
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apodized aperture with a coronagraph for rectangular
apertures (a future paper is in preparation for circular
apertures). The analysis, which is fully analytic, is re-
stricted to the case of a perfect instrument operated in
space, for an on-axis unresolved star. The phase mask is
assumed to give a perfect π phase shift and the analy-
sis is monochromatic. We show that the optimal theoreti-
cal apodizations for coronagraphy (Lyot and Roddier) are
given by the linear prolate spheroidal set of functions. A
total extinction of the star can be obtained for the Phase
Mask. For Lyot’s coronagraphy, the theoretical extinction
is not total but the prolate apodization provides the opti-
mal star residual light in terms of light concentration.

The paper is organized as follows: Sect. 2 gives the gen-
eral formalism for Lyot’s and Roddier & Roddier’s coro-
nagraphy with entrance pupil apodization. In Sect. 3, for
these techniques we analyse the possible prolate solutions
of the coronagraphic equation for rectangular apertures.
In Sect. 4, we give an alternative presentation of the par-
ticular interest of prolate functions for coronagraphy. A
conclusion and discussions are given in Sect. 5.

A few mathematical properties of the prolate functions
are summarized in Appendix A. In Appendix B, we com-
pare by numerical simulations the exact prolate solutions
to the cosine and cosine squared apodizations we proposed
in a recent paper (Aime et al. 2001a).

2. General equation for coronagraphy
with entrance pupil apodization

In this section, we give the general formalism to describe
a coronagraphic experiment with an apodized aperture.
Following the presentation of Roddier & Roddier (1997),
the technique involves four successive planes, denoted
A (telescope pupil), B (telescope focus, coronagraphic
mask), C (relay pupil plane, Lyot’s stop) and D (final
focus plane).

The complex amplitude at the entrance apodized pupil
is proportional to:

ΨA(x, y) = P(x, y)Φ(x, y) (1)

where P(x, y) is a function of transmission 1 inside the
telescope aperture and 0 outside and Φ(x, y) denotes the
real, positive apodization function, with Φ(x, y) ≤ 1.

The wave propagation from the aperture (plane A)
to the focal plane (plane B) writes as a scaled Fourier
Transform (FT) and we assume that the optical layout is
properly designed to eliminate the quadratic phase terms
associated with the propagation of the waves (Goodman
1996). In plane B, the coronagraphic mask is applied.
Following the notations of Aime et al. (2001b), we have:

ΨB(x, y) =
1
ıλf

Ψ̂A

(
x

λf
,
y

λf

)
× [1− εM(x, y)] , (2)

where the symbol ̂ denotes the FT, λ the wavelength, and
f the telescope focal length. M(x, y) is a function equal to
1 inside the coronagraphic mask and 0 outside that de-
scribes the mask shape. We do not consider in this paper

other mask functions for which the mask transmission it-
self is also apodized (Watson et al. 1991).

The parameter ε plays a fundamental role in coronag-
raphy; it has only two relevant values: ε = 1 for an opaque
mask (Lyot’s coronagraphy) and ε = 2 for a Phase Mask
(PM) (Roddier and Roddier’s coronagraphy). Other val-
ues of εmight be considered but with less efficiency. Values
of ε lower than 1 would correspond to a partially transpar-
ent mask without phase shift (lower efficiency than Lyot’s
mask), values 1 < ε < 2 to a partially absorbing π phase
mask (lower efficiency than PM). Values of ε greater than
2 might also be obtained considering a π phase mask sur-
rounded by a partially absorbing screen, therefore reduc-
ing the light level of the planet. So, in what follows, ε only
takes the values 1 and 2.

An optical system is then used to obtain an image of
the telescope aperture in plane C. Here also, the complex
amplitude of the wave is written using a scaled FT of
Eq. (2). For simplicity, we assume that the focal lengths
of the successive optical systems are identical (if not, an
appropriate change of variables leads to a similar result).
Finally, a diaphragm (Lyot’s stop), exactly equal to the
entrance pupil shape P(−x,−y), is set in plane C:

ΨC(x, y) = −P(−x,−y)× [ΨA(−x,−y)

− ε

λ2f2
ΨA(−x,−y) ∗ M̂

(
x

λf
,
y

λf

)]
· (3)

A total coronographic extinction for a monochromatic on-
axis point source can be obtained if we have: ΨC(x, y) = 0
inside the aperture image. Under this condition, the light
coming from the star is entirely diffracted outside the
aperture in plane C. Replacing Eq. (1) in Eq. (3), ori-
entating x and y in the direction of −x and −y, and using
the property P(x, y)2 = P(x, y) (for a perfect transpar-
ent aperture), the condition ΨC(x, y) = 0, may be rewrit-
ten as:

P(x, y)
[
P(x, y)Φ(x, y) ∗ 1

λ2f2
M̂
(
−x
λf

,
−y
λf

)]
=

1
ε

P(x, y)Φ(x, y). (4)

We can remove the term P(x, y) from the two sides of
Eq. (4); in that case, we search for the analytic functions
Φ(x, y), solutions to the condition of total coronagraphic
extinction:

P(x, y)Φ(x, y) ∗ 1
λ2f2

M̂
(
x

λf
,
y

λf

)
=

1
ε

Φ(x, y). (5)

This equation does not admit general solutions for any
pupil shape. In this paper, we examine possible solutions,
for the particular case of a rectangular aperture. Besides
the greater simplicity of the rectangular problem com-
pared to the circular problem, linear apertures provide
several advantages (resolution, achromatization) that have
already been discussed (Aime et al. 2001b,a) for applica-
tion to TPF (Terrestrial Planet Finder) or precursor.
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Fig. 1. Top: illustration of the couples of eigenvalues
(Λ0x,Λ0y), solutions to Roddier & Roddier’s coronagraphy.
The relation Λ0x × Λ0y = 1/2 gives an infinity of solutions.
The symmetrical solution (A), Λ0x = Λ0y = 1/

√
2 corresponds

to the highest pupil transmission (70.6%). Other eigenvalues
may be chosen to reduce the mask size in one direction, such
as (B) Λ0x = 0.505 and Λ0y = 0.99. Bottom: Eigenvalue Λ0x

(or Λ0y) as a function of the mask size αx or αy (in resolution
units). Solution (B) presents the advantage of a smaller mask

size in one direction (here α
(B)
x = 0.547) than the symmet-

rical solution α
(A)
x = 0.848. The transverse mask size is then

α
(B)
y = 2.23.

3. Solutions of the general coronagraphic
equation for rectangular apertures

We consider a rectangular aperture of length Lx and
width Ly. We assume the apodization function Φ(x, y)
to be separable with respect to the variables x and y. The
coronagraphic mask M(x, y) must be a rectangle of size
mx × my proportional to the diffraction pattern of the
rectangular aperture. At the wavelength λ, mx = αx

λf
Lx

and my = αy
λf
Ly

, where αx and αy are parameters that

express the width of the mask in resolution units. For this
rectangular configuration, we have:

P(x, y) = Π
(
x

Lx

)
Π
(
y

Ly

)
,

Φ(x, y) = Φx(x)Φy(y),

M(x, y) = Π
(
x

mx

)
Π
(
y

my

)
, (6)

where Π(x) = 1 for |x| ≤ 1/2 and 0 otherwise.
Substituting the terms of Eq. (6) in Eq. (5), the convo-

lution product separates into two convolution products for
x and y. The condition of total extinction for rectangular
apertures becomes:[
Π
(
x

Lx

)
Φx(x) ∗ sinπ(αx/Lx)x

πx

]
×
[
Π
(
y

Ly

)
Φy(y) ∗ sinπ(αy/Ly)y

πy

]
=

1
ε

Φx(x)Φy(y). (7)

This integral equation (7) separates into two symmetric
requirements, as already described by Frieden (1971) for
the study of a confocal laser with square endplates:

∫ Lx/2

−Lx/2
Φx(ξ)

sin παx(x− ξ)/Lx
π(x− ξ) dξ =

1
εx

Φx(x),∫ Ly/2

−Ly/2
Φy(ξ)

sinπαy(y − ξ)/Ly
π(y − ξ) dξ =

1
εy

Φy(y), (8)

where ε = εx × εy.
For 1/εx and 1/εy lower than 1, solutions Φx(x) and

Φy(y) to these relations exist, i.e. a total extinction of the
star is obtained. These functions are proportional to the
linear prolate spheroidal functions discovered by Slepian
& Pollak (1961). We give a brief presentation of them in
Appendix A.

Comparing Eq. (8) and Eq. (A.2), we see that the
terms 1/εx and 1/εy must be identified with the eigenval-
ues Λn of the prolate functions (positive numbers between
0 and 1). The apodization functions Φx and Φy must be
identified with the prolate functions Θn: any prolate func-
tion of any order n can be a solution, but we will only be
interested in the normalized zero order prolate functions:
Φx(x) = Θ0x(x)

Θ0x(0) because it is the only one that is maxi-
mum at the origin (maximum transmission at the center
of the pupil). This function has already found other inter-
esting application in Optics, as detailed by Frieden in his
review paper (Frieden 1971). The two equations of Eq. (8)
must be satisfied simultaneously. This means that we can
choose any set of eigenvalues Λ0x, Λ0y satisfying the rela-
tion Λ0x ×Λ0y = 1/ε. Then, a set of prolate apodizations
Φx(x) and Φy(y) exists (eigenfunctions), with their corre-
sponding mask sizes.
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Fig. 2. Examples of entrance pupil
apodization (rectangular aperture with
Lx = 4Ly) for Roddier & Roddier’s
coronagraphy that permit a total re-
jection of the star image. The ampli-
tude and intensity transmissions are
drawn for the set (A) of eigenvalues
Λ0x = Λ0y = 1√

2
(top) and for the

set (B) Λ0x = 0.99, Λ0y = 0.505 (bot-
tom) of Fig. 1. The overall integrated
intensity transmission of the apodiz-
ers are: 70.6% and 47.4% respectively.
Right images: corresponding intensity
(non linear scale) in the focal plane
where the coronagraphic mask is to be
used. In these examples, the apodiza-
tion effect is mainly visible in the trans-
verse direction.
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Fig. 3. Energy transmission of the apodized pupil solution to
Roddier & Roddier’s coronagraphy (the transmission does not
depend on the proportions of the rectangular aperture). The
highest transmission (70.6%) is obtained for the symmetrical
solution (A) Λ0x = Λ0y = 1√

2
. The other configuration (B) of

Fig. 1 is also given and its transmission is of 47.4%.

3.1. Linear prolate solutions for Roddier & Roddier’s
coronagraphy (ε = 2)

For Roddier & Roddier’s coronagraphy, ε = 2. Prolate
solutions to the coronagraphic equation exist for any set
of eigenvalues satisfying the condition:

Λ0xΛ0y = 1/2. (9)

An infinite set of solutions exists, in the range 1/2 <
Λ0x < 1 and 1/2 < Λ0y < 1 (Fig. 1, top). The correspond-
ing mask sizes are easily obtained as the inverse function
of the eigenvalue curve, as illustrated in Fig. 1, bottom.
These curves are generally drawn as a function of the so-
called prolateness parameters cx and cy: cx = παx

2 and
cy = παy

2 (Papoulis 1981). This can be obtained by a
proper change of variables in Eq. (8). For clarity, we have
computed the eigenvalues as a function of the mask size
(αx and αy), instead of the usual prolateness parameter.

Let us consider two possible sets of solutions, that we
call (A) and (B). A first trivial solution (A) is obtained for
Λ0x = Λ0y = 1√

2
(point (A) of Fig. 1). The corresponding

mask size is αx = αy = 0.8476 (expressed in resolution
units λf/L) . The transmissions in amplitude and inten-
sity are illustrated in Fig. 2 for a rectangular aperture of
size Lx = 4Ly.

This trivial solution is also the one with the highest
transmission of the pupil. This can be shown as follows:
let T = Tx×Ty be the energy transmission of the apodized
rectangular aperture. Using Eq. (6), we have:

T =
1
Lx

∫ Lx/2

−Lx/2
Φ2
x(x)dx× 1

Ly

∫ Ly/2

−Ly/2
Φ2
y(y)dy. (10)

Using the relation giving the norm (Eq. (A.3)), we obtain:

T =
1
Lx

Λ0x

Θ2
0x(0)

× 1
Ly

Λ0y

Θ2
0y(0)

· (11)

and with Eq. (A.4):

T =
1
4

∫ 1

−1

S2
00(x, cx)
S2

00(0, cx)
dx×

∫ 1

−1

S2
00(y, cy)
S2

00(0, cy)
dy. (12)

The functions S00 depend on the prolateness parame-
ters cx and cy. However, cx and cy are independent of
Lx and Ly. The transmission T is therefore independent
of the rectangle proportions Lx×Ly for a given collecting
area. A representation of the transmission as a function
of Λ0x is given in Fig. 3. The highest overall energy trans-
mission of about 70.6% corresponds indeed to the trivial
solution Λ0x = Λ0y = 0.707.

However, other solutions may be of interest. A trans-
mission corresponding to the solutions Λ0x = 0.505, Λ0y =
0.99 is drawn in Fig. 2. Note that the theoretical limit
(Λ0x = 0.5, Λ0y = 1) corresponds to an infinite mask slit
of width αx = 0.540.
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Fig. 4. For Lyot, the condition Λ0x × Λ0y = 1 cannot be ob-
tained (it would correspond to an infinite mask size). However,
approximate solutions exist, choosing eigenvalues close to 1, as
illustrated for the 3 configurations (A), (B) and (C) for eigen-
values close to 1. The extinction is not total but the residue is
optimal in terms of light concentration.

This permits one to reduce the mask size in one direction
(and therefore reduces the dead zone in that direction).
For a long slit aperture telescope (Touma et al. 1995, 1992;
Martin et al. 1987), this is probably very interesting since
it allows one to reduce the distance of planet detectability
in the slit direction. In our example, αx = 0.547 corre-
sponds to a gain of 35% compared to solution (A).

However, this gain in planet detectability is obtained
to the detriment of the transmission for the planet (Fig. 3):
in the example of (B), the intensity transmission is only
47% compared to 70.6% for the (A) setting.

It is interesting to represent the corresponding focal
plane intensity for these apodized apertures, shown in
Fig. 2 (right curves). Note that these figures also repre-
sent the PSF for planets situated well outside the coron-
agraphic mask, so that the extinction for the planet can
be neglected.

3.2. Residual amplitude for Lyot’s coronagraphy
(ε = 1)

There is no relevant solution to Eq. (7) for Lyot’s coronog-
raphy. Indeed, with ε = 1, the exact solution is given by
the condition Λ0x × Λ0y = 1 and the unique eigenvalue
solutions Λ0x = Λ0y = 1 would correspond to an infi-
nite mask size (Fig. 4), i.e. an opaque mask occulting the
whole field. However, approximate solutions can be ob-
tained with a finite mask size. In that case, the extinction
is only partial: the larger the mask, the lower the residual
star light. However, prolate apodizations give surprising
interesting results here too. Taking advantage of the rapid
saturation of the eigenvalue after αx = 2 (or αy) (Fig. 4),
we can choose a mask size αx (and αy) corresponding to
eigenvalues close to 1. A corresponding prolate apodiza-
tion exists but it is no longer an exact solution of the
coronagraphic equation.

The residual pupil plane amplitude ΨC(x, y) therefore can
be written (subtituting Eq. (6) in Eq. (5)):

ΨC(x, y) = Π
(
x

Lx

)
Π
(
y

Ly

)[
Π
(
x

Lx

)
Π
(
y

Ly

)
Φ(x, y)

−Π
(
x

Lx

)
Φx(x) ∗ sinπ(αx/Lx)x

πx

× Π
(
y

Ly

)
Φy(y) ∗ sinπ(αy/Ly)y

πy

]
· (13)

We express the two convolution products of Eq. (13) using
Eq. (A.2) (and the two corresponding eigenvalues):

Π
(
x

Lx

)
Φx(x) ∗ sinπ(αx/Lx)x

πx
= Λ0xΦx(x)

Π
(
y

Ly

)
Φy(y) ∗ sinπ(αy/Ly)y

πy
= Λ0yΦy(y). (14)

Combining Eq. (14) in Eq. (13), we obtain the surprising
result:

ΨC(x, y) = [(1− Λ0x Λ0y)] Φx(x)Φy(y)Π
(
x

Lx

)
Π
(
y

Ly

)
= (1− Λ0x Λ0y) ΨA(x, y). (15)

The residual amplitude is itself proportional to the en-
trance amplitude. Examples of what can be obtained for
a square aperture and different values of a square mask
are shown in Fig. 6.

The integrated energy is simply (1 − Λ0x Λ0y)2

times the energy transmitted by the apodized aperture
(Eq. (15)). The closer to 1 that the eigenvalues Λ0x and
Λ0y lie, the better the coronagraphic rejection, but the
larger the mask size (Fig. 4) and the stronger the apodiza-
tion (loss of transmission and angular resolution). A trade-
off must be chosen between a small mask size and a high
coronagraphic effect. Note that the mask size is always
smaller than the core of the apodized PSF. This is one of
the main differences to classical Lyot’s coronagraphy for
which the mask extends over several Airy rings (Fig. 6).

The residual integrated energy of the star decreases
very rapidly (roughly exponentially) as a function of the
mask size. This result may be useful to determine the
tradeoff between the star light rejection and the mask size
for Lyot’s coronagraphy, as illustrated in Fig. 6.

Equation (15) shows that the residual amplitude inside
the aperture is itself proportional to the entrance prolate
apodization. The residual wave amplitude in the exit pupil
is therefore apodized, and is simply proportional to the
entrance pupil amplitude, to the factor (1−Λ0x Λ0y): the
overall effect of Lyot’s coronagraphy is simply to reduce
the intensity of the star in the final focal plane, with the
same intensity pattern as for the planet. This is a very
surprising result: it is generally assumed that most of the
residual star light appears at the edges of the pupil for
classical Lyot’s coronagraphy, without apodization.

Moreover, the prolate function is also the optimal
apodization in terms of light concentration for the
star residual light: it maximizes the integrated inten-
sity within the coronagraphic masks (more comments in
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Fig. 5. Results for Lyot’s coronagraphy with increasing ac-
curacy of the approximate solution (increasing eigenvalues,
apodization strength and mask size, see also Fig. 6), as a func-
tion of the corresponding mask size. Here, the mask is such
that αx = αy. Top: residual energy for the star, normalized
to the entrance pupil transmission. Center: illustration of the
loss of transmission for the approximate solutions due to the
increasing strength of the apodization. Bottom: illustration
of the loss of resolution due to the apodization. The full line
represents the position of the first zero of the PSF and can be
compared to the half width of the mask (dotted line).

Appendix A). We cannot obtain a total star light extinc-
tion for Lyot’s coronagraphy, but with prolate apodiza-
tion, the residue is optimum. Using Eq. (A.1), we can

obtain an analytical expression for the residual amplitude
of the star in the final focal plane for Lyot’s coronagraphy:

ΨD(x, y) = (1− Λ0xΛ0y)LxLy

√
Λ0x

αx

√
Λ0y

αy

×Φx

(
L2
x

αx

x

λf

)
Φy

(
L2
y

αy

y

λf

)
· (16)

Examples of the residual focal intensity are given in Fig. 6
for the 3 configurations, corresponding to rejection rates of
3.6×10−2, 4.0×10−4, 4.0×10−6. Very high rejections can
be theoretically obtained with Lyot’s coronagraphy and
prolate apodization, to the detriment of the transmission
and the angular resolution.

4. Alternative presentation of the particular
interest of prolate functions for coronagraphy

In the previous sections, we used the property of linear
prolate functions, relative to their invariance to the sine
cardinal kernel: we have seen (Eq. (8)) that the central
part of a prolate function convolved by a sine cardinal
function is similar to the same (unbounded) prolate func-
tion. Now we examine this property in Fourier space. The
Fourier Transform (FT) of the central part of a prolate
function is similar to the same unbounded prolate func-
tion (see Appendix A), and reciprocally. It has been shown
that prolate functions are the only functions that enjoy
this property (Slepian & Pollak 1961; Frieden 1971).

This property is fundamental for coronagraphy, in
which several successive FT are involved from the entrance
pupil plane to the final observing plane, and where the
complex amplitude of the wave is successively bounded
by different masks and diaphragms.

Let us first examine the example of Roddier &
Roddier’s coronagraphy. For simplicity, we present here
the one-dimensional case.

Figure 7 describes the wave amplitude at the succes-
sive planes A, B and C. We assert that the same prolate
function appear in all these planes (to a scaling factor).

At the pupil plane A, the telescope transmission, be-
tween −Lx/2 and Lx/2, is proportional to the central part
of a prolate function. This function is represented (with a
dashed line) outside the telescope aperture. The FT of the
aperture transmission (Goodman 1996) gives in the focal
plane an amplitude response which is exactly similar to
the prolate function of plane A:

ΨB(x) =
∫ Lx/2

−Lx/2
Φx(t)e2ıπ x

λf tdt

= Lx

√
Λ0x

αx
Φx

(
L2
x

αx

x

λf

)
= Lx

√
Λ0x

αx
Φx

(
xLx
mx

)
· (17)

In plane B, the π phase mask inverts the complex ampli-
tude over a central part of the wave. In Eq. (17), the wave
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Λ Λ
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Fig. 6. Left: Slice of the entrance
apodized pupil for Lyot’s coronagraphy
for the 3 configurations (A), (B), (C)
given in Fig. 4. The mask sizes are given
in units of resolution, and we give the
integrated residual star energy (normal-
ized to the pupil transmission). Right:
Slices of the residual star intensity in
the final focal plane. Because of the pro-
late properties, these intensities are not
dark at the center. The grey-tint rect-
angles show the corresponding width of
the mask for each configuration.

amplitude inside the mask (for −mx/2 ≤ x ≤ mx/2) is
simply homothetic to the apodized entrance pupil (shown
in grey tint in Fig. 7).

If the focal plane is free of any coronagraphic mask
(dashed line in plane B), a perfect image of the aperture
is obtained in plane C (grey tint, top image in plane C).
The amplitude inside the mask gives, by diffraction from
plane B to plane C, an amplitude that is the exact negative
reproduction (unbounded) of the entrance apodizing func-
tion (grey tint, bottom image in plane C). The coherent
addition of these two amplitudes (the pupil and the coro-
nagraphic term, i.e. the convolution product of Eq. (3)) is
thus null between −Lx/2 and Lx/2: the coronagraphy is
perfect for an axial monochromatic point source:

ΨC(x) = Φx(x)P(x)

− 2
λf

∫ mx/2

−mx/2
Lx

√
Λ0x

αx
Φx

(
tLx
mx

)
e2ıπ x

λf tdt. (18)

Performing a change of variables, we obtain:

ΨC(x) = Φx(x)P(x)

−2
αx
L2
x

Lx

√
Λ0x

αx

∫ Lx/2

−Lx/2
Φx(t)e2ıπ αx

Lx2 xtdt

ΨC(x) = Φx(x)P(x) − 2Λ0xΦx(x). (19)

A Lyot’s stop is necessary to remove the light diffracted
outside the telescope aperture. It can be moreover verified
that all the energy is rejected outside the aperture.

The same considerations can be made for Lyot’s coro-
nagraphy, although the extinction will not be total. The
main difference comes from the fact that the Lyot’s mask
only sets to zero the central part of the wave. With eigen-
values close to 1, we can obtain an approximate solution
with interesting properties: the coronagraphic term is pro-
portional to the pupil, by the factor Λ0xΛ0y, and the resid-
ual amplitude is also proportional to the pupil amplitude,
by the factor (1 − Λ0xΛ0y). The response for an on-axis
point source is thus identical and reduced in intensity.

5. Conclusion and discussion

In this paper we have introduced a theoretical formal-
ism for coronagraphy of rectangular apertures with en-
trance pupil apodization: we have shown that the nat-
ural apodization functions for Lyot’s coronagraphy and
Roddier & Roddier’s coronagraphy are the linear prolate
spheroidal functions.

We have proven that a total extinction of a monochro-
matic unresolved on-axis star can be obtained using
a rectangular aperture apodized by prolate functions
(in x and y) and Roddier & Roddier’s phase mask



C. Aime et al.: Coronagraphy with prolate apodizations 341

Λ

Fig. 7. Illustration of the interest of prolate apodizations for coronagraphy. Plane A: telescope aperture apodized using a linear
prolate. Plane B: the wave inside the mask for R&R (or occulted by the mask for Lyot) is a scaled image of the entrance pupil.
Plane C: the pupil and the coronagraphic term are equal inside the aperture for R&R, and proportional for Lyot. The residual
amplitude is null for R&R, and proportional to the entrance pupil amplitude for Lyot.

coronagraphy. Several pupil apodizations can give this re-
sult: within a range of values, one can define the prolate
apodization (and corresponding mask size) to use length-
wise, and the prolate apodization in the other direction
is then fixed. The best intensity transmission is obtained
when the two apodizations are equal (in terms of normal-
ized dimensions of the rectangle). It might be interesting
to increase the resolution in one direction (using a smaller

mask size in that direction), with the drawback of a lower
resolution in the other direction and a lower overall aper-
ture transmission.

The study we have made is for a monochromatic wave
front. R&R’s coronagraphy is said to be more sensitive to
wavelength effects than other phase shifting techniques,
such as the wavelength-independent CIA (Gay & Rabbia
1996; Baudoz et al. 2000a,b) or the less sensitive 4QC
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technique (Rouan et al. 2000), or the achromatic PKC
(Abe et al. 2001, 2002). To overcome this problem, one
can use an achromatization system that produces a mag-
nification of the focal image proportional to 1/λ over the
bandpass (Wynne 1979; Roddier et al. 1980). Then the
aperture image must undergo the same procedure (in
the reverse sense) for the Lyot stop.

For the original Lyot’s technique, with the same tech-
nique, only a partial extinction of the star can be obtained,
but there also, prolate apodizations give optimal results.
Both the star and the planet appear in the final image
with the same Point Spread Function (PSF) that is opti-
mal in terms of concentration of light, because of the pro-
late properties. The overall effect of Lyot’s coronagraphy
with prolate apodization is then to reduce the magnitude
difference between the planet and its parent star. The re-
duction factor obtained with the prolate apodization is
good enough to consider Lyot’s technique as a valid chal-
lenger of Roddier & Roddier’s technique, mainly because
of its simplicity and its lower dependence on the devi-
ation from the perfect case: chromatism, star diameter,
telescope jitter (Aime et al. 2001a). The most interesting
result with Lyot’s coronagraphy and prolate apodization is
probably the fact that the residual wavefront on the aper-
ture for the starlight is again a prolate apodized aperture.
Then it seems conceivable to undertake a second Lyot’s
coronagraphy. If this two-step (or even more!) experiment
appears to be feasible, then Lyot’s coronagraphy with a
prolate apodized aperture will permit one to obtain con-
siderable reduction factors for a reasonable mask size. This
is an aspect we intend to study in a future work. One of
the difficulties in any case will be the realization of the
prolate apodizer. These functions are indeed very close to
a cosine squared arch, as we show in Appendix B. This
transmission can be realized by an interference process
(Aime et al. 2001a). However, cosine apodizations do not
enjoy the very interesting properties of prolate functions
described above.

This paper simply intended to present a theoretical
and analytical approach for coronagraphy in space using
apodized apertures. Several issues have not been tackled
in this paper and remain to be studied numerically. In par-
ticular, numerical simulations will be needed to evaluate
the sensitivity of these formal solutions to the physical pa-
rameters: wavelength dependence, wavefront errors, mask
positioning errors, angular diameter of the star, etc. It will
be also interesting to check if the technique can give valu-
able results from the ground using an apodized aperture
with adaptive optics.

The technique has been described for a rectangular
aperture: the interest of linear or rectangular apertures
for exoplanet direct detection has already been discussed
(Aime et al. 2001a,b): they provide a very favorable con-
figuration to overcome the chromatism limitations, using
a X,λ coronographic mode.

However, similar results could be obtained for a full
circular aperture (with no central obstruction) substi-
tuting the circular prolate function for the linear one

(Frieden 1971). This will be described in a future work.
The use of prolate apodization for diluted apertures is a
much more difficult problem for which no theoretical ap-
proach seems to exist yet.
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reading of the manuscript and constructive comments.

Appendix A: Linear prolate functions

As well described by Frieden (1971), prolate functions,
known since Niven (1880), were re-discovered by Splepian
in 1959 to find the bandlimited function that is maxi-
mally concentrated, in the mean square sense, within a
given time interval. As shown in Sect. 4, the transposition
to Optics is immediate, identifying the aperture with the
bandlimited spectrum, and the focal plane with the time
domain. This uses classical properties of Fourier Optics
(Goodman 1996). The mean square consideration for the
amplitude means that the prolate apodization maximizes
the integrated intensity within a given region of the focal
plane, here the coronagraphic mask size. This property
may be used for itself if apodization alone was to be con-
sidered (Nisenson & Papaliolios 2001).

The first publication on prolate functions in signal pro-
cessing is by Slepian & Pollak (1961). See also the very
comprehensive presentation of Papoulis (1981).

Prolate functions have found very interesting applica-
tions in Optics. The short presentation we give here is
drawn from Frieden (1971). Notations and parameters are
modified to fit the present application.

As well emphasized by Frieden (1971), linear prolate
functions are defined by their invariance to a finite Fourier
Transform:∫ Lx/2

−Lx/2
Θn(t)e2ıπνtdt = ınLx

√
Λn
αx

Θn

(
νL2

x

αx

)
· (A.1)

Performing a finite Fourier transform on both sides of
Eq. (A.1), we have:∫ Lx/2

−Lx/2
Θn(ξ)

sin π(αx/Lx)(x− ξ)
π(x− ξ) dξ = ΛnΘn (x) (A.2)

(the finite FT of a function is the FT of the truncated
function).

For the apodization problem we consider, as in many
optical problems, that only the first prolate spheroidal
function Θ0(x) is of practical interest since it is the only
one that is maximum at the origin (Frieden 1971). We
easily recognize here a part of the coronagraphic equation
for rectangular apertures (Eq. (8)), with Λ0x = 1

εx
. This

integral equation admits as solutions (eigenfunctions) the
linear prolate spheroidal functions Θ0(x) with eigenval-
ues Λ0.



C. Aime et al.: Coronagraphy with prolate apodizations 343

Prolate apodizer and optimal cosine

Prolate apodizer and optimal cos
2

Relative difference

Relative difference

Fig. B.1. Comparison between opti-
mal cosine and cosine squared apodiza-
tion for Roddier & Roddier’s coronag-
raphy, with the exact prolate solution
that permits a total extinction. Left:
Amplitude aperture transmissions. At
this scale, there is no difference be-
tween the prolate function and the co-
sine (top) or cosine squared (bottom)
apodizations of Aime et al. (2001a).
Right: residual amplitude in plane C
in favor to the cosine squared compared
to the the simple cosine apodization.

The prolate functions have an interesting double or-
thogonality property:∫ Lx/2

−Lx/2
dx Θn(x)Θm(x) = Λnδmn,∫ ∞

−∞
dx Θn(x)Θm(x) = δmn, (A.3)

where δmn is the Kronecker delta.
The linear prolate functions can be computed from

the angular prolate spheroidal functions which are the
solutions to the wave equation propagation in prolate
spheroidal coordinates (Flammer 1957; Abramowitz &
Stegun 1970; Abbott 1997):

Θn(x) =
√

2Λnx
Lx

S0n (2x/Lx, cx)
(∫ 1

−1

S2
0n(t, cx)dt

)−1/2

·

(A.4)

We used the Mathematica package (Wolfram 1999) to
compute the linear prolate functions and the eigenvalues.
This package was written and kindly given to us by Falloon
(2001).

Appendix B: Cosine or cosine squared
apodizations as approximations of prolate
apodizations

In a recent paper (Aime et al. 2001a), we proposed an in-
terferometric apodization technique which is able to pro-
duce apodization, in the shape of a cosine, or any power
of a cosine, and studied its application to coronagraphy.
Cosine and cosine squared apodizations turned out to be
extremely efficient solutions for Lyot’s and Phase Mask

coronagraphy, provided that a partial central arch was
used. The apodization function was of the form:

PNX (x) = cosN
(
πx

bLx

)
×Π

(
x

Lx

)
, (B.1)

with N = 1 and N = 2. The optimal parameter b is ob-
tained minimizing the residual energy left by the corona-
graph for an unresolved monochromatic point source. The
optimal cosine and cosine squared functions are actually
extremely close to the exact prolate solution, as shown in
Fig. B.1. This explains their excellent efficiency for PM
coronagraphy.

Moreover, the mask size αx = 0.847586 for the pro-
late solution (associated to the eigenvalue Λ0 = 1√

2
) is

very close to the optimal mask size obtained for cosine
apodizations. The relative difference between them is only
8.7×10−6 for cosine apodization and 7.7×10−7 for cosine
squared apodization.

For Lyot’s coronagraphy, the comparison is not so easy
since no exact prolate solution exists. We have chosen to
use in this comparison the approximated prolate solution
closest to the optimal cosine or cosine squared (i.e. this
imposes a point in Fig. 4).

The results are illustrated in Fig. B.2. Again, we notice
that a much better fit of a prolate is given by the cosine
squared. The prolate function corresponding to the cosine
squared is associated with a higher eigenvalue Λ0 = 0.997
than the prolate corresponding to the cosine (Λ0 = 0.984)
and thus leads to a lower residual energy. (6.67 × 10−4

for cosine apodization and 2.95× 10−5 for cosine squared
apodization and a square aperture). The overall inten-
sity transmission of the apodizers are respectively: 30%
and 22%.
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Prolate apodizer and optimal cosine

Prolate apodizer and optimal cos
2

Relative difference

Relative difference

Fig. B.2. Comparison between opti-
mal cosine and cosine squared apodiza-
tion for Lyot’s coronagraphy, with the
closest approximated prolate solution.
Left: Amplitude aperture transmis-
sion. The cosine apodization (dashed
line) hardly fits the prolate shape (Λ0 =
0.984. The agreement is better be-
tween cosine squared and prolate (Λ0 =
0.997). Right: residual amplitude in
plane C. Cosine apodizations do not
have the remarkable properties of the
prolate ones. The star light is rejected
on the edges of the aperture.
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