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Abstract
The effects of electron correlation and second-order terms on theoretical total
cross sections of transfer ionization in collisions of the helium atom with fast
H+, He2+ and Li3+ ions are studied and reported. The total cross sections
are calculated using highly correlated wavefunctions with expansion of the
transition amplitude in the Born series through the second order. The results
of these calculations are in sensible agreement with experimental data.

1. Introduction

Since the 1980s, double-electron transitions have been one of the top research areas in atomic
physics. The quest for the nature of electron correlation motivated extensive experimental
and theoretical research on the two-electron transitions in collisions of atoms with photons,
electrons and ions (McGuire 1997). Mechanisms of the two-electron transitions, interplay
of electron correlation and collision dynamics, alternative formulation for the many-body
perturbation theory were also of much interest. It is thought that such research could potentially
lead to solving the few-body problem.

The two-electron helium atom, being the simplest correlated atomic system, is the most
studied target in both symmetric and asymmetric two-electron transitions, such as excitation
ionization, transfer ionization, transfer excitation, double ionization, double excitation and
double transfer. Highly sensitive and sophisticated experimental techniques have been used
for measurements of the two-electron transition cross sections. COLTRIMS, ‘a reaction
microscope,’ is one of the newest experimental methods that provide an exceptional insight
into the physics of reaction dynamics (Dörner et al 2000). On the theoretical side, however,
little progress has been made in past perturbative methods. Nevertheless, theoretical studies
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have shed light on mechanisms of these transitions. It is apparent that any realistic theoretical
model for double electron transitions must employ electron correlation as an integral part of
the model.

Studies of the two-electron transitions have also stimulated research on electron correlation
in the time domain, i.e. time ordering (Stolterfoht 1993, Nagy et al 1997). Time ordering
provides a causal-like constraint on the sequencing of the interactions, V (t), between the
particles involved in a transition. In this model, transitions of electrons are interconnected
or correlated with time. Time ordering forces the scattering process off the energy shell and
on a practical side, time ordering becomes essential for accurate second-Born calculations
(Godunov et al 2001, McGuire and Godunov 2003). Calculations with time ordering take a
lot of computer time, but just ignoring it, or approximating it, is risky.

While multiple differential cross sections provide detailed information about collision
processes, total cross sections give insights into global trends. Except for the widely studied
case of double ionization (McGuire et al 1995), total cross sections for other two-electron
transitions have not been extensively explored. Furthermore, transfer ionization is one
of the least understood two-electron transitions, which is not surprising since even single
charge transfer has always challenged theory. Experimental observations of the Thomas
peak (Horsdal-Pedersen et al 1983) demonstrated the importance of the double-scattering
mechanisms of single transfer at high velocities. For this reason, one may expect that
perturbative models lacking the third- or higher-order terms will not provide a good description
of the transfer ionization process. However, roles of electron correlation in transfer ionization
in comparison to the higher-order terms remain unclear. The transfer ionization by H+ impact
is clearly preferable for theoretical studies because there is no three-body Coulomb interaction
in the final state, the final state simply has a neutral hydrogen atom and only two charged
particles, namely, an ionized electron and a recoil atom.

Initial systematic measurements for total cross sections of transfer ionization of He by
fast H+, He2+ and Li3+ ions were done by Shah and Gilbody (1985). Later Mergel et al (1997)
and very recently Schmidt et al (2005) measured total cross sections of transfer ionization in
H++He collisions. Using the COLTRIMS technique they succeeded in relating the contribution
from the Thomas p–e–e mechanism to transfer ionization. Woitke et al (1998) measured total
cross sections of transfer ionization for Li3+ + He collisions but for energy higher compared
to Shah and Gilbody (1985). Several research groups have presented theoretical calculations
of the total cross sections for transfer ionization. The semiclassical calculations of Dunseath
and Crothers (1991) in the independent-event model were considerably larger than those
of experiment. The coupled channel semiclassical impact parameter model employing the
independent electron approximation (Shingal and Lin 1991) overestimated the cross sections
and exposed the inadequacy of simple uncorrelated models to describe this process. The
four-body continuum distorted-wave CDW-4B approximation by Belkic et al (1997) did agree
satisfactorily with the experiment for He2++He collision.

In an attempt to understand the mechanisms of the transfer ionization process, the
Frankfurt group of Schmidt-Böcking measured multiple differential cross sections for

H+ + He → H0 + He2+ + e−,

using the COLTRIMS technique (Mergel et al 2001, Schmidt-Böcking et al 2003a). These
experiments revealed numerous aspects that defied explanation. Schmidt-Böcking suggested
that the effect of electron correlation, namely a contribution from non-s2 terms to the initial
state wavefunction of helium (Schmidt-Böcking et al 2003b) accounted for the aberrant
results. However, this explanation was met with skepticism by many. In contrast, recent
joint experimental and theoretical papers (Godunov et al 2004, 2005, Schöffler et al 2005)
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demonstrated that a relatively simple perturbative model which included proper electron
correlation did closely agree with measured multiple differential cross sections.

In the present paper we extend the perturbative model of Godunov et al (2004, 2005)
through second-order terms. We calculated total cross sections of transfer ionization in fast
H+ + He, He2+ + He and Li3+ + He collisions. Our goal is to determine (a) the usefulness
and reliability of the perturbative model with correlation for total cross sections of transfer
ionization (b) the importance of correlation for transfer ionization and (c) the theoretical v−b

dependence of total cross sections.

2. Theoretical model for the transfer ionization

2.1. The first Born amplitude

We consider a structureless projectile incident upon a two-electron target in the ground state
�i(r1, r2). The first-Born amplitude for the transfer ionization can be written as (Godunov
et al 2004)

f B1 = −(2π)2√µiµf〈�f|Vi|�i〉, (1)

where the initial channel wavefunction �i is

�i = 1

(2π)3/2
exp(iKiRi)�i(r1, r2), (2)

and the wavefunction �f in the final channel is

�f = 1

(2π)3/2
exp(iKfRf)

[
ϕnl(r1 − R)ψ

(−)
k2

(r2)
]
, (3)

where r1 and r2 are the position vectors for the electrons relative to the target nucleus, the
vectors Ri and Rf describe the position of the centre of mass of the projectile system relative
to that of the target system before and after the collision, while Ki and Kf are the associated
relative momenta, and µi and µf are the corresponding reduced masses defined as

µi = Mp(Mt + 2)

Mp + Mt + 2
, µf = (Mp + 1)(Mt + 1)

Mp + Mt + 2
, (4)

where Mp is the mass of the projectile and Mt is the mass of the target nucleus. In
equation (3) ϕnl(r1 − R) is the hydrogen-like wavefunction of the captured electron, ψ

(−)
k2

(r2)

is the Coulomb wavefunction for the ionized electron with momentum k2 in the field of the
target nucleus (normalized as 〈ψk|ψk′ 〉 = δ(k − k′)). The interaction potential Vi between the
projectile of charge Zp and a two-electron atomic system with nuclear charge Zt is given by

Vi = − Zp

|r1 − R| − Zp

|r2 − R| +
ZpZt

R
, (5)

where R is the coordinate of the projectile respective to the target nucleus.
In our actual calculations we properly include symmetrization over space coordinates,

however it is conceptually useful to present the theory as if the particles were distinguishable.
We use index 1 for the ‘transferred’ electron and index 2 for the ‘ionized’ electron. The
transition amplitude (1) contains three terms arising from the three terms in the potential Vi.
The first term may be considered as one electron of the target being captured by the interaction
with the projectile and the second is ejected because of correlation (‘transfer first’ transition).
The second term describes the picture when one electron is initially ionized and then the
second is captured due to correlation (‘ionization first’ transition). The last term in (5) takes
into account the heavy particle interaction in ion–atom collision.
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In order to evaluate the first-Born amplitude (1), it is instructive to introduce the Fourier
transform of the hydrogenic wavefunction ϕnl(r),

ϕF
nl(s) =

∫
exp(+is(r1 − R))ϕnl(r1 − R) d(r1 − R)

ϕnl(r1 − R) = 1

(2π)3

∫
exp(−is(r1 − R))ϕF

nl(s)ds.
(6)

Then the integration over the internuclear coordinate R in the first-Born amplitude can be
easily performed to yield the following form for the ‘transfer first’ amplitude:

ftr = −
√

µiµf

(2π)4

∫
ds

−4πZp

|s − K|2 ϕF∗
nl (s)T(k2; Q,−Qt), (7)

and for the ‘ionization first’ amplitude

fion = −
√

µiµf

(2π)4

∫
ds

−4πZp

|s − K|2 ϕF∗
nl (s)T(k2; s − K + Q, K − s − Qt), (8)

where the momenta transfer Q and K are defined by

Q = Mt + 1

Mt + 2
Ki − Kf, K = Ki − Mp

Mp + 1
Kf, (9)

Qt ≡ Q/(Mt + 1). T denotes the two-particle transition matrix element

T (k2; s1, s2) =
∫

dr1 dr2ψ
(−)∗
k2

(r2)�i(r1, r2) exp(is1r1 + is2r2). (10)

The amplitude corresponding to the last term in the interaction potential (5), that is interaction
between heavy particles, may be written in a form using the Fourier transform as well, i.e.

fpn = −
√

µiµf

(2π)4

∫
ds

4πZpZt

|s − K|2 ϕF∗
nl (s)T(k2; s − K + Q,−Qt). (11)

One may see from equation (7) that the transfer and ionization transitions in the ‘transfer
first’ amplitude are separable and can be written as

ftr = −
√

µiµf

2π
Ṽ ∗

nl(K)T (k2; Q,−Qt), (12)

where Ṽnl is proportional to a matrix element for the capture of a free electron into the bound
state of the hydrogen-like atom

Ṽnl(K) = − 4πZp

(2π)3

∫
ds

ϕF
nl(s)

|K − s|2 =
∫

dr ϕnl(r)
(

−Zp

r

)
exp(iKr). (13)

This fact essentially simplifies the calculations of the amplitude ftr which can be performed
analytically by means of standard methods.

The evaluation of the amplitudes fion and fpn requires numerical three-dimensional
integration over s.

2.2. The second-Born amplitude

The amplitude for the transfer ionization in the second-Born approximation may be written in
the form similar to a single capture transition, i.e.

f B2 = −(2π)2√µiµf〈�f|VfĜ
+
0(E)Vi|�i〉, (14)

where Vi is the interaction potential in the incoming channel (5), Vf is the interaction potential
in the outgoing channel,

Vf = −Zt

r1
+

1

|r1 − r2| − Zp

|r2 − R| +
ZpZt

R
, (15)
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and Ĝ+
0 is a Green operator. The spectral form of the Green operator can be written as

Ĝ+
0(E) = lim

ε→0

∑
n

∫
dKα

|�n〉〈�n|
E − En − K2

α

/
2µi + iε

exp[iKα(R − R′)]
(2π)3

. (16)

Here the sum on n is over all discrete and continuum states �n of the target, and En is the
energy of the state �n.

Exact calculation of the second-order terms is a very challenging computational problem.
One of the simplest but efficient methods for performing the sum over n, and the one adopted
here, is to use the closure approximation (Massey and Mohr 1934). In this approximation, En

is set to an average value Eav so that the denominator becomes independent of n. Using the
completeness of the states

∑
n

|�n〉〈�n| = 1, (17)

and integrating over R′ one would easily get the second Born amplitude of transfer ionization
in the closure approximation

f B2(Eav) = Zp

(2π)4

√
µiµf lim

ε→0

∫
dKα

E − Eav − K2
α

/
2µi + iε

4π

p2
α

×
∫

dr1 dr2 dR ϕ∗
nl(r1 − R)ψ

(−)∗
k2

(r2)Vf(R, r1, r2)

× exp(iqαR + i(Q − K)r1 − iQtr2)

× [
exp(ipαr1) + exp(ipαr2) − Zt

]
�i(r1, r2), (18)

where the intermediate momenta are defined as

pα = Ki − Kα, qα = Kα − Mp

Mp + 1
Kf . (19)

This is a six-dimensional integral and generally it is still a cumbersome computational task,
particularly for 1/|r1 − r2| electron–electron interaction term in Vf potential. In fact, the first
two terms in the potential Vf (15) describe the interaction of the ‘transferred’ electron with
the residual ion of the target. We may consider that as an interaction with a particle with a net
charge (Zt − 1). In this way the potential Vf can be approximated as

Vf ≈ − (Zt − 1)

r1
− Zp

|r2 − R| +
ZpZt

R
. (20)

The amplitude corresponding to the first term in the potential above can be written as

f B2
f (Eav) = −

√
µiµfZp

(2π)4
lim
ε→0

∫
dKα

E − Eav − K2
α

/
2µi + iε

4π

p2
α

φ̃F∗
nl (qα)[T ′(k2; Q,−Qt)

+ T ′(k2; Q − pα, pα − Qt) − ZtT
′(k2; Q − pα,−Qt)], (21)

where

T ′(k2; s1, s2) =
∫

dr1 dr2 ψ
(−)∗
k2

(r2)
1

r1
�i(r1, r2) exp(is1r1 + is2r2). (22)

The contribution of the last two terms of the final interaction potential Vf after introduction
of the Fourier transform (6) and integration in (18) over coordinate R may be represented in
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the following form:

f B2
i (Eav) = −

√
µiµfZ

2
p

(2π)4
lim
ε→0

∫
dKα

E − Eav − K2
α

/
2µi + iε

4π

p2
α

(2π)−3
∫

ds φ̃F∗
nl (s)

4π

|qα − s|2
× [T (k2; Q − qα + s, qα − Qt − s) + T (k2; Q − K + s, K − Qt − s)

−ZtT (k2; Q − K + s, qα − Qt − s)] (23)

f B2
pn (Eav) =

√
µiµfZ

2
pZt

(2π)4
lim
ε→0

∫
dKα

E − Eav − K2
α

/
2µi + iε

4π

p2
α

(2π)−3
∫

ds φ̃F∗
nl (s)

4π

|qα − s|2
× [T (k2; Q − qα + s,−Qt) + T (k2; Q − K + s, pα − Qt)

−ZtT (k2; Q − K + s,−Qt)]. (24)

The two-particle transition matrix element T is defined by (10).

2.3. Cross sections

The total cross section of transfer ionization in the perturbative model through the second
order is given by

σ = 2
Kf

Ki

∫
|f B1 + f B2|2ke dEe d�e d�f, (25)

where ke and �e are the momentum and the solid angle for the ionized electron, �f is
the scattered angle. The cross section is a coherent sum of the transition amplitudes and
thus depends on their interference. The factor of 2 in above equation is a result of spatial
antisymmetrization over electron coordinates in the initial and the final state wavefunctions.

3. Calculation method

We calculated the transfer ionization cross sections in various approximations to study the
effects of first- and second-order terms, and electron correlation. The first-Born calculations
(Born 1) include a coherent sum of three first-order amplitudes, namely, f B1 = ftr +fion +fpn.
For calculating the second-order terms, we use the Sokhotsky theorem (Sokhotsky 1873)

lim
ε→±0

∫
f (x)

x − x0 ± ε
dx = P

∫
f (x)

x − x0
dx ± iπf (x0), (26)

where P stands for the Cauchy principal value integral. Thus, a second-order term can be
written as f B2 = f B2off +f B2on. In atomic and nuclear scattering theory, terms corresponding
to the Cauchy principal value integral are usually called off-shell terms. Godunov et al (2001)
demonstrated that the ‘off-shell’ terms may lead to time correlation between electrons. The
second term in equation (26) is usually called as an on-shell term. As opposed to the f B2

f

(21) term, calculations for f B2
i (23) and f B2

pn (24) terms require additional three-dimensional
integration. However, it is the amplitude f B2

f that corresponds more closely to the concept of
the Vf G0Vi expansion. We used this amplitude for our calculations to reduce computational
time. In the following, we denote the second-order calculations in the ‘on-shell’ approximation
as ‘Born 2 on’, that is f = f B1 + f B2on

f . ‘Born 2’ stands for calculations with both ‘on-shell’
and ‘off-shell’ terms, i.e. f = f B1 +f B2on

f +f B2off
f ≡ f B1 +f B2

f . The second-order ‘on-shell’
calculations without electron correlation are labelled as ‘Born 2 unc’.
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Figure 1. Transfer ionization cross sections for H+ + He collisions. Present theoretical results:
- - - -, first Born calculations; — · —, Born 2 on-shell; ——, Born 2 includes both on- and off-shell
terms; — · · —, Born 2 on-shell with uncorrelated functions. Experiment: •, Mergel et al (1997);◦, Shah and Gilbody (1985); �, Schmidt et al (2005). Other calculations: · · · · · ·, Dunseath and
Crothers (1991).

The average energy Eav in the closure approximation for the second-order terms can be
chosen arbitrarily. In practice, this parameter should correspond to the energy of the most
important intermediate states. Since our calculations were quite insensitive to variations of
Eav within 20 eV–60 eV interval, the calculations presented below were carried out with
Eav = 32.5 eV.

The wavefunction �i(
r1, 
r2) for helium, ground state was calculated in the
multiconfigurational Hartree–Fock approximation (MCHF) (Froese Fischer 1996). The full
set of calculations with both radial and angular correlation include (ns)2, (ps)2 and (nd)2 terms
with n through 4. These configurations yield about 97% of the correlation energy. The same
correlated wavefunction was used in both the first- and second-order calculations.

Allowance for electron correlation increases computational time by almost a factor of 10.
The results presented below were calculated on the 50-processor cluster at Physics Department
of Old Dominion University.

4. Results and discussion

In figure 1, we present transfer-ionization cross sections for H+ + He collisions. The first-Born
calculations reasonably agree with experimental data for all collision energy. This result is
unexpected. Normally, the first-order calculations do not agree with experiments for other two-
electron transitions. The second-order terms in the ‘on-shell’ approximation were calculated
with and without electron correlation. For uncorrelated calculations, we used the Hartree–Fock
function for the ground state. Calculations allowing for the second-order ‘on-shell’ terms with
correlation show that the cross section is affected slightly. But the ramification of correlation
is quite remarkable. As we can see from the figure, at lower energies, the uncorrelated cross
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Figure 2. Transfer ionization cross sections for He2+ + He collisions. Present theoretical results:
- - - -, first-Born calculations; — · —, Born 2 on-shell; ——, Born 2 includes both on- and off-shell
terms. Experiment: ◦, Shah and Gilbody (1985). Other calculations: · · · · · ·, Dunseath and
Crothers (1991); — · · —, Belkic et al (1997).

section is about 25% larger compared to the correlated calculations, but for higher energies it is
about five times smaller. Therefore, we conclude that electron correlation plays an important
role in transfer ionization by fast proton impact. Effect of the ‘off-shell’ is strongest at
100 keV (about a factor 2), but decreases to few per cent at high energies. The second-order
calculations of Dunseath and Crothers (1991), which did not include the first-order terms, are
much larger than our calculations. Our calculations show that the interference between terms
in the cross section (25) affects the coherent sum of the amplitudes.

Cross section for transfer ionization in He2+ + He collisions is presented in figure 2. The
first-Born calculations strongly disagree with experimental data. Allowing for the second-
order terms increases the cross section by a factor 2 at 100 keV amu−1. As the collision
energy increases, the difference between the first- and second-order calculations decreases.
The effect of off-shell term for He2+ impact is rather small (within 15%). Our theoretical
results agree closely with the experimental data of Shah and Gilbody (1985) for all energies.
Our results are also very close to the theoretical data of Belkic et al (1997) in the interval of
100 keV amu−1—400 keV amu−1. However, for higher-collision energies the two methods
demonstrate different asymptotic behaviour. There is no experimental data for collision
energies above 600 keV amu−1. However, a visual extrapolation of the experimental data of
Shah and Gilbody (1985) shows that the expected experimental cross sections would follow
the asymptotic behaviour in our calculations.

In figure 3, we present transfer-ionization cross sections for Li3+ + He collisions. It is
clear that the first Born calculations are well lower than experimental data. Allowing for
the second order somewhat increases the cross sections, but the calculations are still below
the experiment. Inclusion of the off-shell terms dramatically improves the agreement with
experimental data. As the collision energy increases, the effect of the second-order terms
decreases but remains noticeable.
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Figure 3. Transfer ionization cross sections for Li3+ + He collisions. Present theoretical results:
- - - -, first Born calculations; — · —, Born 2 on-shell; ——, Born 2 includes both on- and off-shell
terms. Experiment: ◦, Shah and Gilbody (1985); �, Woitke et al (1998).

Table 1. Coefficients b in the velocity dependence σ ∝ v−b for cross sections of transfer ionization
for H+ + He collisions.

Experiment Theory

Mergel (1997) Schmidt et al (2005) Born 1 Born 2 on Born 2

10.02 10.81 11.23 11.31 10.76

Studies of single-electron transfer show that an asymptotic behaviour of cross sections as
a function of the collision velocity σ ∝ v−b may provide information about the most important
collision mechanisms. Particularly, the first-order Brinkman and Kramers mechanism would
lead to v−12 velocity dependence and the second-order Thomas p–e–n scattering to v−11. The
same v−11 trend was expected for the Thomas p–e–e mechanism in transfer ionization (Briggs
and Taulberg 1979). Mergel (1997) and Schmidt et al (2005) studied the contribution and
asymptotic dependence for the Thomas p–e–e mechanism. Transfer ionization at intermediate
collision velocities may proceed via few channels (McGuire 1997). Most of the mechanisms
are sensitive to collision velocity. Therefore, we sought to explore the global asymptotic
trend for a coherent sum of amplitudes in transfer ionization cross section (25). We fitted our
calculation results to the power-law function v−b starting from the collision velocity of 7.75 au.
This velocity corresponds to the lower velocities of the Schmidt et al (2005) experimental data.
Table 1 demonstrates the results of the least-square fit for the total cross sections of transfer
ionization of both our theoretical calculations and the experimental data of Mergel (1997) and
Schmidt et al (2005). The results show that our calculations in the second-order approximation
with off-shell terms closely agree with the data of Schmidt et al (2005). Furthermore, such a
agreement indicates that our perturbative model with electron correlation reasonably describes
the physics of transfer ionization at high collision velocities.
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5. Conclusions

In summary, we have evaluated the effects of electron correlation and second-order terms
on total cross sections of transfer ionization in fast ion–helium collisions. The allowance
for electron correlation directly determines how closely theoretical calculations agree with
experimental data. Second-order calculations with uncorrelated functions differ considerably
from experimental data. The effect of ‘off-shell’ terms varies for different projectiles. For
Li3+ impact, it considerably improves the agreement with the experiment. The expansion of
the transition amplitude in the Born series through the second order, and allowance for the
‘off-shell’ terms and electron correlation result in calculations that are in sensible agreement
with experimental data, including the v−b dependence.
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