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Abstract

Given a query image of an object, our objective is to re-

trieve all instances of that object in a large (1M+) image

database. We adopt the bag-of-visual-words architecture

which has proven successful in achieving high precision at

low recall. Unfortunately, feature detection and quantiza-

tion are noisy processes and this can result in variation in

the particular visual words that appear in different images

of the same object, leading to missed results.

In the text retrieval literature a standard method for im-

proving performance is query expansion. A number of the

highly ranked documents from the original query are reis-

sued as a new query. In this way, additional relevant terms

can be added to the query. This is a form of blind rele-

vance feedback and it can fail if ‘outlier’ (false positive)

documents are included in the reissued query.

In this paper we bring query expansion into the visual

domain via two novel contributions. Firstly, strong spatial

constraints between the query image and each result allow

us to accurately verify each return, suppressing the false

positives which typically ruin text-based query expansion.

Secondly, the verified images can be used to learn a latent

feature model to enable the controlled construction of ex-

panded queries.

We illustrate these ideas on the 5000 annotated im-

age Oxford building database together with more than 1M

Flickr images. We show that the precision is substantially

boosted, achieving total recall in many cases.

1. Introduction

The leading methods for object retrieval from large im-

age corpora all rely on variants of the same technique

[11, 12, 18]. First, each image in the corpus is processed to

extract features in some high-dimensional descriptor space.

These descriptors are quantized or clustered to map every

feature to a “visual word” in some much smaller discrete

?

Figure 1. A sample of challenging results returned by our method

in answer to a visual query for the Tom Tower, Christ Church Col-

lege, Oxford (top left), which weren’t found by a simple bag-of-

visual-words method. This query was performed on a large dataset

of 1,145,645 images.

vocabulary. The corpus is then summarized using an index

where each image is represented by the visual words that

it contains. At query time the system is presented with a

query in the form of an image region. This region is it-

self processed to extract feature descriptors that are mapped

onto the visual word vocabulary, and these words are used

to query the index. The response set of the query is a set

of images from the corpus that contain a large number of

visual words in common with the query region. These re-

sponse images may subsequently be ranked using spatial

information to ensure that the response and the query not

only contain similar features, but that the features occur in

compatible spatial configurations [14, 17, 18, 20].

This procedure can be interpreted probabilistically as

follows: the system extracts a generative model of an ob-

ject from the query region; then forms the response set from

those images in the corpus that are likely to have been gen-
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erated from that model. The generative model in this case

is a spatial configuration of visual words extracted from the

query region, together with a “background” distribution of

words that encodes the overall frequency statistics of the

corpus.

In this paper we explore ways to derive better object

models given the query region, in order to improve retrieval

performance. We keep the form of the model fixed: it is

still a configuration of visual words. However, rather than

simply extracting the model from the single input query re-

gion, we enrich it with additional information from the cor-

pus; we refer to this as a latent model of the object. This

richer model achieves substantially better retrieval perfor-

mance than the state of the art [12] on the Oxford Buildings

dataset [2].

The latent model is a generalization of the idea of query

expansion, a well-known technique from the field of text-

based information retrieval [4, 16]. In text-based query ex-

pansion a number of the high ranked documents from the

original response set are used to generate a new query that

can be used to obtain a new response set. This is a form

of blind relevance feedback [16] in that it allows additional

relevant terms to be added to the query. It is particularly

well suited to our problem domain for two reasons.

First, the spatial structure of images allows us to be very

robust to false positives. In text retrieval, relevance feed-

back attempts to construct a topic model of relevance based

on terms in the documents. Due to the complexities of

natural language, the relevant terms may be spread arbi-

trarily throughout the returned documents, and the task is

complicated by the dramatic changes in meaning that can

arise from subtle rearrangement of language terms. Conse-

quently there is substantial danger of topic drift, where an

incorrect model is inferred from the initial result set, lead-

ing to divergence as the process is iterated. In the image

retrieval case we are greatly assisted by the fact that we can

construct a model of a region rather than the whole image,

and that the image data within the region is very likely to

correspond to the object of interest. While there may be

occlusions obscuring parts of some matching regions, it is

reasonable to expect them to be independent in different re-

sponse images, simplifying the task of inferring the latent

model.

Second, the baseline image search without query expan-

sion suffers more acutely from false negatives than most

text retrieval systems. Because the “visual words” used

to index images are a synthetic projection from a high-

dimensional descriptor space, they suffer from substantial

noise and drop-outs. Two very similar image instances

of the same object typically have only partial overlap of

their visual words, especially when the features are sampled

sparsely as is common to many systems for performance

reasons [11, 18]. Consequently, as we show in section 5,

we can substantially improve recall at a given threshold of

precision simply by forming the union of features common

to a transitive closure of the response images.

An outline of our approach is as follows:

1. Given a query region, search the corpus and retrieve a

set of image regions that match the query object. We

use bag-of-visual-words retrieval together with spatial

verification, however the approach would apply to re-

trieval systems that use different object models.

2. Combine the retrieved regions, along with the original

query, to form a richer latent model of the object of in-

terest.

3. Re-query the corpus using this expanded model to re-

trieve an expanded set of matching regions.

4. Repeat the process as necessary, alternating between

model refinement and re-querying.

In the following we briefly outline our implementation

of the bag-of-visual-words retrieval in section 2 and spatial

verification in section 3. Section 4 then describes several al-

ternative mechanisms for constructing latent models in the

iterative framework described above. In section 5, the per-

formance of these mechanisms is assessed on a very chal-

lenging dataset of over 1M Flickr images.

Since our “generative model” outputs only visual words,

our system presents the results to the user as a set of match-

ing image regions from the corpus. However, as we argue in

section 6, there is a natural avenue of extensions to this work

that lead toward more complex models that might include

detailed intensity or structural information about the object.

With these more sophisticated models we could imagine re-

turning a synthesis of the queried object directly rather than

a set of matching images [19].

2. Real-time Object Retrieval

This section overviews our bag-of-visual-words real-

time object retrieval engine. Further details can be found

in [12].

Image description. For each image in the dataset (see sec-

tion 5), we find multi-scale Hessian interest points and fit an

affine invariant region to each using the semi-local second

moment matrix [10]. On average, there are 3,300 regions

detected on an image of size 1024 × 768. For each of these

affine regions, we compute 128-dimensional SIFT descrip-

tors [9]. The number of descriptors generated for each of

our datasets is shown in table 1.

Quantization. A visual vocabulary of 1M words is gener-

ated using an approximate K-means clustering method [12]

based on randomized trees. This produces visual vocabu-

laries which perform as well as those generated by exact K-

means at a fraction of the computational cost. Each visual

descriptor is assigned, via approximate nearest neighbour

search, to a single cluster centre, giving a standard bag-of-
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Figure 2. Sample of 20 query images used in the ground truth eval-

uation. For all query images see [12].

visual-words model. These quantized visual features are

then used to index the images for the search engine.

Search Engine. Our search engine uses the vector-space

model of information-retrieval. The query and each doc-

ument in the corpus is represented as a sparse vector of

term (visual word) occurrences and search then proceeds

by calculating the similarity between the query vector and

each document vector. We use the standard tf-idf weighting

scheme [3], which down-weights the contribution that com-

monly occurring, and therefore less discriminative, words

make to the relevance score.

For computational speed, the engine stores word occur-

rences in an index, which maps individual words to the doc-

uments in which they occur. For sparse queries, this can

result in a substantial speedup over examining every doc-

ument vector, as only documents which contain common

(to the query) words need to be examined. The scores for

each document are accumulated so that they are identical to

explicitly computing the similarity.

With large corpora of images, memory usage becomes

a major concern. To help ameliorate this problem, the in-

verted file is stored in a space-efficient binary-packed struc-

ture. Additionally, when main memory is exhausted, the en-

gine can be switched to use an inverted file flattened to disk,

which caches the data for the most frequently requested

words.

3. Spatial Verification

The output from performing a query on the inverted file

described previously is a ranked list of images for a sig-

nificant section of the corpus. Until now, we have consid-

ered the features in each image as a visual bag-of-words

and have ignored their spatial configurations. It is vital for

query-expansion that we do not expand using false positives

or use features which occur in the result image, but not on

the object of interest. To achieve this, we use a fast, ro-

bust, hypothesize and verify procedure to estimate an affine

homography between a query region and target image.

Each interest point has an affine invariant semi-local re-

gion associated with it and we use this extra information to

hypothesize transformations using single correspondences.

This makes our procedure both fast (the number of hy-

potheses to test is simply the number of putative correspon-

dences) and deterministic (we examine every possible hy-

pothesis). A RANSAC-like scoring mechanism is used to

select the hypothesis with the greatest number of inliers.

Each single correspondence hypothesizes a three degree

of freedom (dof) transformation (isotropic scale & trans-

lation). For a typical query of 1000 features, with a dis-

criminative vocabulary, the number of correspondences and

hence hypotheses to test will be of the order of a few thou-

sand. The number of inliers to this transformation is found

using a symmetric transfer error [7] coupled with a scale

threshold which prevents mis-sized regions from scoring as

inliers. Each hypothesis is stored in a priority queue, keyed

by the number of inliers. For the top 10 hypotheses found,

we iteratively use a least-squares re-estimation method on

the initially found inliers to generate a full 6 dof affine trans-

formation, returning the best hypothesis as the one with the

most inliers after re-estimation [5]. Empirically, we find

that results with more than 20 inliers reliably contain the

object being sought for. We call such results spatially veri-

fied.

The spatial verification is applied up to a maximum of

the top 1000 results returned from the search engine. At

each result, a decision is made about whether to proceed

with the verification further down the ranked list based on

how recently a verified image has been seen. If no verified

result has been seen in the last 20 ranked images, then we

stop, returning the verified images seen so far. Empirically,

we find that increasing this threshold further does not sig-

nificantly increase the number of positively verified results.

This prevents us from needlessly verifying images for re-

sults where all the true positive images have already been

seen, or from prematurely bailing out of verification when

there are more true positives waiting to be found. The out-

put is a list of images ranked in non-increasing order of the

number of inliers. The threshold of 20 inliers is used to

produce a list of verified results and their associated trans-

formations. This list of known good results is essential for

the query expansion.

4. Generative Model

In this section, we describe several methods for com-

puting latent object models. These are based on generative

models of the features and their configuration, with different

levels of complexity. We account for quantization and de-

tection noise, and the effect of different image resolutions.



Each method starts by evaluating the original query Q0

composed of all the visual words which fall inside the query

region. A latent model is then constructed from the verified

images returned from Q0, and a new query Q1, or several

new queries, issued. This immediately raises two issues: (i)

how far should this sequence extend – should a new latent

model be built from the returns of Q1 and another query

issued, etc? (ii) how should the ranked lists returned from

Q0, Q1, . . . be combined? We explore both these questions.

Note that the bag-of-visual-word result set from Q1 must

be verified against Q1 – for example Q0 cannot be used for

verification since we are aiming to obtain images that were

not verified against Q0.

4.1. Methods

The methods can be divided into those that issue a single

new query and those that issue multiple queries. In the latter

case it is necessary to combine the returned ranked lists for

each query.

Query expansion baseline. This method is a straight for-

ward naı̈ve application of query expansion as is used in text-

retrieval. We take the top m = 5 results from the origi-

nal query (without spatial verification), average the term-

frequency vectors computed from the entire result image

and requery once. The results of Q1 are appended to those

of Q0 (the top 5).

Transitive closure expansion. A priority queue of verified

images is keyed by the number of inliers. Then, an image is

taken from the top of the queue and the region correspond-

ing to the original query region is used to issue a new query.

Verified results of the expanded query that have not been

inserted to the queue before are inserted (again in the order

of the number of inliers). The procedure repeats until the

queue is empty. The images in the final result are in the

same order in which they entered the queue.

Average query expansion. A new query is constructed by

averaging verified results of the original query. First, the top

m < 50 verified results returned by the search engine are

selected. A new query Qavg is then formed by taking the

average of the original query Q0 and the m results

davg =
1

m + 1

(

d0 +

m
∑

i=1

di

)

,

where d0 is the normalized tf vector of the query region,

and di is the normalized tf vector of the i-th result. For this

average, we take the union of features of the original query,

combined with regions back-projected into the query region

by Hi – the estimated transformation. This is the simplest

form of latent model since no account is taken of the stabil-

ity of the features or the resolution of the images. Again we

requery once, and the results of Qavg are appended to those

(top m) of Q0.

Recursive average query expansion. This method im-

proves on the average query expansion method, by recur-

sively generating queries Qi from all spatially verified re-

sults returned so far. The method stops once more than 30

verified images have been found, or after no new images

have been positively verified.

Multiple image resolution expansion. The generative

model in this case also takes account of the probability of

observing a feature given an image of an object and its res-

olution. Features covering a small area of the object are

seen only in close-up images or images with high resolu-

tion. Similarly, features covering the whole object are not

seen on detailed views.

The latent image is constructed as before by back pro-

jecting verified regions of Q0 using the Hi transformations.

The number of pixels of the projected region defines the

resolution of each result image. An image with median

resolution is chosen as a resolution reference image and a

relative change of the resolution (with respect to the resolu-

tion reference image) is computed for each result image.

The resolution bands are given by the relative resolution

change as (0, 4/5), (2/3, 3/2), and (5/4,∞). We construct

an average query for each of the three different resolution

bands, using only images that have resolution within that

scale band. The queries are executed independently and the

results are merged. Verified images from Q0 are returned

first. Results from expanded queries follow in order of the

number of inliers (the maximum is taken if an image is re-

trieved in more than one resolution band).

5. Experiments

To evaluate our system, we use the Oxford dataset avail-

able from [2]. This is a relatively small set of 5K images

with an extensive associated ground truth. We also use two

additional unlabeled datasets, Flickr1 and Flickr2, which

are assumed not to contain images of the ground truth land-

marks. These additional datasets are used as “distractors”

for the system and provide an important test for the scal-

ability of our method. These three datasets are described

below and compared in table 1. The set of images down-

loaded from two or more of Flickr’s tags will not in general

be disjoint, so we remove exact duplicate images from all

our datasets.

The Oxford dataset. This dataset [2] was crawled from

Flickr using queries for famous Oxford landmarks, such as

“Oxford Christ Church” and “Oxford Radcliffe Camera”.

It consists of 5,062 high resolution (1024 × 768) images.

Ground truth labelling is provided for 11 landmarks with

four possible labels as follows: (1) Good – a nice, clear

picture of the object/building. (2) OK – more than 25%

of the object is clearly visible. (3) Bad – the object is not

present. (4) Junk – less than 25% of the object is visible, or

there is a very high level of occlusion or distortion. For each



Dataset Number of images Number of features

Oxford 5,062 16,334,970

Flickr1 99,782 277,770,833

Flickr2 1,040,801 1,186,469,709

Total 1,145,645 1,480,575,512
Table 1. The number of descriptors for each dataset.

landmark five standard queries are defined for evaluation. A

sample of 20 query images is shown in figure 2, for the rest

see [2].

Flickr1 dataset. This dataset was crawled from Flickr’s

145 most popular tags and consists of 99,782 high resolu-

tion images. Our search engine can query the combined

datasets of Oxford and Flickr, consisting of 104,844 images,

in around 0.1s for a typical query and the index consumes

1GB of main memory.

Flickr2 dataset. This dataset consists of 1,040,801 medium

resolution (500 × 333) downloaded from Flickr’s 450 most

popular tags. The index for the combined Oxford, Flickr1

and Flickr2 corpus is 4.3GB, so we use an offline version

of the index which does not have to sit in main memory.

Querying this corpus from disk takes around 15s – 35s for

a typical query.

5.1. Evaluation procedure

To evaluate performance we use Average Precision (AP)

computed as the area under the precision-recall curve. Pre-

cision is the number of retrieved positive images relative to

the total number of images retrieved. Recall is the number

of retrieved positive images relative to the total number of

positives in the corpus. An ideal precision-recall curve has

precision 1 over all recall levels, which corresponds to an

Average Precision of 1. Note, a precision-recall curve does

not have to be monotonically decreasing. To illustrate this,

say there are 3 positives out of the first 4 retrieved, which

corresponds to precision 3/4 = 0.75. Then, if the next image

is positive the precision increases to 4/5 = 0.8.

We compute an Average Precision score for each of the

5 queries for a landmark, and then average these to obtain

a Mean Average Precision (MAP) for the landmark. For

some experiments, in addition to the MAP, we also display

precision-recall curves which can sometimes better illus-

trate the success of our system in improving recall.

In the evaluation the “Good” and “Ok” images are

treated as positives, “Bad” images as negative and “Junk”

images as “don’t care”. The “don’t care” images are han-

dled as if they were not present in the corpus, so that if our

system returns them, the score is not affected.

We evaluate our system on two databases – D1 composed

of Oxford + Flickr1 datasets (104,844 images) and D2 Ox-

ford + Flickr1 + Flickr2 datasets (1,040,801 images). The

effect of the size of the database on the performance is dis-

cussed in section 5.4.
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Figure 3. Precision recall curves before (left) and after (right)

query expansion on experiment D1. These results are for reso-

lution expansion, our best method. In each case the five curves

correspond to the five queries for that landmark.

5.2. Retrieval performance

In this section, we discuss some quantitative results of

our method evaluated against the ground truth gathered

from the Oxford dataset.

Table 2 summarizes the results of using our different

query expansion methods, measuring their relative perfor-

mance in terms of the MAP score. From the table, we can



Ground truth

OK Junk

All Souls 78 111

Ashmolean 25 31

Balliol 12 18

Bodleian 24 30

Christ Church 78 133

Cornmarket 9 13

Hertford 24 31

Keble 7 11

Magdalen 54 103

Pitt Rivers 7 9

Radcliffe Cam. 221 348

Total 539 838

Oxford + Flickr1 dataset

ori qeb trc avg rec sca

41.9 49.7 85.0 76.1 85.9 94.1

53.8 35.4 51.4 66.4 74.6 75.7

50.4 52.4 44.2 63.9 74.5 71.2

42.3 47.4 49.3 57.6 48.6 53.3

53.7 36.3 56.2 63.1 63.3 63.1

54.1 60.4 58.2 74.7 74.9 83.1

69.8 74.4 77.4 89.9 90.3 97.9

79.3 59.6 64.1 90.2 100 97.2

9.5 6.9 25.2 28.3 41.5 33.2

100 100 100 100 100 100

50.5 59.7 88.0 71.3 73.4 91.9

55.0 52.9 63.5 71.1 75.2 78.2

Oxford + Flickr1 + Flickr2 dataset

ori qeb trc avg rec sca

32.8 36.9 80.5 66.3 73.9 84.9

41.8 25.9 45.4 57.6 68.2 65.5

40.1 39.4 39.6 55.5 67.6 60.0

32.3 36.9 43.5 46.8 43.8 44.9

52.6 18.9 55.2 61.0 57.4 57.7

42.2 53.4 56.0 65.2 68.1 74.9

64.7 70.7 75.8 87.7 87.7 94.9

55.0 15.6 57.3 67.4 65.8 65.0

5.4 0.2 16.9 15.7 31.3 26.1

100 90.2 100 100 100 100

44.2 56.8 86.8 70.5 72.5 91.3

46.5 40.5 59.7 63.1 67.0 69.6
Table 2. Summary of ground truth, and the relative performance of the different expansion methods. The methods are as follows: ori

– original query, qeb – query expansion baseline, trc - transitive closure, avg – average query expansion, rec – recursive average query

expansion, sca – resolution expansion. The shade of each cell shows relative performance to the worst (dark) and the best (white) result for

a particular query (row).
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Figure 4. Histograms of the average precision for all 55 queries in

experiment D2. Note, that the query expansion moves the mass of

the histogram towards the right-hand side, i.e. towards total recall.

Figure 5. Some false positive images for Magdalen Tower query.

The tower shown is actually part of Merton College chapel.

see that all proposed query expansion (with the exception of

the query expansion baseline) methods perform much bet-

ter than the original bag-of-visual-words method, showing

a gain in the MAP from 55.0% to 78.2% on D1 and from

46.5% to 69.6% on D2 with the best method.

Figure 3 shows selected precision recall curves for the

plain bag-of-words method on the left, with the curves from

the resolution-based query expansion shown on the right. In

almost all cases, the precision recall curve hugs to the right

of the graph much more after the query expansion, demon-

strating the method’s power in dramatically improving the

recall of a query. Additionally, in the original bag-of-words

query, each individual query for the landmarks shows con-

siderable variance in the precision-recall plots, whereas af-

ter query expansion has been applied, in most cases, this

variance has been reduced, improving all the component

queries to a similar level of retrieval performance.

The plot for Magdalen in figure 3, shows failure in

achieving total recall. If the initial results returned from

the bag-of-words method are too bad, so that there are no

verified images with which to query expand, our method is

unable to improve the performance. This occurs for two of

the Magdalen queries.

Note, that since we are measuring the MAP over all

queries, the average result in table 2 is lowered by such

non-expandable queries. To eliminate the averaging effect

we study each query independently. Figure 4 compares two

histograms of AP for each of the 55 queries on experiment

D2. The top histogram displays results of the original query

and the bottom results of the best query expansion method.

The plot clearly shows the significant improvement brought

by the query expansion.

The performance of the system is hurt by incorrectly ver-

ified retrievals. No verification method is perfect, especially

when one has to deal with partial occlusions. Some of the

false positives are indeed difficult to distinguish, even for a

human, as demonstrated in figure 5.

Figure 6 shows some example images returned by our

method, which were not found in the original bag-of-words

query. After query expansion, we get many more examples



Figure 6. Demonstrating the performance of the method on a number of different queries. The image to the left shows the original query

image. The four images in the middle show the first four results returned by the original query before query expansion. The images to the

right show true positive images returned after query expansion which were not found from the bag-of-words method.

of the object, some of which would be extremely challeng-

ing to the traditional method, with, in some cases, very high

levels of occlusion or large scale changes.

5.3. Method comparison

We now compare our different query expansion methods,

referring to table 2 for the relative performances.

Query expansion baseline (qeb). This method does worse

than not using query expansion at all, as expected. Blindly

choosing the top m documents for expansion does not take

into account whether or not any of the top m are correct,

so the method suffers from serious drift. We can see this

by noting that queries which return lots of true positives

from the initial query, such as Radcliffe Camera and Hert-

ford perform much better than those with fewer initial true

positives, such as Ashmolean and Keble.

Transitive closure (trc). The method uses a single image to

query with each time. Since both the feature detection and

vocabulary generation are noisy processes, transitive clo-

sure has lower performance than methods constructing la-

tent image representation from several images. This method

the slowest since it generates by far the highest number of

query reissues.

Average query expansion (avg). This method performs

significantly better than just using the results from the stan-

dard bag-of-words methods, scoring on average 71.1% as

opposed to 55.0% in the case of D1. Additionally, the

method improves the results for every query in our scoring.

This method performs so much better mainly because the

spatial verification allows us to exclude false positives from



results to the original query, preventing the “drift” which

ruined the baseline method.

Recursive average query expansion (rec). This method

improves on the avg method, by recursively generating and

querying the system with spatially verified results. By

querying recursively, we can more thoroughly explore the

space of object features, giving us instances of the object

whose visual appearance can differ greatly from the origi-

nal query.

Resolution expansion (sca). The resolution expansion

method performs the best on our data. By grouping re-

sults based on the resolution of the object of interest, we

query expand using only features which reliably fire on the

object at a particular resolution. This prevents us from in-

cluding features which fire at different scales, which can

raise the chance of a false positive image being verified.

This method gets an MAP score of 78.2% on D1 and 69.6%

on D2 and most of the 55 queries exhibit near total re-

call, see figure 4. The percentage is brought down by a

few queries, which due to the initial bad performance of

the bag-of-words method are unable to be successfully ex-

panded. Such queries lie on the left-hand side of the lower

histogram in figure 4.

Also, note that the merging strategy does not rank all im-

ages in the database. This can be observed on the precision

recall (figure 3) where the curve does not reach the right

side of the plot.

5.4. Dataset comparison D1 vs. D2

The average precision measure is designed to capture

quality of retrieval with strong emphasis on the top ranked

results. Note, that additional negative images can only de-

crease (or leave unchanged) the average precision measure.

In the best case, if all of the additional negative images were

correctly classified, they could be appended at the tail of

the results which would leave average precision unchanged.

However, correct classification of all images rarely happens.

Our experiments show varying drop of performance after

increasing the size of the database (negative images) 10

times. The decrease in performance (relative and absolute)

is lower for query expansion methods than for the original

method.

6. Discussion

Given the set of retrieved images, which often cover a

variety of viewpoints, we now have the potential to con-

struct much richer latent feature models of the query re-

gion. Much previous work – Ferrari et al. [6], Lowe [8],

Rothganger et al. [15] – has explored combining features

from multiple views and this can now be harnessed for la-

tent model construction. It is also possible to move from

features to surfaces – where the latent model would consist

of a textured 3D surface reconstruction, which can be built

using standard methods [7, 13].

We view image-retrieval systems such as Video Google

as one extreme, and the “Photo Tourism” system [19] as

another, of examples drawn from a spectrum of possible

image-based object retrieval techniques. The common fea-

ture unifying this family of methods is that they construct a

“latent model” of the query object with the aid of the image

corpus, and return to the user some representation of that

latent model. The work of this paper defines another point

on the spectrum.
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