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TOTAL CURVATURES OF MODEL SURFACES

CONTROL TOPOLOGY OF COMPLETE OPEN MANIFOLDS

WITH RADIAL CURVATURE BOUNDED BELOW. II

KEI KONDO AND MINORU TANAKA

Abstract. We prove, as our main theorem, the finiteness of topological type
of a complete open Riemannian manifold M with a base point p ∈ M whose
radial curvature at p is bounded from below by that of a non-compact model

surface of revolution ˜M which admits a finite total curvature and has no pair
of cut points in a sector. Here a sector is, by definition, a domain cut off by two

meridians emanating from the base point p̃ ∈ ˜M . Notice that our model ˜M
does not always satisfy the diameter growth condition introduced by Abresch
and Gromoll. In order to prove the main theorem, we need a new type of the

Toponogov comparison theorem. As an application of the main theorem, we
present a partial answer to Milnor’s open conjecture on the fundamental group
of complete open manifolds.

1. Introduction

Most comparison theorems which appear in differential geometry originated from
the Sturm comparison theorem (see [St] or [Hr]). Bonnet [Bo] would be the first
researcher who applied the Sturm comparison theorem to differential geometry. In
1855, he proved that the diameter of a compact surface does not exceed π/

√
Λ if

the Gaussian curvature of the surface is greater than a positive constant Λ.
In 1932, Schoenberg [Sc] formulated the Sturm comparison theorem by using the

sectional curvatures of Riemannian manifolds and generalized Bonnet’s theorem to
any Riemannian manifold. Therefore, it took more than 70 years to generalize Bon-
net’s theorem above, though von Mangoldt [Ma] also applied the Sturm comparison
theorem to differential geometry in 1881.

In 1951, Rauch succeeded in comparing the lengths of Jacobi fields along geo-
desics in differential Riemannian manifolds and proved a well-known theorem, which
is called the Rauch comparison theorem. Thus its special case is Schoenberg’s
theorem above. As an application of the Rauch comparison theorem, he proved
a (topological) sphere theorem in [R]. After this work, various kinds of sphere
theorems have been proved (cf. [K1], [K2], [B], [GS], [Sh2], and so on).

In 1959, Toponogov [To1], [To2] generalized the Rauch comparison theorem as
a global version of the Rauch comparison theorem. He compared the angles of
geodesic triangles in a Riemannian manifold and those in a complete 2-dimensional
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Riemannian manifold of constant Gaussian curvature, which is well known as the
Alexandrov–Toponogov comparison theorem (abbreviated to just the “Toponogov ”
comparison theorem). The Toponogov comparison theorem is now a very powerful
tool for investigating global structures of Riemannian manifolds (cf. [CG], [GS],
[G1], and so on).

Some researchers tried to generalize the Toponogov comparison theorem. In
1985, Abresch [A] generalized the Toponogov comparison theorem by a non-compact
model surface of revolution with non-positive Gaussian curvature. He would be the
first researcher who succeeded in generalizing it in a rather satisfactory form, that
is, in the radial curvature geometry.

We will now introduce the radial curvature geometry for pointed complete open
Riemannian manifolds. We call a complete open 2-dimensional Riemannian man-

ifold (˜M, p̃) with a base point p̃ ∈ ˜M a non-compact model surface of revolution
if its Riemannian metric ds̃2 is expressed in terms of geodesic polar coordinates
around p̃ as

(1.1) ds̃2 = dt2 + f(t)2dθ2, (t, θ) ∈ (0,∞)× S
1
p̃.

Here, f : (0,∞) −→ R is a positive smooth function which is extensible to a

smooth odd function around 0, and S
1
p̃ := {v ∈ Tp̃

˜M | ‖v‖ = 1}. The function

G ◦ γ̃ : [0,∞) −→ R is called the radial curvature function of (˜M, p̃), where we

denote by G the Gaussian curvature of ˜M , and by γ̃ any meridian emanating from
p̃ = γ̃(0). Observe that f satisfies the differential equation

f ′′(t) +G(γ̃(t))f(t) = 0

with initial conditions f(0) = 0 and f ′(0) = 1. The n-dimensional model surfaces
of revolution are defined similarly, and they are completely classified in [KK].

Let (M,p) be a complete open n-dimensional Riemannian manifold with a base
point p ∈ M . We say that (M,p) has radial curvature at the base point p bounded

from below by that of a non-compact model surface of revolution (˜M, p̃) if, along
every unit speed minimal geodesic γ : [0, a) −→ M emanating from p = γ(0), its
sectional curvature KM satisfies

KM (σt) ≥ G(γ̃(t))

for all t ∈ [0, a) and all 2-dimensional linear spaces σt spanned by γ′(t) and a
tangent vector to M at γ(t).

For example, if the Riemannian metric of ˜M is dt2 + t2dθ2, or dt2 + sinh2 t dθ2,
then G(γ̃(t)) = 0, or G(γ̃(t)) = −1, respectively. Furthermore, the radial curvature
may change signs. Moreover, we can employ a model surface of revolution, as a
comparison surface, satisfying limt→∞ G(γ̃(t)) = −∞. Thus, it is very natural as a
generalization of conventional comparison geometry to make use of a model surface
of revolution instead of a complete simply connected surface of constant Gaussian
curvature.

In 2003, the Toponogov comparison theorem was generalized by Itokawa, Machi-

gashira, and Shiohama, by using a von Mangoldt surface of revolution as an (˜M, p̃),
in a very satisfactory form; i.e., their theorem contains the original Toponogov
comparison theorem as a corollary (see [IMS, Theorem 1.3]). Here, a von Man-
goldt surface of revolution is, by definition, a model surface of revolution whose
radial curvature function is non-increasing on [0,∞). Paraboloids and 2-sheeted
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hyperboloids are typical examples of a von Mangoldt surface of revolution. An un-
typical example of a von Mangoldt surface of revolution is found in [KT1, Example
1.2], where its radial curvature function G(γ̃(t)) changes signs on [0,∞). We refer
to [T1] for other examples of a von Mangoldt surface of revolution. Thus, a von
Mangoldt surface of revolution is a very common model as a reference space. We
refer to [KO] and [KT1] for applications of the Itokawa–Machigashira–Shiohama
comparison theorem.

Poincaré [Po] first introduced the notion of the cut locus for surfaces in 1905. He
claimed that the endpoints of the cut locus are cusps of the conjugate locus turned to
the starting point. We have explicitly determined such structures of model surfaces
of revolution whose Gaussian curvature is monotonic along a subarc of a meridian
(see [T1], [GMST], [SiT1], and [SiT2]). For example, the cut locus Cut(z̃) to each

point z̃ ∈ ˜M \ {p̃} of a non-compact von Mangoldt surface of revolution (˜M, p̃) is
either an empty set, or a ray properly contained in the meridian θ−1(θ(z̃)+π) laying
opposite to z̃, and that the endpoint of Cut(z̃) is the first conjugate point to z̃ along
the minimal geodesic from z̃ sitting in θ−1(θ(z̃)) ∪ θ−1(θ(z̃) + π) (see [T1, Main
Theorem]). In particular, any non-compact von Mangoldt surface of revolution has

no pair of cut points in the sector ˜V (π), where we define a sector

˜V (δ) :=
{

x̃ ∈ ˜M | 0 < θ(x̃) < δ
}

for each constant number δ > 0.
However, we emphasize that the cut locus on a model surface of revolution need

not be connected. A model surface of revolution with a disconnected cut locus has
been constructed in [T2, Section 2]. We also note that Gluck and Singer [GlSi]
constructed a smooth, but non-analytic surface of revolution embedded in R

3 such
that the cut locus of a point on the surface admits a branch point with infinite
order, even one of strictly positive Gaussian curvature, so that its cut locus has
also infinitely many endpoints.

Thus, it is not difficult to establish the Toponogov comparison theorem for a
model surface of revolution admitting a very simple structure of the cut locus at
each point as seen in [IMS, Theorem 1.3]. However, it is very difficult to establish
the Toponogov comparison theorem for an arbitrary model surface of revolution.
The cause of the difficulty lies in the complexity of cut loci of model surfaces of
revolution as stated above. Therefore, the structure of cut loci of model surfaces of
revolution allows a generalization of the Toponogov comparison theorem in radial
curvature geometry.

In this article, we are concerned with a generalization of the Toponogov com-
parison theorem to the radial curvature geometry. That is, we need a new type of
the Toponogov comparison theorem (Theorem 4.12 in Section 4) in order to prove
our main theorem :

A new type of Toponogov comparison theorem. Let (M,p) be a complete open
Riemannian n-manifold M whose radial curvature at the base point p is bounded

from below by that of a non-compact model surface of revolution (˜M, p̃). Assume

that ˜M admits a sector ˜V (δ0) for some δ0 ∈ (0, π) which has no pair of cut points.
Then, for every geodesic triangle 
(pxy) in M with ∠(xpy) < δ0, there exists a

geodesic triangle ˜
(pxy) := 
(p̃x̃ỹ) in ˜V (δ0) such that

(1.2) d(p̃, x̃) = d(p, x), d(p̃, ỹ) = d(p, y), d(x̃, ỹ) = d(x, y)
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and that

(1.3) ∠(xpy) ≥ ∠(x̃p̃ỹ), ∠(pxy) ≥ ∠(p̃x̃ỹ), ∠(pyx) ≥ ∠(p̃ỹx̃).
Here we denote by d( · , · ) the distance function induced from the Riemannian struc-

ture of M , or ˜M , and by ∠(pxy) the angle between the minimal geodesics from x
to p and y forming the triangle 
(pxy).

The assumption on ˜V (δ0) in our comparison theorem is automatically satisfied if
we employ a von Mangoldt surface of revolution, or a Cartan–Hadamard surface of

revolution (i.e., G is non-positive on ˜M) as an (˜M, p̃). Therefore, our comparison
theorem contains the Itokawa–Machigashira–Shiohama comparison theorem above
as a corollary. The proof of our comparison theorem has completely different tech-
niques from those used in [CE, Chapter 2], [Sa, Chapter IV], [A], and [IMS] (see
Section 4 for the proof).

Before stating our main theorem, we will mention a few related results for our
theorem to clarify our aim : Abresch and Gromoll [AG] proved the finiteness of the
topological type of a complete open n-dimensional Riemannian manifold X with
non-negative Ricci curvature outside the open distance t0-ball around p ∈ X for
some constant t0 > 0, however, admitting sectional curvature bounded from below
by some negative constant everywhere, and furthermore admitting diameter growth
of small order o(t1/n) for some p ∈ X. Here, “X has finite topological type” means
that X is homeomorphic to the interior of a compact manifold with boundary.
Although their result and technique have influenced many articles (cf. Sormani’s
study [So]), it looks very restrictive to assume that a complete open Riemannian
n-manifold admits diameter growth of small order o(t1/n) if once you live in the
world of the radial curvature geometry. The next example shows that the diameter
growth condition is too restrictive.

Example 1.1. Let (˜M, p̃) be a non-negatively curved non-compact model surface
of revolution with its metric (1.1), and admitting diameter growth D(t, p̃) = o(t1/2).
We denote by L(t, p̃) the length of the boundary of the open distance t-ball around
p̃. Since D(t, p̃) = o(t1/2) and

lim
t→∞

D(t, p̃)

L(t, p̃)
is positive by [SST, Lemma 7.3.3], there exist positive numbers ε1 and ε2 such that

(1.4) 2πf(t) = L(t, p̃) = L(t, p̃)
D(t, p̃)

· D(t, p̃) ≤ ε1D(t, p̃) ≤ ε2
√
t.

By (1.4), ˜M satisfies

(1.5)

∫ ∞

1

1

f(t)2
dt = ∞.

Let (M,p) be a complete open n-dimensional Riemannian manifold M whose radial

curvature at the base point p is bounded from below by that of ˜M . Then (1.5)
controls the topology of (M,p); that is, it follows from [ST2, Theorem 1.2] that

(M,p) is isometric to the n-dimensional model ˜Mn satisfying (1.5).

The authors [KT1] have recently reached a stronger conclusion than the Abresch
and Gromoll result above, in which the diameter growth condition is replaced by
an assumption on total curvatures of model surfaces.
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Theorem 1.2 ([KT1, Corollary to Main Theorem]). Let (M,p) be a complete
open Riemannian n-manifold M whose radial curvature at the base point p ∈ M is
bounded from below by that of a non-compact von Mangoldt surface of revolution

(˜M, p̃). If ˜M admits c(˜M) > π, then M has finite topological type, and the isometry

group of M is compact. Here c(˜M) denotes the total curvature of ˜M .

The assumption c(˜M) > π, of which one may complain of its being too strong, has
been assumed in order to generalize Shiohama’s result ([Sh1, Main Theorem]) in the
geometry of complete open surfaces to any dimensional complete open Riemannian
manifolds (see [KT1, Main Theorem]). Therefore, our main purpose of this article is
to show the finiteness of topological type of a complete open Riemannian manifold
with a wider class of metrics than those described in Theorem 1.2.

Our main theorem is the following :

Main Theorem (Theorem 2.2 in Section 2). Let (M,p) be a complete open Rie-
mannian n-manifold M whose radial curvature at the base point p is bounded from

below by that of a non-compact model surface of revolution (˜M, p̃). If ˜M admits

c(˜M) > −∞ and has no pair of cut points in ˜V (δ0) for some δ0 ∈ (0, π), then M
has finite topological type.

Remark that ˜M admits c(˜M) > −∞ if and only if
∫

˜M

|G| d˜M < ∞

(see [SST, Definition 2.1.3] and the paragraph after the definition).

In the Main Theorem, the assumption on the existence of ˜V (δ0) is necessary in
order to establish a new type of Toponogov comparison theorem as stated above.

Notice that the model surface of revolution ˜M in our Main Theorem cannot always
be replaced by a Cartan–Hadamard surface of revolution with finite total curvature
which bounds the radial curvature of M from below.

Next, we will mention the significance of finite total curvature in the Main The-

orem. Consider a non-compact model surface of revolution (˜M, p̃) which satisfies
one of the following conditions for some constant R0 > 0 :

(VM) The radial curvature function is non-increasing on [R0,∞).

(CH) The radial curvature function is non-positive on [R0,∞).

Then, the following theorem clarifies the real significance of finite total curvature
and also the validity of our Main Theorem :

Sector Theorem (Theorem 3.4 in Section 3). Let (˜M, p̃) be a non-compact model

surface of revolution satisfying the (VM), or the (CH) for some R0 > 0. If ˜M

admits c(˜M) > −∞, then there exists a number δ0 ∈ (0, π) such that there is no

pair of cut points in ˜V (δ0).

From the radial curvature geometry’s standpoint, we therefore feel that our Main
Theorem has a more natural assumption than that on the Abresch and Gromoll
result above. Another related result for the Main Theorem is Sormani’s [So]. She
has proved that if a complete open n-dimensional Riemannian manifold with non-
negative Ricci curvature everywhere admits some diameter growth condition, then
the manifold has a finitely generated fundamental group. However, by the same
reason above, the diameter growth condition on her result also looks very restrictive.
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As an application of the Main Theorem and the Sector Theorem, we will present
a partial answer to Milnor’s open conjecture. The conjecture is stated as follows :

Milnor’s open conjecture (see the line right after [Mi, Theorem 1]). A complete
open Riemannian manifold with non-negative Ricci curvature everywhere must have
a finitely generated fundamental group.

Then, the assumption on the existence of a non-compact model surface of revo-
lution is natural. In fact, any complete open n-dimensional Riemannian manifold
has a non-compact model surface of revolution :

Model Lemma (Lemma 5.1 in Section 5). Let M be a complete open Riemannian
n-manifold and p ∈ M any fixed point. Then, there exists a locally Lipschitz
function G(t) on [0,∞) such that the radial curvature of M at p is bounded from
below by that of the non-compact model surface of revolution with radial curvature
function G(t).

Now, let G(t) be the Lipschitz function in the Model Lemma, and set

G∗(t) := min {0, G(t)} .
Consider a non-compact model surface of revolution (M∗, p∗) with its metric

(1.6) g∗ = dt2 +m(t)2dθ2, (t, θ) ∈ (0,∞)× S
1
p∗

satisfying the differential equation

m′′(t) +G∗(t)m(t) = 0

with initial conditions m(0) = 0 and m′(0) = 1. Notice that the metric (1.6) is
not always differentiable around the base point p∗ ∈ M∗. Then, it follows from
the Model Lemma, the Sector Theorem, and the Main Theorem that we have the
following partial answer to Milnor’s open conjecture :

Partial answer to Milnor’s open conjecture (Theorem 5.3 in Section 5). Let M
be a complete open Riemannian n-manifold, p ∈ M any fixed point, and (M∗, p∗)
a comparison model surface of revolution, constructed from (M,p), with its metric
(1.6). If G∗(t) satisfies

∫ ∞

0

(−t ·G∗(t)) dt < ∞,

then the total curvature c(M∗) is finite. In particular, then M has a finitely gen-
erated fundamental group.

Another approach to Milnor’s open conjecture has been done by Wilking [W].
He tried to prove the conjecture for manifolds with abelian fundamental groups;
i.e., he proved that : Let X be a complete n-dimensional Riemannian manifold X

with non-negative Ricci curvature everywhere, and ̂X the universal covering space

of X. Then, if I( ̂X)/I0( ̂X) is finitely generated, the fundamental group of X is

too. Here, I0( ̂X) denotes the identity component of the isometry group I( ̂X) of ̂X.
The organization of this article is as follows. In Section 2, this article reaches

the climax; that is, we prove the Main Theorem (Theorem 2.2) by applying some
results in Sections 3 and 4. In Section 3, we investigate the relationship between a

non-compact model surface of revolution (˜M, p̃) with its finite total curvature and
its cut locus. As a main theorem in Section 3, we finally prove the Sector Theorem
(Theorem 3.4) using results in Section 3. In Section 4, we establish a new type of
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the Toponogov comparison theorem (Theorem 4.12). The key tools of the proof are
our Alexandrov convexity (Lemma 4.4) and Essential Lemma (Lemma 4.11). In
Section 5, we prove the Model Lemma (Lemma 5.1). After recalling some differen-
tial inequality (Lemma 5.2), we prove a partial answer (Theorem 5.3) to Milnor’s
open conjecture, using the Model Lemma, the differential inequality, the Sector
Theorem, and the Main Theorem. Finally, we prove a corollary (Corollary 5.4) to
the Main Theorem, which is another partial answer to Milnor’s open conjecture.

In the following sections, all geodesics will be normalized, unless otherwise stated.

2. Proof of the Main Theorem

In 1977, Grove and Shiohama [GS] first introduced the notion of a critical point
of distance functions to prove their famous theorem, which is called the diameter
sphere theorem. The definition of the critical point of distance functions is given
as follows :

Definition 2.1. Let M be a complete Riemannian manifold. For any fixed point
p ∈ M , a point q ∈ M \ {p} is called a critical point of d(p, · ) (or critical point
for p) if, for every non-zero tangent vector v ∈ TqM , we find a minimal geodesic γ
emanating from q to p satisfying

∠(v, γ′(0)) ≤ π

2
.

Here, we denote by ∠(v, γ′(0)) the angle between two vectors v and γ′(0) in TqM .

In 1981, Gromov [G1] refined the technique given by Grove and Shiohama in
[GS] in order to estimate an upper bound on the sum of the Betti numbers over
any fixed field for compact (connected) Riemannian manifolds with non-negative
sectional curvature everywhere :

Gromov’s Isotopy Lemma. Let M be a complete Riemannian manifold. If
0 < R1 < R2 ≤ ∞, and if BR2

(p) \ BR1
(p) has no critical point for p ∈ M , then

BR2
(p) \ BR1

(p) is homeomorphic to ∂BR1
(p) × [R1, R2]. Here, BRi

(p), i = 1, 2,
are the open distance Ri-balls around p.

From now on, let (˜M, p̃) be a non-compact model surface of revolution, and let
(M,p) be a complete open Riemannian n-manifold M whose radial curvature at

the base point p ∈ M is bounded from below by that of the (˜M, p̃). Admitting
Lemmas 3.2, 4.11, and Theorem 4.12 in Sections 3 and 4, we can prove that :

Theorem 2.2. If ˜M admits c(˜M) > −∞ and has no pair of cut points in ˜V (δ0)
for some δ0 ∈ (0, π), then M has finite topological type.

Proof. From the Isotopy Lemma, it is sufficient to prove that the set of critical
points of d(p, · ) is bounded. Suppose that there exists a divergent sequence {qi} of
critical points qi ∈ M of d(p, · ). Let γi : [0, d(p, qi)] −→ M be a minimal geodesic
segment emanating from p to qi. We may assume, by taking a subsequence of {qi},
if necessary, that the sequence {γi} converges to a ray γ emanating from p. Thus,
there exists a sufficiently large i0 ∈ N such that

(2.1) ∠(γ′(0), γ′
i(0)) < δ0

for any i ≥ i0. From now on, choose any i ≥ i0 and fix it. Let ε be an arbitrary
positive number less than π/2. Applying the Cohn -Vossen technique (see [CV], or
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[SST, Lemma 2.2.1]), we can choose a positive number ti satisfying

(2.2) ∠(γ′(ti), η
′
i(si)) < ε.

Here, ηi : [0, si] −→ M denotes a minimal geodesic segment emanating from qi to
γ(ti). Since the geodesic triangle 
(pqiγ(ti)) ⊂ M , consisting of the edges γi, ηi,
and γ|[0, ti], satisfies

∠(qipγ(ti)) < δ0

by (2.1), it follows from Theorem 4.12 and (2.2) that there exists a geodesic triangle
˜
(pqiγ(ti)) := 
(p̃q̃iγ̃(ti)) ⊂ ˜M satisfying (4.53) (for x = qi and y = γ(ti)),

∠(qipγ(ti)) ≥ ∠(q̃ip̃γ̃(ti))
and

(2.3) ∠(q̃iγ̃(ti)p̃) < ε.

Since

lim
i→∞

∠(qipγ(ti)) = 0,

we have

(2.4) lim
i→∞

∠(q̃ip̃γ̃(ti)) = 0.

On the other hand, since each qi is a critical point of d(p, · ), there exists a minimal
geodesic segment σi : [0, d(p, qi)] −→ M emanating from qi to p such that

(2.5) ∠(σ′
i(0), η

′
i(0)) ≤

π

2
.

Let 
(pσi(0)γ(ti)) ⊂ M denote the geodesic triangle consisting of the edges σi,
ηi, and γ|[0, ti]. Since 
(pσi(0)γ(ti)) has the same side lengths as 
(pqiγ(ti)), the

triangle 
(pσi(0)γ(ti)) admits the triangle ˜
(pqiγ(ti)) ⊂ ˜V (δ0) satisfying (4.51)
(for x = σi(0) and y = γ(ti)) in Lemma 4.11. Thus, by Lemma 4.11, we have

(2.6) ∠(σ′
i(0), η

′
i(0)) ≥ ∠(p̃q̃iγ̃(ti)).

By (2.5) and (2.6), we get

(2.7) ∠(p̃q̃iγ̃(ti)) ≤
π

2
.

Applying the Gauss –Bonnet Theorem to the geodesic triangle ˜
(pqiγ(ti)), we have

(2.8)

∫

˜�(pqiγ(ti))

Gd˜M = ∠(q̃ip̃γ̃(ti)) + ∠(p̃q̃iγ̃(ti)) + ∠(q̃iγ̃(ti)p̃)− π.

Since

lim
i→∞

∫

˜�(pqiγ(ti))

Gd˜M = 0

by Lemma 3.2, we have, by (2.8),

(2.9) lim
i→∞

(∠(q̃ip̃γ̃(ti)) + ∠(p̃q̃iγ̃(ti)) + ∠(q̃iγ̃(ti)p̃)) = π.

By (2.3), (2.4), (2.7), and (2.9), we get

π

2
≤ ε.

This is a contradiction. Therefore, the set of critical points of d(p, · ) is bounded. �
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3. Sector Theorem and cut loci of model surfaces

We will first introduce some fundamental tools in the geometry of surfaces of
revolution. For details of the geometry, readers can refer to [SST, Chapter 7] (also
refer to [T1], [GMST], and [SiT2]). Observe that the following results hold for all
non-compact model surfaces of revolution except for Theorem 3.4.

For a non-compact model surface of revolution (˜M, p̃) whose metric satisfies

(1.1), a unit speed geodesic σ̃ : [0, a) −→ ˜M (0 < a ≤ ∞) is expressed by

σ̃(s) = (t(σ̃(s)), θ(σ̃(s))) =: (t(s), θ(s)).

Then, there exists a non-negative constant ν depending only on σ̃ such that

(3.1) ν = f(t(s))2|θ′(s)| = f(t(s)) sin∠(σ̃′(s), (∂/∂t)σ̃(s)).

This (3.1) is a famous formula, which is called the Clairaut relation. The constant
ν is called the Clairaut constant of σ̃. Notice that, by (3.1),

ν > 0 if and only if σ̃ is not a meridian, or its subarc.

Since σ̃ is unit speed, we have, by (3.1),

(3.2) t′(s) = ±
√

f(t(s))2 − ν2

f(t(s))
.

Observe that, by (3.2),

t′(s) = 0 if and only if f(t(s)) = ν.

It follows from (3.1) and (3.2) that, for a unit speed geodesic σ̃(s) = (t(s), θ(s)),
s1 ≤ s ≤ s2, with the Clairaut constant ν,

(3.3) θ(s2)− θ(s1) = λ(t′(s))

∫ t(s2)

t(s1)

ν

f(t)
√

f(t)2 − ν2
dt

holds if t′(s) 
= 0 on (s1, s2). Here, λ(t′(s)) denotes the sign of t′(s).

Lemma 3.1. Let (˜M, p̃) be a non-compact model surface of revolution, and ˜Vi

denote ˜V (1/i) for each i ∈ N. Assume that there exist a constant t0 > 0 and a
sequence

{

σ̃i : [0, �i] −→ ˜Vi

}

i∈N

of unit speed geodesic segments such that

(3.4) σ̃i([0, �i]) ∩Bt0(p̃) 
= ∅
for each i ∈ N, and that

(3.5) lim inf
i→∞

t(σ̃i(�i)) > t0.

Then,
lim
i→∞

νi = 0

holds. Here, νi denotes the Clairaut constant of σ̃i.

Proof. By the assumptions (3.4) and (3.5), we can find a constant number

ui := sup{s ∈ (0, �i) | t(σ̃i(s)) = t0}
for each i ∈ N. Moreover, it follows from (3.5) that for any sufficiently large i ∈ N,
there exists a constant number t1 > 0 such that

t0 < t1 < t(σ̃i(�i)).
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Then, we can find a constant number vi ∈ (t ◦ σ̃i)
−1(t1) ⊂ (0, �i) such that vi > ui.

Since σ̃i([ui, vi]) ⊂ ˜Vi, we have, by (3.3),

1

i
>

∫ t(σ̃i(vi))

t(σ̃i(ui))

νi

f(t)
√

f(t)2 − ν2i
dt(3.6)

=

∫ t1

t0

νi

f(t)
√

f(t)2 − ν2i
dt

≥ νi ·
∫ t1

t0

1

f(t)2
dt > 0

for any sufficiently large i ∈ N. Thus, by (3.6), we get

lim
i→∞

νi = 0.

�

Lemma 3.2. Let (˜M, p̃) be a non-compact model surface of revolution, and set

V (θi) :=
{

x̃ ∈ ˜M | 0 ≤ θ(x̃) ≤ θi

}

for each i ∈ N, where {θi} is a sequence of positive numbers convergent to 0. If ˜M

admits c(˜M) > −∞, then

lim
i→∞

∫

V (θi)

|G| d˜M = 0

holds. In particular,

lim
i→∞

∫

˜�i

Gd˜M = 0

holds for any sequence {˜
i} of geodesic triangles ˜
i ⊂ V (θi).

Proof. Since c(˜M) > −∞, for any ε > 0, there exists a number r(ε) > 0 such that

(3.7)

∫

˜M\Br(ε)(p̃)

|G| d˜M <
ε

2
,

where Br(ε)(p̃) ⊂ ˜M is the open distance r(ε)-ball around p̃ ∈ ˜M . Then, there
exists i0(ε) ∈ N such that

(3.8)

∫

V (θi)∩Br(ε)(p̃)

|G| d˜M =
θi
2π

∫

Br(ε)(p̃)

|G| d˜M <
ε

2

holds for all i > i0(ε). Therefore, by (3.7) and (3.8), we get the first assertion, that
is,

∫

V (θi)

|G| d˜M ≤
∫

V (θi)∩Br(ε)(p̃)

|G| d˜M +

∫

˜M\Br(ε)(p̃)

|G| d˜M < ε(3.9)

for all i > i0(ε). Furthermore, by (3.9),
∣

∣

∣

∣

∫

˜�i

Gd˜M

∣

∣

∣

∣

≤
∫

˜�i

|G| d˜M ≤
∫

V (θi)

|G| d˜M < ε

holds for all i > i0(ε), which is the second assertion. �
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Lemma 3.3 (Key Lemma). Let (˜M, p̃) be a non-compact model surface of revo-

lution. If ˜M admits c(˜M) > −∞, then, for each t > 0, there exists a constant
number δ(t) ∈ (0, π) such that

σ̃([0, �]) ∩Bt(p̃) = ∅

holds for any minimal geodesic segment σ̃ : [0, �] −→ ˜V (δ(t)) ⊂ ˜M , along which
σ̃(0) is conjugate to σ̃(�).

Proof. Since |θ(σ̃(0)) − θ(σ̃(�))| < π holds for all minimal geodesic segments σ̃ :

[0, �] −→ ˜M \ {p̃}, it is sufficient to show that a required number δ(t) is positive.
Suppose that there exist a constant t0 > 0 and a sequence

{

σ̃i : [0, �i] −→ ˜Vi

}

i∈N

of minimal geodesic segments, along which σ̃i(0) is conjugate to σ̃i(�i) for each
i ∈ N, such that

(3.10) σ̃i([0, �i]) ∩Bt0(p̃) 
= ∅
for each i ∈ N. Here, we set ˜Vi := ˜V (1/i) for each i ∈ N. Since σ̃i(0) is conjugate to
σ̃i(�i) along σ̃i for each i ∈ N, we see that lim

i→∞
�i = ∞, and hence we may assume

that

(3.11) lim inf
i→∞

t(σ̃i(�i)) > t0.

Thus, by Lemma 3.1, we have

(3.12) lim
i→∞

νi = 0,

where νi is the Clairaut constant of σ̃i. Since σ̃i(0) is conjugate to σ̃i(�i) along σ̃i

for each i ∈ N, there exists ai ∈ [0, �i] such that

(3.13) (t ◦ σ̃i)
′(ai) = 0

(cf. [SST, Proposition 7.2.1]). Let ui ∈ [0, �i] be the parameter value of σ̃i such
that

t(σ̃i(ui)) = t0.

We consider a geodesic triangle ˜
i := 
(p̃ σ̃i(ai) σ̃i(ui)) in ˜Vi. It follows from (3.1)
and (3.12) that

(3.14) lim
i→∞

sin (∠(p̃ σ̃i(ui) σ̃i(ai))) = lim
i→∞

νi
f(t0)

= 0

holds. Furthermore, by (3.13), we have

(3.15) ∠(p̃ σ̃i(ai) σ̃i(ui)) =
π

2
.

Observe that

(3.16) lim
i→∞

∠(σ̃i(ai) p̃ σ̃i(ui)) = 0,

since ˜
i ⊂ ˜Vi for each i ∈ N. By Lemma 3.2, (3.15), (3.16), and the Gauss –Bonnet
Theorem, we get

(3.17) lim
i→∞

∠(p̃ σ̃i(ui) σ̃i(ai)) =
π

2
.

The equation (3.17) contradicts the equation (3.14). �
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Hebda [He] proved that the cut locus Cut(x) of a point x in a complete Riemann-
ian 2-manifold is a local tree; that is, for any y ∈ Cut(x) and any neighborhood U
around y in the surface, there exists an open neighborhood O ⊂ U around y such
that any two cut points in O can be joined by a unique rectifiable Jordan arc in
O ∩ Cut(x) (see also [ST1] for Alexandrov surfaces). Here, a Jordan arc means an
arc homeomorphic to the interval [0, 1].

Theorem 3.4 (Sector Theorem). Let (˜M, p̃) be a non-compact model surface of

revolution satisfying the (VM), or the (CH) for some R0 > 0. If ˜M admits c(˜M) >

−∞, then there exists a positive number δ0 ∈ (0, π) such that ˜V (δ0) has no pair of
cut points.

Proof. Choose any number R1 > R0 and fix it. We will prove that ˜V (δ(R1)) has
no pair of cut points, where δ(R1) ∈ (0, π) is the number guaranteed in Lemma 3.3.

Suppose that ˜V (δ(R1)) has a pair of cut points x̃ and ỹ. Let σ̃ : [0, d(x̃, ỹ)] −→
˜V (δ(R1)) denote a minimal geodesic segment joining x̃ to ỹ. We may assume that
x̃ is conjugate to ỹ along σ̃. Otherwise, we may find another minimal geodesic
segment α̃ joining x̃ to ỹ. Clearly σ̃ and α̃ bound a relatively compact domain D
in ˜V (δ(R1)). Since Cut(x̃) is a tree, we may find an endpoint z̃ ∈ D of Cut(x̃).
Then, x̃ is conjugate to z̃ along any minimal geodesic segment joining x̃ to z̃. By
exchanging ỹ and z̃, we may assume that x̃ is conjugate to ỹ along σ̃. From Lemma
3.3, the minimal geodesic segment σ̃ does not intersect BR1

(p̃). If G ◦ γ̃(R1) is
non-positive, then G ◦ γ̃(t) ≤ 0 holds on [R1,∞), where γ̃ denotes any meridian
emanating from p̃ = γ̃(0). Hence G(σ̃(s)) ≤ 0 holds for all s ∈ [0, d(x̃, ỹ)]. This
contradicts the property that x̃ is conjugate to ỹ along σ̃. If G ◦ γ̃(R1) is positive
and G ◦ γ̃ is non-increasing on [R0,∞), where γ̃ denotes any meridian emanating
from p̃ = γ̃(0), then since ỹ is not a single cut point of x̃, we may find a unit

speed, rectifiable Jordan arc ξ̃(r) in Cut(x̃) emanating from ỹ = ξ̃(0). Since σ̃ does

not intersect BR1
(p̃), there exists a sufficiently small number ε0 > 0 such that the

domain bounded by two minimal geodesic segments τ̃ and η̃ joining x̃ to ξ̃(ε0) does

not intersect BR1
(p̃). We assume that τ̃ and η̃ are chosen in such a way that

∠(η̃′(0), (∂/∂t)x̃) < ∠(σ̃′(0), (∂/∂t)x̃) < ∠(τ̃ ′(0), (∂/∂t)x̃).
Then, we may get a contradiction by repeating the argument in the proof of [GMST,
Lemma 3.1] or [SiT2, Lemma 3.1]. In the following, we hence state only the sketch
of the argument. We may prove that σ̃ is shorter than τ̃ , and that

(3.18) t(σ̃(s)) ≥ t(τ̃(s))

for all s ∈ [0, d(x̃, ỹ)]. The equation (3.18) implies that

(3.19) G(σ̃(s)) ≤ G(τ̃(s))

for all s ∈ [0, d(x̃, ỹ)], since G ◦ γ̃ is non-increasing on [R0,∞). From the Rauch
comparison theorem and (3.19), the geodesic segment τ̃ |[0, d(x̃,ỹ)] has a conjugate
point of x̃ along the segment. This contradicts the fact that τ̃ is minimal. Therefore,
˜V (δ(R1)) has no pair of cut points. �

4. A new type of the Toponogov comparison theorem

In the pure sectional curvature geometry, the Toponogov comparison theorem
has been a very important tool in the investigation of the relationship between
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the curvature and topology of Riemannian manifolds (cf. [B], [CG], [GS], [G1], and
so on). After the Gromov convergence theorem [G2] and the Grove and Peterson
finiteness theorem for homotopy and diffeomorphism types [GP], [GPW], it has
become very important to investigate the topology of Alexandrov spaces as one of
the terminal stations of the pure sectional curvature geometry (cf. [Al], [BGP], [P1],
[P2], [O1], [O2], [OS], [ST1], [SY1], [SY2], [Y], and so on).

As stated in Section 1, such comparison theorems in the radial curvature geom-
etry were proved by making use of model surfaces of revolution instead of complete
surfaces of constant Gaussian curvature (see [A], [IMS], and [SiT2]). In the radial
curvature geometry, all geodesic triangles must have the base point as one of the
vertices. Thus, the radial curvature geometry looks more restricted than the pure
sectional curvature geometry, but this is not the case. We should remark that we
can construct a model surface of revolution for any complete Riemannian manifold
with an arbitrary given point as a base point (see Model Lemma in Subsection 5.1).

Our purpose in this section is to establish a new type of Toponogov comparison
theorem (Theorem 4.12). The key tools of the proof are our Alexandrov convexity
(Lemma 4.4) and the Essential Lemma (Lemma 4.11).

4.1. Alexandrov convexity. The Alexandrov convexity at a base point was
proved in [IMS] when comparison surfaces are von Mangoldt surfaces of revolu-
tion. We first establish our Alexandrov convexity (Lemma 4.4) at a base point in a
more general situation. For this purpose, we need three lemmas (Lemmas 4.1, 4.2,
and 4.3).

Let (˜M, p̃) be an arbitrary non-compact model surface of revolution whose metric
satisfies (1.1). Then, we have the next lemma, which is a very important tool in
the investigation of radial curvature geometry.

Lemma 4.1 ([SST, Lemma 7.3.2]). Take a point q̃ ∈ ˜M \ {p̃} with θ(q̃) = 0. If

two points x̃1, x̃2 ∈ ˜M satisfy t(x̃1) = t(x̃2) and 0 ≤ θ(x̃1) < θ(x̃2) ≤ π, then,

d(q̃, x̃1) < d(q̃, x̃2)

holds.

Let μ̃α : [0,∞) −→ ˜M denote the meridian defined by θ = α, which emanates
from p̃. It follows from Lemma 4.1 that, for any a > 0, c > 0, and θ0 ∈ (0, π),

(4.1) lim inf
θ↓θ0

d(μ̃0(a), σ̃c(θ))− d(μ̃0(a), σ̃c(θ0))

θ − θ0
≥ 0,

where σ̃c : [0, 2π) −→ ˜M denotes the parallel t = c, that is, σ̃c(θ) := μ̃θ(c). In the
next lemma, we will prove that the left-hand term in the equation (4.1) is strictly
positive.

Lemma 4.2. For any a0 > 0, c0 > 0, and θ0 ∈ (0, π), there exist constant numbers
ε1 ∈ (0, π/2) and δ > 0 such that

(4.2) |d(μ̃0(a), σ̃c(θ2))− d(μ̃0(a), σ̃c(θ1))| ≥ (f(c) sin ε1) |θ2 − θ1|
holds for all a ∈ (a0 − δ, a0 + δ), c ∈ (c0 − δ, c0 + δ), and θ1, θ2 ∈ (θ0 − δ, θ0 + δ).

Proof. Choose any a ∈ (a0 − δ, a0 + δ), c ∈ (c0 − δ, c0 + δ), and θ ∈ (θ0 − δ, θ0 + δ),
where δ is a fixed positive number less than

1

3
min {a0, θ0, c0, π − θ0}.
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Since no minimal geodesic segment joining μ̃0(a) to σ̃c(θ) is tangent to the meridian
μ̃θ, there exists a positive constant ε1 ∈ (0, π/2) such that

(4.3) Φ(γ̃, θ) := ∠(σ̃′
c(θ), γ̃

′(d(μ̃0(a), σ̃c(θ)))) ≤
π

2
− ε1

holds for all a ∈ (a0 − δ, a0 + δ), θ ∈ (θ0 − δ, θ0 + δ), and all minimal geodesic
segments γ̃ joining μ̃0(a) to σ̃c(θ). Therefore, it follows from [IT, Lemma 2.1] and
(4.3) that, for each θ1 ∈ (θ0 − δ, θ0 + δ),

lim inf
θ↓θ1

d(μ̃0(a), σ̃c(θ))− d(μ̃0(a), σ̃c(θ1))

d(σ̃c(θ), σ̃c(θ1))
= − cos

(

min
γ̃

{π − Φ(γ̃, θ1)}
)

(4.4)

≥ − cos
(π

2
+ ε1

)

= sin ε1.

Since

lim
θ→θ1

d(σ̃c(θ), σ̃c(θ1))

|θ − θ1|
= f(c),

we get, by (4.4),

(4.5) lim inf
θ↓θ1

d(μ̃0(a), σ̃c(θ))− d(μ̃0(a), σ̃c(θ1))

θ − θ1
≥ f(c) sin ε1.

Since d(μ̃0(a), σ̃c(θ)) is Lipschitz with respect to θ, it follows from Dini’s theorem
[D] (cf. [Hw, Section 2.3], [WZ, Theorem 7.29]) that d(μ̃0(a), σ̃c(θ)) is differentiable
almost everywhere and

∫ θ2

θ1

∂

∂θ
d(μ̃0(a), σ̃c(θ)) dθ = d(μ̃0(a), σ̃c(θ2))− d(μ̃0(a), σ̃c(θ1))

holds for all θ1, θ2 ∈ (θ0 − δ, θ0 + δ). Thus, by (4.5),

|d(μ̃0(a), σ̃c(θ2))− d(μ̃0(a), σ̃c(θ1))| ≥ (f(c) sin ε1) |θ2 − θ1|

holds for all a ∈ (a0− δ, a0+ δ), c ∈ (c0− δ, c0+ δ), and θ1, θ2 ∈ (θ0− δ, θ0+ δ). �

It follows from Lemma 4.1 that, for any positive numbers a, b, and c with

|a− c| < b < d(μ̃0(a), μ̃π(c)),

there exists a geodesic triangle 
(p̃q̃r̃) in ˜M such that

d(p̃, q̃) = a, d(q̃, r̃) = b, d(r̃, p̃) = c.

Let θ(a, b, c) denote the angle ∠(r̃p̃q̃) of the triangle 
(p̃q̃r̃).

Lemma 4.3. The function θ(a, b, c) defined on

T :=
{

(a, b, c) ∈ R
3 | a, b, c > 0, |a− c| < b < d(μ̃0(a), μ̃π(c))

}

is locally Lipschitz.

Proof. Choose any point (a0, b0, c0) ∈ T . First, we will prove that

(4.6) |θ(a0 +Δa, b0, c0)− θ(a0, b0, c0)| ≤
1

f(c0) sin ε1
|Δa|
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for all Δa ∈ R with |Δa| < δ. Here, the numbers ε1 and δ are the constants
guaranteed for any a0, c0, and θ0 := θ(a0, b0, c0) in Lemma 4.2. It follows from
Lemma 4.2 that

(4.7) |d(μ̃0(a0+Δa), σ̃c0(θ0+Δaθ))−d(μ̃0(a0+Δa), σ̃c0(θ0))| ≥ (f(c0) sin ε1) |Δaθ|

for all Δa ∈ R with |Δa| < δ. Here, we set

Δaθ := θ(a0 +Δa, b0, c0)− θ0.

It is clear that

(4.8) d(μ̃0(a0 +Δa), σ̃c0(θ0 +Δaθ)) = d(μ̃0(a0), σ̃c0(θ0)) = b0.

It follows from the triangle inequality that

|d(μ̃0(a0), σ̃c0(θ0))− d(μ̃0(a0 +Δa), σ̃c0(θ0))| ≤ d(μ̃0(a0), μ̃0(a0 +Δa))(4.9)

= |Δa|.

By (4.7), (4.8), and (4.9), we get

|Δaθ| ≤
1

f(c0) sin ε1
|Δa|

for all Δa ∈ R with |Δa| < δ. Thus, the proof of (4.6) is complete. Since

θ(a, b, c) = θ(c, b, a)

for all (a, b, c) ∈ T ,

(4.10) |θ(a0, b0, c0 +Δc)− θ(a0, b0, c0)| ≤
1

f(c0) sin ε1
|Δc|

holds for all Δc ∈ R with |Δc| < δ. We omit the proof of the following equation
(4.11), since the proof is similar to that of (4.6) :

(4.11) |θ(a0, b0 +Δb, c0)− θ(a0, b0, c0)| ≤
1

f(c0) sin ε1
|Δb|

for all Δb ∈ R with |Δb| < δ. Therefore, the function θ(a, b, c) is locally Lipschitz
at (a0, b0, c0) ∈ T by (4.6), (4.10), and (4.11). �

Lemma 4.4 (Alexandrov Convexity). Let (M,p) be a complete open Riemannian
n-manifold M whose radial curvature at the base point p is bounded from below by

that of a non-compact model surface of revolution (˜M, p̃). For an arbitrary fixed
geodesic triangle 
(pxy) in M , let x, y : [0, 1] −→ M be its edges which are minimal
geodesic segments joining p = x(0) = y(0) to x = x(1), y = y(1), respectively, and
are parametrized proportionally to arc-length.

Assume that there exists a unique geodesic triangle ˜
(px(t)y(t)) := 
(p̃x̃(t)ỹ(t))

in ˜M up to an isometry corresponding to the triangle 
(px(t)y(t)) for each t ∈ (0, 1)
such that

(4.12) d(p̃, x̃(t)) = d(p, x(t)), d(p̃, ỹ(t)) = d(p, y(t)), d(x̃(t), ỹ(t)) = d(x(t), y(t)),

and that

(4.13) ∠(px(t)y(t)) ≥ ∠(p̃x̃(t)ỹ(t)), ∠(py(t)x(t)) ≥ ∠(p̃ỹ(t)x̃(t)).
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If ∠(xpy) < π, then, the function

θ(t) := ∠(x̃(t)p̃ỹ(t))

is locally Lipschitz on (0, 1), and non-increasing on (0, 1].

Proof. Set

a := d(p, x), b := d(x, y), c := d(p, y).

Since the edges x, y : [0, 1] −→ M of 
(pxy) are parametrized proportionally to
arc-length, respectively, we have

at = d(p, x(t)), ct = d(p, y(t))

for all t ∈ [0, 1]. If we define a Lipschitz function on [0, 1] as

ϕ(t) := d(x(t), y(t)),

by the assumption (4.12), the function θ(t) is equal to the function θ(at, ϕ(t), ct) by
using the function θ( · , · , · ) defined in Lemma 4.3. Hence, θ(t) is locally Lipschitz
by Lemma 4.3. By Dini’s theorem [D] (cf. [Hw, Section 2.3], [WZ, Theorem 7.29]),
the function θ(t) is differentiable for almost all t ∈ (0, 1). Thus, we may take any
fixed number t0 ∈ (0, 1), at which θ is differentiable. By the assumption (4.13),

(4.14) ∠(px(t0)y(t0)) ≥ ∠(p̃x̃(t0)ỹ(t0)), ∠(py(t0)x(t0)) ≥ ∠(p̃ỹ(t0)x̃(t0)).

Let μ̃, η̃ : [0,∞) −→ ˜M be meridians emanating from p̃ and passing through x̃(t0) =
μ̃(at0), ỹ(t0) = η̃(ct0), respectively. Then, we define a function

˜ψ(t) := d(μ̃(at), η̃(ct))

on (0,∞). Observe that

(4.15) ˜ψ(t0) = ϕ(t0)

holds, since

d(μ̃(at0), η̃(ct0)) = d(x̃(t0), ỹ(t0)) = d(x(t0), y(t0)).

Since ϕ(t) and ˜ψ(t) are Lipschitz functions, respectively, both functions are differ-

entiable almost everywhere. Therefore, we may assume that ϕ(t) and ˜ψ(t) are also
differentiable at t = t0. Then,

(4.16) ϕ′(t0) ≤ ˜ψ′(t0)

holds. To see (4.16), let q0 ∈ M be the midpoint on the edge x(t0)y(t0) of

(px(t0)y(t0)), and let σ, τ : [0, ϕ(t0)/2] −→ x(t0)y(t0) be minimal geodesic seg-
ments joining q0 = σ(0) = τ (0) to x(t0) = σ(ϕ(t0)/2), y(t0) = τ (ϕ(t0)/2), respec-
tively. Then, we see that

(4.17) ∠(σ′(ϕ(t0)/2), x
′(t0)) = ∠(px(t0)y(t0))

and

(4.18) ∠(τ ′(ϕ(t0)/2), y′(t0)) = ∠(py(t0)x(t0)).

For a sufficiently small fixed number ε > 0, consider two geodesic variations of σ and
τ whose variational curves join q0 to x(t), y(t) for t ∈ (t0 − ε, t0 + ε), respectively.
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Since d(q0, x(t)) and d(q0, y(t)) are differentiable at t = t0, it follows from the
triangle inequality, the first variation formula, (4.17), and (4.18) that we have

ϕ′(t0) = lim
t↓t0

ϕ(t)− ϕ(t0)

t− t0
(4.19)

≤ lim
t↓t0

d(q0, x(t)) + d(q0, y(t))− d(q0, x(t0))− d(q0, y(t0))

t− t0

= lim
t↓t0

d(q0, x(t))− d(q0, x(t0))

t− t0
+ lim

t↓t0

d(q0, y(t))− d(q0, y(t0))

t− t0

= cos (∠(px(t0)y(t0))) + cos (∠(py(t0)x(t0)))
and

ϕ′(t0) = lim
t↑t0

ϕ(t)− ϕ(t0)

t− t0
(4.20)

≥ lim
t↑t0

d(q0, x(t)) + d(q0, y(t))− d(q0, x(t0))− d(q0, y(t0))

t− t0

= cos (∠(px(t0)y(t0))) + cos (∠(py(t0)x(t0))) .
Hence, by (4.19) and (4.20), we get

(4.21) ϕ′(t0) = cos (∠(px(t0)y(t0))) + cos (∠(py(t0)x(t0))) .
By the same way as above, we see that

(4.22) ˜ψ′(t0) = cos (∠(p̃x̃(t0)ỹ(t0))) + cos (∠(p̃ỹ(t0)x̃(t0))) .
Thus, by (4.14), (4.21), and (4.22), we get (4.16), that is,

ϕ′(t0) = cos (∠(px(t0)y(t0))) + cos (∠(py(t0)x(t0)))

≤ cos (∠(p̃x̃(t0)ỹ(t0))) + cos (∠(p̃ỹ(t0)x̃(t0))) = ˜ψ′(t0).

Therefore, we get

θ′(t0) ≤ 0

by (4.16). Indeed, suppose that

θ′(t0) > 0.

Then, there exists a constant δ > 0 such that

(4.23) θ(t)− θ(t0) ≥ δ(t− t0)

holds for all t > t0 sufficiently close to t0. By considering the point μ̃(at) as
the vertex x̃(t) of the geodesic triangle 
(p̃x̃(t)ỹ(t)) corresponding to the geodesic
triangle 
(px(t)y(t)), it follows from Lemma 4.2 and (4.23) that there exists a
constant ε1 ∈ (0, π/2) such that

ϕ(t) = d(x(t), y(t)) = d(μ̃(at), ỹ(t))(4.24)

≥ d(μ̃(at), η̃(ct)) + (f(ct) sin ε1)(θ(t)− θ(t0))

≥ ˜ψ(t) + (δf(ct) sin ε1)(t− t0)
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for all t > t0 sufficiently close to t0. By (4.15) and (4.24),

(4.25) ϕ(t)− ϕ(t0) ≥ ˜ψ(t)− ˜ψ(t0) + (δf(ct) sin ε1)(t− t0).

Hence, by (4.25), we get

ϕ′(t0) ≥ ˜ψ′(t0) + δf(ct) sin ε1 > ˜ψ′(t0).

This is a contradiction, since ϕ′(t0) ≤ ˜ψ′(t0). Thus, θ′(t) ≤ 0 for almost all t ∈
(0, 1). This implies that θ(t) is non-increasing on (0, 1]. �

Remark 4.5. If the function θ(t) in Lemma 4.4 is not locally Lipschitz, then we can
not conclude that θ is non-increasing. For example, the Cantor–Lebesgue function
is increasing on [0, 1] and its derivative function is zero almost everywhere. By
making use of this function, we may construct a function which is not increasing,
or decreasing, but its derivative function is zero almost everywhere (cf. [WZ]).

4.2. Toponogov comparison theorem. We are going to show our Toponogov
comparison theorem (Theorem 4.12). We first introduce the definition of a narrow
geodesic triangle in an arbitrary complete Riemannian manifold with a base point.

Definition 4.6 ([IMS, Section 2]). Let M be a complete Riemannian manifold
with a base point p ∈ M . A geodesic triangle 
(pxy) in M is called a narrow
geodesic triangle if

d(x, y) � min{d(p, x), d(p, y)}
and the Fermi coordinates around the edge px (respectively py) contains the edge
py (respectively px).

From the Rauch–Berger comparison theorem, we have the following lemma on a
narrow geodesic triangle.

Lemma 4.7 ([IMS, Lemma 2.2]). Let (M,p) be a complete open Riemannian n-
manifold M whose radial curvature at the base point p is bounded from below by

that of a non-compact model surface of revolution (˜M, p̃). Then, for every narrow

geodesic triangle 
(pxy) in M , there exists a geodesic triangle ˜
(pxy) := 
(p̃x̃ỹ)

in ˜M such that

(4.26) d(p̃, x̃) = d(p, x), d(p̃, ỹ) = d(p, y), d(x̃, ỹ) = d(x, y)

and that

(4.27) ∠(pxy) ≥ ∠(p̃x̃ỹ), ∠(pyx) ≥ ∠(p̃ỹx̃).

Remark 4.8. Another proof of Lemma 4.7 is found in [KT2]. Here, from the stand-
point of radial curvature geometry, we establish the Toponogov comparison theorem
for open triangles on complete manifolds with boundary. In particular, it will be
clarified in [KT2] that the cut locus of a complete open Riemannian manifold M
is not an obstruction at all when we draw a corresponding geodesic triangle in a
model surface of revolution for each geodesic triangle in the manifold M .

Then, we prove the next lemma by using Lemmas 4.1 and 4.7.

Lemma 4.9. Let (M,p) be a complete open Riemannian n-manifold M whose
radial curvature at the base point p is bounded from below by that of a non-compact
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model surface of revolution (˜M, p̃). If the geodesic triangle 
(pxy) in M admits a

geodesic triangle ˜
(pxy) := 
(p̃x̃ỹ) in ˜V (δ0) for some δ0 ∈ (0, π) satisfying

(4.28) d(p̃, x̃) = d(p, x), d(p̃, ỹ) = d(p, y), d(x̃, ỹ) = d(x, y),

then, for any s ∈ (0, �), the geodesic triangle 
(pxσ(s)) has a geodesic triangle
˜
(pxσ(s)) in ˜V (δ0) satisfying (4.28) for y = σ(s), where σ : [0, �] −→ M is the
minimal geodesic segment joining σ(0) = x to σ(�) = y.

Proof. We consider the set S consisting of all s ∈ (0, �) such that, for any r ∈ (0, s),

there exists a geodesic triangle ˜
(pxσ(r)) := 
(p̃x̃σ̃(r)) ⊂ ˜V (δ0) corresponding to
the triangle 
(pxσ(r)) ⊂ M satisfying (4.28) for y = σ(r). It is clear from Lemma
4.7 that S is a non-empty set. By supposing

s1 := supS < �,

we will get a contradiction. By definition, there exists a geodesic triangle ˜
(pxσ(s1))

⊂ ˜M such that

(4.29) ∠(x̃p̃σ̃(s1)) ≥ δ0

and (4.28) is valid for y = σ(s1). From Lemma 4.7, we may take a subdivision

0 = s0 < s1 < · · · < sk = �

of [0, �] containing the s1 such that all the triangles


(pzizi+1) := 
(pσ(si)σ(si+1)) ⊂ M

have corresponding triangles ˜
(pzizi+1) ⊂ ˜M satisfying (4.28) for x = zi and
y = zi+1, respectively. Here, we set zi := σ(si). Under this situation, for i = 1, we

draw ˜
(pz1z2) on ˜M , which is adjacent to ˜
(pz0z1), so as to have a common edge

p̃z̃1. Inductively, we draw ˜
(pzizi+1) on ˜M , which is adjacent to ˜
(pzi−1zi), so
as to have a common edge p̃z̃i. Hence, we get a broken geodesic η̃ emanating from
x̃ = z̃0 to z̃k, which consists of the opposite sides z̃iz̃i+1 to p̃. It is trivial that the
length L(η̃) of η̃ is equal to

(4.30) L(η̃) =
k

∑

i=1

d(z̃i−1, z̃i) = d(x, y).

Suppose that the sum of the angles is

k
∑

i=1

∠(z̃i−1p̃z̃i) ≤ π.

Since
k
∑

i=1

∠(z̃i−1p̃z̃i) > ∠(x̃p̃σ̃(s1)) ≥ δ0 > ∠(x̃p̃ỹ)

by (4.29), it follows from Lemma 4.1 and (4.30) that

d(x̃, ỹ) < d(x̃, z̃k) ≤ L(η̃) = d(x, y).

This is a contradiction, since d(x̃, ỹ) = d(x, y). Hence, we see that the sum of the
angles is

k
∑

i=1

∠(z̃i−1p̃z̃i) > π.
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Without loss of generality, we may assume that θ(x̃) = 0 and θ ◦ η̃ is increasing.
Since η̃ intersects the meridian μ̃π defined by θ = π, we get a unique intersection
w̃0. The point w̃0 divides η̃ into two broken geodesics η̃1 and η̃2. Hence, we assume
that the subarc emanating from x̃ = z̃0 to w̃0 is η̃1. Since the point μ̃π(d(p̃, ỹ)) is
the nearest point to w̃0 on the parallel t = d(p̃, ỹ), we have

(4.31) L(η̃) = L(η̃1) + L(η̃2) > L(η̃1) + d(w̃0, μ̃π(d(p̃, ỹ))).

Thus, the broken geodesic ξ̃ consisting of η̃1 and the minimal geodesic segment
joining w̃0 to μ̃π(d(p̃, ỹ)) is shorter than η̃. Since

L(ξ̃) ≥ d(x̃, μ̃π(d(p̃, ỹ))),

we have, by (4.31),

(4.32) L(η̃) > d(x̃, μ̃π(d(p̃, ỹ))).

From Lemma 4.1,

(4.33) d(x̃, μ̃π(d(p̃, ỹ))) > d(x̃, ỹ)

holds, since π > δ0 > ∠(x̃p̃ỹ). Hence, by (4.32) and (4.33), we have

(4.34) L(η̃) > d(x̃, ỹ).

Since L(η̃) = d(x, y) = d(x̃, ỹ), we get a contradiction from (4.34). Therefore, the
proof is complete. �

Lemma 4.10. Assume that a non-compact model surface of revolution (˜M, p̃) with

a metric (1.1) admits a sector ˜V (δ0) for some δ0 ∈ (0, π) which has no pair of cut

points. Let 
(p̃x̃1ỹ1), 
(p̃x̃2ỹ2) be geodesic triangles in ˜M satisfying

(4.35) d(p̃, ỹ1) = d(p̃, x̃2)

and

(4.36) ∠(p̃ỹ1x̃1) + ∠(p̃x̃2ỹ2) ≤ π.

If there exists a geodesic triangle 
(p̃x̃ỹ) in ˜V (δ0) such that

(4.37) d(p̃, x̃) = d(p̃, x̃1), d(p̃, ỹ) = d(p̃, ỹ2),

and that

(4.38) d(x̃, ỹ) = d(x̃1, ỹ1) + d(x̃2, ỹ2),

then,

(4.39) ∠(p̃x̃1ỹ1) ≥ ∠(p̃x̃ỹ), ∠(p̃ỹ2x̃2) ≥ ∠(p̃ỹx̃).

Proof. From (4.35), we may draw 
(p̃x̃2ỹ2) on ˜M , which is adjacent to 
(p̃x̃1ỹ1),
so as to have a common edge p̃ỹ1 = p̃x̃2, i.e., ỹ1 = x̃2. For the metric (1.1), we set

0 := θ(x̃1) < θ(ỹ1) = θ(x̃2) < θ(ỹ2).

Since the existence of 
(p̃x̃ỹ) ⊂ ˜V (δ0) is unique up to an isometry fixing p̃, we may
assume, by d(p̃, x̃) = d(p̃, x̃1) of (4.37), that

0 = θ(x̃) < θ(ỹ),

i.e., x̃ = x̃1 and θ(ỹ) > 0. Since θ(ỹ) < δ0 < π, it is clear from the same argument
in the proof of Lemma 4.9 that

(4.40) θ(ỹ2) ≤ π
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holds. By the triangle inequality and (4.38),

(4.41) d(x̃1, ỹ2) ≤ d(x̃1, ỹ1) + d(ỹ1, ỹ2) = d(x̃, ỹ) = d(x̃1, ỹ).

Since 
(p̃x̃ỹ) ⊂ ˜V (δ0), (4.40), and (4.41), it follows from Lemma 4.1 that θ(ỹ2) ≤
∠(x̃1p̃ỹ) < δ0 holds, i.e.,

(4.42) ỹ2 ∈ θ−1(0, δ0).

Let ˜D(δ0) denote the domain defined by

˜D(δ0) :=
{

q̃ ∈ θ−1(0, δ0) | t(q̃) < t(σ̃(s))whenever θ(q̃) = θ(σ̃(s)) for some s > 0
}

.

Here σ̃ : [0,∞) −→ ˜M denotes the unit speed geodesic emanating from x̃1 passing

through ỹ1 = σ̃(d(x̃1, ỹ1)). Thus, the domain ˜D(δ0) is bounded by the three subarcs
of the two meridians θ = 0, θ = δ0, and σ̃.

There is nothing to prove, if ∠(p̃ỹ1x̃1) +∠(p̃ỹ1ỹ2) = π holds. Thus, from (4.36),
we may assume that

(4.43) ∠(p̃ỹ1x̃1) + ∠(p̃ỹ1ỹ2) < π.

Hence, by (4.42) and (4.43), it is clear that ỹ2 ∈ ˜D(δ0). Let c̃ : [θ(ỹ2), δ0] −→ ˜M
denote the subarc of the parallel t = d(p̃, ỹ2) that is cut off by two meridians θ =
θ(ỹ2) and θ = δ0. Here c̃ is assumed to be parametrized by θ, so that c̃|[θ(ỹ2), δ0) ⊂
˜V (δ0). From Lemma 4.1, d(p̃, ỹ) = d(p̃, ỹ2) of (4.37), and (4.41), it follows that

(4.44) d(x̃1, c̃(θ(ỹ2))) = d(x̃1, ỹ2) ≤ d(x̃1, c̃(θ)) ≤ d(x̃1, c̃(δ0))

and

(4.45) d(x̃1, ỹ2) < d(x̃1, ỹ).

Moreover, it follows from (4.38), (4.45), and 
(p̃x̃ỹ) ⊂ ˜V (δ0) that

(4.46) d(x̃1, c̃(δ0)) > d(x̃1, ỹ) = d(x̃1, ỹ1) + d(ỹ1, ỹ2) > d(x̃1, ỹ2).

Therefore, by (4.44), (4.46), and the intermediate value theorem, there exists a
point ỹ3 ∈ θ−1(θ(ỹ2), δ0) on c̃|(θ(ỹ2), δ0) such that

(4.47) d(x̃1, ỹ3) = d(x̃1, ỹ1) + d(ỹ1, ỹ2).

Supposing that ỹ3 is not a point in the closure of ˜D(δ0), we will get a contradiction.

Since ỹ2 ∈ ˜D(δ0) and ỹ3 is not in the closure of ˜D(δ0), σ̃ intersects c̃ at a point
c̃(θ0) = σ̃(s0). Without loss of generality, we may assume that c̃|[θ(ỹ2), θ0) lies in
˜D(δ0). From Lemma 4.1, it follows that

(4.48) d(ỹ1, ỹ2) < d(ỹ1, c̃(θ0)) = d(ỹ1, σ̃(s0)).

Since σ̃|[0, s0] is minimal, it follows from (4.48) that

(4.49) d(x̃1, c̃(θ0)) = d(x̃1, ỹ1) + d(ỹ1, c̃(θ0)) > d(x̃1, ỹ1) + d(ỹ1, ỹ2).

By using Lemma 4.1 again,

(4.50) d(x̃1, c̃(θ0)) < d(x̃1, ỹ3).

Combining (4.49) and (4.50), we get

d(x̃1, ỹ3) > d(x̃1, ỹ1) + d(ỹ1, ỹ2).

This is a contradiction to (4.47). Thus, ỹ3 lies in the closure of ˜D(δ0). Since any
subarc of σ̃ is minimal when the subarc lies in θ−1(0, δ0), the minimal geodesic
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joining x̃1 to ỹ3 lies in the closure of ˜D(δ0). Then, we get a geodesic triangle


(p̃x̃1ỹ3) ⊂ ˜V (δ0) satisfying (4.37) and (4.38) for x̃ = x̃1 and ỹ = ỹ3. Since
˜V (δ0) has no pair of cut points, 
(p̃x̃ỹ) and 
(p̃x̃1ỹ3) are isometric, i.e., 
(p̃x̃ỹ) =

(p̃x̃1ỹ3). Therefore, 
(p̃x̃ỹ) satisfies

∠(p̃x̃1ỹ1) ≥ ∠(p̃x̃ỹ)
of (4.39), because the minimal geodesic joining x̃ = x̃1 to ỹ = ỹ3 lies in the closure of
˜D(δ0). By exchanging x̃ and ỹ, and doing x̃1 and ỹ2, respectively, in the argument

above, we may get a geodesic triangle 
(p̃x̃3ỹ2) ⊂ ˜V (δ0) satisfying (4.37) and
(4.38) for x̃ = x̃3 and ỹ = ỹ2, and ∠(p̃ỹ2x̃2) ≥ ∠(p̃ỹ2x̃3). Since both triangles


(p̃x̃ỹ),
(p̃x̃3ỹ2) ⊂ ˜V (δ0) are isometric, ∠(p̃ỹx̃) = ∠(p̃ỹ2x̃3) holds; i.e., we get

∠(p̃ỹ2x̃2) ≥ ∠(p̃ỹx̃)
of (4.39). Therefore, we have proved our lemma. �

By Lemmas 4.7, 4.9, and 4.10, we have the next lemma.

Lemma 4.11 (Essential Lemma for Toponogov comparison theorem). Let (M,p)
be a complete open Riemannian n-manifold M whose radial curvature at the base
point p is bounded from below by that of a non-compact model surface of revolution

(˜M, p̃). Assume that ˜M admits a sector ˜V (δ0) for some δ0 ∈ (0, π) which has no
pair of cut points. If a geodesic triangle 
(pxy) in M admits a geodesic triangle
˜
(pxy) := 
(p̃x̃ỹ) in ˜V (δ0) satisfying

(4.51) d(p̃, x̃) = d(p, x), d(p̃, ỹ) = d(p, y), d(x̃, ỹ) = d(x, y),

then

(4.52) ∠(pxy) ≥ ∠(p̃x̃ỹ), ∠(pyx) ≥ ∠(p̃ỹx̃).
Proof. Let 
(pxy) denote any geodesic triangle in M which admits a geodesic

triangle ˜
(pxy) in ˜V (δ0) satisfying (4.51). We denote by σ : [0, �] −→ M the edge
of 
(pxy) opposite to p. Let S be the set of all r ∈ (0, �] such that there exists a

geodesic triangle ˜
(pxσ(r)) := 
(p̃x̃σ̃(r)) ⊂ ˜V (δ0) corresponding to the triangle

(pxσ(r)) ⊂ M satisfying (4.51) and (4.52) for y = σ(r). It is clear from Lemma
4.7 that S is non-empty. Since there is nothing to prove in the case where supS = �,
we suppose that

s1 := supS < �.

By Lemma 4.9, there exists a geodesic triangle ˜
(pxσ(s1)) ⊂ ˜V (δ0) correspond-
ing to the triangle 
(pxσ(s1)) ⊂ M satisfying (4.51) and (4.52) for y = σ(s1).
For a sufficiently small � − s1 > ε > 0, it follows from Lemma 4.7 that there

exists a geodesic triangle ˜
(pσ(s1)σ(s1 + ε)) corresponding to the triangle

(pσ(s1)σ(s1+ε)) ⊂ M satisfying (4.51) and (4.52) for x = σ(s1) and y = σ(s1+ε).

Thus, two geodesic triangles ˜
(pxσ(s1)) and ˜
(pσ(s1)σ(s1+ ε)) satisfy (4.35) and
(4.36) (in Lemma 4.10) for x̃1 = x̃, ỹ1 = σ̃(s1), x̃2 = σ̃(s1), and ỹ2 = σ̃(s1 + ε). On

the other hand, by Lemma 4.9 again, we get a geodesic triangle 
(x̃p̃ŷ) ⊂ ˜V (δ0)
satisfying (4.37) and (4.38) (in Lemma 4.10) for ỹ = ŷ, x̃1 = x̃, ỹ1 = σ̃(s1),
x̃2 = σ̃(s1), and ỹ2 = σ̃(s1 + ε). Thus, it follows from Lemma 4.10 that s1 + ε ∈ S.
This contradicts the fact that s1 is the supremum of S. �

Then, by Lemmas 4.4 and 4.11, we have a new type of Toponogov comparison
theorem, which is the main theorem in this section.
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Theorem 4.12 (A new type of Toponogov comparison theorem). Let (M,p) be a
complete open Riemannian n-manifold M whose radial curvature at the base point p

is bounded from below by that of a non-compact model surface of revolution (˜M, p̃).

Assume that ˜M admits a sector ˜V (δ0) for some δ0 ∈ (0, π) which has no pair of
cut points. Then, for every geodesic triangle 
(pxy) in M with ∠(xpy) < δ0, there

exists a geodesic triangle ˜
(pxy) := 
(p̃x̃ỹ) in ˜V (δ0) such that

(4.53) d(p̃, x̃) = d(p, x), d(p̃, ỹ) = d(p, y), d(x̃, ỹ) = d(x, y)

and that

(4.54) ∠(xpy) ≥ ∠(x̃p̃ỹ), ∠(pxy) ≥ ∠(p̃x̃ỹ), ∠(pyx) ≥ ∠(p̃ỹx̃).
Proof. Let W be the set of all t ∈ (0, 1) such that there exists a geodesic triangle
˜
(px(t)y(t)) := 
(p̃x̃(t)ỹ(t)) ⊂ ˜V (δ0) corresponding to the triangle
(px(t)y(t)) ⊂
M satisfying (4.53) for x = x(t) and y = y(t). Here x(t) and y(t) denote the minimal
geodesic segments introduced in Lemma 4.4, respectively. It is clear that W is open.
From the Rauch comparison theorem, there exists a constant ε0 > 0 such that, for

each t ∈ (0, ε0), there exists a geodesic triangle ˜
(px(t)y(t)) ⊂ ˜V (δ0) corresponding
to 
(px(t)y(t)) ⊂ M satisfying (4.53) for x = x(t) and y = y(t) and

θ(t) := ∠(x̃(t)p̃ỹ(t)) ≤ ∠(x(t)py(t)) = ∠(xpy) < δ0.

Hence we get

(0, ε0) ⊂ W.

Let (0, t0) ⊂ W denote the connected component of W containing (0, ε0). From
Lemmas 4.4 and 4.11, it follows that θ(t) is non-increasing on (0, t0). Thus, the

geodesic triangle 
(px(t0)y(t0)) has a corresponding triangle ˜
(px(t0)y(t0)) ⊂
˜V (δ0) satisfying (4.53) for x = x(t0) and y = y(t0). This implies that t0 ∈ W if
t0 < 1. Therefore, W = (0, 1) and the proof is complete. �

Remark 4.13. We refer to [O3] for a generalization of the Toponogov comparison
theorems to the Finsler geometry and its applications.

5. Application of the Main Theorem

In this section, we first give the proof of the Model Lemma (Lemma 5.1). After
recalling some differential inequality (Lemma 5.2), we give the proof of our answer
(Theorem 5.3) to Milnor’s open conjecture. Finally, we prove a corollary (Corollary
5.4) to the Main Theorem.

5.1. Proof of the Model Lemma. Let M be an arbitrary complete open Rie-
mannian n-manifold. Fix any point p ∈ M . Then, we have

Lemma 5.1. There exists a locally Lipschitz function G(t) on [0,∞) such that the
radial curvature of M at p is bounded from below by that of the non-compact model
surface of revolution with radial curvature function G(t).

Proof. We set

S
n−1
p := {v ∈ TpM | ‖v‖ = 1}.

Let γv : [0, ρ(v)] −→ M be a minimal geodesic emanating from p = γv(0) such that
v = γ′

v(0) ∈ S
n−1
p , where we set

ρ(v) := sup{t > 0 | d(p, γv(t)) = t}.
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Then, take an orthonormal basis

{e1, e2, · · · , en−1} := {e1(v), e2(v), · · · , en−1(v)}

of the hyperplane in TpM orthogonal to en := v. Then, we denote by Ei(t ; v),
i = 1, 2, · · · , n, parallel vector fields along γv such that Ei(0 ; v) = ei. Moreover, let
σt be a 2-dimensional linear subspace of Tγv(t)M spanned by γ′

v(t) and a tangent
vector wt to M at γv(t) defined by

wt :=

n−1
∑

i=1

aiEi(t ; v)

with
n−1
∑

i=1

a2i = 1

for a1, a2, · · · , an−1 ∈ R. Thus, the radial sectional curvature KM (σt) at p of M is
given by

(5.1) KM (σt) = 〈R(En(t ; v), wt)En(t ; v), wt〉,

where R denotes the Riemannian curvature tensor of M , which is a multi-linear
map, defined by

R(X,Y )Z := ∇Y ∇XZ −∇X∇Y Z +∇[X,Y ]Z

for smooth vector fields X,Y, Z over M . Now, we set

a :=

⎛

⎜

⎜

⎜

⎝

a1
a2
...

an−1

⎞

⎟

⎟

⎟

⎠

∈ S
n−2(1),

where S
n−2(1) ⊂ R

n−1 is a standard unit sphere, and set

Rij(t, v) := 〈R(En(t ; v), Ei(t ; v))En(t ; v), Ei(t ; v)〉.

Observe that Rij(t, v) is a C∞-function. Then, by (5.1), we see that

(5.2) KM (σt) =

n−1
∑

i, j=1

aiajRij(t, v) =
taR(t ; v)a,

where R(t ; v) := (Rij(t, v)) is a symmetric (n− 1)×(n− 1)-matrix. Furthermore,
we set

F0(t, v) := min
{

taR(t ; v)a | a ∈ S
n−2(1)

}

for all (t, v) ∈ [0,∞)× S
n−1
p with t ≤ ρ(v). Thus, by (5.2), we get

(5.3) KM (σt) ≥ F0(t, v)

for all (t, v) ∈ [0,∞) × S
n−1
p with t ≤ ρ(v). Note that F0(t, v) is locally Lipschitz

on [0,∞)× S
n−1
p with t ≤ ρ(v), since Rij(t, v) is a C∞-function.

We define

F (t, v) := F0(ρt(v), v)
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on [0,∞) × S
n−1
p , where we set ρt(v) := min{ρ(v), t}. Since F (t, v) is locally

Lipschitz on [0,∞)× S
n−1
p with t ≤ ρ(v), for any b > 0, there exists a constant C0

such that

(5.4) |F (t1, v)− F (t2, v)| ≤ C0|ρt1(v)− ρt2(v)|
for all t1, t2 ∈ [0, b] and all v ∈ S

n−1
p . Since it is clear that

|ρt1(v)− ρt2(v)| ≤ |t1 − t2|
for all t1, t2 ∈ [0, b] and all v ∈ S

n−1
p , it follows from (5.4) that

(5.5) |F (t1, v)− F (t2, v)| ≤ C0|t1 − t2|
holds for all t1, t2 ∈ [0, b] and all v ∈ S

n−1
p . Then, we get a locally Lipschitz function

(5.6) G(t) := min
{

F (t, v) | v ∈ S
n−1
p

}

on [0,∞). Indeed, take any t1, t2 ∈ [0, b]. Without loss of generality, we may assume
that G(t1) ≥ G(t2). By (5.5),

G(t1)−G(t2) = G(t1)− F (t2, v2)

≤ F (t1, v2)− F (t2, v2) ≤ C0|t1 − t2|.
Here, v2 ∈ S

n−1
p is a point satisfying G(t2) = F (t2, v2). Thus, we have proved that

G(t) is locally Lipschitz on [0,∞). Therefore, it follows from (5.3) and (5.6) that

KM (σt) ≥ G(t)

holds. �
5.2. Proof of partial answer to Milnor’s open conjecture. Before starting
the proof of our answer to Milnor’s open conjecture, we will recall the following
differential inequality (compare [Z, Lemma 2.1]).

Lemma 5.2. Let φ(t) be a C1-function on [0,∞), and λ(t) a continuous function
on [0,∞). If

φ′(t) ≤ λ(t)φ(t)

holds on [0,∞), then we have

φ(t) ≤ eΛ(t)φ(0).

Here, we set

Λ(t) :=

∫ t

0

λ(s)ds.

Proof. Since 0 ≥ φ′(t) − λ(t)φ(t) on [0,∞) by the assumption on this lemma, we
see that

(5.7) 0 ≥ e−Λ(t)φ′(t)− e−Λ(t)λ(t)φ(t) =
d

dt

(

e−Λ(t)φ(t)
)

for all t ∈ [0,∞). Thus, by (5.7), we have

0 =

∫ t

0

0 ds ≥
∫ t

0

d

ds

(

e−Λ(s)φ(s)
)

ds(5.8)

= e−Λ(t)φ(t)− e−Λ(0)φ(0)

= e−Λ(t)φ(t)− φ(0)
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for all t ∈ [0,∞). Therefore, by (5.8), we get

e−Λ(t)φ(t) ≤ φ(0);

that is, φ(t) ≤ eΛ(t)φ(0) holds on [0,∞). �

Now, let G(t) be the Lipschitz function in the Model Lemma (Lemma 5.1), and
set

G∗(t) := min {0, G(t)} .
Consider a non-compact model surface of revolution (M∗, p∗) with its metric

(5.9) g∗ = dt2 +m(t)2dθ2, (t, θ) ∈ (0,∞)× S
1
p∗

satisfying the differential equation m′′(t) + G∗(t)m(t) = 0 with initial conditions
m(0) = 0 and m′(0) = 1. Note that the metric (5.9) is not always differentiable
around the base point p∗ ∈ M∗.

Theorem 5.3. Let M be a complete open Riemannian n-manifold, p ∈ M any
fixed point, and (M∗, p∗) a comparison model surface of revolution, constructed
from (M,p), with its metric (5.9). If G∗(t) satisfies

(5.10)

∫ ∞

0

(−t ·G∗(t)) dt < ∞,

then the total curvature c(M∗) is finite. In particular, then M has a finitely gen-
erated fundamental group.

Proof. Since G∗(t) ≤ 0 on [0,∞), we have

m′′(t) = −G∗(t)m(t) ≥ 0

on [0,∞); that is, m′(t) is increasing on [0,∞). Since m′(0) = 1,

m′(t) ≥ m′(0) = 1

holds for all t ∈ [0,∞). In particular, m(t) is non-negative for all t ≥ 0, for m(t)
is increasing on [0,∞) and m(0) = 0. We will first prove that the total curvature
c(M∗) of (M∗, p∗) is finite. To show this fact, we define

φ(t) := m′(t)

on [0,∞). Then, since m(0) = 0 and m′(t) is increasing on [0,∞), we see that

(5.11)
m(t)

t
=

1

t

∫ t

0

m′(s)ds ≤ m′(t)

t

∫ t

0

ds = φ(t)

on (0,∞). Thus, by (5.11), we have

φ′(t) = m′′(t) = −G∗(t)m(t)

= (−tG∗(t)) · m(t)

t

≤ −tG∗(t)φ(t)

= λ(t)φ(t)

for all t ∈ (0,∞). Here, we set λ(t) := −tG∗(t) (≥ 0). In particular,

φ′(t) ≤ λ(t)φ(t)
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holds on [0,∞), since G∗(t) is continuous on [0,∞). Then, it follows from Lemma
5.2 and m′(0) = 1 that we have

(5.12) φ(t) ≤ eΛ(t)φ(0) = eΛ(t)m′(0) = eΛ(t)

on [0,∞). Here, we set

Λ(t) :=

∫ t

0

λ(s)ds.

Since

0 ≤ Λ(∞) =

∫ ∞

0

λ(s)ds =

∫ ∞

0

(−s ·G∗(s)) ds < ∞

by the assumption (5.10), we see, by (5.12), that

(5.13) lim
t→∞

m′(t) = lim
t→∞

φ(t) ≤ lim
t→∞

eΛ(t) = eΛ(∞) < ∞.

By (5.13), we get

c(M∗) = 2π

∫ ∞

0

(−m′′(t)) dt = 2π
(

1− lim
t→∞

m′(t)
)

> −∞.

Thus, c(M∗) is finite.
Therefore, it follows from the Sector Theorem and the Main Theorem that M

has finite topological type; that is, M is homeomorphic to the interior of a com-
pact manifold with boundary. In particular, M therefore has a finitely generated
fundamental group. �

Finally, we prove a corollary to our Main Theorem, which is another partial
answer to Milnor’s open conjecture.

Let KM be the sectional curvature of an arbitrary complete Riemannian n-
manifold M . Furthermore, we define a (real) number KM (q) as follows:

KM (q) := min
σ⊂TqM

KM (σ).

Here, σ ⊂ TqM is a 2-dimensional linear space, and KM (σ) is the sectional curva-
ture of σ at q ∈ M .

Corollary 5.4. Let M be an arbitrary complete open Riemannian n-manifold,
p ∈ M any fixed point, and (M∗, p∗) a comparison model surface of revolution,
constructed from (M,p), with its metric (5.9). If the sectional curvature KM of M
satisfies

(5.14) lim inf
t→∞

t2+α min
q∈Bt(p)

KM (q) > N

for some numbers α > 0 and N ≤ 0, then M has a finitely generated fundamental
group.

Proof. By the assumption (5.14), we have

(5.15) t2+α min
q∈Bt(p)

KM (q) > C · N ,

for some C ≥ 1 and all t > 1. Then, it follows from the construction of G(t) (see
the proof of Lemma 5.1) and (5.15) that

(5.16) G(t) ≥ min
q∈Bt(p)

KM (q) >
C · N
t2+α
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holds for all t > 1. Since G∗(t) ≤ 0 on [0,∞), we see, by (5.16), that

(5.17) 0 ≥
∫ ∞

1

t ·G∗(t) dt ≥
∫ ∞

1

C · N
t1+α

dt =

[

− C · N
αtα

]∞

1

=
C · N
α

> −∞.

Hence, we get, by (5.17),

0 ≤
∫ ∞

0

− t ·G∗(t) dt < ∞.

Therefore, by the Sector Theorem and the Main Theorem, M has a finitely gener-
ated fundamental group. �
Remark 5.5. Under the assumption in Theorem 5.3, or Corollary 5.4, it follows
from [MNO, Theorem 0.1] that (M,p) admits the asymptotic cone via rescaling
argument; i.e., the pointed Gromov–Hausdorff limit space of ((1/t)M,p) exists
as t → ∞, and the space is, naturally, isometric to a Euclidean cone (see [G2,
Definition 3.14] for a definition of the pointed Gromov–Hausdorff convergence).
However, one should notice again that our models in Theorem 5.3 and Corollary
5.4 have been constructed from any complete open Riemannian manifold with an
arbitrary given point as a base point, and that the metrics (5.9) in Theorem 5.3 and
Corollary 5.4 are not always differentiable around their base points. In particular,
our Main Theorem has a wider class of metrics than those described in [MNO,
Theorem 0.1].

The next example shows that non-negative radial curvature does not always mean
non-negative sectional curvature.

Example 5.6. Let M be a 2-sphere of revolution with a Riemannian metric

(5.18) h := dr2 +m(r)2dθ2, (r, θ) ∈ (0, 2a)× S
1
p

and pair of poles p, q; i.e., the surface (M,h) satisfies that

(TS–1) (M,h) is symmetric with respect to the reflection fixing r = a, where
2a = d(p, q),

(TS–2) the radial curvature function G ◦ γ : [0, 2a] −→ R of M is monotonic along
a meridian γ emanating from p = γ(0) to the point on r = a.

Note that (M,h) does not always have a positive radial curvature function G◦γ(t).
For example, the model surface of revolution generated by the (x, z)-plane curve
(m(r), 0, z(r)) satisfies (TS–1) and (TS–2), where

m(r) :=

√
3

10

(

9 sin

√
3

9
r + 7 sin

√
3

3
r

)

, z(r) :=

∫ r

0

√

1−m′(t)2dt.

In particular, we then see that G(γ(3
√
3π/2)) = −1 (see [SiT2]).

Thus, without loss of generality, by setting 2a := π, we may assume that (5.18)
is the geodesic polar coordinates around the north pole (0, 0, 1) of the unit sphere
S
2(1) in 3-dimensional Euclidean space R

3, and that the radial curvature function
G ◦ γ(t) of (M,h) is negative at a point on (0, π). Now, we will introduce a new
Riemannian metric g on 3-dimensional Euclidean space (R3, g0). Outside of the
unit ball B1(o) ⊂ R

3 centered at the origin o ∈ R
3, we define g to be

g := dt2 + f(t)2h,

where f : (0,∞) −→ (0,∞) is a smooth function, and the function t denotes the
Euclidean distance function from o ∈ R

3. We set x1 := t, x2 := r, and x3 := θ,
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and denote by σij a 2-dimensional linear plane spanned by ∂/∂xi and ∂/∂xj , i 
= j.
Then, the sectional curvatures K(σij) of the planes σij at each point on R

3 \B1(o)
are

(5.19) K(σ12) = K(σ13) = − f ′′(t)

f(t)

and

(5.20) K(σ23) =
1

f(t)2

(

− m′′(r)

m(r)
− f ′(t)2

)

.

Consider a smooth family {ht}t≥0 of Riemannian metrics such that ht is the stan-
dard metric on S

2(1) for small t and ht = h for t ≥ 1. Then, (t, r, θ) are the
geodesic polar coordinates around o ∈ R

3 for (R3, g0), and the Riemannian metric
gt := dt2+f(t)2ht on R

3 equals g0 for small t if f(t) = t, and equals g on R
3\B1(o).

By the definition of gt, each t-curve on (R3, gt) is a ray emanating from o ∈ R
3.

Therefore, it follows from (5.19) and (5.20) that the radial curvature of (R3, g) is
non-negative on R

3 \B1(o) if f
′′(t) ≤ 0. In particular, (R3, g) admits non-negative

Ricci curvature at divergent points.

From Example 5.6, we may conclude that Milnor’s open conjecture does not
follow from our Main Theorem, and, at the same time, our Main Theorem does not
follow from Milnor’s open conjecture. Moreover, we find that the radial curvature
geometry deals with a geometry different from the geometry of a global lower bound
on Ricci curvature, but with a sufficiently large geometry.

Acknowledgements

The first-named author would like to express to Professor Karsten Grove the
deepest gratitude for his encouragement and his interest in our work. We are
very grateful to Professors Takashi Shioya and Shin-ichi Ohta for their helpful
comments on the first draft of this article. Finally, we also thank the referee for a
careful reading of the manuscript, valuable suggestions, and helpful comments on
the manuscript, which, no doubt, have improved the presentation of this article.

References

[A] U. Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology, Ann.
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