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Abstract
One of the more controversial recent planning
algorithms is the SHOP algorithm, an HTN planning
algorithm that plans for tasks in the same order that
they are to be executed.  SHOP can use domain-
dependent knowledge to generate plans very quickly,
but it can be difficult to write good knowledge bases
for SHOP.

Our hypothesis is that this difficulty is because
SHOP’s total-ordering requirement for the subtasks of
its methods is more restrictive than it needs to be. To
examine this hypothesis, we have developed a new
HTN planning algorithm called SHOP2.  Like SHOP,
SHOP2 is sound and complete, and it constructs plans
in the same order that they will later be executed.  But
unlike SHOP, SHOP2 allows the subtasks of each
method to be partially ordered.

Our experimental results suggest that in some
problem domains, the difficulty of writing SHOP
knowledge bases derives from SHOP’s total-ordering
requirement—and that in such cases, SHOP2 can plan
as efficiently as SHOP using knowledge bases simpler
than those needed by SHOP.

1 Introduction
One of the more controversial recent planning systems is
the SHOP system [Nau et al., 1999], an HTN planning
system that plans for tasks in the same order that they
will later be executed.  Like any HTN planner, SHOP
uses domain knowledge in order to plan more
efficiently—but unlike other HTN planners, SHOP
always generates the steps of its plans in the same order
that those steps will later be executed.

On one hand, the SHOP algorithm makes it possible
to generate plans quite efficiently.  For example, in the
experiments reported in [Nau et al., 1999, 2000], SHOP
ran orders of magnitude faster than the Blackbox, IPP,
Tlplan, and UMCP planners. Furthermore, the SHOP
algorithm is suitable for use as an embedded planning
sytem in complex applications [Munoz et al., 2000].

On the other hand, creating a SHOP knowledge base

can require significantly more “programming effort” than
is needed for action-based planners.  For example, in two
of the planning domains in Track 2 of the AIPS-2000
planning competition, SHOP was disqualified because we
did not finish debugging the knowledge bases in time.

We believe that although the total-order HTN-
decomposition technique used in SHOP has some
significant benefits, the SHOP planning algorithm
provides too restrictive a way of achieving these benefits.
In particular, SHOP requires the subtasks of each method
to be totally ordered, which makes it impossible for
SHOP to interleave subtasks of different tasks. In Section
2 we describe how this can complicate the job of the
knowledge-base author by requiring him/her to introduce
“global planning” instructions into SHOP’s knowledge
bases that would not otherwise be needed.

In this paper we introduce the SHOP2 planning
algorithm, which has the following properties:

•  Like SHOP, SHOP2 is a sound and complete HTN
planning algorithm that generates the steps of each
plan in the same order that those steps will later be
executed.  Thus, like SHOP, SHOP2 knows the
current state at each step of the planning process.

•  Unlike SHOP, SHOP2 allows each method to
decompose into a partially ordered set of subtasks,
and allows the creation of plans that interleave
subtasks from different tasks.

•  SHOP2 is upward-compatible with SHOP. Our
SHOP2 implementation can run SHOP knowledge
bases with only minor syntactical changes, and in
fact runs them more efficiently than SHOP does.

We have done experimental comparisons of SHOP and
SHOP2 in problem domains exemplifying situations (1)
where domain-specific global-reasoning knowledge
seems necessary for efficient plan-generation regardless
of SHOP’s total-ordering requirement, and (2) where
such knowledge is necessitated only by SHOP’s partial-
ordering requirement.  In the latter case, we could easily
create a knowledge base much simpler than SHOP’s, that
enabled SHOP2 to create plans more efficiently than
SHOP and with plan quality similar to SHOP’s.
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move2(x,y,u,v)

move1(y,u,v)move1(x,u,v)

move1(x,u,v)

drop(x)load(x)go(u) go(v)

(a) (b)
Figure 1.  First set of methods for moving packages.

move1(a,m,n)

drop(a)load(a)

move1(b,m,n)

drop(b)load(b)

move2(a,b,m,n)

go(m) go(n)

Figure 2: The plan that we want for two packages.

move1(a,m,n)

drop(a)load(a)

move1(b,m,n)

drop(b)load(b)

move2(a,b,m,n)

go(m) go(n) go(m) go(n)

Figure 3: The plan we have actually told SHOP to generate.

load2(x,y,u)

load(y,u)load(x,u)

move2b(x,y,u,v)

drop2(x,y,v)load2(x,y,u)

drop2(x,y,v)

drop(y,v)drop(x,v)

go(n)go(m)

Figure 4. Second set of methods to move two packages.

load2(a,b,m)

load(b,m)load(a,m)

drop2(a,b,n)

drop(b,n)drop(a,n)

move2b(a,b,m,n)

go(n)go(m)

Figure 5.  Plan generated using the methods in Figure 4.

2 Motivation

As example of the kind of difficulty that can result
from SHOP’s requirement that all tasks be totally
ordered, consider the task of moving a package from one
location to another.  For SHOP to generate a plan for this
task, it needs to have a method telling it how to move a
package, such as the method shown in  Figure 1(a).  This
method says that one way to move a package is to go to
the package, pick the package up, go to the destination,
and drop the package off.

If all we want to do is to deliver one package, then
the method in Figure 1(a) will work fine.  However,
suppose we want to move two packages at once.
Although the two methods shown in Figure 1 might at
first glance seem satisfactory for this task, they will not

always do what we want.  If the two packages both have
the same initial location and the same destination, then
we probably would like to deliver both packages at once,
as shown in Figure 2—but the methods in Figure 1 will
tell SHOP to deliver the packages one at a time, as shown
in Figure 3.

In this simple example, it is not hard to write
methods telling SHOP to generate a plan for delivering
both packages at once. For example, the methods shown
in Figure 4 will tell SHOP to generate the plan shown in
Figure 5.  However, to do this we had to tell SHOP
explicitly how to reason about both packages at once.

The need to give SHOP such “global planning”
instructions can occur frequently.  Each of the SHOP
knowledge bases described in [Nau et al., 1999] contains
instructions for reasoning globally about the planning
problem—and the same is true in most of the knowledge
bases that we created during the AIPS-2000 planning
competition.  To write and debug such instructions can
require significant time and effort.

3 SHOP2

3.1 Pre l iminaries
As with most AI planners, a logical atom in SHOP2
consists of a predicate name followed by a list of
arguments, and a state of the world consists of a
collection of ground logical atoms.

As with most HTN planners, a task in SHOP2
consists of a task name followed by a list of arguments.
Although tasks are similar syntactically to logical atoms,
they are different semantically since they denote
activities that need to be performed rather than logical
conditions [Erol et al, 1994; Barret, 1997].

A SHOP2 knowledge base contains domain-specific
knowledge that SHOP2 will need in order to do planning
in some domain.  It consists of axioms, methods, and
operators, as described below.1

Axioms. SHOP2’s Horn-clause axioms are identical to
those used in SHOP. As in SHOP, SHOP2 uses these
axioms to infer whether a method’s preconditions are
satisfied in the current state of the world, using Horn-
clause inference.

Also like SHOP, SHOP2’s methods and Horn clauses
can contain calls to the Lisp evaluator.  This allows
SHOP2 to evaluate preconditions that contain, for
example, numeric computations or queries to external
information sources.

Methods. SHOP2’s methods are similar to those of
SHOP except that methods can produce partially ordered
sets of subtasks.  As in SHOP, the basic form of a
method is
                                                            

1 SHOP2 generalizes the M-SHOP algorithm described in
[Nau et al., 2000]. M-SHOP takes partially ordered task lists as
input—but like SHOP, its methods must produce totally
ordered sets of subtasks.  In contrast, SHOP2 allows methods
to produce partially ordered sets of subtasks.
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(:method task-atom precondition-atoms decomposition)

The task-atom tells what kind of task the method can
be used for. The method cannot be applied to some task t
unless task-atom is unifiable with t).

The precondition-atoms tell what things must be true
in the current state of the world in order for the method
to be applicable to t. The previous paragraphs described
how SHOP2 infers whether these preconditions are true
in the current in the current state.

The decomposition tells what subtasks to decompose
the task into. In SHOP this set of subtasks was totally
ordered, but in SHOP2 it can be partially ordered.

As in SHOP, additional preconditions and
decompositions can be appended to the method for
SHOP2 to use in an “if-then-else” manner:

(:method
task-atom
precondition-atoms-1
decomposition-1
precondition-atoms-2
decomposition-2     ...     )

The idea here is that if precondition-atoms-1 is true then
the method will produce decomposition-1; otherwise if
precondition-atoms-2 is true then the method will
produce decomposition2, and so forth.

Operators. Since the subtasks of a method can be
partially ordered, this means that subtasks of different
methods can be interleaved in a plan.  Thus in order to
prevent deleted-condition interactions, we need a way to
specify protected conditions.  However, since SHOP2
will plans for tasks in the order that they will later be
executed, we can get by with a rather simple protection
mechanism, rather than the more sophisticated
mechanisms used in partial-order HTN planners such as
O-PLAN [Currie and Tate, 1991; Tate, 1994], SIPE
[Wilkins, 1990], and UMCP [Erol et al., 1994]. To
accomplish this, SHOP2’s operator syntax is modified
beyond that of SHOP, to include the following way to
specify protected conditions.

Like SHOP’s operators, each SHOP2 operator
includes a task atom (which must be unifiable with a task
in order for the operator to be applicable to that task), a
“delete list” (which tells what atoms to delete from the
current state), and an “add list” (which tells what atoms
to add to the current state).  However, SHOP2 operators
can also include protection requests (to tell SHOP2 that
certain conditions should not be deleted) and protection
cancellations (to tell SHOP2 that it is now permissible to
delete those conditions).

For example, suppose we want to tell SHOP2 to
drive a truck from location p to location q, and prevent
the truck from being moved away from q. Then we would
write an operator that deletes “(at-truck p)”, adds “(at-
truck q)”, and adds a protection request for “(at-truck q)”.
Once we are ready to move the truck, another operator
can delete the protection request.

3.2 The SHOP2 Algor i thm
The SHOP2 planning algorithm is as follows, where S is the
current state, M is a partially ordered set of tasks, and L is a
list of protected conditions:

procedure SHOP2(S,M,L)
if M is empty then return NIL  endif
nondeterministically choose a task t in M that has no

predecessors
<r,R’> = reduction(S,t)
if r = FAIL then return  FAIL  endif
nondeterministically choose an operator instance o

applicable to r in S
S’ = the state produced from S by applying o to r
L’  = the protection list produced from L by applying o

to r
M’  = the partially ordered set of tasks produced from M

by replacing t with R’
P = SHOP2(S’,M’ ,L’ )
return  cons(o,P)

end SHOP2

procedure reduction(S,t)
if  t is a primitive task then return <t,NIL>
else if no method is applicable to t in S then

return <FAIL,NIL > endif
nondeterministically let m be any method applicable to

t in S
R = the decomposition (partially ordered set of tasks)

produced by m from t
r = any task in R that has no predecessors
<r’,R’ > = reduction(S,r)
if  r’  = FAIL then return <FAIL,NIL > endif
R’’  = the partially ordered set of tasks produced from R

by replacing r with R’
return <r ’ ,R’’>

end reduction

The proof that the SHOP2 algorithm is both sound
and complete is too long to include in this paper.
However, it is a relatively straightforward induction
proof, proceeding from the usual kind of definition of
what it means for something to be an HTN plan.

Probably the only complicating factor worth
mentioning here is the reason why REDUCE calls itself
recursively until it finds a primitive task. This is needed
in order to ensure that for all of the methods used to
produce that primitive task, the preconditions are
evaluated in the correct state of the world.

4 Implementation and Experiments
We implemented the SHOP2 algorithm by modifying the
Common-Lisp coding for the SHOP planning system.  As
we did with SHOP, we intend to make SHOP2 available
as freeware under the GNU public license.

For our experiments, we wanted to compare SHOP2
and SHOP on problem domains exemplifying two
different cases for the role of domain-dependent “global
reasoning” knowledge:
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•  Cases where such knowledge is somehow an intrinsic
requirement for generating plans efficiently.  We
chose the blocks world [Nilsson, 1980] as a problem
domain where such cases might be likely to occur.

•  Cases where such knowledge is necessitated only by
SHOP’s total ordering requirement.  As a domain in
which such cases would be likely, we chose the
logistics domain [Veloso, 1992].

For our comparisons, we built knowledge bases for
SHOP2 in the logistics and blocks-world domains, and
compared them to the knowledge bases that come with
the SHOP code.  For our tests we used a 400-MHz Power
Macintosh G4 with 256 MB of RAM, using Macintosh
Common Lisp 4.3.

In order to do these comparisons properly, one
concern was that in modifying the SHOP code to create
the SHOP2 code, we also made some significant
optimizations. Because of these optimizations, SHOP2
runs SHOP knowledge bases faster than SHOP does, so
we felt that running the SHOP2 code against the SHOP
code would be unfairly favorable to SHOP2.

To solve this problem, we utilized SHOP2’s upward-
compatibility with SHOP.  With some minor syntactical
changes, any SHOP knowledge base will run in
SHOP2—and running such a knowledge base in SHOP2
is equivalent to running the SHOP planning algorithm.
Thus for our tests, we used SHOP2 to run both the SHOP
knowledge base and the SHOP2 knowledge base.

4.1 Log ist ics  Problems
The SHOP knowledge base contains a complicated set of
instructions that tell SHOP how to reason globally about
the logistics-planning domain.  We could not figure out a
way to make any significant simplifications to this
knowledge base and still have it run in SHOP, except by
removing the domain knowledge and forcing SHOP to do
a brute-force search. However, it was relatively easy for
us to create a much simpler SHOP2 knowledge base,
consisting of instructions for how to transport an
individual package to its destination.  As can be seen
from Table 1, this resulted in a SHOP2 knowledge base
whos size was only about 26% of the size of the SHOP
knowledge base.

We compared the SHOP knowledge base with the
SHOP2 knowledge base on 110 randomly generated
logistics problems. The problems involved N packages to
be delivered, for N = 10, 15, …, 60.  There were 10
problems for each N, for a total of 110 problems.  In each
problem, the number of cities was no larger than N/2.
Each city contained three locations, one truck, and N/5 or
fewer airports.  For each package, the original location
and the destination location were randomly chosen and
were guaranteed to be different from each other.

As shown in Figure 1, SHOP2 ran about 4 times as
fast with the SHOP2 knowledge base as it did with the
SHOP knowledge base.  As shown in Figure 2, the two
knowledge bases created plans of nearly the same size,

but the ones generated by the SHOP knowledge base
were slightly shorter.

Table 1: Sizes of the SHOP and SHOP2 knowledge
bases for the logistics domain (counting each if-then
decomposition of a method as a separate method).

SHOP
knowledge base

SHOP2
knowledge base

Methods 50 10
Operators 7 7
Axioms 10 1

0
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30

40

50

60

1 16 31 46 61 76 91 106

SHOP-KB POMFOX-KB

Figure 1. CPU times for SHOP2 using the SHOP knowledge
base and the SHOP2 knowledge base, on 110 randomly
generated logistics problems.  The x-axis gives the problem
number, and the y-axis gives the CPU time.
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Figure 2. Sizes of the plans of Figure 1. The x-axis gives the
problem  number, and the y-axis gives the number of actions.

Table 2: Sizes of the SHOP and SHOP2 knowledge
bases for the blocks world (counting each if-then
decomposition of a method as a separate method).

SHOP
knowledge base

SHOP2
knowledge base

Methods 10 13
Operators 7 8
Axioms 1 5
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Figure 3. CPU times for SHOP2 using the SHOP knowledge
base and the SHOP2 knowledge base, on randomly generated
blocks-world problems. The x-axis gives the problem number,
and the y-axis gives the CPU time.
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Figure 4. Sizes of the plans of Figure 3. The x-axis gives the
problem number, and the y-axis gives the number of actions.

4.2 Blocks-World Problems
Just as before, the blocks-world knowledge base for

SHOP contains instructions for how to reason globally
about the planning process.  Just as before, we could not
think of any way to significantly reduce the size of this
knowledge base and still have it run in SHOP, other than
by removing the domain knowledge and forcing SHOP to
do a brute-force search.

As before, our objective for SHOP2 was to simplify
the knowledge base giving SHOP2 instructions for how
to move individual blocks.  However, we could not figure
out any way to do this without forcing SHOP2 to do a
brute-force search.  In fact, we suspect that “global”
domain-specific algorithms such as the ones discussed in
[Chenoweth, 1991; Gupta and Nau, 1991] may be the
only way to achieve efficient planning in the blocks
world.

We tried creating a SHOP2 knowledge base by
removing some of the total-ordering constraints and

bookkeeping operations from the SHOP knowledge base,
but this required us to add additional coding such as
protection requests and protection cancellations to handle
interleaving correctly. As shown in Table 2, the resulting
knowledge base was about 44% larger than the original
SHOP knowledge base.

We compared the performance of the two knowledge
bases on randomly blocks-world problems consisting of N=
5,10,…,100 blocks to be relocated. We generated five
problems for each value of N, for a total of 100 problems.
To build the initial and final states, we generated
configurations of blocks as follows:

•  First, put a block onto the table (thereby creating a
new tower).

•  For each block after the first one, if t is the number
of existing towers, then there are t+1 possible
locations for the new block: on top of any of the
existing towers, or on the table (thereby creating a
new tower).  Choose one of those locations at
random, with an equal probability for each choice.

As shown in Figure 3, the time taken by SHOP2
using the SHOP2 knowledge base varied greatly from
problem to problem.  On the average, SHOP2 needed
about 2.4 times as much time to generate plans with this
knowledge base as it did with the SHOP knowledge base.
As shown in Figure 4, the two knowledge bases created
plans of nearly the same size, but the ones generated by
the SHOP knowledge base were slightly shorter.

Discussion and Conclusions
We have described a new HTN planning algorithm, the
SHOP2 algorithm.  Like the SHOP planning algorithm,
the SHOP2 algorithm generates the steps of a plan in the
same order in which those steps are to be executed—but
unlike SHOP, SHOP2 allows the subtasks of each
method to be partially ordered.

SHOP2 runs SHOP knowledge bases faster than
SHOP does; and our test results show that in some cases
one can create knowledge bases for SHOP2 that are much
simpler than the ones needed by SHOP yet still allow
SHOP2 to run more quickly than SHOP.

We believe that the primary impact of our results is
to provide a way to obtain the same advantages ascribed
to the SHOP planning algorithm, while alleviating one of
SHOP’s primary drawbacks.  Below, we summarize what
those advantages and drawbacks are:

1. Planning for tasks in the order that those tasks will be
performed makes it possible to know the current state
of the world at each step in its planning process, which
makes it possible to incorporate significant reasoning
power into the planner’s precondition-evaluation
mechanism. Rather than just unifying preconditions
against current-state atoms, the SHOP2 system (like the
SHOP system) can perform Horn-clause inferences to
evaluate preconditions that are not directly mentioned
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in the current state, and its preconditions can
incorporate calls to the Lisp evaluator (e.g., to do
numeric computations or make queries to external
sources of information).

2. The combination of HTN decomposition (to focus the
search on the goal) and reasoning power in the
preconditions (to prune inapplicable methods and
operators from the search space) makes it possible to
write domain-dependent knowledge bases that provide
very efficient planning performance.  As an illustration
of what this means, when we tried to run Blackbox and
IPP on the suites of logistics problems and blocks-
world problems described above, we could not get them
to solve any of the problems in the test suites. In each
case, either they ran out of memory or else we had to
terminate them after they had run for more than 30
minutes of CPU time without finding solutions.

3. The primary drawback of any HTN planning system is
the effort needed to create a knowledge base of domain-
dependent information for the domain we want it to do
planning in.  In SHOP, this drawback is sometimes
worsened by SHOP’s restriction that the subtasks of
each method must be totally ordered, because this can
require the knowledge-base author to introduce global
reasoning into the planning domain that would not
otherwise be needed.  Our experimental results suggest
that in these cases, SHOP2 can plan more efficiently
than SHOP using knowledge bases much simpler than
those needed by SHOP.  In cases where such
knowledge bases cannot be created, SHOP2 can run
SHOP knowledge bases quicker than SHOP.

Some of our topics for future work include the
following: investigating additional ways to make the
SHOP2 algorithm more powerful and easier to use,
releasing the coding for SHOP2 as open-source software,
and using the SHOP2 algorithm as an embedded planning
algorithm in a real-world application.
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