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Abstract—Widrow proposed the least mean squares (LMS)
algorithm, which has been extensively applied in adaptive signal
processing and adaptive control. The LMS algorithm is based
on the minimum mean squares error. On the basis of the total
least mean squares error or the minimum Raleigh quotient, we
propose the total least mean squares (TLMS) algorithm. The
paper gives the statistical analysis for this algorithm, studies the
global asymptotic convergence of this algorithm by an equivalent
energy function, and evaluates the performances of this algorithm
via computer simulations.

Index Terms—Hebb learn rule, LMS algorithm, stability, sta-
tistical analysis, system identification, unsupervised learning.

I. INTRODUCTION

BASED on the minimum mean squared error, Widrow
proposed the well-known least mean squares (LMS)

algorithm [1], [2], which has been successfully applied in
adaptive interference canceling, adaptive beamforming, and
adaptive control. The LMS algorithm is a random adaptive
algorithm that fits in with nonstationary signal processing. The
performances of the LMS algorithm have been extensively
studied. If interference only exists in the output of the analyzed
system, the LMS algorithm can only obtain the optimal
solutions of signal processing problems. However, if there is
interference in both input and output of the analyzed system,
the LMS algorithm can only obtain the suboptimal solutions
of signal processing problems. In order to modify the LMS
algorithm, a new adaptive algorithm should be proposed on
the basis of the total minimum mean squared error. This paper
proposes a total least-mean-squares (TLMS) algorithm, which
is also a random adaptive algorithm, and intrinsically solves
the total least-squares (TLS) problems.

Although the total least-squares problems were proposed in
1901 [3], their basic performances had not been studied by
Golub and Van Loan until 1980 [4]. The solutions of TLS
problems were extensively applied in the fields of economics,
signal processing, and so on [5]–[9]. The solution of a TLS
problem can be obtained by the singular value decomposition
(SVD) of matrices [4]. Since the multiplication number of the
SVD for the matrix is , the applications of TLS
problems are limited in practice. To solve TLS problems in
signal processing, we propose a TLMS algorithm that only
requires about multiplication per iteration. We give its
statistical analysis, study its dynamic properties, and evaluate
its behaviors via the computer simulations.
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Recently, much attention has been paid to the unsuper-
vised learning algorithm, in which the feature extraction is
performed in a purely data-driven fashion without any index
or category information for each data sample. The well-
known approaches include Grossberg’s adaptive resonance
theory [12], Kohonen’s self-organizing feature maps [13],
and Fukushima’s neocognitron networks [14]. Another un-
supervised learning approach uses the principal component
analysis [10]. It is shown that if the weight of a simple
linear neuron is updated with an unsupervised constrained
Hebbian learning rule, the neuron tends to extract the principal
component from a stationary input vector sequence [10]. This
is an important step in using the theory of neural networks
to solve the problem of stochastic signal processing. In recent
years, a number of new developments have taken place in this
direction. For example, several algorithms for finding multiple
eigenvectors of the correlation matrix have been proposed
[15], [21]. For a good survey, see the book by Bose and
Liang [22].

More recently, a new modified Hebbian learning procedure
has been proposed for a linear neuron so that the neuron
extracts the minor component of the input data sequence [11],
[23], [24]. The value of the weight vector of the neuron
has been shown to converge to a vector in the direction
of the eigenvector associated with the smallest eigenvalue
of correlation matrix of the input data sequence. This algo-
rithm has been applied to fit curve, surface, or hypersurface
optimally in the TLS sense [24]. This algorithm, for the
first time, provided a neural-based adaptive scheme for the
TLS estimation problem. In addition, Gaoet al. proposed
the constrained anti-Hebbian algorithm that has very simple
structure, requires little computing volume at each iteration,
and can be also used to solve total adaptive signal pro-
cessing [30], [31]. However, as the autocorrelation matrix is
positively definite, its weights will converge to zero or to
infinity [32].

The TLMS algorithm also comes from Oja and Xu’s learn-
ing algorithm for extracting the minor component of a multi-
dimensional data sequence [11], [23], [24]. Note that the input
number of the TLMS algorithm is more than the input number
of the learning algorithm for extracting the minor component
of a stochastic vector sequence. In adaptive signal processing,
the inputs of the TLMS algorithm are divided into two groups
corresponding to different weighting vectors dependent of the
signal-noise ratio (SNR) of the input and the output, where one
group consists of inputs of the analyzed system and another
consists of outputs of the analyzed system, whereas inputs
of Oja and Xu’s learning algorithm represent a random data
vector. If there is interference in both the input and the output
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of the analyzed system, the behavior of the TLMS algorithm
is superior to the LMS algorithm.

II. TOTAL LEAST SQUARES PROBLEM

The total least-squares approach is an optimal technique that
considers both stimulation error and response error. Here, the
implication of TLS problems is illustrated by the solution of
a conflict linear equation

(1)

where . A conven-
tional method for solving the problem is the least squares
(LS) method. In the solution of a problem by LS, there
are a data matrix and an observation vector. When there
are more equations than unknowns, e.g., , the set
is overdetermined. Unless belongs to (the ranges
of ), the overdetermined set has no exact solution and is
therefore denoted by . The unique minimum norm
Moore–Penrose solution to the LS problem is then given by

(2)

where indicates the Euclidean length of the vector. The
solution to (2) is equivalent to solving

or

(3)

where “+” denotes the Moore–Penrose pseudoinverse of a
matrix. The assumption in (3) is that the errors are confined
only to the “observation” vector .

We can reformulate the ordinary LS problem as follows:
Determine , which satisfies

(4)

and for which

subject to Range (5)

The underlying assumption in the solution of the ordinary LS
problem is that errors only occur in the observation vector,
and the data matrix is exactly known. Often, this assumption
is not realistic because of sampling, modeling, or measurement
error affecting the matrix. One way to take errors in the matrix

into account is to introduce perturbation inand solve the
following problem as outlined in the below.

In the TLS problem, there are perturbations of both the
observation vector and the data matrix . We can consider
the TLS problem to be the problem of determining the ,
which satisfies

(6)

where and are perturbations of and , respectively,
and for which

subject to Range (7)

where represents the matrix augmented by the vec-
tor , and denotes the Frobenius norm viz.

. Once a minimum solution is found, then any
satisfying

is said to be the solution of the TLS problem (7). Thus, the
problem is equivalent to the problem for solving a nearest
compatible LS problem

(8)

where “nearest” is measured by the weighted Frobenius norm
above.

In the TLS problem, unlike the LS problems, the vector
or its estimate does not lie in the range space of matrix.

Consider matrix

(9)

The singular value decomposition (SVD) of matrixcan be
written as [4]

or

diag

(10)

where the superscript denotes transposition, is
and unitary, is and unitary, and and ,
respectively, contain the first left singular vectors and the
first right singular vectors of . and can be expressed
as

(11)

Let be the th singular value, left singular vector,
and right singular vector of , respectively. They are related
by

(12)

The is the right singular vector corresponding to the
smallest singular value of , and then, the vector
is parallel to the right singular vector [4]. The TLS solution

is obtained from

(13)

where is the last component of .
The vector is equivalent to the eigenvector corre-

sponding to the smallest eigenvalue of the correlation matrix
. Thus, the TLS solution can also be achieved

via the eigenvalue decomposition of the correlation matrix.
The correlation matrix is normally estimated from the data
samples in many applications, whereas the SVD operates on
the data samples directly. In practice, the SVD technique is
mainly used to solve the TLS problems since it offers some
advantages over the eigenvalue decomposition technique in
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terms of tolerance to quantization and lower sensitivity to
computational errors [25]. However, adaptive algorithms have
also been used to estimate the eigenvector corresponding to the
smallest eigenvalue of the data covariance matrix [27], [28].

III. D ERIVATION OF THE TOTAL

LEAST MEAN SQUARES ALGORITHM

We consider a problem of adaptive signal processing. Let

-dimensional input sequence of the system;
output sequence of the system;
time sequence.

Both the input and output signal samples are corrupted by
additive white noise, quantization, and computation error and
man-made interference called interference. Let be the
interference of input-vector sequence and the
interference of output sequence .

Define an augmented data vector sequence as

(14)

where “ ” denotes transposition. Let the augmented interfer-
ence vector sequence be

(15)

Then, the augmented “observation” vector can be represented
as

(16)

where

Define an augmented weight vector sequence as

(17)

where vector can be expressed as

(18)

In the LMS algorithm [2], the estimation of the output is
represented as a linear combination of the input samples, i.e.,

(19)

The output error signal with time index is

(20)

Substituting (19) into this expression yields

(21)

The LS solutions about the above problem can be obtained by
solving the optimization problem

(22)

Here, we drop the time index from the weight vector
for convenience and expand to obtain the instantaneous
error

(23)

We assume that these are statistically stationary and take the
expected value of (23)

(24)

Let be similarly defined as the autocorrelation matrix

(25)

Let be similarly defined as the column vector

(26)

Thus, is re-expressed as

(27)

The gradient can be obtained as

(28)

A simple gradient search algorithm for optimization problem is

(29)

where is the iteration number, and is called the step length
or learning rate. Thus, is the “present” adjustment value,
whereas is the “new” value. The gradient at
is designated by . The parameter is a
positive constant that governs stability and rate of convergence
and is smaller than ( is the largest eigenvalue of
the correlation matrix ). To develop an adaptive algorithm
using the gradient search algorithm, we would estimate the
gradient of by taking differences between short-term
averages of . In the LMS algorithm [2], Widrow has taken
the squared-error itself as an estimation of . Then,
at each iteration in the adaptive process, we have a gradient
estimate of the form

(30)

With this simple estimate of gradient, we can specify a steepest
descent type of adaptive algorithm. From (29) and (30), we
have

(31)

This is the LMS algorithm [2]. As before, is the gain constant
that regulates the speed and stability of adaptation. Since
the weight changes at each iteration are based on imperfect
gradient estimates, we would expect the adaptive process to be
noisy. Thus, the LMS algorithm only obtains an approximate
LS solution for the above adaptive signal-processing problem.

In the TLMS algorithm below, the estimate of the desired
output is expressed as a linear combination of the desire
input sequence , i.e.,

(32)

The TLS solution of the above signal processing problem can
be obtained by solving

(33)
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The above optimization problem is equivalent to the problem
for solving nearest compatible LS problem

(34)

Furthermore, the optimization problem (33) is equivalent to
the optimization problem

(35)

where can be any positive constant. Expanding (35), we get

(36)

where

(37)

represents the autocorrelation matrix of the augmented data-
vector sequence and is simply called the augmented correlation
matrix. It is easily shown that the solution vector of the opti-
mization problem (36) is the eigenvector associated with the
smallest eigenvalue of the augmented autocorrelation matrix.

An iterative search procedure for this eigenvector ofcan
be represented algebraically as

(38)

where is the step or iteration number, andis a positive con-
stant that governs stability and rate of convergence; its choice
is discussed later. The stability and convergence of the above
iteration search algorithm will also be discussed later. When

is a positive definite matrix, the term in
(38) is a higher order decay term. Thus, is bounded.

To develop an adaptive algorithm, we would estimate the
augmented correlation matrix by computing

(39)

where is a large-enough positive integer number. Instead, to
develop the TLMS algorithm, we take itself as an
estimate of . Then, at each iteration in the adaptive process,
we have an estimate of the augmented correlation matrix

(40)

From (38) and (40), we have

(41)

This is the TLMS algorithm. As before, is the gain constant
that regulates the speed and stability of adaptation. Since
the solution changes at each iteration are based on imperfect
estimates of the augmented correlation matrix, we would
expect the adaptive process to be noisy. From its form in (41),
we can see that the TLMS algorithm can be implemented in
a practical system without averaging or differentiation and is
also elegant in its simplicity and efficiency.

To develop the above TLMS algorithm, we adopt the
method similar to that used in the LMS algorithm. When
the TLMS algorithm is formulated in the framework of an
adaptive FIR filtering, its structure, computational complexity,
and numerical performance are very similar to those of the
well-known LMS algorithm [2]. Note that the LMS algorithm
requires 2 multiplication, whereas the TLMS algorithm needs
about 4 multiplication.

In neural network theory, the term in (41)
is generally called the anti-Hebb learning rule. The term

in (41) is a higher order decay term.
In the section below, we shall prove that the algorithm is
globally asymptotically convergent in the averaging sense.
Once a stable is found, the TLS solution of the above
adaptive signal processing problem is

(42)

Discussion: Since any eigenvector of the augmented
correlation matrix is not unique, any random algorithm for
solving (34) is also not unique. For example, the algorithm

and other algorithms [11], [23] can also be turned into the
TLMS algorithm, but we have not proved that those algorithms
in [11] and [23], as well as the above algorithm, are globally
asymptotically stable.

IV. STATISTICAL ANALYSIS AND STABILITY

Following the reasoning of Oja [10], Xuet al. [25], and
others [15], [26], [27], if the distribution of satisfies
some realistic assumptions and the gain coefficient decreases
in a suitable way, as given in the stochastic approximation
literature, (41) can be approximated by a differential equation

(43)

where denotes time. We shall illustrate the process of
derivation of the above formula. For the sake of simplicity,
we make the following two statistical assumptions:

Assumption 1:The augmented data vector sequence
is not correlated with the weight vector sequence .
Discussion: When the changes of the signal are much

faster than those of the weight, Assumption 1 can be approx-
imately satisfied. Assumption 1 implies that the learning rate
must be very small, which means that the weight only varies
a little bit at each iteration.

Assumption 2:Signal is the bounded continuous-
valued stationary ergodic data stream with finite second-order
moment.

According to Assumption 2, the augmented correlation
matrix can be expressed as

(44)
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In order to obtain a realistic model, we shall use the
following two approximate conditions: There exists a positive
integer large enough, and is a learning rate small enough
that makes

(45)

for any and

(46)

for any .
The implication of the above approximation conditions is

that varies much faster than . For a stationary signal,
we have

(47)

It is worth mentioning that in this key step, a random system
(41) is approximately represented by a deterministic system
(47).

In order to simplify mathematical expression, we shall
replace time index with and learning rate or gain
constant with again; then, (47) is changed into

(48)

Now, should be viewed as the mean weight vector. It is
easily shown that the original differential equation of (48) is
(43). We shall study the convergence of the TLMS algorithm
below by analyzing the stability of (43).

Since (43) is an autonomous deterministic system, Lasalle’s
invariance principle [29] and Liapunov’s first method can be
used to study its global asymptotic stability. Let represent
an equilibrium point of (43). Let represent the right singular
vector associated with the smallest singular value of .
Our objective is to make

(49)

Since is a symmetric positive definite matrix, then there
must be a unitary orthogonal matrix such that

diag (50)

where indicates the th singular value of , and

is the th eigenvector of .
The global asymptotic convergence of the ordinary dif-

ferential equation (43) can be established by the following

Fig. 1. Unknown systemh(k)(k = 0; 1; � � � ; N � 1) identified by filter.

TABLE I
hp AND hpp ARE, RESPECTIVELY, IMPULSE RESPONSEESTIMATED

BY TLMS ALGORITHM AND BY LMS ALGORITHM. �1 AND �2 ARE,
RESPECTIVELY, THE LEARNING RATE OF TLMS AND LMS ALGORITHMS

theorem. Before giving and proving the theorem, we shall give
a corollary. From Lasalle’s invariance principle [29], we easily
introduce the following result on global asymptotic stability.

Definition [29]: Let be any set in . We say
that is a Liapunov function of an -dimensional
dynamic system on if i) is continuous and if ii) the
inner product for all .

Note that the Liapunov function in Lasalle’s invariance
principle need not be positive definite or positive, and a
positive or positive definite function is certainly not the
Liapunov function.
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Fig. 2. Curves with large and small stable value are obtained by the LMS and the TLMS algorithm, respectively, where vertical and horizontal coordinates
represent identification error and iteration number, respectively. Note that the oscillation in the learning curves originates from the noise in thelearning
process, the statistical rise and fall of the pseudo-random number, and the sensitivity of the estimate of the smallest singular value to the fluctuation
of the psuedo-random sequence.

Corollary: If

1) is a Liapunov function of (43);
2) is bounded for each;
3) is constant on ;

then is globally asymptotically stable, where is the stable
equilibrium point set or invariance set of (43).

Theorem I: In (43), let be a positive definite matrix
with smallest eigenvalue of multiplicity one; then, glob-
ally asymptotically converge to the stable equilibrium point
given by (49).

Proof: First, we prove that globally asymptotically
converges to the equilibrium point of (43) as . Then,
we prove that the two equilibrium points

(51)

are only the two fixed points, whereas the other equilibrium
points are saddle points.

We can find the following Liapunov function of (43)

(52)

Since or , , it is shown that
is bounded for each. Differentiating

along the solution of (43), we have

(53)

In the above formula, if , then ; iff
, then . Therefore, globally

asymptotically tends to an extreme value that corresponds to
a critical point of differential equation (43). This shows that

in (43) globally asymptotically converges to equilibrium
points.

Let at an equilibrium point of (43) be ; then, from
(43), we have

(54)

or

(55)
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Fig. 2. Continued. Curves with large and small stable value are obtained by the LMS and the TLMS algorithm, respectively, where vertical
and horizontal coordinates represent identification error and iteration number, respectively. Note that the oscillation in
the learning curves originates from the noise in the learning process, the statistical rise and fall of the pseudo-random

number, and the sensitivity of the estimate of the smallest singular value to the fluctuation of the psuedo-random sequence.

Formula (54) shows that is an eigenvector of the aug-
mented correlation matrix. Let

(56)

From (43), (51), and (56), we have

(57)

It is easily shown that (57) has equilibrium points. Let
the th equilibrium point of (57) be

(58)

Then, the th equilibrium point of (43) is

(59)

It is obvious that . Within the
neighborhood near theth point of (57), be represented as

(60)

where is the disturbance vector near the equilibrium point.
Substituting (60) into (57), we can obtain

(61)

where is the th component of . The above formula
has discarded the higher order terms of and used the
equilibrium equation

(62)

The components of are governed by equation

(63)

when exponentially increases, whereas
exponentially decreases as in

(63). Thus, the th equilibrium point is a saddle point.
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When , the above formulae are changed into

(64)

Obviously, in (64) exponentially
decreases with time. This shows that the th equilibrium
point is the only stable point of (57). Since a practical system
is certainly corrupted by noise or interference [see (57)], (43)
is not stable at any saddle point. From the above reasoning and
from the corollary, we can conclude that of (57) globally
asymptotically converges to the th stable equilibrium
point, i.e., of (43) globally asymptotically tends to the
point

(65)

This completes the proof of the theorem.

V. SIMULATIONS

In the simulations, the system identification shown in Fig. 1
is discussed. For a causal linear system, its input and
impulse response can represent its output , i.e.,

In the above equation, the real impulse response is unknown
and remains to be identified. Let the length of be ;
then, we have

as the output of the real system. The observational value of
the input and of the output is and

, respectively. Here, and
are, respectively, the interference of the input and of the output.
The total adaptive filter is on the basis of

where

The TLMS algorithm can be used to solve the above op-
timization problem. Let the impulse response of a known
system be and its input
and interference be a independent zero-mean white Gaussian
psuedostochastic process. Assume that the SNR of the input is
equal to the SNR of the output. The TLMS algorithm can
derive the TLS solutions listed in Table I, whereas is
derived by the LMS algorithm and

SNR

error

error

The curves of convergence of error1 and error2 are shown in
Fig. 2, where the horizontal coordinate represents the iteration
number. It is obvious that the TLMS algorithm is advantageous
over the LMS algorithm for this problem. The results show that
the demerits of the TLMS algorithm are the slow convergence
in the first segment of the learning curves and the sensitivity
of the estimate of the smallest singular value to the statistical
fluctuation and error.

VI. CONCLUSIONS

This paper proposes a total adaptive algorithm based on
the total minimum mean-squares error. While input and out-
put have interference, performance of the TLMS algorithm
is obviously advantageous over the LMS algorithm. Since
the assumption that the input and the output have noise is
realistic, this TLMS algorithm has extensive applicability. The
TLMS algorithm is also simple and only requires about 4-
multiplication in each iteration. From a statistical analysis and
stability study, we can know that if an appropriate learning
rate is selected, the TLMS algorithm will be globally
asymptotically convergent.
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