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Key events in cellular trafficking occur at the cell sur-
face, and it is desirable to visualize these events with-
out interference from other regions deeper within. This
review describes a microscopy technique based on
total internal reflection fluorescence which is well
suited for optical sectioning at cell-substrate regions
with an unusually thin region of fluorescence exci-
tation. The technique has many other applications as
well, most notably for studying biochemical kinetics
and single biomolecule dynamics at surfaces. A brief
summary of these applications is provided, followed by
presentations of the physical basis for the technique
and the various ways to implement total internal re-
flection fluorescence in a standard fluorescence micro-
scope.
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Total internal reflection fluorescence (TIRF) microscopy (also
called ‘evanescent wave microscopy’) provides a means to
selectively excite fluorophores in an aqueous or cellular en-
vironment very near a solid surface (within =100 nm) without
exciting fluorescence from regions farther from the surface
(1). Fluorescence excitation by this thin zone of electromag-
netic energy (called an ‘evanescent field’) results in images
with very low background fluorescence, virtually no out-of-
focus fluorescence, and minimal exposure of cells to light at
any other planes in the sample. Figure 1 shows an example
of TIRF on intact living cells in culture, compared with stan-
dard epi-fluorescence. The unique features of TIRF have en-
abled numerous applications in biochemistry and cell biology,
as follows.

(a) Selective visualization of cell/substrate contact re-
gions. TIRF can be used qualitatively to observe the position,
extent, composition, and motion of contact regions, even in
samples in which fluorescence elsewhere would otherwise
obscure the fluorescent pattern (2). A variation of TIRF to
identify cell-substrate contacts involves doping the solution
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surrounding the cells with a nonadsorbing and nonpermeable
fluorescent volume marker; focal contacts then appear rela-
tively dark (3,4). Although TIRF cannot view deeply into thick
cells, it can display with high contrast the fluorescence-
marked submembrane filament structure at the substrate
contact regions (b).

(b) Visualization and spectroscopy of single molecule
fluorescence near a surface (6-12). The purpose here is
to observe the properties of individual molecules without the
ensemble averaging inherent in standard spectroscopies on
bulk materials, thereby enabling detection of kinetic features
and states that otherwise are obscured. Related to single
molecule detection is the capability of seeing fluorescence
fluctuations as fluorescent molecules enter and leave the thin
evanescent field region in the bulk. These fluctuations (which
are visually obvious in TIRF) can be quantitatively autocorrel-
ated in a technique called fluorescence correlation spec-
troscopy (FCS) to obtain kinetic information about the mol-
ecular motion (13).

(c) Tracking of secretory granules in intact cells before
and during the secretory process. The thin evanescent
field allows small intensity changes to be interpreted as small
motions of granules in the direction normal to the substrate
with precision as small as 2nm, much smaller than the light
microscope resolution limit, and in some cases, dispersal of
granule contents interpreted as exocytosis (14-29).

(d) Measurements of the kinetic rates of binding of
extracellular and intracellular proteins to cell surface
receptors and artificial membranes. Some of these
studies combine TIR with fluorescence recovery after photo-
bleaching (FRAP) or FCS (30-42). TIR/FRAP additionally can
be used to measure lateral surface diffusion coefficients
along with on/off kinetics of reversibly adsorbed fluorescent
molecules.

(e) Micromorphological structures and dynamics on
living cells. By utilizing the unique polarization properties of
the evanescent field of TIR, endocytotic or exocytotic sites,
ruffles and other submicroscopic irregularities can be high-
lighted (43). By combining TIRF with atomic force micro-
scopy. stress-strain relationships can be directly measured on
living cells (44).

(f) Long-term fluorescence movies of cells during de-
velopment in culture. Since the cells are exposed to exci-



tation light only at their cell/substrate contact regions but not
through their bulk, they tend to survive longer under obser-
vation, thereby enabling time-lapse recording of a week in
duration. During this time, newly appearing cell surface re-
ceptors can be immediately marked by fluorescent ligand
that is continually present in the full cell culture medium while
maintaining a low fluorescence background (45).

(g) Comparison of membrane-proximal ionic transients
with simultaneous transients deeper in the cyto-
plasm. Since TIRF is completely compatible with standard
epi-fluorescence, bright field, dark field, or phase contrast
illumination, these methods of illumination can be switched
back and forth rapidly by electro-optic devices (46).
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Figure 1: EPI vs. TIR prismless
fluorescence photographs with
the Olympus 1.45 NA 60X objec-
tive and an argon laser source of
wavelength 488nm, using the
side-port configuration depicted
in Figure 5(A). These are three dif-
ferent bovine chromaffin cells con-
taining secretory granules marked
with GFP-atrial naturetic protein. The
images were recorded by a cooled
monochrome CCD camera (Photo-
metrics Star-1).

Theory of TIRF

The thin layer of illumination is an ‘evanescent field" which
exponentially decays in intensity with increasing distance
normal to the surface. The evanescent field is produced by
an excitation light beam traveling in a solid (e.g. a glass
coverslip or tissue culture plastic) incident at a high angle 0
upon the solid/liquid surface at which the sample (e.g. single
molecules or cells) adhere. That angle 0, measured from the
normal, must be large enough for the beam to totally intern-
ally reflect (TIR) rather than refract through the interface, a
condition that occurs above some ‘critical angle’. TIR gener-
ates a very thin electromagnetic field in the liquid with the
same frequency as the incident light, exponentially decaying
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in intensity with distance from the surface. This field is cap-
able of exciting fluorophores near the surface while avoiding
excitation of a possibly much larger number of fluorophores
farther out in the liquid.

The simplest case of TIR is that of an “infinitely’ extended plane
wave incident upon a single interface (i.e. a beam width many
times the wavelength of the light, which is a good approxi-
mation for unfocused or weakly focused light). When a light
beam propagating through a transparent medium 3 of high
index of refraction (e.g. glass) encounters a planar interface
with medium 1 of lower index of refraction (e.g. water), it un-
dergoes total internal reflection for incidence angles (meas-
ured from the normal to the interface) greater than the ‘critical
angle’. The critical angle 0, for TIR is given by:

0o =sin""(n1/n3) (1)

where ny and ns are the refractive indices of the liquid and the
solid, respectively. Ratio n,/n3 must be less than unity for TIR
to occur. (A refractive index n, will refer to an optional inter-
mediate layer to be discussed below.) For incidence angle
0< 0., most of the light propagates through the interface with
a refraction angle (also measured from the normal) given by
Snell's Law. (Some of the incident light also internally reflects
back into the solid). For 0> 0, all of the light reflects back into
the solid. Some of the incident energy, however, penetrates
through the interface and propagates parallel to the surface in
the plane of incidence. The field in the liquid, called the ‘evan-
escent field’ (or ‘wave’), is capable of exciting fluorescent mol-
ecules that might be present near the surface.

For an infinitely wide beam the intensity of the evanescent
wave (measured in units of energy/area/s) exponentially de-
cays with perpendicular distance z from the interface:

/(z) = /(0)e~# (2)

where

k) .
d=—=(ns? sin?0—ny%)~ 2
An (3)

/o 1s the wavelength of the incident light in vacuum. Depth o
is independent of the polarization of the incident light and
decreases with increasing 0. Except for 0— 0, (where d— ),
d is in the order of /, or smaller.

Although the emission by a microscopic object from a flu-
orophore excited by the incident evanescent field might be
expected to follow an exponential decay with z according to
Equation 2, this is not precisely true. Fluorescence emission
near a dielectric interface is rather anisotropic and the degree
of anisotropicity is itself z-dependent (47,48).

The polarization (i.e. the vector direction of the electric field)
of the evanescent wave depends on the incident light polar-

ization, which can be either ‘s’ (polarized normal to the plane
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of incidence formed by the incident and reflected rays) or p’
(polarized in the plane of incidence). For s-polarized incident
light, the evanescent electric field vector direction remains
purely normal to the plane of incidence. For p-polarized inci-
dent light, the evanescent electric field vector direction re-
mains in the plane of incidence, but it ‘cartwheels’ along the
surface with a nonzero longitudinal component (see Figure
2). This feature distinguishes evanescent light from freely
propagating subcritical refracted light, which has no longi-
tudinal component. The longitudinal component approaches
zero as the incidence angle is reduced from the supercritical
range back toward the critical angle.

A p-polarized evanescent field can be uniquely utilized to
highlight submicroscopic irregularities in the plasma mem-
brane of carbocyanine dye-labeled living cells (41), as shown
schematically in Figure 3.

Intensities /, 4(0) are plotted vs. ¢ in Figure 4. The evanescent
intensity approaches zero as 0— 90°. On the other hand, for
super-critical angles within 10 degrees of 0., the evanescent
intensity is as great as or greater than the incident light inten-
sity. The plots can be extended without breaks to the subcrit-
ical angle range, where the intensity is that of the freely prop-
agating refracted light in medium 1.

Intermediate layers

In actual experiments in biophysics or cell biology, the inter-
face may not be a simple interface between two media, but
rather a stratified multilayer system. One example is the case
of a biological membrane or lipid bilayer interposed between
glass and an aqueous medium. Another example is a thin
metal film coating, which can be used to quench fluor-
escence within the first ~10nm of the surface. We discuss
here the TIR evanescent wave in a three-layer system in
which incident light travels from medium 3 (refractive index
n3) through the intermediate layer (n,) toward medium 1 (n;).
Qualitatively, several features can be noted:

(a) Insertion of an intermediate layer never thwarts TIR, re-
gardless of the intermediate layer's refractive index n,. The
only question is whether TIR takes place at the ns:n, inter-
face or the n,:ny interface. Since the intermediate layer is
likely to be very thin (no deeper than several tens of nanomet-
ers) in many applications, precisely which interface supports
TIR is not important for qualitative studies.

(b) Regardless of n, and the thickness of the intermediate
layer, the evanescent wave's profile in medium 1 will be ex-
ponentially decaying with a characteristic decay distance
given by Equation 3. However, the overall distance of pene-
tration of the field measured from the surface of medium 3
is affected by the intermediate layer.

(c) Irregularities in the intermediate layer can cause scattering
of incident light which then propagates in all directions in
medium 1. Experimentally, scattering appears not be a prob-
lem on samples even as inhomogeneous as biological cells.
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Figure 2: Schematic drawing of the evanescent polarization resulting from p-pol (in the plane of incidence) incident light. The
incident light wavefronts (with the intervals from solid to dashed wavefront lines representing one-half of a wavelength in the glass) define the
spacing of the spatial period along the interface, and reflected wavefronts are not shown. The p-pol evanescent field is elliptically polarized in
the x-z plane as shown (primarily z-pol with a weaker x-component at a relative phase of n/2). For pictorial clarity, only two periods of evanescent
electric field oscillation are shown; in reality, the evanescent region is much more extended and contains many more periods of oscillation in the
x-direction. The exact phase relationship between the incident field and the evanescent field is a function of incidence angle and is represented

by 5, here.

Direct viewing of incident light scattered by a cell surface
lying between the glass substrate and an aqueous medium
confirms that scattering is many orders of magnitude dimmer
than the incident or evanescent intensity, and will thereby
excite a correspondingly dim contribution to the fluor-
escence.

A particularly interesting kind of intermediate layer is a metal
film. Classical electromagnetic theory (47) shows that such a
film will reduce the s-polarized evanescent intensity to nearly
zero at all incidence angles. But the p-polarized behavior is
quite different. At a certain sharply defined angle of incidence

Figure3: Schematic drawing of the excitation probability of
oriented carbocyanine fluorophores embedded in a mem-
brane in a z-polarized evanescent field (the dominant direc-
tion of a p-polarized evanescent field). The membrane is de-
picted in cross-section, with a curved region corresponding to a
bleb or an invagination. The direction of absorption dipole of the
fluorophores is known to be parallel to the local plane of the mem-
brane and free to rotate in it (54) and is shown with bidirectional
arrows. Higher excitation probability is depicted by lighter shades.
The z-component of the electric field selectively excites the regions
of oblique membrane orientation.

Traffic 2001; 2: 764-774

0p (‘the surface plasmon angle’), the p-polarized evanescent
intensity becomes an order of magnitude brighter than the in-
cident light at the peak (see ). This strongly peaked effect is due
to a resonant excitation of electron oscillations at the metal/
water interface. For an aluminum film at a glass/water inter-
face, 0, is greater than the critical angle 0, for TIR. The intensity
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Figure 4: Evanescent intensities /p,s at z=0 vs. 0, assuming
the incident intensities in the glass are set equal to unity. At
angles 0> (., the transmitted light is evanescent; at angles 0 <0, it
is propagating. Both s- and p-polarizations are shown. Refractive
indices nz=1.46 (fused silica) and n,=1.33 are assumed here,
corresponding to 0, = 65.7°. Also shown is the evanescent intensity
that would be obtained with a thin (20nm) aluminum film coating.
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enhancement is rather remarkable since a 20-nm thick metal
film is almost opaque to the eye.

There are some potentially useful experimental conse-
quences of TIR excitation through a thin metal film coated
on glass:

(a) The metal film will almost totally quench fluorescence
within the first 10 nm of the surface, and the quenching effect
is virtually gone at a distance of 100nm. Therefore, TIR with
a metal-film coated glass can be used to selectively excite
fluorophores in the 10 nm to 200nm distance range.

(b) A light beam incident upon a 20-nm aluminum film from
the glass side at a glass/aluminum film/water interface evi-
dently does not have to be collimated to produce TIR. Those
rays that are incident at the surface plasmon angle will create
a strong evanescent wave; those rays that are too low or high
in incidence angle will create a negligible field in the water.
This phenomenon may ease the practical requirement for a
collimated incident beam in TIR and make it easier to set up
TIR with a conventional arc light source.

(c) The metal film leads to a highly polarized evanescent
wave, regardless of the purity of the incident polarization.

Optical Configurations

A wide range of optical arrangements for TIRF has been em-
ployed. Some configurations use a prism to direct the light
toward the TIR interface, and others use a high numerical
aperture (NA>1.4) microscope objective itself for this pur-
pose. This section gives examples of these arrangements. For
concreteness in the descriptions, we assume that the sample
consists of fluorescence-labeled cells in culture adhered to a
glass coverslip.

‘Prismless’ TIR through a high aperture objective

By using an objective with a sufficiently high NA, supercritical
angle incident light can be cast upon the sample by illumi-
nation through the objective (49,50). The incident beam must
be constrained to pass through the periphery of the objec-
tive’s pupil and must emerge with only a narrow spread of
angles; this can be accomplished by setting the incident
beam to be focused off-axis at the objective’s back focal
plane. The farther the beam focus is positioned radially off-
axis, the larger the angle that the beam will emerge from the
objective. It can emerge into the immersion oil (refractive
index ng;) at a maximum possible angle 0,, measured from
the optical axis) given by:

NA =ng; sin Oy (4)
Since n;sino, is conserved (by Snell's Law) as the beam tra-
verses through planar interfaces from one material (denoted
with subscript /) to the next, the right side of Equation 4 is

equal to nssinoz (where subscript 3 refers to coverslip sub-
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strate upon which the cells grow). For total internal reflection
to occur at the interface with an aqueous medium of refrac-
tive index n4, 03 must be greater than the critical angle 0,
given by:

ny=nszsin 0. (5)

From Equations 4 and b5, it is evident that the NA must be
greater than n;, preferably by a substantial margin. This is no
problem for an interface with water with n; =133 and a
NA = 1.4 objective. But for viewing the inside of a cell at n; =
1.38, a NA= 14 objective will produce TIR at only barely
above the critical angle. The evanescent field in this case will
be quite deep, and dense heterogeneities in the sample
(such as cellular organelles) will convert some of the evan-
escent field into scattered propagating light.

Fortunately, objectives are now available with NA>1.4. The
highest aperture available is an Olympus 100X NA = 1.65;
this works very well for through-the-lens TIR on living cells.
However, that objective requires the use of expensive 1.78
refractive index coverslips made of either LAFN21 (available
from Olympus) or SF11 glass (custom cut by VA Optical Co,
San Anselmo, CA, USA). SF11 glass is the less expensive of
the two, but it may have a chromatic dispersion not as well
suited to the objective, requiring slight refocusing for different
fluorophores. The 1.65 objective also requires special n=1.78
oil which is volatile and leaves a crystalline residue. Two other
objectives that are now available circumvent these problems:
an Olympus 60X NA = 1.45 and a Zeiss 100X NA = 1.45. The
145 objectives use standard glass (1.52 refractive index)
coverslips and oil and yet have an aperture adequate for TIR
on cells The 1.45 objective is probably the method of choice
for TIR, except for cells which have particularly dense organ-
elles.

Configuring a microscope through-the-lens TIRF excited by
a laser beam can be done either by fairly simple custom-
built or commercial accessories (Figure 5). The angle of the
illumination can be continuously switched all the way from
standard epi to TIR simply by increasing the off-axis position
of the beam focus at the objective’s back focal plane. Once
TIR is achieved, further increases in off-axis position serve
to increase the incidence angle at the sample and thereby
decrease the depth of the evanescent field.

An arc-lamp illumination system, rather than a laser, can also
be configured for TIRF illumination by use of an opaque disk of
the correct diameter inserted in a plane equivalent (but up-
beam) from the objective back focal plane (Figure 5D). This
allows only rays at significantly off-axis radii in the back focal
plane to propagate through to the TIR sample plane, upon
which they are incident at supercritical angles. Switching back
and forth between epi and TIR can be done simply by placing
or removing the opaque disk as shown. The size of the TIR flu-
orescence area on the sample increases with the angle of con-
vergence of the rays at the back focal plane. In the case of TIR
illumination, this is easily increased by expanding the beam
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Figure5: Four arrangements for prismless TIRF in an inverted microscope. In all these configurations, SP refers to sample plane,
and BFP refers to the objective’s back focal plane or its equivalent planes (also called ‘aperture planes’). Components drawn with heavier
lines need to be installed; components in lighter lines are possibly pre-existing in the standard microscope. (A) Laser illumination through a
side port (requires a special dichroic mirror cube facing the side, available for the Olympus [X-70 microscope). The beam is focused at the
back focal plane at a radial position sufficient to lead to supercritical angle propagation into the coverslip. Moving the lens L transversely
changes the angle of incidence at the sample and allows switching between subcritical (EPI) and supercritical (TIR) illumination. This is how
Figure 1 was produced. (B) Laser illumination introduced by an optical fiber through the rear port normally used by the arc lamp, This
scheme is employed by the commercial Olympus TIRF device. (C) Laser illumination in microscope systems containing an equivalent BFP
in the rear path normally used by an arc lamp. The laser beam is focused at the BFP where the arc lamp would normally be imaged. The
Zeiss Axiovert 200 provides this BFP, marked as an ‘aperture plane’. If (as in the Olympus IX-70) an aperture plane does not exist in the
indicated position, it can be created with the pair of lens L1 and L2. (D) Arc lamp TIR illumination with no laser at all. The goal is to produce
a sharp-edged shadow image of an opaque circular disk at the objective back focal plane such that only supercritical light passes through
the objective. The actual physical opaque disk (ideally made of aluminized coating on glass) must be positioned at an equivalent upbeam
BFP which, in Kohler illumination, also contains a real image of the arc. The Zeiss Axiovert 200 provides this BFP, marked as an ‘aperture
plane’. If (as in the Olympus IX-70) an aperture plane does not exist in the indicated position, it can be created with the pair of lens L1 and
L2. The illumination at the back focal plane is a circular annulus; it is shown as a point on one side of the optical axis for pictorial clarity only.
The through-the-lens arc-lamp TIRF configuration D can be switched easily to laser TIRF configuration C by insertion of the reflecting prism
in the arc lamp light path.

width at the focusing lens just before the beam enters the mi-
croscope. Arc illumination has the advantages of easy selec-
tion of excitation colors with filters and freedom from coherent
light interference fringes, but it is somewhat dimmer because
much of the arc lamp power directed toward the sample at
subcritical angles is necessarily blocked.

Traffic 2001; 2: 764-774

The evanescent illumination is not ‘pure” with through-the-
lens prismless TIRF: a small fraction of the illumination of
the sample results from excitation light scattered within the
objective, and a small fraction of the observed fluorescence
arises from luminescence of the objective’s internal ele-
ments.
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Figure 6: Schematic drawings for prism-based TIR in an inverted microscope, all using a laser as a light source. The vertical dis-
tances are exaggerated for clarity. The first four configurations (A-D) use a TIR prism above the sample. In these configurations, the buffer-filled
sample chamber consists of a lower bare glass coverslip, a spacer ring (made of 60-um-thick Teflon or double-stick cellophane tape) and the
cell coverslip inverted so the cells face down. The upper surface of the cell coverslip is put in optical contact with the prism lowered from above
by a layer of immersion oil or glycerol. The lateral position of the prism is fixed but the sample can be translated while still maintaining optical
contact. The lower coverslip can be oversized and the Teflon spacer can be cut with gaps so that solutions can be changed by capillary action
with entrance and exit ports. Alternatively, commercially available solution-changing cell chambers (e.g. Sykes-Moore chamber from Bellco Glass
Co. or rectangular cross-section microcapillary tubes from Wilmad Glass Co.) can be used. In configuration D, two incident beams split from the
same laserintersect at the TIR surface, thereby setting up a striped interference pattern on the sample which is useful in studying surface diffusion
(34). Configuration E places the prism below the sample and depends on multiple internal reflections in the substrate. This configuration thereby
allows complete access to the sample from above for solutions changing and/or electrophysiology studies. However, only air or water immersion
objectives may be used because oil at the substrate’s lower surface will thwart the internal reflections.

evanescent-excited fluorescence than prismless TIR. Fig-
ure 6 shows several schematic drawings designated

TIRF with a prism
Although a prism may restrict sample accessibility or

choice of objectives in some cases, prism-based TIR is
very inexpensive to set up and produces a ‘cleaner

770

A-E for setting up laser/prism-based TIR in an inverted
microscope.
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Figure 7 shows an exceptionally convenient (and low-cost)
prism-based TIRF setup for an upright microscope. The laser
beam is introduced in the same port in the microscope base
as intended for the transmitted light illuminator (which should
be removed), thereby utilizing the microscope’s own in-base
optics to direct the beam vertically upward. An extra lens just
upbeam from the microscope base weakly focuses the TIR
spot and permits adjustment of its position. This system gives
particularly high-quality images if a water immersion objec-
tive is employed and submerged directly into the buffer solu-
tion in an uncovered cell chamber. This system is also easily
used with cells adhering directly on tissue culture plastic
dishes rather than on coverslips; the plastic/cell interface is
then the site of TIR. If the objective has a long enough work-
ing distance, reasonable accessibility to micropipettes is
possible. In this configuration, flexibility in incidence angle (to
obtain a range of evanescent field depths) is sacrificed in
exchange for convenience; however, a set of various-angled
trapezoids will allow one to employ various discrete incidence
angles. In an alternative approach for varying incidence
angles over a continuous range, a hemispherical prism can
be substituted for the trapezoidal prism (51). The incident
laser beam is directed along a radius line at an angle set by
external optical elements.

In all these prism-based methods, choice of optical materials
is somewhat flexible, as follows. (a) The prism used to couple
the light into the system and the (usually disposable) slide or
coverslip in which TIR takes place need not be matched
exactly in refractive index. (b) The prism and slide may be

Total Internal Reflection Fluorescence

optically coupled with glycerol, cyclohexanol, or microscope
immersion oil, among other liquids. Immersion oil has a
higher refractive index (thereby avoiding possible TIR at the
prism/coupling liquid interface at low incidence angles) but
it tends to be more autofluorescent (even the ‘extremely low’
fluorescence types). (c) The prism and slide can both be
made of ordinary optical glass for many applications, unless
shorter penetration depths arising from higher refractive indi-
ces are desired. Optical glass does not transmit light below
about 310nm and also has a dim autoluminescence with a
long (several hundred microsecond) decay time, which can
be a problem in some fluorescence recovery after photo-
bleaching (FRAP) experiments. The autoluminescence of
high-quality fused silica (often called ‘quartz’) is much lower.
Tissue culture dish plastic (particularly convenient as a sub-
strate in the upright microscope setup) is also suitable, but
tends to have a significant autofluorescence compared to or-
dinary glass. More exotic high nz materials such as sapphire,
titanium dioxide, and strontium titanate can yield exponential
decay depths d as low as %,/20.

In all the prism-based methods, the TIRF spot should be fo-
cused to a width no larger than the field of view; the larger
the spot, the more that spurious scattering and out-of-focus
fluorescence from the immersion oil layer between the prism
and coverslip will increase the generally very low fluor-
escence background attainable by TIRF. Also, the incidence
angle should exceed the critical angle by at least a couple of
degrees. At incidence angles very near the critical angle, the
cells cast a noticeable ‘shadow’ along the surface.

oBJ

oil—>

hemisphere trapezoid

Figure7: TIRF for an upright
microscope utilizing the inte-
gral optics in the microscope
base and a trapezoidal prism
A on the condenser mount and
movable up and down. The po-
sition of the beam is adjustable by
moving the external lens. An
alternative hemispherical prism
configuration for variable inci-
dence angle is also indicated to
the left. Vertical distances are

=
N
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< \ exaggerated for clarity. An extra
laser beam N\ set of mirrors can be installed to
52 deflect the beam into an epi-il-
lumination light path (shown with

lens dashed lines).
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General Experimental Considerations

A step-by-step guide for setting up TIRF in a standard fluor-
escence microscope has been published (52).

Laser source

A laser with a total visible output in the 100mW or greater
range should be adequate for most TIRF applications. Air-
cooled argon or diode lasers of less than 100mW are ade-
quate for some purposes, but probably marginal for dim
samples or for samples where a weaker laser line (e.g. the
457nm line of argon) may be desired to excite a shorter
wavelength fluorescent marker (such as cyan fluorescent
protein CFP). Laser illumination produces interference fringes
which are manifested as intensity variations over the sample
area. For critical applications, it may be advisable to rapidly
jiggle the beam (e.g. in a commerecially available optical fiber
mode scrambler) or to compute a normalization of sample
digital images against a control digital image of a uniform
concentration of fluorophores.

Functionalized substrates

TIRF experiments often involve specially coated substrates.
A glass surface can be chemically derivatized to yield special
physi- or chemi-absorptive properties. Covalent attachment
of certain specific chemicals are particularly useful in cell bi-
ology and biophysics, including: poly I-lysine for enhanced
adherence of cells; hydrocarbon chains for hydrophobicizing
the surface in preparation for lipid monolayer adsorption; and
antibodies, antigens, or lectins for producing specific reactiv-
ities. Derivatization generally involves pretreatment of the
glass by an organosilane.

A planar phospholipid coating (possibly with incorporated
proteins) on glass can be used as a model of a biological
membrane. Methods for preparing such model membranes
on planar surfaces suitable for TIR are reviewed by Thomp-
son et al. (53).

Aluminum coating (for surface fluorescence quenching) can
be accomplished in a standard vacuum evaporator; the
amount of deposition can be made reproducible by com-
pletely evaporating a premeasured constant amount of
aluminum. After deposition, the upper surface of the alumi-
num film spontaneously oxidizes in air very rapidly. This
aluminum oxide layer appears to have some similar chemical
properties to the silicon dioxide of a glass surface; it can be
derivatized by organosilanes in much the same manner.

Photochemistry at the surface

lllumination of surface-adsorbed proteins can lead to ap-
parent photochemically induced crosslinking. This effect is
observed as a slow, continual, illumination-dependent in-
crease in the observed fluorescence. It can be inhibited by
deoxygenation (aided by the use of an O,-consuming en-
zyme/substrate system such as protocatachuic deoxy-
genase/protocatachuic acid or a glucose/glucose oxidase
system), or by 0.05 M cysteamine.

772

TIRF vs. Other Optical Section Microscopies

Confocal microscopy (CM) is another technique for apparent
optical sectioning, achieved by exclusion of out-of-focus
emitted light with a set of image plane pinholes. CM has the
clear advantage in versatility; its method of optical sectioning
works at any plane of the sample, not just at an interface
between dissimilar refractive indices. However, other differ-
ences exist which, in some special applications, can favor the
use of TIRF: (a) The depth of the optical section in TIRF is
typically =0.1um, whereas in CM it is a relatively thick
~0.6um. (b) In some applications (e.g. FRAP, FCS, or on
cells whose viability is damaged by light), illumination and
not just detected emission is best restricted to a thin section;
this is possible only with TIRF. (c) Since TIRF can be adapted
to and made interchangeable with existing standard micro-
scope optics, even with ‘home-made’ components, it is
much less expensive than CM. Laser-based TIRF microscopy
kits are also now available commercially from Olympus and
from Till Photonics.

Two-photon microscopy (TPM) (55) has many desirable
features, including true optical sectioning, whereby the
plane of interest is the only one that is actually excited, as
in TIRF. TPM is not restricted to the proximity of an inter-
face, but the optical section of TPM is still much thicker
than that of TIRF.

Cell-substrate contacts can be located by a nonfluorescence
technique completely distinct from TIRF, known as ‘internal re-
flection microscopy’ (IRM). Using conventional illumination
sources, IRM visualizes cell-substrate contacts as dark re-
gions. IRM has the advantage that it does not require the cells
to be labeled, but the disadvantages that it contains no infor-
mation on biochemical specificities in the contact regions and
that it is less sensitive to changes in contact distance (relative
to TIRF) within the critical first 100 nm of the surface.
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