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Abstract

This paper aims to provide empirical researchers with an overview
of the methodological issues that arise when estimating total factor
productivity at the establishment level, as well as of the existing (para-
metric and semiparametric) techniques designed to overcome them.
Apart from the well-known simultaneity and selection bias; attention
is given to methodological issues that have emerged more recently
and that are related to the use of deflated values of inputs and out-
puts (as opposed to quantities) in estimating productivity at the firm
level, as well as to the endogeneity of product choice. Using data on
single-product firms active in the Belgian food and beverages sector, I
illustrate the biases introduced in traditional TFP estimates and dis-
cuss the performance of a number of alternative estimators that have
been proposed in the literature.
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1 Introduction

While the origins of total factor productivity analysis can be traced back
to the seminal paper by Solow (Solow, 1957); recent years have seen a surge
in both theoretical and empirical studies on total factor productivity (TFP).
This renewed interest has been driven both by the increasing availability of
firm-level data, allowing for estimation of TFP at the level of the individ-
ual establishment (Bartelsman and Doms, 2000); as well as by a number of
methodological improvements that have emerged from the literature since the
mid-1990s (Ackerberg, Benkard, Berry and Pakes, 2007, henceforth ABBP).

Typically, establishment-level productivity studies assume output (usually
measured as deflated sales or value added) to be a function of the inputs the
firm employs and its productivity (Katayama, Lu and Tybout, 2005). The
measure of TFP obtained as the residual in this functional relationship is then
used to evaluate the impact of various policy measures, such as the extent of
foreign ownership (eg. Smarzynska Javorcik, 2004), trade liberalization (eg.
Pavcnik, 2002; Amiti and Konings, 2007; De Loecker, 2007) and antidumping
protection (eg. Konings, 2008).

However, several methodological issues emerge when TFP is estimated us-
ing traditional methods, i.e. by applying Ordinary Least Squares (OLS) to
a balanced panel of (continuing) firms. First, since productivity and input
choices are likely to be correlated, OLS estimation of firm-level production
functions introduces a simultaneity or endogeneity problem. Moreover, by
using a balanced panel, no allowance is made for entry and exit, resulting in a
selection bias. Although the simultaneity and selection bias are well-known1;
several other methodological issues have emerged more recently. Specifically,
the typical practice of proxying for firm-level prices using industry-level defla-
tors has been challenged (see for instance Katayama et al., 2005). Moreover,
Bernard, Redding and Schott (2005) note that firms’ product choices are
likely to be related to their productivity.

In response to these methodological issues, several (parametric and semi-
parametric) estimators have been proposed in the literature. However, tra-
ditional estimators used to overcome endogeneity issues (i.e. fixed effects,
instrumental variables and Generalized Method of Moments or GMM) have
not proved satisfactory for the case of production functions. Likely causes

1They have been documented at least since Marschak and Andrews (1944) and Wed-
ervang (1965) respectively.
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for these estimators’ poor performance are related to their underlying as-
sumptions. Therefore, a number of semiparametric alternatives have been
proposed. Both Olley and Pakes (1996, henceforth OP) and Levinsohn and
Petrin (2003, henceforth LP) have developed a semiparametric estimator that
addresses the simultaneity bias (and the selection bias in the case of the OP
estimator). Several extensions to their model have already been introduced
(eg. De Loecker, 2007).

The present paper aims to provide empirical researchers with an overview
of the methodological issues that arise when estimating TFP at the establish-
ment level, as well as of the existing techniques designed to overcome them.
Using data on single-product firms active in the Belgian food and beverages
sector, I illustrate the biases introduced in traditional TFP estimates and dis-
cuss the performance of a number of alternative estimators that have been
used in the literature. The food and beverages industry in Belgium presents
an interesting case, since the sector underwent significant restructuring at
the end of the 1990s following the dioxin crisis2.

The production function coefficients obtained using various estimation
techniques (i.e. OLS, fixed effects, GMM, Olley-Pakes, Levinsohn-Petrin
and De Loecker) are generally in line with theoretical predictions. Aggregate
productivity growth in the food and beverages industry increases signifi-
cantly after 1999, consistent with the period of restructuring and increasing
investments in the sector in response to the dioxin scandal (VRWB, 2003).
Decomposing aggregate productivity into a within productivity component
and a reallocation share on the basis of firms’ turnover shares shows that
this increase is mainly due to the average firm becoming more productive;
while reallocation of market shares explains only a minor part. Applying
the same decomposition using employment rather than output shares yields
similar results.

The rest of the paper is structured as follows. Section 2 provides an
overview of the methodological issues arising when estimating firm-level TFP.
In section 3, several estimation methods are reviewed, with specific atten-
tion for their advantages and drawbacks. Section 4 illustrates the different
methodologies for the Belgian food and beverages industry (NACE 15). Sec-
tion 5 concludes.

2The Economist (1999). Excessive concentrations of dioxin were found in eggs, chicken,
pork and milk, caused by contaminated animal food.
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Given the vast amount of papers that continue to emerge in this field, a
number of choices have to be made at the outset. First, since primary interest
is in consistent estimation of TFP, attention will mostly be limited to recent
papers, i.e. from 1990 onwards. Second, only parametric and semipara-
metric estimators applied to TFP estimation will be discussed here. Van
Biesebroeck (2007) provides an excellent review of several non-parametric
methods (specifically, index numbers and data envelopment analysis)3 used
to estimate firm-level productivity. Finally, given the multitude of papers
dealing with the impact of some policy measure on TFP, it is beyond the
scope of the present paper to provide a complete review of all the empirical
work done in this area. Selection of which references to include is therefore
based on their methodological and econometric contributions to the field.

2 Total factor productivity: Methodological

issues

2.1 Some preliminaries on the production function

I start by assuming that production takes the form of a Cobb-Douglas
production function. However, as shown by ABBP (2007); estimation meth-
ods discussed in the next section carry over to other types of production
functions, provided some basic requirements are met4. Specifically, the pro-
duction function looks as follows:

Yit = AitK
βk

it Lβl

it M
βm

it (1)

where Yit represents physical output of firm i in period t ; Kit, Lit and Mit

are inputs of capital, labor and materials respectively and Ait is the Hicksian
neutral efficiency level of firm i in period t.

While Yit, Kit, Lit and Mit are all observed by the econometrician (al-
though usually in value terms rather than in quantities, see below), Ait is
unobservable to the researcher. Taking natural logs of (1) results in a linear

3Van Biesebroeck (2007) compares the robustness of five commonly used techniques
to estimate TFP: index numbers, data envelopment analysis, stochastic frontiers, GMM
and semiparametric estimation; to the presence of measurement error and to differences
in production technology.

4Variable inputs need to have positive cross-partials with productivity and the value
of the firm has to be increasing in the amount of fixed inputs used (ABBP, 2007).
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production function,

yit = β0 + βkkit + βllit + βmmit + εit

where lower-case letters refer to natural logarithms and

ln (Ait) = β0 + εit

.

While β0 measures the mean efficiency level across firms and over time;
εit is the time- and producer-specific deviation from that mean, which can
then be further decomposed into an observable (or at least predictable) and
unobservable component. This results in the following equation, which will
serve as the starting point for the rest of this and the next section:

yit = β0 + βkkit + βllit + βmmit + ωit + uq
it (2)

where ωit represents firm-level productivity5 and uq
it is an i.i.d. compo-

nent, representing unexpected deviations from the mean due to measurement
error, unexpected delays or other external circumstances.

Typically, empirical researchers estimate (2) and solve for ωit. Estimated
productivity can then be calculated as follows:

ω̂it = yit − β̂kkit − β̂llit − β̂mmit (3)

and productivity in levels can be obtained as the exponential of ω̂it, i.e.
Ω̂it = exp (ω̂it). The productivity measure resulting from (3) can be used to
evaluate the influence and impact of various policy variables directly at the
firm level; or alternatively, firm-level TFP can be aggregated to the industry
level by calculating the share-weighted average of Ω̂it.

Weights used to aggregate firm-level TFP can be either firm-level output
shares, as in OP; or employment shares, as in De Loecker and Konings (2006).
As will be illustrated in section 4, normalized industry productivity can then
be further decomposed into an unweighted average and a (cross-sectional)
sample covariance term. While differences in the unweighted average over
time refer to within-firm changes in TFP; changes in the sample covariance
term signal reallocation of market shares as the driver of productivity shifts
(Olley and Pakes, 1996; De Loecker and Konings, 2006).

5The productivity term is identified through the assumption that ωit is a state variable
in the firm’s decision problem (i.e. it is a determinant of both firm selection and input
demand decisions), while uq

it is either measurement error or a non-predictable productivity
shock (Olley and Pakes, 1996).
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In what follows, it will be shown that estimating (2) using OLS leads to
biased productivity estimates, caused by the endogeneity of input choices and
selection bias. Moreover, in the presence of imperfect competition in output
and/or input markets, an omitted variable bias will arise in standard TFP
estimation if data on physical inputs and output and their corresponding
firm-level prices are unavailable. Finally, if firms produce multiple products,
potentially differing in their production technology; failure to estimate the
production function at the appropriate product level, rather than at the firm
level, will also introduce a bias in standard TFP measures. I will discuss
each of these problems in turn.

2.2 Endogeneity of attrition or selection bias

Traditionally, entry and exit of firms is accounted for in TFP estimation
by constructing a balanced panel; i.e. by omitting all firms that enter or exit
over the sample period (Olley and Pakes, 1996). However, several theoretical
models (eg. Jovanovic, 1982; Hopenhayn, 1992) predict that the growth and
exit of firms is motivated to a large extent by productivity differences at
the firm level. Empirically, Fariñas and Ruano (2005) find, for a sample of
Spanish manufacturing firms, that entry and exit decisions are systematically
related to differences in productivity. They show that firms’ exit patterns
reflect initial productivity differences, leading to the prediction that higher
productivity will lower the exit probability at the firm level.

Moreover, Dunne et al. (1988) report exit rates in excess of 30 percent
between two census years in US manufacturing and a strong correlation be-
tween entry and exit rates in the data. Since low productivity firms have a
stronger tendency to exit than their more productive counterparts, omitting
all firms subject to entry or exit is likely to lead to biased results. If firms
have some knowledge about their productivity level ωit prior to their exit,
this will generate correlation between εit and the fixed input capital, condi-
tional on being in the data set (ABBP, 2007). This correlation has its origin
in the fact that firms with a higher capital supply will (ceteris paribus) be
able to withstand lower ωit without exiting.

In sum, the selection bias or “endogeneity of attrition”- problem will gener-
ate a negative correlation between εit and Kit, causing the capital coefficient
to be biased downwards in a balanced sample (i.e. not taking entry and exit
into account). While this selection problem has been discussed in the litera-
ture at least since the work of Wedervang (1965), the estimation algorithm
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introduced by Olley and Pakes (1996) was the first to take it explicitly6 into
account.

2.3 Endogeneity of input choice or simultaneity bias

Although (2) can be estimated using Ordinary Least Squares (OLS), this
method requires that the inputs in the production function are exogenous
or, in other words, determined independently from the firm’s efficiency level.
Marschak and Andrews (1944) already noted that inputs in the production
function are not independently chosen, but rather determined by the char-
acteristics of the firm, including its efficiency. This “endogeneity of inputs”
or simultaneity bias is defined as the correlation between the level of inputs
chosen and unobserved productivity shocks (De Loecker, 2007).

If the firm has prior knowledge of ωit at the time input decisions are made,
endogeneity arises since input quantities will be (partly) determined by prior
beliefs about its productivity (Olley and Pakes, 1996; ABBP, 2007). Hence,
if there is serial correlation in ωit, a positive productivity shock will lead to
increased variable input usage; i.e. E (xitωit) > 0 , where xit = (lit, mit);
introducing an upward bias in the input coefficients for labor and materi-
als (De Loecker, 2007). In the presence of many inputs and simultaneity
issues, it is generally impossible to determine the direction of the bias in the
capital coefficient. Levinsohn and Petrin (2003) illustrate, for a two-input
production function where labor is the only freely variable input and capital
is quasi-fixed, that the capital coefficient will be biased downward if a pos-
itive correlation exists between labor and capital (which is the most likely
setup).

Traditional methods to deal with heterogeneity and endogeneity issues in-
clude fixed effects and instrumental variables estimation (Wooldridge, 2005).
However, as I will discuss below, both alternatives to OLS are plagued by
a number of problems. Both the estimation algorithm introduced by Olley
and Pakes (1996) and Levinsohn and Petrin (2003) provide a more adequate
solution to the simultaneity problem discussed here.

6It is possible to correct implicitly for the selection bias by using an unbalanced panel
of firms. But, as will be shown in section 3, Olley and Pakes (1996) introduce an additional
(explicit) correction in their estimation algorithm, i.e. they take the firm-level survival
probability into account.
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2.4 Omitted output price bias

In the absence of information on firm-level prices, which are typically un-
available to the researcher, industry-level price indices are usually applied
to deflate firm-level sales (and hence obtain a measure of the firm’s output)
in traditional production function estimates (De Loecker, 2007). However, if
firm-level price variation is correlated with input choice; this will result in bi-
ased input coefficients. The problem can be illustrated as follows. Replacing
output in quantities by deflated sales in (2) results in the following model:

r̃it = pit + yit − pit

= β0 + βkkit + βllit + βmmit + (pit − pit) + ωit + uq
it (4)

where r̃it represents deflated sales, pit are firm-level prices and pit is
the industry-level price deflator, all in logarithmic form. For now, inputs
are still assumed to be available in quantities. From (4) it is clear that if
input choice is correlated with unobserved firm-level price differences, i.e.
E (xit (pit − pit)) 6= 0, where xit = (lit, mit, kit); a bias is introduced in the
input coefficients.

Assuming inputs and output are positively correlated and output and price
are negatively correlated (as in a standard demand and supply framework);
the correlation between (variable) inputs and firm-level prices will be nega-
tive; resulting in a negative bias for the coefficients on labor and materials
(De Loecker, 2007). Hence, the bias resulting from using industry-level price
deflators rather than firm-level prices to deflate sales, will generally be oppo-
site to the bias introduced by simultaneity of input choice and productivity
discussed in the previous section.

Since the omitted output price bias will only arise if industry-level price
deflators are used and if firm-level prices deviate from these deflators (i.e. in
the presence of imperfect competition), it can be avoided by using quantities
of output rather than deflated sales. However, since this requires informa-
tion on actual firm level prices, it is a very rare setup. Exceptions include
Dunne and Roberts (1992), Eslava, Haltiwanger, Kugler and Kugler (2004),
Foster, Haltiwanger and Syverson (2008), Jaumandreu and Mairesse (2004)
and Mairesse and Jaumandreu (2005). Alternatively, it is possible (in the
absence of information on prices) to introduce demand for output into the
system and solve for firm-level prices7, as suggested by Klette and Griliches

7Ornaghi (2006) criticizes this approach however, see section 3 below.
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(1996), Levinsohn and Melitz (2002) and, in the context of the Olley-Pakes
semiparametric estimator, De Loecker (2007). The specifics of the latter
estimation algorithm will be discussed in section 3.

2.5 Omitted input price bias

In the presence of imperfect competition in input markets, input prices
are likely to be firm-specific. However, since input prices (like output prices)
are typically unavailable, quantities of inputs are usually proxied by deflated
values of inputs for capital and materials (the amount of labor used tends to
be available in annual accounts data commonly used to estimate production
function relationships). Assuming that quantities of output are given, this
leads to the following relationship:

yit = β0 + βkk̃it + βllit + βmm̃it + ωit + uq
it

yit = β0 + βk

(
kit + pk

it − pk
it

)
+ βllit

+ βm (mit + pm
it − pm

it ) + ωit + uq
it (5)

where k̃it and m̃it are deflated values of capital and material inputs re-
spectively, pk

it and pm
it represent firm-level prices of these inputs and pk

it and
pm

it refer to their industry-level price indices. From (5) it is clear that in the

presence of unobserved firm-level input price differences, coefficients on k̃it

and m̃it will be biased.

De Loecker (2007) argues that if imperfect output markets are treated ex-
plicitly, this can partly take care of the omitted input price bias, to the extent
that higher input prices are reflected in higher output prices; which in turn
depends on the relevant firm-level mark-up. However, Levinsohn and Melitz
(2002) argue that even with a competitive factor market, adjustment costs
will lead to differences in the shadow price of the input index across firms,
induced by differences in current levels of the quasi-fixed factors (capital).
Katayama et al. (2005) similarly argue that factor prices are important to
take into account in TFP estimation procedures.

Similar to the situation of imperfect competition in output markets, a
number of studies are able to exploit information on input prices and quan-
tities to resolve the omitted price bias, examples include Eslava et al. (2004)
and Ornaghi (2006). A formal solution for the bias induced by firm-specific
input prices has yet to be introduced.
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2.6 Endogeneity of the product mix (multi-product
firms)

Bernard, Redding and Schott (2005, henceforth BRS) argue that firms’
decisions on which goods to produce, are typically made at a more disaggre-
gated level than is recorded in manufacturing data sets (either using census
data or annual accounts data). If firms produce multiple products within
the same industry and if these products differ in their production technology
or in the demand they face, this will lead to biased TFP estimates, since
the production function assumes identical production techniques and final
demand (through the use of common output price deflators) across products
manufactured by a single firm.

BRS (2006b) have examined the pervasiveness and determinants of product
switching among US manufacturing firms for the period 1972-1992. They
find that two-thirds of firms alter their mix of five-digit SIC codes every five
years and they further demonstrate that product adding and dropping by
surviving firms accounts for nearly one-third of the aggregate growth in real
US manufacturing output between 1992 and 1997.

In principle, consistent estimation of TFP in the presence of multi-product
firms requires information on the product mix, product-level output, inputs,
as well as prices. Given these high requirements in terms of data, BRS (2005)
suggest several (partial) solutions to circumvent the bias introduced by multi-
product firms. First, in the absence of information on inputs and outputs at
the product level, it is possible to sort firms into groups that make a single
product, which will eliminate the bias introduced by endogenous product
choice. Alternatively, if the researcher has knowledge of the number and
type of products produced by each firm, consistent estimates of productivity
can be obtained by allowing the parameters of the production technology to
vary across firms making different products. De Loecker (2007) is among the
first to take the number of products as well as product-specific demand into
account when estimating TFP for the Belgian textiles sector. However, his
estimation procedure provides only a partial solution to the bias introduced
by endogenous product choice (cfr. section 3).

2.7 Summary of methodological issues

Traditional productivity estimates, obtained as the residual from a bal-
anced OLS regression of deflated output on deflated inputs and a constant,

10



are plagued by a number of econometric and specification issues. Table 1
provides an overview.

First, given the prevalence of entry and exit in manufacturing populations,
the use of a balanced panel introduces a selection bias in the sample, causing
the capital coefficient to be biased downward. Second, if firms have some
prior knowledge or expectations concerning their efficiency, current input
choice will be correlated with productivity. Coefficients on variable inputs
will be biased upward as a result of this endogeneity or simultaneity prob-
lem, while the coefficient on capital will be biased downward provided the
correlation between labor and capital is positive.

Third, in the presence of imperfect competition in input and/or output
markets, the failure to take firm-level deviations from the industry-level price
deflator into account will result in an omitted output and/or input price bias.
The resulting bias(es) will, in a standard demand/supply framework, work
in the opposite direction as the simultaneity bias, rendering any prior on the
overall direction of the bias hard. Finally, if firms produce multiple products,
which potentially differ in terms of their production technology and demand,
an additional bias will be introduced in traditional TFP estimates. I now
turn to the various estimators that have been introduced in the literature on
consistent estimation of total factor productivity.

3 Total factor productivity estimation

3.1 Fixed effects estimation

By assuming that ωit is plant-specific, but time-invariant; it is possible to
estimate (2) using a fixed effects estimator (Pavcnik, 2002; Levinsohn and
Petrin, 2003). The estimating equation then becomes:

yit = β0 + βkkit + βllit + βmmit + ωi + uq
it (6)

Equation (6) can be estimated in levels using a Least Square Dummy
Variable Estimator (LSDV, i.e. including firm-specific effects) or in first (or
mean) differences. Provided unobserved productivity ωit does not vary over
time, estimation of (6) will result in consistent coefficients on labor, capital
and materials.

11



Origin of the bias Definition Direction of the bias References

Selection bias Endogeneity of attrition: downward bias in βk Wedervang (1965)

Correlation between εit and Kit (the quasi-fixed Olley and Pakes (1996)

input), conditional on being in the data set. ABBP (2007)

Simultaneity bias Endogeneity of inputs: upward bias in βl Marschak and Andrews (1944)

Correlation between εit and inputs xit if firms’ upward bias in βm Olley and Pakes (1996)

prior beliefs about εit influence its choice of inputs. downward bias in βk Levinsohn and Petrin (2003)

ABBP (2007)

Ackerberg et al. (2006)

Omitted output Imperfect competition in output markets: downward bias in βl Klette and Griliches (1996)

price bias Correlation between firm-level deviation of downward bias in βm Levinsohn and Melitz (2002)

output price deflator (pit − pit) and inputs xit. upward bias in βk De Loecker (2007)

Omitted input Imperfect competition in input markets: downward bias in βl Levinsohn and Melitz (2002)

price bias Correlation between firm-level deviation of downward bias in βm Katayama et al. (2005)

input price deflators
(
pk,m

it − pk,m
it

)
and inputs xit. upward bias in βk De Loecker (2007)

Multi-product firms Endogenous product choice: undetermined Bernard, Redding, Schott (2005)

Differences in production technologies across Bernard, Redding, Schott (2006b)

products produced by single firm. De Loecker (2007)

Table 1: TFP estimation: Summary of methodological issues
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Fixed effects or within estimators have a long tradition in the production
function literature, in fact they were introduced to economics in this context
(Mundlak, 1961; Hoch, 1962). By using only the within-firm variation in the
sample, the fixed effects estimator overcomes the simultaneity bias discussed
in the previous section (ABBP, 2007). Moreover, to the extent that exit
decisions are determined by the time-invariant, firm-specific effects ωi, and
not by uq

it, the within estimator also eliminates the selection bias, caused by
endogenous exit in the sample. As a result, estimation of (6) using either
the balanced or unbalanced (i.e. allowing for entry and exit) sample should
result in similar estimates for the coefficients.

In spite of the attractive properties of the fixed effects estimator, it does
not perform well in practice (ABBP, 2007). Estimation of (6) often leads to
unreasonably low estimates of the capital coefficient. Moreover, Olley and
Pakes (1996) perform fixed effects on the balanced and unbalanced sample
and find large differences between the two sets of coefficients, suggesting the
assumptions underlying the model are invalid. The time-invariant nature of
ωi in the fixed effects model has been relaxed by Blundell and Bond (1999)
in the context of production functions, by allowing productivity to be de-
composed into a fixed effect and an autoregressive AR(1)-component.

3.2 Instrumental variables (IV) and GMM

An alternative method to achieve consistency of coefficients in the pro-
duction function is by instrumenting the independent variables that cause
the endogeneity problems (i.e. the inputs in the production function) by
regressors that are correlated with these inputs, but uncorrelated with un-
observed productivity. To achieve consistency of this IV estimator, three
requirements have to be met (ABBP, 2007). First, instruments need to be
correlated with the endogenous regressors (inputs). Second, the instruments
can not enter the production function directly and finally, instruments need
to be uncorrelated with the error term.

Assuming input and output markets operate perfectly competitive, input
and output prices are natural choices of instruments for the production func-
tion (ABBP, 2007). Other examples of instruments include variables that
shift the demand for output or the supply of inputs. Like the fixed effects
estimator, the IV estimator has not been particularly successful in practice.
One of the obvious shortcomings of the technique is the lack of appropri-
ate instruments in many data sets. Input and output prices are usually not
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reported in typical plant or firm level data sets and if they are reported, fre-
quently not enough variation exists in the data in order to identify coefficients
of the production function (ABBP, 2007). Moreover, while estimation using
IV techniques overcomes the simultaneity bias (provided the instruments are
appropriate), it does not provide a solution for the selection issues. If input
prices are used as instruments for input quantities and if exit decisions are
driven (in part) by changes in these input prices, results will remain biased.

In response to these unsatisfactory results, Blundell and Bond (1999) pro-
pose an extended GMM estimator. They attribute the bad performance of
standard IV estimators to the weak instruments used for identification, i.e.
lagged levels of variables are often used as instruments in the estimation
in first differences. They propose an extended GMM estimator using lagged
first-differences of the variables as instruments in the level equations and find
that this estimator yields more reasonable parameter estimates. As already
noted above, they also stress the importance of allowing for an autoregressive
component in ωit.

3.3 Olley-Pakes estimation algorithm

As an alternative to the methods discussed above; Olley and Pakes (1996)
have developed a consistent semiparametric estimator. This estimator solves
the simultaneity problem by using the firm’s investment decision to proxy for
unobserved productivity shocks. Selection issues are addressed by incorpo-
rating an exit rule into the model. In what follows, the proposed methodology
will be discussed in somewhat more detail. It should be noted here however,
that the focus in this section is on the estimation methodology. For the more
technical aspects (and related proofs), the interested reader is referred to
Ericson and Pakes (1995) and Olley and Pakes (1996).

Olley and Pakes (1996) were the first to introduce an estimation algo-
rithm that takes both the selection and simultaneity problem explicitly into
account. They develop a dynamic model of firm behavior that allows for
idiosyncratic productivity shocks, as well as for entry and exit. At the start
of each period, each incumbent firm decides whether to exit or to continue
its operations. If it exits, it receives a particular sell-off value and it never
re-enters. If it continues, it chooses an appropriate level of variable inputs
and investment. The firm is assumed to maximize the expected discounted
value of net cash flows and investment and exit decisions will depend on the
firm’s perceptions about the distribution of future market structure, given
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the information currently available. Both the lower bound to productivity
(i.e. the cut-off value below which the firm chooses to exit) and the invest-
ment decision are determined as part of a Markov perfect Nash equilibrium
and will hence depend on all parameters determining equilibrium behavior.

In order to achieve consistency, a number of assumptions need to be made.
First, the model assumes there is only one unobserved state variable at the
firm level, i.e. its productivity. Second, the model imposes monotonicity
on the investment variable, in order to ensure invertibility of the investment
demand function. This implies that investment has to be increasing in pro-
ductivity, conditional on the values of all state variables. As a consequence,
only non-negative values of investment can be used in the analysis. This
condition needs to hold for at least some known subset of the sample (see
below). Finally, if industry-wide price indices are used to deflate inputs and
output in value terms to proxy for their respective quantities , it is implicitly
assumed that all firms in the industry face common input and output prices
(Ackerberg, Benkard, Berry and Pakes, 2007).

Starting out from the basic Cobb-Douglas production function8 given by
(2), the estimation procedure can be described as follows. Capital is a state
variable, only affected by current and past levels of ωit. Investment can be
calculated as:

Iit = Kit+1 − (1 − δ)Kit

Hence, investment decisions at the firm level can be shown to depend on
capital and productivity or iit = it (kit, ωit), where lower-case notation refers
to logarithmic transformation of variables, as above. Provided investment
is strictly increasing in productivity, conditional on capital, this investment
decision can be inverted, allowing us to express unobserved productivity as
a function of observables:

ωit = ht (kit, iit)

where ht (.) = i−1
t (.). Using this information, (2) can be rewritten as:

yit = β0 + βkkit + βllit + βmmit + ht (kit, iit) + uq
it (7)

8The production function in (2) differs from that employed by OP in two respects.
First, OP include age as an additional state variable, which is omitted here. Second, OP
start out from a value added production function, i.e. including only labor and capital as
production factors.
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Next, define the function ϕ (iit, kit) as follows:

ϕ (iit, kit) = β0 + βkkit + ht (iit, kit)

Estimation of (7) proceeds in two steps (OP, 1996). In the first stage of
the estimation algorithm, the following equation is estimated using OLS:

yit = βllit + βmmit + ϕ (iit, kit) + uq
it (8)

where ϕ (iit, kit) is approximated by a higher order polynomial in iit and
kit (including a constant term). Estimation of (8) results in a consistent
estimate of the coefficients on labor and materials (the variable factors of
production).

In order to recover the coefficient on the capital variable, it is necessary
to exploit information on firm dynamics. Productivity is assumed to fol-
low a first order Markov process, i.e. ωit+1 = E (ωit+1|ωit) + ξit+1, where
ξit+1 represents the news component and is assumed to be uncorrelated with
productivity and capital in period t+1. As noted above, firms will continue
to operate provided their productivity level exceeds the lower bound, i.e.
χit+1 = 1 if ωit+1 ≥ ωit+1, where χit+1 is a survival indicator variable. Since
the news component ξit+1 is correlated with the variable inputs; labor and
material inputs are subtracted from the log of output. Considering the ex-
pectation of E (yit+1 − βllit+1 − βmmit+1), conditional on the survival of the
firm results in the following expression:

E [yit+1 − βllit+1 − βmmit+1| kit+1, χit+1 = 1]

= β0 + βkkit+1 + E [ωit+1|ωit, χit+1 = 1]

The second stage of the estimation algorithm can then be derived as fol-
lows:

yit+1 −βllit+1 − βmmit+1

= β0 + βkkit+1 + E (ωit+1|ωit, χit+1) + ξit+1 + uq
it+1

= β0 + βkkit+1 + g (Pit, ϕt − βkkit) + ξit+1 + uq
it+1

(9)

where E (ωit+1|ωit, χit+1) = g (Pit, ϕit − βkkit) follows from the law of
motion for the productivity shocks and Pit is the probability of survival of
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firm i in the next period9, i.e. Pit = Pr {χit+1 = 1}. A consistent estimate
of the coefficient on capital is obtained by substituting the estimated coeffi-
cients on labor and materials from the first stage, as well as the estimated
survival probability in (8). As in the first stage of the estimation procedure,
the function g (Pit, ϕit − βkkit) is approximated using a higher order polyno-
mial expansion in Pit and ϕit − βkkit. Finally, this results in the following
estimating equation:

yit+1 −βllit+1 − βmmit+1

= β0 + βkkit+1 + g
(
P̂it, ϕ̂t − β̂kkit

)
+ ξit+1 + uq

it+1 (10)

The coefficient on capital can then be obtained by applying Non-Linear
Least Squares on (10).

3.4 Levinsohn-Petrin estimation algorithm

While Olley and Pakes (1996) use the investment decision to proxy for
unobserved productivity; Levinsohn and Petrin (2003) rely on intermediate
inputs as a proxy. The monotonicity condition of OP requires that investment
is strictly increasing in productivity. Since this implies that only observations
with positive investment can be used when estimating (8) and (10), this
can result in a significant loss in efficiency, depending on the data at hand.
Moreover, if firms report zero investment in a significant number of cases, this
casts doubt on the validity of the monotonicity condition. Hence, Levinsohn
and Petrin (2003) use intermediate inputs rather than investment as a proxy.
Since firms typically report positive use of materials and energy in each
year, it is possible to retain most observations; which also implies that the
monotonicity condition is more likely to hold.

Their estimation algorithm differs from that introduced by OP in two im-
portant respects. First, they use intermediate inputs to proxy for unobserved
productivity, rather than investment. This implies that intermediate inputs
(materials in this case) are expressed as a function of capital and productiv-
ity, i.e. mit = mt (kit, ωit). Provided the monotonicity condition is met and

9An estimate of Pit can be obtained by estimating a probit model, where the dependent
variable is a survival dummy (i.e. dummy equal to one if the firm survives in a particular
period). Left-hand side variables are the same polynomial terms used in the first stage
of the estimation procedure, i.e. a higher-order polynomial in investment and capital,
including a constant term. P̂it can then be obtained as the predicted survival probability
from this regression.
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materials inputs are strictly increasing in ωit, this function can be inverted,
again allowing us to express unobserved productivity as a function of observ-
ables, i.e. ωit = st (kit, mit), where st (.) = m−1

t (.). Using this expression, it
is possible to rewrite (2), analogous to the OP-approach described above.

yit = β0 + βkkit + βllit + βmmit + st (kit, mit) + uq
it (11)

It should be noted that the coefficient on the proxy variable, i.e. materials;
is now only recovered in the second stage of the estimation algorithm, rather
than in the first as for the OP approach. The second difference between
the approach used by OP and LP is in the correction for the selection bias.
While OP allow for both an unbalanced panel as well as the incorporation
of the survival probability in the second stage of the estimation algorithm,
LP do not incorporate the survival probability in the second stage; since the
efficiency gains associated with it in the empirical results presented by OP
were very small provided an unbalanced panel was used. Apart from using
materials instead of investment as a proxy and omitting the survival correc-
tion in the second stage10, estimation is fully analogous to the approach used
by OP and summarized above. Moreover, Petrin, Levinsohn and Poi (2003)
have developed a Stata program implementing the LP approach (levpet). For
further details on the LP approach, I refer to LP and Petrin et al. (2003).

3.5 Olley-Pakes versus Levinsohn-Petrin

As was noted above, the OP and LP estimation algorithms are analogous
apart from the use of different proxies and the in- or exclusion of the survival
probability to correct for the selection bias. How then, is one to choose
among the two estimators? I will briefly discuss some of the results emerging
from the literature here.

It is useful to start with the most obvious shortcoming of the OP estimation
algorithm, i.e. the invertibility condition, which implies that only firms with
positive investment can be included in the analysis. Although consistent
production function coefficients can be obtained by estimating (10) for the
subset in the sample with recorded positive investment; this implies a loss
in efficiency and, particularly if there are few firms with positive investment
flows in the industry, can cast doubt on the monotonicity condition (see
above).

10In principle it is possible to implement the explicit correction for firm survival in the
LP estimation algorithm.
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Moreover, according to Ackerberg, Caves and Frazer (2006), collinearity
between labor and the non-parametric terms (i.e. the polynomial in materials
and capital for LP and in investment and capital for OP) in the first stage of
the estimation algorithm can cause the labor coefficient to be unidentified.
This collinearity arises from the fact that labor, like materials and capital,
needs to be allocated in some way by the firm, at some point in time. While
this problem can arise in the context of the OP and LP estimator, it is
particularly problematic for the LP estimator.

For the LP estimator, since labor and materials are both chosen simul-
taneously, a natural assumption could be that they are allocated in similar
ways. However, this would imply that labor and materials are both chosen
as a function of productivity and capital:

mit = ft (ωit, kit)

lit = gt (ωit, kit)

Hence, both labor and materials depend on the same state variables. Using
the invertibility condition of LP, i.e. ωit = f−1

t (mit, kit), this leads to the
following result (Ackerberg et al., 2006):

lit = gt

[
f−1

t (mit, kit) , kit

]
= ht (mit, kit)

Since it is not possible to simultaneously estimate a non-parametric func-
tion of ωit and kit together with the coefficient on the labor variable, which
is also a function of those same variables; the labor coefficient will not be
identified in the first stage. Hence collinearity between the labor variable and
the non-parametric function in the first stage can cause the labor coefficient
to be unidentified. Ackerberg, Caves and Frazer further investigate to what
extent plausible assumptions can be made about the data generating process
for labor in order to “save” the LP first stage estimation, with little success.

As noted above, this collinearity problem can also arise in the context of the
OP estimation procedure. However, for the OP estimator, identification of
the labor coefficient can be achieved by assuming that labor is not a perfectly
variable input and that firms decide on the allocation of labor without perfect
information about their future productivity (i.e. investment and labor are
determined by different information sets). If this assumption holds for the
data at hand, the labor coefficient can be identified in the first stage of
the estimation algorithm in the case of OP. For LP, this assumption does
not solve the collinearity problem, since choosing labor prior to choosing
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material inputs will make the choice of the latter directly dependent on the
choice of labor inputs, again preventing identification of the labor coefficient
in the first stage. This difference between the two estimators stems from
the fact that investment, unlike materials, is not directly linked to period
t outcomes, so that a firm’s allocation of labor will not directly affect its
investment decisions (Ackerberg et al., 2006).

Ackerberg, Caves and Frazer suggest an alternative estimation procedure,
where the coefficient on labor (in a value added production function) is no
longer estimated in the first stage of the algorithm. All input coefficients are
obtained in the second stage, while the first stage only serves to net out the
error component in the production function.

Moreover, in the presence of imperfect competition in input or output
markets, consistency of either the OP or LP estimator is likely to break down,
as an omitted price variable will bias results. Therefore, the OP algorithm has
been augmented to take imperfect competition in output markets explicitly
into account (De Loecker, 2007, see below). For LP however, De Loecker
(2007, Appendix C) shows that imperfect competition in output markets is
likely to invalidate the invertibility condition, while it has no effect on the
monotonicity condition of OP. Therefore, even if the LP estimation algorithm
is augmented with the correction for imperfect competition (discussed below),
coefficients are likely to be biased. Hence, I will focus on the OP algorithm
in what follows.

3.6 Extensions of the Olley-Pakes methodology

Many of the extensions and alternatives that emerge from the literature are
still work in progress, making it particularly hard to choose among the many
candidates. For a recent technical review of a number of extensions to the OP
methodology, I refer to ABBP11 (2007). Alternatives to the semiparametric
estimators of OP and LP are proposed by (among others) Katayama et al.
(2005). However, a full discussion of these works lies beyond the scope of the
present paper.

11ABBP focus on the assumptions underlying the semiparametric estimators introduced
by OP and LP and show how to test their validity and how to relax some of them; they do
not treat the bias introduced by endogenous product choice or by imperfect competition
in input and output markets explicitly.
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As was noted in section 2, De Loecker (2007) implements the correction
for the omitted output price bias, introduced by Klette and Griliches (1996)
in the OP estimation algorithm. In what follows, the specifics of his model
will be discussed. While De Loecker (2007) also introduces a correction for
multi-product firms, I have elected not to discuss this extension here for two
reasons. First, in the absence of product-level data on inputs and outputs,
consistent estimation of TFP can only be obtained by either focusing on
single-product firms or by allowing the parameters of the production tech-
nology to vary across firms making different products (BRS, 2005). Although
De Loecker (2007) is able to exploit information on which products a firm
produces, allowing him to introduce product level demand rather than in-
dustry level demand as well as to control for the number of products a firm
produces; the production technology is still (necessarily) assumed to be iden-
tical across products in an industry.

Moreover, BRS (2006b) find that more than 60 percent of US firms alter
their product mix every five years. This implies that any information on the
product space firms are active in, would have to be dynamic in nature12. Since
typical annual accounts data usually provide no or very limited information
at the relevant product level and given the remaining biases in the resulting
production function coefficients in the absence of (dynamic) product-level
data on inputs and outputs, I will restrict attention to single-product firms.

The relevant model to start from in the presence of imperfect competition
in the output market is given by (4). In order to estimate (4) consistently
without information on establishment-level prices, it is necessary to impose
some structure on the demand system, which will be used to implicitly solve
for the firm-level prices. Following De Loecker (2007), I start out from a
simple conditional (Dixit-Stiglitz) demand system13:

Qit = QJt

(
Pit

PJt

)η

exp
(
ud

it

)

where Qit represents demand for the firm’s product, QJt is industry output
at time t, Pit

PJt

is the price of firm i relative to the average price in industry

12Although De Loecker has very detailed information on which firms are active in which
sectors, the data are only available for 2001. Hence the firm-level product mix is necessarily
assumed to be constant over the sample period in his analysis.

13The industry is assumed to be characterized by product differentiation. A key char-
acteristic of Dixit-Stiglitz demand is that the price (substitution) elasticities are constant
over time and independent of the number of varieties.
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J, ud
it is an idiosyncratic firm-specific demand shock and η is the elasticity of

substitution (demand) between differentiated goods in the industry (−∞ <
η < −1).

Taking natural logarithms results in the following expression for the de-
mand system.

qit = qJt + ηpit − ηpJt + ud
it (12)

It is possible to derive an expression for pit from (12) and substitute the
result into (4).

pit =
1

η

(
qit − qJt − ud

it

)
+ pJt

r̃it = pit + yit − pit =
1

η

(
qit − qJt − ud

it

)
+ pJt + yit − pit

Using the fact that changes in the industry-wide price index pit can be
considered as a weighted average of the changes in firm-specific prices, i.e.
pit = pJt , results in the following relationship:

r̃it =
η + 1

η
(β0 + βkkit + βllit + βmmit + ωit + uq

it) −
1

η
qJt −

1

η
ud

it (13)

where ωit will be proxied by the investment decision as in section 3.3.
Hence, it is clear from (13) that consistent estimation in the presence of
imperfectly competitive output markets requires adding a term to the pro-
duction function. By putting structure on the demand system, it is possible
to proxy for unobserved firm-level prices by adding industry output as an
additional regressor in the production function14. Specifically, the final esti-
mating equation looks as follows:

r̃it = α0 + αkkit + αllit + αmmit + ω
′

it + u
′q
it + αηqJt − u

′d
it (14)

where αh = ((η + 1) /η)βh for h = 0, l, m, k; ω
′

it = ((η + 1) /η) ωit and
αη = (−1/η). The final production function coefficients can be obtained by
multiplying the coefficients obtained in (14) with the relevant mark-up, i.e.
η/ (η + 1). Similarly, firm-level productivity is now obtained as follows:

14Ornaghi (2006) invalidates the correction suggested by Klette and Griliches by con-
firming the existence of asymmetric biases among the input coefficients introduced by the
use of deflated values of inputs and outputs rather than observed quantities. Given this
asymmetric bias, multiplying all input coefficients with an identical upward correction
term (i.e. the mark-up) as illustrated in (15) can not yield unbiased input coefficients.
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ω̂it =

(
η̂

η̂ + 1

)
ω̂

′

it =

(
η̂

η̂ + 1

)
(r̃it − α̂kkit − α̂llit − α̂mmit − α̂ηqJt) (15)

Hence, for the OP estimator including the correction for market power,
productivity as obtained in (3) additionally needs to be multiplied by the
relevant mark-up; as shown in (15). Although this correction simply implies a
rescaling of firm-level productivity in this particular case, it is straightforward
to interact industry output at a more disaggregated level with sector dummies
at an equal level of aggregation to allow the demand elasticity and relevant
mark-up to vary across sub-sectors15. Allowing the demand elasticity to
vary across sub-sectors in (14) leads to the following estimating equation
(De Loecker, 2007):

r̃it = α0 + αllit + αkkit + αmmit + ω
′

it + u
′q
it +

M∑

s=1

αηsqJtsIis − u
′d
it (16)

where s represents the sub-sector and M equals the total number of sub-
sectors. Iis is a dummy variable equal to 1 if a firm is active in a given sub-
sector and qJts is the relevant industry demand shifter, proxied by output in
the different sub-sectors. The number of estimated elasticities ηs equals the
number of sub-sectors in the industry. Industry output is simply replaced in

the estimation by
M∑
i=1

αηsqJtsIis. It should be noted that if demand parameters

are allowed to vary across sub-sectors; the resulting production coefficients
βh will also be specific to those sub-sectors, since the estimates obtained
from estimating (16) have to be transformed using the relevant (sub-sector)
mark-up.

3.7 Summary of estimation algorithms

Table 2 summarizes the different estimation algorithms discussed in this
section. While fixed effects and instrumental variables methods are theo-
retically able to solve the simultaneity bias introduced when estimating (2)
using OLS; their application has not been entirely successful. Likely causes
for the failure of both techniques to produce sensible and unbiased results
are the lack of time-invariance of ωit in the case of fixed effects and the lack

15De Loecker additionally includes product dummies in the first stage of the estimation
algorithm to control for unobserved product quality differences.
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of good instruments in the case of IV estimation. Blundell and Bond (1999)
have developed an extended GMM estimator, taking some of these issues
into account.

Both semiparametric estimators (OP and LP) are able to resolve simul-
taneity issues by using a proxy variable to substitute for unobserved pro-
ductivity; assuming a strict monotonicity condition holds and ωit is the only
unobserved firm-level variable (i.e. the scalar unobservable). While it is
possible to take selection issues into account by using an unbalanced panel
for both estimators, only the OP estimation algorithm explicitly takes the
survival probability at the firm level into account in the second stage of the
estimation algorithm. Extensions have been developed, mainly in the con-
text of the OP procedure, to take imperfect competition in output markets,
as well as multi-product firms into account (De Loecker, 2007).

4 Empirical application: Food and beverages

industry in Belgium

In what follows, I will illustrate the different methodologies introduced
in the previous section, using firm-level data on the Belgian food and bev-
erages industry. The data set is constructed on the basis of the Belfirst
database, which groups annual accounts data on the entire population of
limited-liability firms located in Belgium. The database is commercialized
by BvDEP (2006). Firms are uniquely defined by their VAT number and
data on employment, net value added, total fixed assets etc. are available
for the years 1996-2005. Firms are classified into sectors according to the
NACE-Bel nomenclature, i.e. a five-digit extension of the NACE (Revision
1) classification commonly used for European statistics16. Producer price
indices used to deflate firm-level output are available from Eurostat (2007)
at the three-digit Nace level. Deflators for material inputs and investment
were obtained from Belgostat (2007).

Following Mata and Portugal (1994); Mata et al. (1995) and Van Beveren
(2007b); entry and exit in the sample are defined as economic exit and en-
try17, implying that exit occurs if a firm’s employment drops to zero in a

16The NACE Rev. 1 classification can be downloaded from the Eurostat Ramon server:
http://europa.eu.int/comm/eurostat/ramon/.

17Although the Belfirst database reports firms’ legal status and hence also legal exit;
I do not rely on this measure for two reasons. First, inspection of the data reveals that
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Estimation algorithm Assumptions Resolved issues References

Fixed effects ωit is plant-specific, but time- Simultaneity Mundlak (1961)

invariant. Selection if ωit = ωi, ∀i Hoch (1962)

ABBP (2007)

Instrumental variables Correlation between instruments and Simultaneity Blundell and Bond (1999)

& GMM endogenous regressors. Selection (unbalanced panel) ABBP (2007)

No correlation between instruments

and error term.

Semiparametric estimator: Invertibility condition: investment Simultaneity Olley and Pakes (1996)

Olley & Pakes has to be strictly increasing in ωit. Selection (unbalanced panel) ABBP (2007)

Scalar unobservable assumption: Selection (survival probability) Ackerberg et al. (2006)

ωit is only unobserved state variable.

Semiparametric estimator: Invertibility condition: Simultaneity Levinsohn and Petrin (2003)

Levinsohn & Petrin mit has to be strictly increasing in ωit. Selection (unbalanced panel) Petrin et al. (2003)

Scalar unobservable assumption: Ackerberg et al. (2006)

ωit is only unobserved state variable.

OP with imperfect Assumptions OP. Simultaneity Klette and Griliches (1996)

competition in output Selection (unbalanced panel) Levinsohn and Melitz (2002)

markets Selection (survival probability) De Loecker (2007)

Omitted output price bias

Extended OP Assumptions OP. Simultaneity Klette and Griliches (1996)

including correction Common production technology Selection (unbalanced panel) Levinsohn and Melitz (2002)

for multi-product firms for all products of a firm. Selection (survival probability) De Loecker (2007)

Demand elasticity is common Omitted output price bias

across products and constant. Endogenous product choice

Table 2: TFP estimation: Summary of estimation algorithms
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particular year and entry takes place if there was no previous employment
recorded. Firms exhibiting irregular exit or entry patterns are omitted from
the sample. Similarly, in order to verify that no re-entry occurs after a firm
exits, the last two years in the sample are dropped.

There are several reasons why the evolution of TFP in the food and bever-
ages sector in Belgium is of interest. First, the sector represents a significant
share of industrial employment in Belgium, accounting for 14.2 percent of the
total (CRB, 2004), second only to the metals industry (16 percent). More-
over, the outbreak of the dioxin crisis in 1999, when excessive concentrations
of dioxin were found in eggs, chickens, milk and pork; resulting from con-
taminated animal food (The Economist, 1999); led to a period of significant
restructuring and increasing investments in the sector; reflected in the sam-
ple by high entry and exit rates (see below). Given these preliminaries, it
can be expected that some of these events will be reflected in the industry’s
TFP performance.

Using the Belfirst database, I was able to collect information on all firms
active in the food and beverages sector (NACE 15). Firms with no recorded
data on one of the variables used in the empirical analysis are omitted18, as
well as firms producing multiple products. To identify multi-product firms,
I rely on the number of five-digit NACE-Bel codes a firm lists, i.e. the most
detailed level available in the database. If a firm is active in more than one
five-digit sector, it is omitted from the analysis. Finally, the data are checked
for outliers and gaps. Firms exhibiting variable input growth of more than
200 percent (employment and materials inputs) in one year or output growth
of more than 500 percent are excluded from the sample.

This results in a final sample of 1,025 firms (5,551 observations). Table 3
reports summary statistics for the sample for the period 1996-2003. From the
table it is clear that the average firm in the sample is relatively large (average
employment amounts to 54.61 employees). By comparison, in the full sample
of firms active in sector 15, the average firm employs about 30 people. As

the official date associated with the legal status in the database often does not concur
with the actual time the firm exits the market. Second, communications with Bureau Van
Dijk made clear that although the legal status is correctly reported whenever available,
many companies fail to report their annual accounts after ending their activities. For the
specifics associated with the exit and entry variables, I refer to Van Beveren (2007a).

18Belgian accounting rules only require firms to report full annual accounts (including
data on turnover) once a certain threshold in terms of employment, total assets or turnover
is reached. Therefore, the sample necessarily excludes smaller firms.
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noted above, the period considered here involved significant restructuring in
the sector, translated in high entry and exit rates. Specifically, 184 firms
(18 percent) enter the sample between 1996 and 2003; while 131 firms (13
percent) exit over the same period.

Table 4 reports the production function coefficients obtained using the
different methodologies introduced in section 3. All reported estimates are
obtained for the unbalanced panel of firms (allowing for implicit entry and
exit); apart from the fixed effects estimator, where I report both the unbal-
anced and balanced sample result. The first column in the table reports the
number of observations associated with each specific estimator and clearly
shows one of the main advantages of the LP estimator compared to OP. Since
material inputs are used to proxy for unobservable productivity; I am able
to retain the full sample of firms in the first estimation stage; while for OP,
only those observations with positive investment can be retained in the first
stage. In the second stage, one year of observations is lost due to the dynamic
nature of the model, both for OP and LP.

All estimations reported in table 4 are performed in Stata 10. For the OLS
and fixed effects estimators, built-in commands reg and xtreg are used. The
GMM estimator is obtained using the xtabond2 command, due to Roodman
(2006). No built-in or user-developed command exists to date to implement
the OP estimator19; but Arnold (2005) provides some practical tips, particu-
larly on the implementation of the nonlinear second stage. The LP estimator
was implemented using the levpet command, due to Petrin et al. (2003).

In order to interpret the estimated coefficients, it is useful to briefly go
back to table 1. In the third column of this table, the general direction of the
biases introduced by the different endogeneity issues are given. Theoretically,
the fixed effects estimator corrects for both the simultaneity and selection
bias, hence the coefficients on the variable inputs (labor and materials) are
expected to be lower compared to the OLS result; while the coefficient on
capital is expected to be higher. While the coefficients on the variable inputs
in table 4 are in line with expectations (βl and βm are lower compared to the
first row); the capital coefficient is still very low, both for the balanced and
unbalanced sample.

19A user-developed command, opreg, has recently been made available in Stata, due to
Yasar, Raciborski and Poi (2008). I have not relied on this command for the empirical
estimations.
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Standard

Variable N Mean Deviation Minimum Maximum

Real output (R̃jt, ex 1,000) 5,551 19,454.79 61,007.18 0.97 950,812.10

Employment (Ljt) 5,551 54.61 181.91 1 3,443.00

Real materials (M̃jt, ex 1,000) 5,551 16,600.85 49,454.16 1.14 807,434.90

Real capital (K̃jt, ex 1,000) 5,551 3,036.16 15,605.24 0.99 447,185.80

Real (pos.) investment (Ĩjt, ex 1,000) 3,588 662.46 2,653.91 0.01 61,377.32

Real values are obtained by deflating monetary values using three-digit producer price indices obtained
from Eurostat. Output is defined as turnover of the firm. Employment is measured as the number of
employees (full-time equivalents). The materials variable includes raw materials, consumables, services
and other goods. Capital is defined as total fixed tangible assets. Investment is calculated on the basis
of firm-level capital, using a standard depreciation rate of 15 percent. Data pertain to the Food and
Beverages sector (NACE 15) in Belgium, for the years 1996 to 2003.

Table 3: Summary statistics of key variables
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Labor Materials Capital

Method N βl SE βm SE βk SE

OLS 5,551 0.2113*** [0.0152] 0.7700*** [0.0138] 0.0266*** [0.0072]

Fixed Effects (balanced) 3,568 0.1696*** [0.0192] 0.6474*** [0.0419] 0.0277*** [0.0063]

Fixed Effects (unbalanced) 5,551 0.1685*** [0.0166] 0.6814*** [0.0379] 0.0248*** [0.0052]

GMM 5,551 0.1520*** [0.0368] 0.7890*** [0.0434] 0.0372** [0.0173]

OP (no survival correction) 3,588 0.1925*** [0.0153] 0.7722*** [0.0150] 0.0445** [0.0195]

OP (survival correction) 3,588 0.1925*** [0.0153] 0.7722*** [0.0150] 0.0453*** [0.0167]

Levinsohn-Petrin 5,551 0.2139*** [0.0148] 0.7915*** [0.0802] 0.0484** [0.0205]

De Loecker (1) 3,588 αl = 0.1947*** [0.0153] αm = 0.7686*** [0.0151] αk = 0.0461* [0.0240]

Transformed coefficients DL αq = 0.2926*** 0.2707*** [0.0223] 1.0837*** [0.0426] 0.0654** [0.0338]

[0.0199]

Values are coefficients, standard errors reported between brackets. (1) The coefficients for the DL estimator are obtained by
multiplying the alpha’s with the relevant mark-up. The elasticity of substitution η equals (−1/αq) or -3.42. The relevant mark-up
therefore equals η/ (η + 1) = 1.41.

Table 4: Production function estimates

29



Moreover, as was discussed in section 3, comparing the results of the bal-
anced and unbalanced sample for the FE estimator enables us to determine
whether the FE estimator adequately corrects for the selection bias; i.e.
whether exit decisions at the firm level are only determined by the time-
invariant, firm-specific effects ωi. Given the small differences between the
coefficients obtained for the balanced and unbalanced sample; results in ta-
ble 4 suggest that the FE estimator is able to correct for the selection bias
in the sample.

Since the GMM estimator is theoretically able to correct for the simul-
taneity bias, βl and βm in row 4 of table 4 are expected to be lower, while
βk should increase compared to their OLS counterparts; similarly to the FE
estimator. Results in row 4 show a lower labor coefficient and higher capital
coefficient (in line with expectations); but lower coefficient on materials (not
in line with expectations).

The last four rows in table 4 display the production function coefficients
for the semiparametric estimators of OP (both with and without explicit cor-
rection for firms’ survival probability), LP and De Loecker. Comparing OP
estimates to the OLS estimates in the first row, shows that the coefficients
on both labor and materials are lower compared to OLS results, while the
capital coefficient is significantly higher; which is in line with expectations.
Including the estimated survival probability in the second stage of the es-
timation algorithm has virtually no impact on the capital coefficient. This
result is in line with the findings of OP, who similarly found no significant
improvement in the capital coefficient from the explicit correction for survival
when an unbalanced panel is used. Although the LP coefficient on capital
is higher than its OLS counterpart, the labor and materials coefficients are
somewhat higher than the OLS estimates.

The final row of table 4 summarizes the results of estimating (14) using
the estimation algorithm introduced20 by De Loecker (2007). Essentially, this
amounts to the inclusion of industry output in the first stage of estimation
and subtracting the resulting coefficient times output from the left-hand-side
in (10). Industry output is calculated at the three-digit level in each year

20Although the correction for market power in output markets was originally suggested
by Klette and Griliches (1996), De Loecker was the first to implement this correction
into the semiparametric estimation framework introduced by Olley and Pakes (1996).
Abraham, Konings and Slootmaekers (2007a) report results of the DL estimator as a
robustness check in their paper on FDI spillovers in China.
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as the share-weighted average of firm-level outputs, where shares are based
on deflated revenues. This comes from the observation that the industry
price index (which is available at the three-digit level) represents a share-
weighted average of firm-level prices, where weights are output shares (De
Loecker, 2007). For now, the elasticity of demand (substitution) is assumed
to be identical across the different subsectors within the food and beverages
industry.

As was shown in section 3, the coefficient on industry output αq relates
to the elasticity of demand in the following way: αq = (−1/η). Moreover,
using the demand elasticity, which amounts to -3.42; it is possible to cal-
culate the relevant mark-up at the industry level η/ (η + 1), equal to 1.41.
This estimate is somewhat higher than the result found by Konings (2001),
who find a mark-up of 1.30 for the food and beverages industry in Belgium
in the period 1992-1996. The last row in table 4 further reports both the
estimated coefficients and the true production coefficients βh = (η/η + 1)αh.
Consistent with the theoretically predicted biases in table 1, the coefficients
on labor and materials are significantly higher compared to the OP coeffi-
cients without including industry output. However, the coefficient on capital
is somewhat higher compared to the basic OP results, which is not in line
with expectations.

As was indicated in section 3, it is straightforward to allow the demand
elasticity to vary over the different three-digit industries by interacting indus-
try output with the respective industry dummies in (16). Since this results
both in different demand elasticities and associated mark-ups; production
function coefficients also become specific for each separate three-digit indus-
try in this case. However, note that while production coefficients become
variety-specific in this case, the production technology is still assumed to be
constant for all three-digit industries within the food and beverages sector.

Table 5 reports the results of estimating (16) for the sample of single-
product firms in the food and beverages industry. The first row in table 5
shows the estimated coefficients αh. Compared to the estimated coefficient
for the constant-elasticity estimator reported in the last row of table 4, the
labor and materials coefficients are very similar, while the capital coefficient
is somewhat higher. Turning to the industry-specific output coefficients, it
is clear that large variation exists between the different three-digit subsec-
tors of the food and beverages industry. Calculated demand elasticities vary
between -2.8 and -3.6; associated mark-ups range between 1.39 and 1.56.
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Three-digit industry Output Demand Labor Materials Capital

NACE Description Coefficient Elasticity Mark-up Coefficient Coefficient Coefficient

- αh(h = l, m, k) - - - 0.1948*** 0.7685*** 0.0569***

[0.0153] [0.0151] [0.0215]

151 Meat (products) 0.3348*** -2.9869 1.5033 0.2896*** 1.1592*** 0.0863***

[0.0224] [0.0251] [0.0517] [0.0335]

152 Fish(products) 0.3552*** -2.8154 1.5508 0.2981*** 1.1931*** 0.0888***

[0.0239] [0.0265] [0.0577] [0.0347]

153 Fruit and vegetables 0.3145*** -3.1799 1.4587 0.2802*** 1.1215*** 0.0835***

[0.0218] [0.0237] [0.0477] [0.0323]

154 Oils and fats 0.3587*** -2.7881 1.5593 0.2999*** 1.2003*** 0.0894***

[0.0243] [0.0270] [0.0588] [0.0347]

155 Dairy products 0.2951*** -3.3888 1.4186 0.2728*** 1.0919*** 0.0813***

[0.0197] [0.0227] [0.0416] [0.0314]

156 Grain mill products 0.3026*** -3.3046 1.4339 0.2780*** 1.1126*** 0.0828***

[0.0224] [0.0235] [0.0446] [0.0320]

157 Prepared animal feeds 0.3103*** -3.2226 1.4499 0.2786*** 1.1151*** 0.0830***

[0.0206] [0.0238] [0.0438] [0.0321]

158 Other food products 0.2871*** -3.4831 1.4027 0.2692*** 1.0774*** 0.0802***

[0.0194] [0.0220] [0.0407] [0.0309]

159 Beverages 0.2784*** -3.592 1.3858 0.2656*** 1.0631*** 0.0791***

[0.0184] [0.0216] [0.0377] [0.0304]

Values are coefficients, standard errors reported between brackets. The variety-specific production function
coefficients are obtained by multiplying the alpha’s (given in the first row) with the relevant mark-up. The
elasticity of substitution (demand) η is obtained as the inverse and negative of the output coefficient. The
relevant mark-up equals η/(η + 1).

Table 5: Production function estimates: Variety-specific demand

32



These differences point to the importance of allowing the demand (substitu-
tion) elasticity to vary across different sub-sectors of a particular industry. As
a consequence, variety-specific production coefficients also vary considerably
across the different three-digit industries.

Two caveats should be noted here. First, I have continued to assume
throughout that input prices for materials (capital) at the firm level are
adequately captured by the materials (investment) deflator. To the extent
that input price differences are translated into output price deviations, which
are taken into account using industry output, this should partly take care of
the omitted input price bias (De Loecker, 2007). However, as was already
noted in section 2, a formal solution to this bias (in the absence of firm-level
data on input prices) has yet to be introduced.

Second, the selection of single-product firms in the sample is obtained by
resorting to the NACE-Bel codes reported by firms in their annual accounts,
where the codes typically relate to the latest year available. Hence, the
selection of firms is made in a particular year, whereas it is quite possible
that some of these firms produced multiple products in any of the previous
years.

The production function coefficients obtained in tables 4 and 5 can be used
to calculate firm-level productivity for each of the sample years. By imposing
coefficient stability on the model, it is possible to retain the full sample of
firms for all estimators, even in the absence of positive investment (as for the
OP estimators). Firm-level productivity for the OLS, fixed effects, GMM,
OP (with and without survival correction) and LP estimators is obtained on
the basis of (3). For the OP estimator including the correction for market
power (De Loecker, with or without variety-specific demand), productivity as
obtained in (3) additionally needs to be multiplied by the relevant mark-up;
as was shown in (15).

Finally, using the estimates of firm-level productivity obtained from apply-
ing (3) and (15) to the sample using the production function coefficients from
tables 4 and 5, it is possible to calculate aggregate industry productivity for
each year in the sample as a weighted average of firm-level TFP:

P̂Jt =

Nt∑

i=1

sitΩ̂it (17)
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Figure 1: Weighted productivity index: Comparison estimation methods

where sit is a firm-specific weight, equal to (Sit/ (
∑

i Sit)) and S represents
either turnover or employment (De Loecker and Konings, 2006). Normalizing
this index to 1 in 1996 allows us to compare the evolution of aggregate TFP
in the food and beverages industry for the different estimators discussed here.

Figure 1 shows the evolution of industry productivity between 1996 and
2003, using turnover shares as weights. From the figure, it is clear that TFP
in the food and beverages industry exhibits a clear upward trend in the period
following the dioxin crisis of 1999. However, whereas TFP continues to in-
crease until 2002 when imperfect competition in output markets is not taken
into account; TFP estimated using the DL methodology increases sharply
between 1999 and 2000 and exhibits a more of less stable pattern after that.
For the DL estimator with variety-specific demand, this pattern is even more
apparent. Moreover, compared to the other estimators shown in figure 1,
TFP calculated using the coefficients of table 5 declines more sharply prior
to 1999 and grows less strongly after 1999. These results suggest that im-
perfect competition in output markets, when not taken into account in the
production function estimation, may yield misleading results concerning the
timing and magnitude of productivity shocks. The different growth pattern
observed for the DL estimator with and without variety-specific demand fur-
ther suggests that it is important to take the demand structure into account
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at the appropriate level of aggregation21.

To assess whether the evolution of aggregate TFP in the food and bev-
erages industry is due to firm-level improvements in TFP or rather to the
reallocation of market shares between firms, various decompositions can be
used (De Loecker and Konings, 2006). I will rely on the decomposition22 in-
troduced by Olley and Pakes (1996), who decompose aggregate productivity
into a within component and a covariance term in the following way:

P̂Jt =

Nt∑

i=1

sitΩ̂it

P̂Jt =
Nt∑

i=1

(s̄t + ∆sit)
(

¯̂
Ωt + ∆Ω̂it

)

P̂Jt =
(
Nts̄t

¯̂
Ωt

)
+

Nt∑

i=1

(
∆sit∆Ω̂it

)

P̂Jt =
¯̂

Pit +

Nt∑

i=1

(
∆sit∆Ω̂it

)

where
¯̂
Pit is the unweighted average of plant-level total factor productivity

and
Nt∑
i=1

(
∆sit∆Ω̂it

)
refers to the sample covariance between TFP and output

(or employment) shares. The results of applying this decomposition using ei-
ther turnover (left-hand side) or employment shares (right-hand side) for the
TFP measure of De Loecker allowing for three-digit industry-specific demand
elasticities, are displayed in table 6. The first column for each type of share
consists of the share-weighted average productivity measured calculated on
the basis of (17), normalized to 1 for 1996. The second and third column
show the percentage contribution of the within productivity component and
the reallocation share to aggregate weighted TFP respectively.

21Ideally, this would be at the product level. However, this would require not only infor-
mation on aggregate product output, but also on product-level price evolutions (indices).
One might also argue that in such a case, it is preferable to allow not only the industry
output coefficient, but also the input coefficients to vary across products, i.e. to estimate
a separate production function for each of the products (or sub-sectors in the absence of
product-level information).

22An alternative to the OP decomposition is provided by Foster et al. (2006) . In
addition to a within firm and reallocation term, they allow for a separate net-entry and
interaction term. Given the complexity of their decomposition, it is beyond the scope of
the present paper to apply it here.
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Year Turnover shares Employment shares

Weighted Mean Reallo- Weighted Mean Reallo-

Index TFP cation Index TFP cation

(1996 = 1) (%) (%) (1996 = 1) (%) (%)

1996 1.000 102.71 -2.71 1.000 107.18 -7.18

1997 0.9260 101.95 -1.95 0.9420 104.58 -4.58

1998 0.9166 101.09 -1.09 0.9338 103.54 -3.54

1999 0.935 100.96 -0.96 0.9637 102.22 -2.22

2000 1.0506 101.14 -1.14 1.0791 102.76 -2.76

2001 1.0451 100.84 -0.84 1.0748 102.32 -2.32

2002 1.0297 100.51 -0.51 1.0687 101.06 -1.06

2003 1.0323 99.95 0.05 1.0855 99.19 0.81

Weighted average productivity is calculated according to (17), weights
are firm-level turnover or employment shares.

Table 6: Decomposition aggregate TFP: De Loecker methodology
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From table 6, it is clear that most of the productivity improvements re-
alized in the food and beverages sector since 1996 have been associated
with within firm productivity growth. When employment shares rather than
turnover shares are used (right-hand side of the table), the reallocation share
is somewhat larger than for the case of turnover shares. Hence, I conclude
that most of the productivity increases realized in the food and beverages
industry in Belgium following the dioxin scandal in 1999 were due to the
average firm becoming more productive, while reallocation of market share
(either in terms of employment or turnover) has only played a minor role.
Reallocation shares are consistently negative throughout the sample period,
both using turnover and employment shares, with the exception of 2003,
when it becomes positive in both cases.

For comparison purposes, table 7 summarizes the results of the OP decom-
position for each of the different estimators listed in table 2. The table shows,
apart from weighted normalized TFP in 2003 for each of the estimators, the
average shares of unweighted average TFP and the sample covariance term
in aggregate weighted industry productivity. Values reported are eight-year
averages. Although the within firm growth component dominates regardless
of the estimators applied to calculate industry productivity, there are some
important differences worth noting.

Of the eight decompositions summarized in table 7, five yield similar re-
sults. Specifically, for the OLS, GMM, OP and De Loecker estimators the
sample covariance terms (both for turnover and employment) are small and
positive. For both fixed effects estimators however, reallocation shares are
much larger, although still positive. The De Loecker estimator allowing for
variety-specific demand, as well as the LP estimator yield a small but con-
sistently negative sample covariance term between productivity and either
output or employment.

5 Conclusions

This paper has reviewed the methodological issues arising when total factor
productivity or TFP is estimated at the establishment level. The traditional
biases introduced by the simultaneity of input choice and endogeneity of at-
trition have been discussed; as well as a number of issues that have emerged
more recently, i.e. related to imperfect competition in input and/or output
markets and endogeneity of product choice. Various estimators have been
introduced in the literature attempting to overcome some of these issues.
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Turnover shares Employment shares

Weighted Mean Reallo- Weighted Mean Reallo-

Method Index TFP (2) cation Index TFP (2) cation

(1996 = 1)(1) (%) (%) (2) (1996 = 1)(1) (%) (%) (2)

OLS 1.1393 99.24 0.76 1.1606 99.39 0.61

Fixed Effects (balanced) 1.1619 92.18 7.82 1.1773 84.58 15.42

Fixed Effects (unbalanced) 1.1657 90.42 9.58 1.1787 81.53 18.47

GMM 1.1453 98.52 1.48 1.1686 96.44 3.56

OP (no survival correction) 1.1377 99.45 0.55 1.1582 99.57 0.43

OP (survival correction) 1.1375 99.48 0.52 1.1580 99.64 0.36

Levinsohn-Petrin 1.1293 101.68 -1.68 1.1504 105.08 -5.08

De Loecker 1.1148 97.74 2.26 1.1613 96.62 3.38

DL (variety-specific) 1.0323 101.15 -1.15 1.0855 102.86 -2.86

Weighted average productivity is calculated as in equation 17, weights are firm-level turnover of em-
ployment shares. (1) Weighted normalized TFP in 2003 (1996 = 1). (2) Values reported are eight-year
averages of the shares of unweighted average TFP and the sample covariance term.

Table 7: Comparison of decomposition results
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Given the relatively poor performance and shortcomings of the more tradi-
tional estimators, i.e. fixed effects and GMM; a number of semiparametric
estimators have been introduced, which have been briefly reviewed here. A
recent extension to these estimators taking the omitted output price bias into
account; in addition to dealing adequately with simultaneity and selection
issues has also been discussed.

I have illustrated the performance of these estimators using data on the
food and beverages industry in Belgium in the period 1996 to 2003, when
the sector was undergoing significant changes and restructuring, especially
following the outbreak of the dioxin crisis in 1999. Findings confirm the
theoretically expected biases in traditional production function estimates,
obtained using OLS. Moreover, the evolution of industry TFP over the sample
period shows a clear upward trend in aggregate productivity following the
dioxin scandal in 1999.

Which estimator would researchers ideally want to use then? In light of the
traditionally poor performance of both the GMM and fixed effects estimators,
it would seem that the semiparametric estimators are to be preferred, and
specifically the Olley-Pakes methodology. Moreover, comparing aggregate
industry productivity growth patterns for the different estimators shows that
a failure to take imperfect competition in output markets into account may
yield misleading results concerning the timing and magnitude of observed
industry growth patterns, hence favoring the estimator of De Loecker.

However, the choice of which estimator to use will essentially also depend
on the data at hand. Reliable industry output measures are not always
available to the researcher. Similarly, positive investment data are not al-
ways available for a sufficiently large sample of firms within an industry or
might not be trustworthy. Data can also be prone to measurement error
or production technology may differ widely within an industry, invalidating
some of the parametric methods discussed here.

Van Biesebroeck (2007) compares the sensitivity of different estimators
(index numbers, data envelopment analysis or DEA, stochastic frontiers, IV
(GMM) and semiparametric estimation. He finds that the GMM-SYS esti-
mator is the most robust technique when there is a lot of measurement error
or some technological heterogeneity. However, for the GMM-SYS estima-
tor to be reliable, at least some of the productivity differences have to be
constant over time. He further notes that the GMM estimator might lead
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to downwardly biased input coefficients when measurement error becomes
severe. When measurement error is small, technology is heterogeneous and
returns to scale are not constant, non-parametric techniques such as DEA or
index numbers should be preferred.

In spite of the multitude of estimators that have been developed in recent
years in order to achieve consistent estimates of total factor productivity, a
number of issues remain to be resolved. In particular, both the lack of a
formal correction for the omitted input price bias in the presence of imper-
fect competition in input markets, as well as the implications of endogenous
product choice following from BRS (2005, 2006b) offer ample scope for future
research.
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