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Total correlations of the diagonal ensemble herald the many-body localization transition
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The intriguing phenomenon of many-body localization (MBL) has attracted significant interest recently, but a
complete characterization is still lacking. In this work we introduce the total correlations, a concept from quantum
information theory capturing multipartite correlations, to the study of this phenomenon. We demonstrate that the
total correlations of the diagonal ensemble provides a meaningful diagnostic tool to pin-down, probe, and better
understand the MBL transition and ergodicity breaking in quantum systems. In particular, we show that the total
correlations has sublinear dependence on the system size in delocalized, ergodic phases, whereas we find that it
scales extensively in the localized phase developing a pronounced peak at the transition. We exemplify the power
of our approach by means of an exact diagonalization study of a Heisenberg spin chain in a disordered field. By a
finite size scaling analysis of the peak position and crossover point from log to linear scaling we collect evidence
that ergodicity is broken before the MBL transition in this model.
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The simple paradigmatic model of a particle hopping on
a lattice in the presence of disorder significantly advanced
our understanding of condensed matter systems. It led to
the insight that a static disordered potential can lead to a
complete absence of diffusion and hence conductance in
an isolated quantum system. This is known as Anderson
localization following its inception by Anderson [1] more
than half a century ago [2]. The original formulation focused
primarily on noninteracting systems and in the years following
Anderson’s work a complete picture was formed: It is now
known that noninteracting systems in one and two dimensions
are localized for arbitrary disorder [3,4]. Anderson also
conjectured that a closed system of interacting particles with
sufficiently strong disorder would likewise localize and fail
to equilibrate. This conjecture was only recently put on a
firmer theoretical footing in a seminal work by Basko, Aleiner,
and Altshuler [5]. This has led to a surge in interest in this
phenomenon now known as many-body localization (MBL).

The concept of MBL has been confirmed by a number
of studies [6–14], demonstrating that interacting systems can
display a dynamical phase transition between a so called
ergodic and a many-body localized phase. The MBL phase
is characterized by robust states protected by the extensively
many (approximately) local integrals of motion which emerge
[15–19]. Many features of this MBL phase have since been
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explored. For instance, it has been shown that in the MBL
phase energy eigenstates typically have low entanglement
entropy with respect to any bipartition, i.e., satisfy what
is called an area law [20–22]. This is in stark contrast to
generic ergodic phases in which the entanglement entropy of
eigenstates in the bulk of the spectrum exhibits an extensive
volume law scaling. For an initial pure product state, it has also
been observed that in many-body localized systems, bipartite
entanglement between two sectors of the system grows only
logarithmically in time [10,23–29] until an extensive value is
reached. This differs notably from the usual power-law growth
in ergodic systems, but also with the noninteracting case, in
which a saturation to a constant is observed. At the same time,
many features of MBL are still unexplored and their broader
connections unknown.

In this work we go significantly beyond the previous
approaches by applying a powerful and sensitive correlation
measure to pin down and study the MBL transition. Our
focus is on the time-averaged, dephased states that emerge
from product initial states once the hopping part of the
Hamiltonian is abruptly switched on. While fingerprints of
the MBL transition are expected in the correlations of this
dephased state, their utility depends strongly on the type
of correlations considered. While the behavior of bipartite
entanglement is a commonly used tool for characterization
of phases by the condensed matter community, we go beyond
this by employing a multipartite correlation measure for mixed
states. Quantum information theory classifies correlations
in quantum states as classical correlations, entanglement,
quantum correlations, and total correlations, all of which have
distinct physical interpretations and expose subtly different
properties [30,31]. Since we expect the inherently multipartite
nature of correlations to play a role in the MBL transition, we
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argue that the total correlations of the dephased state is both a
meaningful and insightful quantity to investigate it.

Based on a precise condition for ergodicity, we show that
the total correlations in the dephased state exhibits a different
scaling with the system size in ergodic and nonergodic
phases. In particular, in the disordered Heisenberg spin-1/2
chain studied we find that the total correlations grow only
logarithmically with the system size in the ergodic phase,
while in the MBL phase the growth is linear. Studying via
exact diagonalization the total correlations averaged over
disorder realizations and pure product initial states, we show
that in the crossover region between these two behaviors it
develops a pronounced peak with a power-law decay with the
disorder strength on either side, a key signature to identify
and characterize the transition. As a side remark, no peak is
visible if instead of the total correlations we use the mutual
information, a measure of bipartite correlations, between the
left and right half of the system (see also Fig. 7 in the
Supplemental Material [32]), demonstrating that multipartite
correlations play an important role.

Additionally, our study connects the problem of MBL
with recent research on equilibration in coherently evolving
quantum systems. In the past decade this topic has seen an
unprecedented revival of interest mainly due to spectacular
experimental advances in cold atomic physics [33,34]. In this
platform, the coherent dynamics can be followed over long
time scales. In fact, there is evidence for an experimental
realization of an MBL phase using cold atoms on optical
lattices [35], adding further relevance to the work here.

Total correlations. The MBL transition has been investi-
gated with a variety of tools, from transport coefficients to level
statistics. A diagnostic tool to capture real space correlations
in quantum states is the growth of the entanglement entropy
in the evolution of product initial states [24,27]. Here, in
view of the multipartite nature of correlations in interacting
many-body systems, we sharpen this approach by employing
the total correlations T [30,31,36]. In order to define T ,
we first introduce the relative entropy between two states
ρ and σ defined by S(ρ‖σ ) := −tr(ρ log2 σ ) − S(ρ), where
S(ρ) := −tr(ρ log2 ρ) is the von Neumann entropy. It is the
quantum analog of the Kullback-Leibler divergence and a very
stringent measure of the distinguishability of two quantum
states [37] via a result known as quantum Stein’s lemma. While
not itself a metric, it still upper bounds the trace distance
via Pinsker’s inequality S(ρ‖σ ) � ‖ρ − σ‖2

1/2 [37], which
captures the optimal distinguishability of quantum states with
a single measurement.

We now introduce the total correlations T : Let P be the set
of all product states of a N -partite quantum system, i.e., for
spin systems, states of the form π = π1 ⊗ π2 · · · ⊗ πN (and
the corresponding analogs for fermionic and bosonic systems).
The total correlations are then defined as the minimum relative
entropy between the state and any product state, i.e.,

T (ρ) := min
π∈P

S(ρ‖π ). (1)

It turns out that the unique product state which minimizes the
relative entropy in the above definition is the product of the
reduced states ρm obtained from ρ by tracing out all sites but
the mth, i.e., π = ⊗N

m=1ρm [30]. This allows us to compute the

quantity straightforwardly by making partial traces over the
partitions of interest. The expression for the total correlations
becomes

T (ρ) =
N∑

m=1

S(ρm) − S(ρ). (2)

It is useful to point out that for N = 2 the total correlations
is equal to the mutual information, which has the operational
interpretation as the work required to erase the correlations in
ρ [38]. If ρ is a pure bipartite state, then the mutual information
is equal to twice the entanglement entropy of ρ, i.e, T (ρ) =
S(ρ1) + S(ρ2). We note that although the total correlations
defined by Eq. (2) contains a contribution from the diagonal
entropy studied in [9] it also contains contributions from all
marginal entropies and unlike the diagonal entropy is explicitly
related to the geometric picture of correlations in the state
under investigation.

Quantum ergodicity, the diagonal ensemble, and many-
body localization. Leaving aside the problem of a proper
definition of MBL, we take the complementary approach and
start by defining a property that is a condition for rightfully
calling a system ergodic. The ergodic hypothesis in classical
statistical physics states that ergodic systems explore their
phase space uniformly such that the infinite time average and
the microcanonical average should agree (making this precise
is a subtle issue [39]). In quantum mechanics the time and the
microcanonical average can agree exactly only for states that
are evenly weighted coherent superpositions of all eigenstates
in a microcanonical subspace [40]. Hence, we require less and,
informally speaking, take the standpoint that to call a system,
i.e., a pair of Hamiltonian and initial state, ergodic (as opposed
to many-body localized) it should explore at least a constant
fraction of the available Hilbert space.

Let us now turn this intuition into a clear-cut definition.
The first step is to quantify the explored Hilbert space, we will
do this based on the dephased or time-averaged state ω. For
a fixed initial state ρ and nondegenerate Hamiltonian H we
define

ω :=
∑

n

|En〉〈En| ρ |En〉〈En| = lim
τ→∞

1

τ

∫ τ

0
dt e−itH ρ eitH ,

(3)
where |En〉 are the eigenvectors of H . This is often referred
to as the diagonal ensemble, as the off-diagonal elements
are washed away by the time average. The dephased or
time-averaged state is the unique state that maximizes the
von Neumann entropy given all constants of motion [41]. If
the expectation value of an observable equilibrates on average
during the time evolution of a system, then the equilibrium
expectation value can be computed from it [34,40]. What is
more, under mild additional conditions on the Hamiltonian
the following is true: If the inverse purity 1/tr(ω2) of the time
averaged state, also called effective dimension and participa-
tion ratio, is high, expectation values of all sufficiently local
observables equilibrate on average during the time evolution
even if they were initially out of equilibrium [33,34,42,43].

The effective dimension, being a measure for the number
of energy eigenstates that significantly contribute to the initial
state [42,43], can be interpreted as a measure for the explored
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Hilbert space fraction (as can other moments of the energy
level occupation distribution, like tr(ω2 q) for q ∈ Z+ [44]).
Instead of demanding a large effective dimension for er-
godicity we only demand the weaker property that S(ω) �
log[1/tr(ω2)] is large enough to call a system ergodic.

To identify a reasonable notion of being large enough we
take inspiration from the theory of random states (although it
is important to stress that we will not actually base any of the
later calculations or numerics on Haar random states). For a
fixed Hamiltonian H and randomly chosen unitarily invariant
initial states ρ(0) from the Haar measure on a microcanonical
subspace of dimension d one can show [45, Eq. (B6)] (compare
also Refs. [46–49]) that for some C > 0

Pr[S(ω) � log2(d/2)] � 4 exp[−C d/ log2(d)2]. (4)

That is, random states typically explore at least half of the
available Hilbert space in the sense that typically S(ω) �
log2(d/2).

For our condition for ergodicity we relax this fraction of
1/2 to a constant fraction of the available Hilbert space. To
make this meaningful we have to speak about families of
systems of increasing system size N , specify what we mean by
available Hilbert space, and describe the class of initial states.
As is common in localization studies we take the subspace
of dimension d corresponding to a fixed filling η ∈ [0,1] or
magnetization 2 η − 1 as the available Hilbert space. We then
consider initial states that are pure product states with definite
local particle number or magnetization from that subspace,
which can be thought of as ground states of appropriate
“easy” Hamiltonians. We say that a family of such systems
should be considered ergodic only if most such product
initial states explore at least a constant fraction of the fixed
filling/magnetization subspace in the sense that for some λ > 0
it holds that S(ω) � log2(λ d). Note that this is less restrictive
than demanding that 1/tr(ω) � λ d, as S(ω) � − log tr(ω).
For families of disordered systems we demand that the same
condition is fulfilled with high probability also with respect to
the disorder average.

Scaling of the total correlations. We now turn to demon-
strating that the total correlations in the dephased state can
be used to pin down and better understand the transition
point from an ergodic to the MBL phase. The key signature
we exploit is the scaling of T (ω) with the system size N .
Inspecting Eq. (2) one might expect that the total correlations
in the dephased state T (ω) should generally scale extensively
with N , i.e, for large N one should have to leading order

T (ω) ∝ N, (5)

as T (ω) involves the sum
∑N

m=1 S(ωm) of the N subsystem
entropies. Indeed, this is the behavior we find in the MBL
phase of the model we consider below (see also Fig. 2 in the
Supplemental Material [32]).

If a family of disordered systems is ergodic however, then
for some constant λ > 0, for most product initial states, and
with high probability over the disorder average

T (ω) �
N∑

m=1

S(ωm) − log2(λ d). (6)

For a quantum spin chain of local dimension 2 at half filling
η = 1/2 the available Hilbert space dimension is d = ( N

N/2 ) =
N !/(N

2 !)
2 �

√
8 π e−2 2N/

√
N and S(ωm) � log2 2 = 1, so

that one finds at most the logarithmic scaling

T (ω) � log2(N )/2 − log2(λ
√

8 π e−2). (7)

This is what we observe in the ergodic phase of the model
we consider. One furthermore retains a logarithmic scaling
for ergodic spin-1/2 systems for all other constant fillings
η ∈ [0,1] if another mild condition is satisfied that can also be
motivated from ergodicity, namely that for some λ′ > 0

N∑
m=1

S(ωm) � N s(η) + λ′ log2 N, (8)

where s(x) := −x log2(x) − (1 − x) log2(1 − x) is the binary
entropy function. Equation (8) says that the sum of the local
entropies of the time-averaged state should not grow much
faster than one would expect for the given filling fraction η.
The generalized Stirling formula implies that

log2 d = log2

(
N

η N

)
� N s(η) − c(η), (9)

with c(η) = 2 log2(e) − log2(η) − log2(1 − η). Inserting this
and Eq. (8) into (6) yields a logarithmic scaling with the system
size:

T (ω) � λ′ log2 N − log2(λ) + c(η). (10)

This subextensive scaling can also be understood intu-
itively: The transport present in ergodic systems correlates
the different parts of the system to the extent that they
appear, for most times during the evolution, so mixed that the
distinguishability from the closest product state only grows
logarithmically.

Model used for numerics. A model which is known to
exhibit a crossover between an ergodic and a MBL phase is
the Heisenberg spin chain with random field in the z direction
[7]. The Hamiltonian of this model is given by

H =
N∑

i=1

[
J

(
σ i

xσ
i+1
x + σ i

yσ
i+1
y

) + Jz σ i
zσ

i+1
z + hiσ

i
z

]
, (11)

where the hi represent identically distributed static fields on
each site i uniformly distributed in the interval [−h,h]. In what
follows we adopt periodic boundary conditions and set Jz = 1,
so that a family of systems is completely characterized by the
XX type coupling constant J and the disorder strength h. For
all values of the parameters, the model conserves the total
magnetization Sz along the z direction, so in the numerics
we have chosen the subspace with Sz = 0, also referred to
as half filling, i.e, η = 1/2. We take as our initial states all
product eigenstates of the on-site part of the Hamiltonian∑N

i=1 σ i
z from this subspace. We then compute for each initial

state the diagonal ensemble ω and T (ω). Averaging over all
such initial states and disorder realizations yields T̄ (ω). The
numerics were performed using standard libraries for matrix
diagonalization. We use 10 000 disorder realizations for each
disorder amplitude |h| and system size N , except for the case
of N = 16 where 1000 realizations per point were computed.
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FIG. 1. (Color online) For high h, T̄ decays as a power law. The
dashed lines are fits to the data points with h � 10 yielding exponents
of −0.9(1) (consistent with the expectation of h−1 corrections). The
inset shows the position of the peaks from Fig. 2 (see also Fig. 6
in the Supplemental Material [32]). The extrapolated position of the
peak indicates the onset of MBL at around h = 3.8. The fact that
the different T̄ /N curves overlap for large enough h indicates that T̄

scales essentially linearly with N in this regime.

Results, discussions, and conclusions. We concentrate on
the case J = Jz = 1. For that case the MBL transition in
the model (11) was predicted to be hc ∈ [2,4] by Huse and
Pal [7], with the best estimate based on energy resolved
calculations being hc = 3.72(6) [12] from an analysis of
spectral statistics. Turning to the results we obtained, in all
calculations performed we observe that the total correlations
when plotted versus h show an initial growth at low h

towards a maximum and then decrease monotonically at higher
disorder with a power-law decay with an exponent of roughly
−0.9(2), i.e., T̄ ∝ N h−0.9(2) (see Fig. 1). This is consistent
with the expectation of h−1 corrections from perturbation
theory and the behavior in the noninteracting case Jz = 0 (see
the Supplemental Material [32]). The position of the maximum
is size dependent, and can be extrapolated to be hc ≈ 3.8 in
the thermodynamic limit. This is in excellent agreement with
the best known approximation of the transition available in
the literature [12]. In turn, by rescaling T/N it appears that
all curves collapse onto a single master curve for h > hc (see
Fig. 2 in the Supplemental Material [32]). Since on qualitative
grounds we expect the many-body localized phase to be
characterized by (i) linear scaling T ∝ N and (ii) shrinking
localization length as h increases, it is natural to identify the
MBL transition with the peak (see the inset of Fig. 1). The
analysis for h < hc is more complex: scaling and data collapse
for T/ log(N ), expected in an ergodic phase, are observed only
for h < 2.6(2) (see Figs. 2 and 3). For low disorder (up until
h ≈ 2.0 for the system sizes we can access), we see a power-
law increase of T with h (see Fig. 2) with an exponent of about
2.7(2). While for h < 2 the system is definitely in an ergodic
phase (compare Fig. 3 in the Supplemental Material [32]), the
analysis resented in Fig. 3 suggest that ergodicity is is broken
only around h = 2.6(2). This is consistent with an intermediate
extended yet nonergodic phase [44,50] before full MBL sets in.
Due to the small system size finite size effects cannot be com-
pletely ruled out. Nevertheless, recent work has demonstrated
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FIG. 2. (Color online) Subtracting the values of T̄ for h = 0.2
(which is just outside the integrable region around h = 0) from T̄

one can see that for increasing system sizes the individual curves
fall on top of each other in an increasingly large region of h values
(shaded regions) during the approach to the peak. This increase is
well captured by a power law with exponent 2.7(2) (dotted line guide
to the eye ∝ h2.7).

an intermediate level statistics [51], implying nonergodic
extended states in precisely the crossover region indicated by
our numerics. We believe that our work constitutes evidence of
an intermediate nonergodic region before the onset of MBL.

Conclusions. The numerical simulations performed to-
gether with our analytical arguments show that the total
correlations in the diagonal ensemble signal both ergodicity
breaking and the MBL transition in a quite spectacular way.
In standard critical systems it is known that the multipartite
correlations of the system rearrange as the system is pushed
across an equilibrium phase transition [52]. Undoubtedly
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FIG. 3. (Color online) The difference of the average total corre-
lations T̄ and the best possible linear fit for different values of h. The
crossover from a nearly linear scaling to a sublinear scaling clearly
happens between h = 2.8 and h = 2.4. This result is robust against
omitting data points for large or small values of N and equally holds
for affine fits instead of linear ones. This gives us high confidence in
this result, which indicates the existence of an extended nonergodic
but not yet many-body localized region. The inset shows the data
before subtracting and the fits.
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the transition from an ergodic to a MBL phase is a highly
nonequilibrium phenomenon which is poorly understood at
present. Our approach exposes how this transition goes along
with a reorganization of correlations in the dephased state via
significant change in scaling with N . We expect this behavior
to be generic and believe that the methodology outlined here
is very promising to study MBL and ergodicity breaking
phenomena in a variety of many-body quantum systems. In a
follow up study we will investigate the possible multifractal na-
ture of ergodicity breaking in a way inspired by Refs. [44,50].
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