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Abstract We study a class of dynamic games with a continuum of atomless players where
each player controls a semi-Markov process of individual states, while the global state of the
game is the aggregation of individual states of all the players. Themodel differs from standard
models of dynamic games with continuum of players known as mean field or anonymous
games in that the moments when the decisions are made are discrete, but different for each
of the players. As a result, the individual states of each player follow a continuous time
Markov chain, but the global state follows an ordinary differential equation. Games of this
type were introduced by Gomes et al. (Appl Math Optim 68:99–143, 2013) and received
some attention in the literature in last few years. In our paper we introduce a novel model
of this type where players maximize their cumulative payoffs over their lifetime. We show
that the payoffs of the players using any stationary strategy of a certain class in a game with
continuum of players are close to those obtained in n-person counterparts of this game for
n large enough. This implies that equilibrium strategies in the anonymous model can well
approximate equilibria in related games with large finite number of players. In the rest of
the paper we concentrate on a subclass of games where the payoff and transition probability
functions exhibit some strategic complementarities between players. In that case we prove
that the game possesses a stationary equilibrium. Moreover, largest and smallest equilibrium
strategies are nondecreasing in the states. It also turns out that these equilibria can be well
approximated using a distributed iterative procedure.
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1 Introduction

Games with infinitely many atomless players have since long ago been used both in engi-
neering and economics to model strategic interaction between large number of players, when
the influence of an individual on the outcome of the game becomes negligible. Since the
pioneering papers of Schmeidler [31] andWardrop [38], they have become an important tool
in modelling competitive markets, stock exchange and exploitation of common resources on
one side, and network congestion or power control on the other.

Dynamic games of this type have been introduced in a paper by Jovanovic and Rosenthal
[19]. In their framework each of the players controls an individual discrete-time Markov
chain, while the global state of the game, defined as a probability distribution of individual
states of all the players, becomes deterministic. The reward of an individual is then computed
as the expectation of discounted sum of utilities obtained by him in infinitely many stages of
the game. Some generalizations of their model were provided in [1,5–7]. The extension of
their model to cover other utility criteria such as expected average utility and expected total
utility was provided in [39].

Another important class of dynamic gameswith continuum of players has been introduced
independently by Lasry and Lions [23–26] and by Huang et al. [16–18]. In their model the
time is continuous, and so the evolution of both the individual and the global state of the game
are described by ordinary differential equations. One can view their model as a generalization
of differential games to gameswith continuum of players, while that of [19] as an extension of
Markov or stochastic games to games with infinitely many players. The papers of Lasry and
Lions have made an important impact on the entire game-theoretic community, additionally
providing the name which is now commonly used to describe games of both types—“mean-
field games”. An overview of the state of the art in mean-field game theory can be found
in [11], [1] includes a review of applications of mean-field games in economics, while [35]
takes a look at those in engineering.

In this paper we concentrate on an intermediate concept, linking some features of mean-
field games à Lasry and Lions and anonymous games of Jovanovic and Rosenthal. In our
model the moments when the decisions are made are discrete, but follow separate controlled
continuous time Markov chains, each controlled by a different player. As a result, these
moments are different for each of the players—the process of individual states for each
is a continuous time Markov chain, but the global state is, as in other mean-field game
models, deterministic—following an ordinary differential equation. Model of this type has
first appeared in the literature in a seminal paper of Gomes et al. [10] where characterization
in terms of differential equations and main properties of this model were provided, together
with a result on the convergence of n-person counterparts of this game to mean field limit.
Further results of this type were provided in [9]. Some particular cases or applications of
this type of games were also studied in [13,14,20,21,40]. In the paper we introduce a novel
model of games of this type where players, instead of maximizing some payoff accumulated
over the entire game, maximize the reward obtained during their lifetime, which may be
different for different players. We assume that a dead player can be replaced after some
time by a newborn one, and thus after some time we can obtain stationary behavior of the
system which is then used to define a mean-field-type equilibrium. In the first part of the
paper we give some sufficient conditions for these games to possess equilibria. These are of
strategic complementarity type and are inspired by a paper onMarkov-type discountedmean-
field games [1]. Further, we show that the payoffs of the players using any given stationary
strategy of a certain class in a semi-Markov mean-field game are close to those obtained in
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its n-person counterparts for n large enough. This implies that equilibrium strategies in the
anonymous model can well approximate equilibria in related games with large finite number
of players.

The organization of the paper is as follows: In Sect. 2 we present the general framework
we are going to work with and define what kind of solutions we will be looking for. In
Sect. 3 we present our main results about the existence of equilibrium in games with strategic
complementarities and convergence to equilibrium of a simple learning procedure, followed
by some examples of applications of our model. Section 4 contains results linking mean-field
game model presented earlier with games with large finite number of players. It is followed
by conclusions in Sect. 5.

2 The Model

In this section, we formally describe the game model and the solution we will analyze in the
remainder of the paper.

The semi-Markovmean-field gamewith total reward is described by the following objects:

– The game is played by an infinite number (continuum) of players. Each player has his
own private state s ∈ S, changing over time. We assume that S is a finite set. We assume
that there exists an element1 s0 standing for “death” of a player. Any player in state s0 has
no choice of action to play and receives no rewards. Moreover, his reward is computed
over his “lifetime”, that is, from one visit in state s0 to his next visit there.

– The global state of the system at time t , Xt is a probability measure over S. It describes
the mass of the population, which is at time t in each of the individual states. The set of
global states of the game is thus2 �(S). We assume that any player α has an ability to
observe the global state of the game, so from his point of view the state of the game at
time t is (sα

t , Xt ) ∈ S × �(S).
– We assume that the time is continuous, but the individual state of playerα can only change

at specific times T α
0 , T α

1 , . . ., where T α
0 = 0. The time between successive transitions

τα
k = T α

k+1−T α
k is random exponentially distributed with intensity λ(sT α

k−1
, XT α

k
). τα

k are
for different k and α independent random variables. λ is a positive, Lipschitz-continuous
function of the global state of the game.

– The set of actions available to a player in state (s, X) is a nonempty set A(s, X), with
A := ⋃

(s,X)∈S×�(S) A(s, X)—a finite set. We assume that the mapping A is an upper
semicontinuous function. We also assume that any player in state s0 plays some default
action a0, not available in any other individual state.
Let D denote the set of feasible state-action vectors, that is

D := {(s, X, a) ∈ S × �(S) × A : a ∈ A(s, X)}.
– The transition for player α at time T α

k−1 is according to the transition function q : D →
�(S) which is a Lipschitz-continuous function of the global state. q(·|sT α

k−1
, XT α

k
, aT α

k
)

denotes the distribution of the individual state of player α after jump he makes at time
T α
k , given his previous state sT α

k−1
, his action aT α

k
and the state-action distribution of all

the players at time T α
k . In particular, a player in state s0 can join the game (be reborn) at

time T in state s with probability q(s|s0, XT , a0).

1 We can assume there is a whole subset of such elements.
2 Here and in the sequel for any finite set B �(B) denotes the set of all the probability measures over B.
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– We assume that all the players use stationary strategies, that is, they choose their actions
depending only on their current individual state and current global state. Thus any strategy
f is a Borel-measurable function from S × �(S) to A such that for any s ∈ S and
X ∈ �(S), f (s, X) ∈ A(s, X). The set of all stationary strategies will be denoted by F .

– The changes in individual states are aggregated according to the Kurtz (see Theorem 5.3
in [32]) dynamics:

.

Xs
t =

∑

s′∈S

∑

a∈A

Xs′
t λ(s′, Xt )q(s|s′, Xt , a) f a(s

′, Xt ) − Xs
t λ(s, Xt ), s ∈ S (1)

with X0 ≡ x0, the initial global state, where f denotes the average stationary policy used
by the players. This average can be defined if the function fα(s, X) is jointly measurable
in (α, X) by the following equality

f a(s, X) :=
∫ 1

0
1{ f α(s, X) = a} dα,

where f α is the stationary strategy of player α. As we will see, in all our considerations,
this will be a.e. a constant function of α, so the joint measurability will be immediately
implied by measurability w.r.t. X . In the sequel, we will write Xt ( f ) for the global state
satisfying (1) when average stationary strategy is f .

– Given the evolution of the global state, which depends on the strategies of the players in a
deterministic manner, we can define the individual history of player α as the sequence of

his consecutive individual states, actions and sojourn times h =
(
sα
T α
0
, τα

0 , aα
T α
1
, sα

T α
1
, . . .

)
.

By the Ionescu-Tulcea theorem (see Chap. 7 in [4]), for any stationary strategy f of
player α and any initial individual state distribution μ0, there exists a unique probability
measure Pf,μ0 on the set of all infinite histories of the game H = (S × R

+ × A)∞
endowed with Borel σ -algebra consistent with f , q and μ0. Then the individual α’s
expected total reward is defined as the integral of his immediate (per unit time) reward
function r : D → R over his lifetime, plus the sum of rewards received upon the change
of state awarded according to the function r̃ : D → R, which can be written as

J ( f, g, μ0) = E
Pf,μ0

[ie−1∑

i=0

(

r̃(sα
T α
i
, XT α

i
(g), aα

T α
i
) +

∫ T α
i+1

T α
i

r(sα
T α
i
, Xt (g), a

α
T α
i
) dt

)]

,

(2)
where Tie is the moment of his first return to s0 and μ0 is the initial distribution of all
the new-born players. We assume both r and r̃ are continuous in the global state of the
game.

Since the game is symmetric, the equilibrium can be defined in the following manner.
A stationary strategy f and a measure μ ∈ �(S) are in equilibrium in the semi-Markov
mean-field game with total reward if X0 = μ implies Xt ( f ) ≡ μ for every t ≥ 0 and for
every other stationary strategy g ∈ F ,

J ( f, f , ρ) ≥ J (g, f , ρ),

where ρ = q(·|s0, μ, a0) is the distribution of individual states of new-born players when
global state is μ.
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3 Game with Strategic Complementarities

In this section, we present the results about the existence of and convergence to equilibrium
in our game for the model under some lattice-theoretic assumptions. Since the reader may be
unfamiliar with lattice theory, below we present a brief introduction to it with all the notions
used in the remainder of the paper. Those interested in deepening their knowledge about this
subject are referred to [36], where concepts of lattices and supermodularity together with
their applications to decision and game theory are discussed in detail.

3.1 Lattice-Theoretic Preliminaries

Let B be a partially ordered set with order �. An element b ∈ B is called an upper bound of
C ⊂ B if b 
 c for every c ∈ C . Similarly, b is a lower bound of C if b � c for all c ∈ C .
We say that b is a supremum or a least upper bound of C in B if it is an upper bound of C
and b 
 b′ for any other upper bound of C , b′. Similarly a least lower bound or an infimum
is defined. We say that B is a lattice if for every b, b′ ∈ B, sup{b, b′}, inf{b, b′} exist in B.
We say that it is a complete lattice if for every nonempty C ⊂ B, sup{C}, inf{C} exist in B.

Many commonly used partially ordered sets are lattices. For example R is a lattice with
usual ordering as well as any Rn with componentwise ordering.3 None of them is a complete
lattice though. Compact intervals of Rn are simple examples of complete lattices. A lattice
which will be of particular interest to us is that of Borel probability measures on R, �(R),
with (first order) stochastic dominance ordering �SD defined as follows:

P �SD Q ⇐⇒
∫

R

g(x)P(dx) ≤
∫

R

g(x)Q(dx)

for any nondecreasing bounded measurable function g : R → R.4 It is well known that
P �SD Q is equivalent to FP (x) ≥ FQ(x) for any x ∈ R, where FP and FQ are cumulative
distribution functions corresponding to P and Q respectively. Again,�(R) is not a complete
lattice, but for any compact subset B of R, �(B) is complete. It has been shown in [29] that
the same is not true already for R2. There, even the set of probability measures defined on
the set {(0, 0), (0, 1), (1, 0), (1, 1)} with stochastic dominance ordering is not a lattice, so
any results basing on the lattice structure of �(R) cannot be directly repeated for �(Rn),
n ≥ 2.

Let B be a lattice. A function f : B → R is nondecreasing if b � b′ implies f (b) ≤ f (b′).
f is supermodular if f (sup{b, b′})+ f (inf{b, b′}) ≥ f (b)+ f (b′). If C is also a lattice, we
say that a function f : B × C → R has increasing differences in b and c if b 
 b′, c 
 c′
implies f (b, c) − f (b′, c) ≥ f (b′, c) − f (b′, c′). Finally, a correspondence T : B → C
is nondecreasing if for any b � b′ and c ∈ T (b), c′ ∈ T (b′), inf{c, c′} ∈ T (b) and
sup{c, c′} ∈ T (b′). If, instead of real-valued functions f we consider a function whose
values are probability measures on R (a parametrized measure) with stochastic dominance
ordering, we use terms stochastically nondecreasing and stochastically supermodular for
the counterparts of the above properties. We say that a parametrized measure f (·|b, c) has
stochastically increasing differences if

∫
R
g(a) f (da|b, c) has increasing differences for any

nondecreasing bounded measurable function g.

3 In the remainder of the paper we will use symbol ≤ for ordering in R, while � will be used to denote
componentwise ordering in Rn .
4 The symbol �SD will be used throughout the paper to denote stochastic dominance ordering.
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3.2 Assumptions

Below we present the set of assumptions for the model considered in our paper. These
assumptions (except the first one) are not necessary for the model to make sense, but will be
used either to prove the existence of equilibria there or in some further results.

(A1) There exists a p0 > 0 such that for any fixed global state μ and under any stationary
policy f the probability of getting from any state s ∈ S \ {s0} to s0 in |S| − 1 steps
is not smaller than p0.

(A2) S and A are sublattices5 of R with s0 = min{S} and a0 = min{A} and for any s ∈ S
and X ∈ �(S), A(s, X) is a sublattice of A. Moreover, A(s, X) is nondecreasing in
(s, X).

(A3) r(s, X, a) and r̃(s, X, a) are nonnegative nondecreasing in s and supermodular in
(s, a). Moreover, they have increasing differences in (s, a) and X .

(A4) q(·|s, X, a) is stochastically supermodular in (s, a) and stochastically nondecreasing
in s, a and X . Moreover, it has stochastically increasing differences in (s, a) and X .

(A5) λ(s, X) does not depend on s and is nonincreasing in X .
(A6) The value of A(s, X) does not depend on X .6

Remark 1 Note that some of the above assumptions can be slightly relaxed if, instead of
considering each of the functions defining the game separately, some combinations of them
were characterized. In particular, assumptions (A3) and (A5) could be relaxed, if we did not
assume the positivity, monotonicity and supermodularity of each of r , r̃ and λ−1, but rather
assumed that r̃(s, X, a) + r(s,X,a)

λ(s,X)
is nonnegative nondecreasing in s, supermodular in (s, a)

and having increasing differences in (s, a) and X .

Remark 2 The assumption (A3) can be slightly generalized by considering the reward func-
tions r and r̃ depending not only on the individual state s and the action a of a given player
and the global state X but also on the global distribution of actions that we can denote as Z .
Then we could assume the following:

(A3’) r(s, X, a, Y ) and r̃(s, X, a, Y ) are nonnegative nondecreasing in s, supermodular in
(s, a). Moreover, they have increasing differences in (s, a) and (X, Y ).

The proofs of Theorems 1 and 2 can be repeated when (A3) is replaced with (A3’) in the
assumptions, although they become more complex notationally.

Remark 3 Our supermodularity/increasing differences assumptions are closely related to
the monotonicity assumptions used by Lasry and Lions [26] to establish the uniqueness of
equilibrium solution in amean-field game. The assumptions of this type have been extensively
used in the mean-field game literature, also for games with finite state space [10]. The
formulations of these assumptions may slightly differ depending on other assumptions that
aremade, but they all can be viewed as very close to requiring strictly increasing differences in
individual and global states of some function related to the Hamiltonian corresponding to the
immediate reward (cost) function (or the immediate reward itself, see e.g. [12]) as well as of
the terminal reward (cost). In our assumptions we require weak supermodularity and weakly
increasing (nondecreasing) differences of the functions defining our model. It is easy to see
that in a degenerated case when each of the functions r , r̃ and q is constant on S× A×�(S),

5 Note that since they both are finite, they are clearly complete lattices.
6 Alternatively we could write that the correspondence S is continuous, but, since the set A is finite, this
reduces to this seemingly more restrictive assumption.
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our assumptions will not be violated, while any of the monotonicity assumptions used in the
literature will.7 It is natural, as we do not expect uniqueness of equilibrium in our model,
but rather a special structure of equilibrium strategy set. Similarly, monotonic mean-field
game models typically require some convexity assumptions to hold. In our case no convexity
in any variable is assumed. On the other hand, apart from assuming increasing differences
in individual and global state we make additional (weak) monotonicity assumptions about
functions defining our model.

Remark 4 There is no discounting in ourmodel, as (A1) guarantees that the expected rewards
for the players are bounded.Note however that addingdiscountingdoes not changeour results,
so if some real-life application requires adding it to the model (which is often the case in
economics), one is free to do so.

The assumptions of the strategic complementarity type have been used in the game-
theoretic literature for a long time. A review of results for one-step games can be found
in [36]. Some results about dynamic games with strategic complementarities can be found
in [2,3,8,15,30,33,37]. A model of discounted dynamic games with continuum of players
satisfying similar assumptions can be found in [1]. A general intuition about this type of
conditions is the following: Strategic complementarity between some twoquantities describes
a situation when they mutually reinforce one another, that is an increase in one of them
implies that it is profitable to increase the other one and vice versa. In dynamic games with
complementarities we usually assume that strategic complementarity takes place between
individual states of players, so an increase in one’s state makes increase in others’ state
profitable. In addition, we usually assume (as we do here) that there is a complementarity
between player’s actions and his states, so that an increase in the state makes higher actions
more profitable. Finally, we also need to make some monotonicity assumptions about the
immediate rewards and the transition law, which are crucial for the aggregate reward of a
player to preserve the strategic complementarity of immediate reward functions. It turns out
that many games possess this kind of properties, as seen in the example below. It should
also be noted that many real-life applications can be modelled as total reward semi-Markov
mean-field games with complementarities. Some of them are presented in Sect. 3.5.

Example 1 While some of the assumptions (A1–A6) are rather clear, it may be difficult for
those not familiar with theory of supermodular functions to see what kind of functions satisfy
assumptions (A3) and (A4). Below we present some examples. Functions r and r̃ satisfying
(A3) can be of any of the following forms:

α(s)β(a)E
[
γ (X)

]
, (3)

min{α(s), β(a),E
[
γ (X)

]}, (4)

where α : S → R, β : A → R, γ : S → R are any nonnegative nondecreasing functions.
They can also be of the form

c1α(s) + c2β(a) + c3γ (X) (5)

where α is a nonnegative nondecreasing function, β and γ are any nonnegative functions
of respective variables, while the constants c1, c2, c3 ≥ 0. Finally, they can be any conical

7 Of course the samewill be true if these functions are constant on someproperly chosen subset of S×�(S)×A.
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combination of functions of forms (3–5), as well as of a quadratic function of the form8

−E
[
(β(a) − γ (X))2

]
,

where β and γ are nondecreasing, provided it is nonnegative.
An example of the transition law satisfying (A4) was given by Nowak [30]:

q(·|s, X, a) = f (s, X, a)q1(·|s, X, a) + (1 − f (s, X, a))q2(·|s, X, a),

where q1 
SD q2, while f : S × �(S) × A → [0, 1] is supermodular in (s, a) and nonde-
creasing in s, a and X .Moreover, it has increasing differences in (s, a) and X . Such a function
can be constructed as a conic combination of functions (3–5) under additional condition that
all the functions α, β, γ are nondecreasing.

3.3 Existence of Equilibrium

Now we can formulate the main result of this section.

Theorem 1 A semi-Markov mean-field game with total reward satisfying assumptions (A1–
A5) has an equilibrium ( f ∗, μ∗) such that f ∗ is nondecreasing in individual state and μ.

Many of the arguments used in the proof are taken from [1]where discrete-time discounted
mean-field games with strategic complementarities were considered. Whenever some results
appearing there can be used here in an unchanged form, we refer the reader to some specific
results in that paper. To startwith,weneed to introduce for anyfixedglobal state X an auxiliary
dynamic optimization modelM(X). Suppose an individual controls a discrete-time Markov
decision process with total cost, with

(a) the state space S and the action space A;
(b) the initial distribution of states μ0;
(c) the transition probabilities9

QX (·|st , at ) =
{
q(·|st , X, at ) for any st �= s0
δ[s0], for st = s0

,

so s0 becomes now absorbing;
(d) the reward per stage given by the equality

RX (st , at ) = r̃(st , X, at ) + r(st , X, at )

λ(st , X)
.

8 If we assume that the reward functions depend also on the distribution of actions among the players Z (see
Remark 2), then we can also add the quadratic function of the form

−E

[
(β(a) − γ (Z))2

]

multiplied by a positive constant. In case of quadratic functions that depend only on individual and global
state, function of the form

−E

[
(α(s) − γ (X))2

]

can only appear in a conic combination with some nonnegative nondecreasing function of s, such that the sum
is also nonnegative and nondecreasing in s.
9 Here and in the sequel δ[x] denotes a degenerate probability measure concentrated in point x .
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Note that for any stationary strategy f , the reward received by the controller using f in this
model equals the total reward (2) in case the global state induced by g is fixed and equal to
X . Note also that this is a classic Markov decision process with total reward, as considered
in the literature, and so standard dynamic programming arguments imply that:

(a) Since assumptions (A1) and (A2) hold, the optimal value in this model is finite.
(b) The optimal value in this model V ∗

X has to satisfy for any s ∈ S the following Bellman
equation:

V ∗
X (s) = max

a∈A(s,X)

[

RX (s, a) +
∑

s′∈S
V ∗
X (s′)QX (s′|s, a)

]

. (6)

(c) A is finite, and thus compact, which implies that ‘sup’ in (6) can be replaced by ‘max’,
moreover, optimal stationary strategies inM(X) exist and can be identified as any strate-
gies maximizing the RHS of (6).

In the first lemma we will show what are the main properties of V ∗
X .

Lemma 1 V ∗
X (s) is nondecreasing in s and has increasing differences in s and X.

Proof The proof is for most part the repeat of the arguments used in [1]. It will be broken
into three claims. Before we formulate the first one, we need to note two facts: First, that
R(s, X, a) = r(s,X,a)

λ(s,X)
is by assumptions (A3) and (A5) a product of two functions that are

nonnegative nondecreasing in s and supermodular in (s, a). As such, R preserves all these
properties. Next, since (λ(s, X))−1 in nonnegative, constant in s and nondecreasing in X
while r has increasing differences in (s, a) and X ,

R(s, X, a) − R(s′, X, a′) = r(s, X, a)

λ(s, X)
− r(s′, X, a′)

λ(s′, X)

= 1

λ(s, X)
(r(s, X, a) − r(s′, X, a′)),

so for (s, a) 
 (s′, a′) it is a product of two nonnegative nondecreasing functions of X , thus
a nondecreasing function itself. This means that R has increasing differences in (s, a) and X .
Monotonicity, supermodularity, and increasing differences are preserved upon summation,
so (by (A3)) RX (s, a) = r̃(s, X, a) + r(s,X,a)

λ(s,X)
also has all these properties.

Second, note that QX (·|s, a) =
{
q(·|s, X, a) for any s �= s0
δ[s0], for s = s0

preserves all the properties

of q , as:

(a) δ[s0] is stochastically smaller than any other probability distribution over S, and so QX

trivially stays stochastically nondecreasing in (s, a).
(b) Stochastically increasing differences in (s, a) and X are preserved because for

(s, a) � (s0, a0), QX (·|s, a) = q(·|s, X, a) is stochastically nondecreasing in X , while
QX (·|s0, a0) is constant.

(c) Supermodularity in (s, a) in D is trivial, as (s0, a0) ≺ (s, a) for any (s, a) �= (s0, a0),
and so always sup{(s0, a0), (s, a)} = (s, a) and inf{(s0, a0), (s, a)} = (s0, a0).

Now we can pass to the main part of the proof.

Claim 1 Let v be a bounded function of s and X, nondecreasing in s and having increasing
differences in s and X. Then

w(s, X, a) =
∑

s′∈S
v(s′, X)QX (s′|s, a)
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is nondecreasing in s and a, supermodular in (s, a), and has increasing differences in (s, a)

and X.

This claim has been shown in [1] as Lemma 3.

Claim 2 Let v be a bounded function of s and X, nondecreasing in s and having increasing
differences in s and X. Then

T (s, X)(v) = max
a∈A(s,X)

[

RX (s, a) +
∑

s′∈S
v(s′, X)QX (s′|s, a)

]

is nondecreasing in s and has increasing differences in s and X.

This claim has been shown in [1] as Lemma 4.

Claim 3 V ∗
X (s) is nondecreasing in s and has increasing differences in s and X.

By assumption (A1) we can write that for any two bounded functions of (s, X): v, w

max
s∈S,X∈�(S)

∣
∣
∣T |S|(s, X)(v) − T |S|(s, X)(w)

∣
∣
∣

≤ (1 − min
s∈S,a∈A,X∈�(S)

q |S|(s0|s, X, a)) max
s∈S,X∈�(S)

|v(s, X) − w(s, X)|
≤ (1 − p0)max

s∈S |v(s) − w(s)|

and so T |S| is a contraction. Since the set of bounded functions of (s, X) which are nonde-
creasing in s and have increasing differences in s and X is a closed subset of a complete
metric space of bounded functions from S × �(S) to R, it is also a complete metric space,
and consequently T |S| has a unique fixed point in this set.

Now take V 0
X ≡ 0 and define for k > 0

V k
X (s) = max

a∈A(s,X)

[

RX (s, a) +
∑

s′∈S
V k−1
X (s′)QX (s′|s, a)

]

.

It is clear that V k
X (s) = T k(s, X)(V 0

X ). Consequently, V ∗
X (s) = limk→∞ V k

X (s) =
limk→∞ T k|S|(s, X)(V 0

X ) which equals the fixed point of T |S|. This proves that V ∗
X (s) has all

the desired properties. ��
Next, let us define a correspondence that can be viewed as a best response operator:

B(X)(s) = arg max
a∈A(s,X)

[

RX (s, a) +
∑

s′∈S
V ∗
X (s′)QX (s′|s, a)

]

.

Next, let B(X) and B(X) denote the smallest and the biggest best responses, that is

B(X)(s) = minB(X)(s), B(X)(s) = maxB(X)(s).

The fact that they are both well defined, as well as their crucial properties, are shown in the
following lemma.

Lemma 2 B(X) is nondecreasing in (s, X). Moreover, B(X)(s) and B(X)(s) are well
defined, nondecreasing in X and, for a fixed X, also nondecreasing in s.
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Proof The proof is based on two results by Topkis. First, define

f (a, s, X) = RX (s, a) +
∑

s′∈S
V ∗
X (s′)QX (s′|s, a).

By Lemma 1 V ∗
X (s) is nondecreasing in s and has increasing differences in s and X . Next,

we can use Claim 1 of this lemma to show that this implies that
∑

s′∈S V ∗
X (s′)QX (s′|s, a) is

nondecreasing in s, supermodular in (s, a), and has increasing differences in (s, a) and X .
Since RX (s, a) also has these properties (which was shown at the beginning of the proof of
Lemma 1) and as they are preserved under summation, f (a, s, X) is also nondecreasing in
s, supermodular in (s, a), and has increasing differences in (s, a) and X . Note also that by
assumption (A2) A(s, X) is nondecreasing in (s, X). Now we can apply Theorem 2.8.1 in
[36] to obtain the first part of the lemma. The second statement follows from Theorem 2.8.3
(a) in [36]. ��

In the next lemma we come back to the original game model and analyze the properties
of stationary individual state distributions when a player applies a given stationary strategy.

Lemma 3 Suppose that the global state of the game is constant and equal to X. Then the
smallest stationary state distribution corresponding to a stationary strategy

f ∈ F0 := {g ∈ F : g(s, X) is nondecreasing in X and for any fixed X in s},
X( f, X) and the greatest stationary state distribution corresponding to f , X( f, X), are
nondecreasing functions of f and X on F0 × �(S).

Proof First, note that a stationary global state Y corresponding to the stationary strategy f
used by all the players and the fixed global state of the game X must satisfy for every s ∈ S
the following equation:

∑

s′∈S

∑

a∈A

Y s′λ(s′, X)q(s|s′, X, a) fa(s
′, X) − Y sλ(s, X) = 0.

Note however that by (A5) λ(s, X) does not depend on s. As it is always nonzero, we can
cancel out all the λ terms from the above equation, obtaining

Y s =
∑

s′∈S

∑

a∈A

Y s′q(s|s′, X, a) fa(s
′, X). (7)

Clearly, by (A4) and the fact that f is nondecreasing, q(·|s′, X, f (s′, X)) is stochastically
nondecreasing in s′ and X , as well as in f , as long as strategies from F0 are applied.

Now define φ : �(S) × �(S) × F0 → �(S) with equality

φs(Y, X, f ) =
∑

s′∈S
Y s′q(s|s′, X, f (s′, X)).

We will show that this is a nondecreasing function. Let Y �SD Ỹ , f � f̃ and X �SD X̃ . As
q(·|s′.X, f (s′, X)) is stochastically nondecreasing in X and f , clearly

∑

s∈S
w(s)q(s|s′, X, f (s′, X)) ≤

∑

s∈S
w(s)q(s|s′, X̃ , f̃ (s′, X̃)) (8)

for any s′ ∈ S and any bounded nondecreasing function w : S → S. This implies that
∑

s∈S
w(s)φs(Ỹ , X̃ , f̃ ) =

∑

s∈S
w(s)

∑

s′∈S
Ỹ s′q(s|s′, X̃ , f̃ (s′, X̃))
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=
∑

s′∈S
Ỹ s′

[
∑

s∈S
w(s)q(s|s′, X̃ , f̃ (s′, X̃))

]

≥
∑

s′∈S
Ỹ s′

[
∑

s∈S
w(s)q(s|s′, X, f (s′, X))

]

.

Now note that since q(·|s′, X, f (s′, X)) is stochastically nondecreasing in s′, the expression
in brackets is a nondecreasing function of s′, and so since Ỹ �SD Y , the RHS of the last
inequality is not smaller than

∑

s′∈S
Y s′

[
∑

s∈S
w(s)q(s|s′, X, f (s′, X))

]

=
∑

s∈S
φs(Y, X, f ),

proving that φ is nondecreasing. Now we can apply Theorem 3 in [28] to show that for any
X ∈ �(S), f ∈ F0, there exists an Y ∈ �(S) such that

Y = φ(Y, X, f ). (9)

Moreover, the greatest and the smallest Y satisfying (9), that is the greatest and the smallest
stationary distributions corresponding to X and f , X(X, f ) and X(X, f ), are nondecreasing
in f . ��
Proof of Theorem 1 Define

�(X) = X(B, X) and �(X) = X(B, X).

Both functions are nondecreasing in X (as superpositions of functions that are nondecreasing
by Lemmas 2 and 3 respectively) and defined on a nonempty complete lattice �(S). Thus by
Tarski’s theorem [34] each of them has a fixed point which clearly defines an equilibrium in
the game.Note also, that by Lemma 2 equilibrium stationary strategies (B and B respectively)
are nondecreasing in s and X .

3.4 Distributed Learning

In the next part of this section we present a distributed iterative algorithm allowing players
to learn to play the game. This kind of algorithms are known to exist for some types of
games, and games with strategic complementarities are known to be one of them. The very
simple and intuitive algorithm presented below is an adaptation for our game of an algorithm
presented in [1].

Algorithm 1 (Lower Myopic Learning) For each time moment t ≥ 0 repeat the following
steps:

1. Every player making his move at time t observes current population state Xt .
2. A player in the individual state s chooses action at = B(Xt )(s).

The following theorem summarizes main properties of the LowerMyopic Learning Algo-
rithm.

Theorem 2 Suppose assumptions (A1–A6) are satisfied. Additionally assume that the initial
state of the game X0 satisfies the inequality

X0 �SD φ(X0, X0, B(X0)). (10)

and that all the players adjust their strategies according to the Lower Myopic Learning
Algorithm. Then:
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(a) For every α aα
T α
i+1

≥ aα
T α
i
, i = 0, 1, . . . , iαe − 1.

(b) Xt is an increasing function of t converging to some X as t → ∞, such that (B,X ) are
an equilibrium in the game.

One lemma will be used in the proof of the above theorem.

Lemma 4 Suppose that assumptions (A1–A6) are satisfied and that X̂ , Xt ∈ �(S), t ∈ R
+

such that Xt ↗ X̂ . If f is a stationary strategy such that

f (Xt , s) →t→∞ f (X̂ , s) for any s ∈ S, (11)

then for any s ∈ S the reward from using policy f in modelM(Xt ), JXt ( f, s), converges to
the reward from using f in M(X̂), JX̂ ( f, s), as t goes to infinity.

Proof For any bounded function v : s × X → R, nondecreasing in s, such that

v(s, Xt ) → v(s, X̂) for any s ∈ S (12)

let us define the operator

K f (s, X)(v) = RX (s, f (X, s)) +
∑

s′∈S
v(s′, X)QX (s′|s, f (X, s)).

It is clear that for any s ∈ S, (11) together with the continuity of r , r̃ and λ implies the
following:

lim
t→∞ RXt (s, f (Xt , s)) = lim

t→∞

[

r̃(s, Xt , f (Xt , s)) + r(s, Xt , f (Xt , s))

λ(s, Xt )

]

= r̃(s, X̂ , f (X̂ , s)) + r(s, X̂ , f (X̂ , s))

λ(s, X̂)
= RX̂ (s, f (X̂ , s)).

Then, also

lim
t→∞

∑

s′∈S
v(s′, Xt )QXt (s

′|s, f (Xt , s)) =
∑

s′∈S
v(s′, X̂)QX̂ (s′|s, f (X̂ , s)),

by (11), (12) and the continuity of Q. This obviously implies that

lim
t→∞ K f (s, Xt )(v) = K f (s, X̂).

Consequently, by induction the same is true for Kk
f (s, X)(v) with k ∈ N.

Next note that r , r̃ and λ are continuous on a compact domain, hence bounded. Let L
be such that |r(s, X, a)| ≤ L , |̃r(s, X, a)| ≤ L and λ(s, X) ≤ L for any (s, X, a) ∈ D. In
addition λ is by assumption positive, so there also exists a λ > 0 such that λ(s, X) ≥ λ for
any (s, X, a) ∈ D. Consequently, |RX (s, a)| < L + L

λ
for any (s, X, a) ∈ D. Further note

that by (A1) for any X , s, f and v,
∣
∣
∣ lim
m→∞ Km

f (s, X)(v) − Kk
f (s, X)(v)

∣
∣
∣

≤
(

L + L

λ

)

(1 − p0)

⌊
k

|S|−1

⌋ ∞∑

i=0

(1 − p0)
i = L(λ + 1)

λp0
(1 − p0)

⌊
k

|S|−1

⌋

.

Thus, for any ε > 0,
∣
∣
∣limm→∞ Km

f (s, X)(v) − Kk
f (s, X)(v)

∣
∣
∣ < ε

2 for k big enough, say

k ≥ k0. Consequently,
∣
∣
∣ lim
t→∞ lim

m→∞ Km
f (s, Xt )(v) − lim

m→∞ Km
f (s, X̂)(v)

∣
∣
∣
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<

∣
∣
∣ lim
t→∞ Kk0

f (s, Xt )(v) − Kk0
f (s, X̂)(v)

∣
∣
∣ + ε = ε.

Note however that this, in view of the arbitrarity of ε and because both limits on the LHS of
the above set of inequalities exist, implies

lim
t→∞ lim

m→∞ Km
f (s, Xt )(v) = lim

m→∞ Km
f (s, X̂)(v).

Note however that by standard dynamic programming arguments, limm→∞ Km
f (s, X)(v)

equals JX ( f, s). Thus we have proved that for every s ∈ S JXt ( f, s) →t→∞ JX̂ ( f, s). ��
Proof of Theorem 2 First, note that

Xt �SD φ(Xt , Xt , B(Xt )). (13)

is by definition equivalent to
∑

s∈S

[
(φ(Xt , Xt , B))s − Xs

t

]
h(s) ≥ 0

for any nondecreasing function h : S → R, and further by the definition of φ and (A5) to

∑

s∈S

[
∑

s′∈S
Xs′
t λ(s′, Xt )q(s|s′, Xt , B(Xt )(s

′)) − Xs
t λ(s, Xt )

]

h(s) ≥ 0. (14)

Next, define10

H(h)(s) :=
∑

s∈S
Xs
t (B)h(s),

where (as before) h is an arbitrary function from S to R. Then by (1) and (14)

dH(h)

dt
=

∑

s∈S

.

Xs
t h(s)

=
∑

s∈S

[
∑

s′∈S
Xs′
t λ(s′, Xt )q(s|s′, Xt , B(Xt )(s

′)) − Xs
t λ(s, Xt )

]

h(s)

≥ 0

This however means that as long as (13) holds, the global state of the game is increasing
as time increases. Of course, it also implies that aα

T α
i+1

≥ aα
T α
i
, i = 0, 1, . . . , iαe − 1 for any

player α, as B is nondecreasing.
Next assume that at some time t (13) is violated. Then, since at the beginning of the game

it was by assumption true, and because of the continuity of the trajectory of Xt , there must
exist a function h0, such that

∑

s∈S

[
(φ(Xt , Xt , B))s − Xs

t

]
h0(s) = 0.

Then, it is easy to see that

dH(h0)

dt
=

∑

s∈S

.

Xs
t h0(s)

10 In the remainder of the proof we skip the information that the global state corresponds to all players using
policy B.
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=
∑

s∈S

[
∑

s′∈S
Xs′
t λ(s′, Xt )q(s|s′, Xt , B(Xt )(s

′)) − Xs
t λ(s, Xt )

]

h0(s)

= 0,

which implies that when the boundary of the set where (13) is satisfied is reached, the
trajectory cannot leave the set.

Next note that since at any time t Xt �SD δ[max{S}], the fact that Xt is increasing implies
that it converges to some X (recall that the stochastic domination ordering is equivalent to
ordering of CDFs, which, as S is finite, is in turn equivalent to componentwise ordering in
R

|S|).
Next, define

B̂(X)(s) :=
{
B(X)(s) for X �= X
limt→∞ B(Xt )(s) for X = X

Wewill now show that X is a stationary distribution corresponding to B̂. From the definition
of B̂ and the continuity of λ and q we can infer that

lim
t→∞

[
∑

s′∈S
Xs′
t λ(s′, Xt )q(s|s′, Xt , B̂(Xt )(s

′)) − Xs
t λ(s, Xt )

]

=
∑

s′∈S
X s′λ(s′,X )q(s|s′,X , B̂(X )(s′)) − X sλ(s,X ). (15)

On the other hand, since Xt →t→∞ X monotonically, for any s
.

Xs
t → 0, which is

equivalent to

lim
t→∞

[
∑

s′∈S
Xs′
t λ(s′, Xt )q(s|s′, Xt , B̂(Xt )(s

′)) − Xs
t λ(s, Xt )

]

= 0.

Combining this with (15) we obtain
∑

s′∈S
X s′λ(s′,X )q(s|s′,X , B̂(X )(s′)) − X sλ(s,X ) = 0.

But this, by the definition of φ and (A5), means that X is a fixed point of φ(·,X , B̂), and
consequently X is a stationary distribution corresponding to B̂.

Next, note that under (A6) any vector of actions a = (as)s∈S from sets A(s,X ) can be
obtained as a value of a global state-independent policy defined by

fa(X, s) = as, s ∈ S.

Clearly, each of the policies fa satisfies (11). So does B̂ by its construction. Thus we can use
Lemma 4 to show the following

JX (B̂, s) = lim
t→∞ JXt (B̂, s) ≥ lim

t→∞ JXt ( fa, s) = JX ( fa, s),

where the inequality follows from the fact that B̂(X) = B(X) for X �= X and the fact that
for each t , B(Xt ) is a best response to Xt . But this proves that B̂(X ) is a best response to X ,
as strategies fa cover all the possible actions that a player can use at the global state X . To
end the proof, note that by the monotonicity of B,

B̂(X ) = lim
t→∞ B(Xt ) ≤ B(X ).
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This however implies that B̂(X ) = B(X ), as the latter is by definition the smallest best
response to X . Since the two strategies could only differ at X , this means that they are equal
and that (B,X ) is an equilibrium in the game. ��
Remark 5 The assumption (10) is both difficult to check and rather restrictive. In [1] to avoid
this kind of problem the authors start the algorithm by setting the initial state of each player to
min{S}. This kind of solution seems doubtful. Note that the notion of state of the game or that
of a player captures the properties of his environment, and as such depends only partially (and
in a nondeterministic way) on his decisions. It cannot thus be set by a player at the beginning
of the game. Note however that in our setting this kind of assumption could make more sense
than in [1]. In our framework min{S} = s0, so assuming that the algorithm is initialized by
setting individual states of all the players to s0 would mean that the game is started before any
players join it, which could make sense in many practical applications. On the other hand,
for X0 = δ[s0] (10) is trivially satisfied, as it reduces to δ[s0] �SD q(·|s0, δ[s0], a0)), which
is true for any transition probability defined on S.

Remark 6 In our setting the players join the game at different times. This naturally implies
that those joining at later stages of the game hardly need any adjustment to their initial
strategies, because the global state of the game is already very close to X when they appear.
Consequently, the expected rewards they receive over their lifetime are very close to equi-
librium payoffs corresponding to the smallest equilibrium in the game.

3.5 Examples of Application of the Model

In the remainder of this section we will briefly present some natural applications of our
framework. Some further ones could be possible, if the sets of states and actions were multi-
dimensional or the rewards could be negative. Generalizing to these situations is left however
for further research.

Research and development race In this game the players are firms choosing their tech-
nological profile. Let s be the level of technological development of firm’s products and a,
its investment in research. The transition times for a player are technological breakthroughs
for his firm. It is obvious that these moments do not come at the same time for each of the
players, so this corresponds well to our framework. Next, a ‘death’ of a player is naturally
interpreted as his firm’s bankruptcy. Finally, let r describe his profit minus investment. We
assume that there is no r̃ . It is natural to assume strategic complementarities between rewards
for different firms—a higher level of technological development of the entire industry results
in a higher demand for high-tech products. Also a higher investment in research is required
if industry is at a higher level of development. Finally, one can argue that a firm with a higher
technological profile is less likely to get bankrupt.

Corruption game This is a variant of the game presented in [20]. The players here are
civil servants who can be in three states: corrupt, honest, excluded from the society. The last
state can be naturally seen as a (civil) death of a player—in this state he is not able to receive
any rewards. A player’s transitions happen when he has to decide on some project. These
moments are naturally different for different players. His actions describe his willingness to
change his state. Obviously, a player who wants to be bribed is much more likely to become
corrupt. Also the possibility of becoming corrupt increases as the society becomes more
depraved. In corrupt state a player’s rewards are the highest and naturally increase as the
society becomes more corrupt. Finally, the possibility of death for a player decreases as the
society becomes more corrupt, because the control is less stringent. Thus, we can argue this
is a game with strategic complementarities as well.
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Interdependent security A similar model has appeared in [22]. Let us consider a large
number of computers in a cluster. Each of them is trying to avoid system failure due to
viruses. Let s describe individual computer’s security level, while a its investment in security.
The transition times for an individual are moments of malicious attacks against him. A
‘death’ of a player is the time of system failure. We can assume that r ≡ 1 if the system is
OK and zero otherwise (a number of different ‘health’ levels with different rewards is also
possible). Further, let r̃ be an individual’s investment in security. As one can immediately
see, this model fails to satisfy our assumptions, because r̃ is negative. We can however argue
that a weaker version of our assumptions presented in Remark 1 can be satisfied without
making the model unrealistic. Note, that this game is a natural example of games with
strategic complementarities, as higher level of security for other computers results in a lower
probability of infecting any of them. It is also natural to assume that attacks on different
machines are not coordinated, so the moves of different players are asynchronous, like in our
framework.

Charging control for plug-in electric vehicles This model is inspired by the one presented
in [27]. Let us consider a large population of plug-in electric vehicles. Each of them needs
to load its battery regularly, but tries to do it as cheap as possible. The problem is that the
cost of energy may depend on the hour of the day—from the electricity producers’ point
of view it is best if all the vehicles charge their batteries at the same time during the night
when the overall energy consumption is relatively low, so they can incur some additional
cost on the car owners for doing differently. On the other hand, the vehicle whose battery is
empty needs to be recharged immediately, and otherwise it will decrease its owner’s profits
from using it. In our model each player tries to maximize his profits from use of the car
minus the charging costs over the lifetime of the vehicle. There are two possible actions:
a = 1 (not to charge) and a = 2 (to charge) and a number of states denoting the battery
charge levels (plus artificial state s0 < 0 and action a0 = 0 denoting the breakdown of the
car). The transition times can be viewed as moments when the battery of a given vehicle
can be charged, so we can assume λ is constant. The battery state at each of transition times
decreases by one with some positive probability, decreases to s0 with some smaller positive
probability and remains constant with the remaining one unless the user decides to charge
the battery—then it increases to the maximum battery level smax. The immediate reward is
of the form r(s, X, a, Z) = R1{s > 0}, where R is the reward from the exploitation of the
vehicle, while r̃ is defined as

r̃(s, X, a, Z) = 1{a = 2}[p(s − smax) − cE
[
(a − Z)2

]],
where p is the nominal energy price and c is the additional cost for deviating from the
average policy of the population. Again, this model fails to satisfy assumptions (A1–A5) (̃r
is nonpositive and it depends on Z ), but it can be directly checked that for R big enough
it satisfies all the assumptions of the model combining its two generalizations described in
Remarks 1 and 2.

Remark 7 It is worth noting that the last model is one of many models considered in the
engineering literature where the so-called crowd-seeking behavior is beneficiary for the
players. Strategic complementarity between states or actions of the players seems a perfect
mathematical description of this kind of situation. It turns out however that engineering
applications of our model are limited for several reasons. The first one is that typically
engineering models consider costs, not rewards, so the positivity assumption appearing in
(A3) (very important, since we consider a total reward model) fails. The second one is that
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we also assume that r and r̃ are nondecreasing in s, which often is not satisfied. One should
however note that this monotonicity assumption is crucial in proving that the aggregate utility
of each player preserves the strategic complementarity structure, so we cannot easily get rid
of it. Finally, the problems can be caused by the fact that we assume that the state space is
a sublattice of R (which is important because for S ⊂ R

n , n ≥ 2, the set �(S) does not
preserve the lattice structure).

4 Relation to Games with Finitely Many Players

In this section we provide a result which links the model with a continuum of players studied
above with related models with finite numbers of players. In turn, this result provides an
explanation to the use of the Kurtz dynamics (1) for the global state of the game. To begin
with, we need to introduce the finite models we will discuss below. Let � denote the game
with continuum of players defined in Sect. 2. Then �n will denote its counterpart with n
players played in exactly the same way as game � and such that:

(a) The global state of the game at time t is denoted by Xt [n] and defined by the formula

Xs
t [n] = #{α ∈ {1, . . . , n} : sα

t = s}.
Next, the normalized global state of the game at time t is denoted by Xt [n] and defined
as

X
s
t [n] = 1

n
Xs
t [n].

(b) All the functions defining the model are defined with respect to the normalized state, and
so:

r [n](st , Xt [n], at ) := r(st , Xt [n], at ), r̃ [n](st , Xt [n], at ) := r̃(st , Xt [n], at ),
q[n](·|st , Xt [n], at ) := q(·|st , Xt [n], at ), λ[n](st , Xt [n]) := λ(st , Xt [n]).

Next define the subset of strategies we shall concentrate on in this section.

Fc = { f ∈ F : f (s, X) does not depend on X}.
The following result will link the game � with ‘sufficiently close’ games �n .

Theorem 3 Suppose assumption (A1) holds and take some �, ε > 0. Then there exists an
N ∈ N such that for any n ≥ N the expected reward of player α from playing policy g ∈ Fc
against f ∈ Fc played by all the other players in the game �n differs from his expected
reward when he plays g against f in game � by at most ε.

Proof First recall that r , r̃ and λ are continuous on a compact domain, hence bounded. Let
L be such that |r(s, X, a)| ≤ L , |̃r(s, X, a)| ≤ L and λ(s, X) ≤ L for any (s, X, a) ∈ D.
In addition, note that λ is by assumption positive, so there also exists a λ > 0 such that
λ(s, X) ≥ λ for any (s, X, a) ∈ D.

Next, note that under assumption (A1) absolute value of the sum of rewards received by
(any given) player α from his kth change of state on

∣
∣
∣
∣
∣
E

[ie−1∑

i=k

(

r̃(sα
T α
i
, XT α

i
, aα

T α
i
) +

∫ T α
i+1

T α
i

r(sα
T α
i
, Xt , a

α
T α
i
) dt

)]∣
∣
∣
∣
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can be bounded by
(

L + L

λ

)

P[ie > l]
∞∑

i=0

(|S| − 1)P[ie > i(|S| − 1) + k|ie > k]

≤
(

L + L

λ

)

(1 − p0)

⌊
k

|S|−1

⌋ ∞∑

i=0

(1 − p0)
i = L(λ + 1)

λp0
(1 − p0)

⌊
k

|S|−1

⌋

. (16)

It is then immediate that there exists a kε such that
∣
∣
∣
∣
∣
∣
E

⎡

⎣
ie−1∑

i=kε
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r̃(sα
T α
i
, XT α

i
, aα

T α
i
) +

∫ T α
i+1

T α
i

r(sα
T α
i
, Xt , a

α
T α
i
) dt

)⎤

⎦

∣
∣
∣
∣
∣
∣
<

ε

6
.

The same bound will apply to every �n .
Then, since τα

i is for any α stochastically dominated by an exponentially distributed
random variable with intensity λ, τα

i , for any T > 0 we can conclude as follows:

P

[ kε∑

i=0

τα
i > T

]

≤ P

[ kε∑

i=0

τα
i > T

]

.

Since τα
i are for different i independent, we can assume the same about τα

i . Then
∑kε

i=0 τα
i

is Gamma-distributed with fixed parameters kε and λ, thus the probability it is greater than
T converges to 0 as T goes to infinity. Thus, there exists a Tε > 0 such that

P

[ kε∑

i=0

τα
i > Tε

]

<
λp0

6L(λ + 1)
ε. (17)

Consequently, by (16) the expected reward received by any player either in model � or any
of models �n from time Tε on can be bigger than that received until the kεth jump of his
individual state by no more than

L(λ + 1)

λp0

λp0
6L(λ + 1)

ε = ε

6
,

which implies that the expected reward received by player α until time min{Tε, T α
kε

} in any
of these models differs from the expected reward over his lifetime by at most ε

3 .
Now note that since f ∈ Fc and by Lipschitz continuity and boundedness of q and λ, all of

the intensities
∑

s′∈S Xs′λ(s′, X)q(s|s′, X, f (s′, X)),−Xsλ(s, X) are Lipschitz-continuous
and bounded functions of X , and so by the Kurtz theorem (see Theorem 5.3 in [32]) if all the
players except α are using policy f ,

P[ sup
0≤t≤Tε

|Xt [n] − Xt | ≥ δ] ≤ De−nF(δ)

for some positive constant D and a function F satisfying limη↘0
F(η)

η2
∈ (0,∞). By this last

property, the probability bounded above converges to zero as n goes to infinity at rate of e−n ,
so for n large enough, say n > Nδ ,

P[ sup
0≤t≤Tε

|Xt [n] − Xt | ≥ δ] ≤ λp0
3L(λ + 1)

ε (18)

for any given δ > 0.
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Further, notice that r(s, X, g(s, X)) and r̃(s, X, g(s, X)) are continuous on a compact
domain, which by Heine’s theorem implies that they are uniformly continuous, so we can
find a δ > 0 such that for any X, X ′ ∈ �(S),

|X − X ′| < δ �⇒ sup
s∈S

|r(s, X, g(s, X)) − r(s, X ′, g(s, X ′))| <
ε

4Tε

(19)

and
|X − X ′| < δ �⇒ sup

s∈S
|̃r(s, X, g(s, X)) − r̃(s, X ′, g(s, X ′))| <

ε

4
. (20)

Then, let us fix a trajectory of Xt [n] and define

R(s, t) = 1[t ≤ Tε]
[

r̃(s, Xt , g(s, Xt ))

+
∫ Tε

0

∫ min(T,(Tε−t))

0
r(s, Xt+u, g(s, Xt )) du e

−λ(s,Xt )T λ(s, Xt ) dT

]

,

Q(s′, B|s, t) =
∫

B
q(s′|s, Xt , g(s, Xt ))e

−λ(s,Xt )T λ(s, Xt ) dT,

where B is any Borel set onR+, and analogously R[n](s, t) and Q[n](s′, B|s, t) by replacing
Xt in the above formulas with Xt [n] whenever supt∈[0,Tε] |Xt [n] − Xt | < δ (and doing
nothing otherwise). Note that measurability of the functions integrated in the above formulas
is guaranteed by their continuity. Also in the cases of R[n](s, t) and Q[n](s′, B|s, t), even
though the functions integrated there are not continuous, their domain S×R

+ can be divided
into a countable number of subsets of form S × [t, t) where they are continuous. These sets
are obviously Borel, which guarantees the measurability of the functions.

If we combine (19–20) with the definitions of R[n] and Q[n], we obtain that for n large
enough

|R(s, t) − R[n](s, t)| < 2

(
ε

4
+ ε

4Tε

Tε

)

= ε, (21)

which means that R[n] converges uniformly to R as n goes to infinity. Moreover, uniformly
both in state (s, t) and the trajectory Xt [n]. Similarly, we can show that the density appear-
ing in the definition of Q[n] converges uniformly to that appearing in the definition of Q.
Note however that uniform convergence of densities together with uniform convergence and
boundedness of rewards implies that

R[n](s0, 0) +
kε∑

k=1

∑

s∈S

∫

R+
R[n](s, u)Q[n]k(s, du|s0, 0)

⇒ R(s0, 0) +
kε∑

k=1

∑

s∈S

∫

R+
R(s, u)Qk(s, du|s0, 0), (22)

where the convergence is uniform with respect to both s0 and Xt [n]. Clearly, R and Q were
constructed in such a way that the RHS of the above equation equals the expected reward
received by player α until time min{Tε, T α

kε
} in model �. On the other hand, if we take the

expected value of the LHS over all trajectories of Xt [n], (16) and (18) imply that for n > N0

it will differ by at most
L(λ + 1)

λp0

λp0
3L(λ + 1)

ε = ε

3
(23)
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from the expected reward received by player α until time min{Tε, T α
kε

} in model �n .

Now, if we take n big enough, say bigger than N1, the supremum over all s0 and all Xt [n]
of the two sides of (22) will differ by at most ε

3 . This however, together with (23) and the fact
that the expected reward until time min{Tε, T α

kε
} differs from that over lifetime of a player

by at most ε
3 , will imply that the reward received by player α in model � differs from that

received in models �n for11 n > max{Nδ, N1} by at most

ε

3
+ ε

3
+ ε

3
= ε,

which ends the proof. ��
Remark 8 The restriction of strategies to the set Fc may seem quite strong but, since at any
fixed global state X a stationary strategy reduces to a mapping from S to A, it is enough to
show the existence of approximate equilibria defined in a way similar to that equilibria are
defined for mean-field game, which is obviously much weaker than how Nash equilibria are
defined. Just this is done in a corollary below. On the other hand, note that the result presented
in Theorem 3 can be easily generalized (in the sense that the proof will follow along the same
lines as here) to Lipschitz-continuous randomized stationary strategies. However, as we
limited our considerations to pure strategies in most of the paper, we have decided to present
this result in this weaker form.

To formulate the next result, which will link equilibria of mean-field game � with approx-
imate equilibria of games �n , we need to introduce the following concept.

Definition 1 A stationary strategy f and a measure μ ∈ �(S) are in ε-weak equilibrium
in the semi-Markov n-person counterpart of mean-field game with total reward �n , if μ is a
stationary global state corresponding to f and for every other stationary strategy g ∈ F ,

J ( f, f , ρ) ≥ J (g, f , ρ) − ε,

where ρ = q(·|s0, μ, a0) is the distribution of individual states of new-born players when
the global state is μ.

The following result is an immediate consequence of Theorems 1 and 3.

Corollary 1 Suppose that the total reward mean-field game � satisfies assumptions (A1–
A6). Then for n big enough (B(X), X) and (B(X), X) are ε-weak equilibria in n-person
counterparts of �, �n.

5 Conclusions

In our paper we presented a model of mean-field game where each of infinitely many players
controls his own continuous time Markov chain of private states, but the global state follows
an ordinary differential equation. We have made two main contributions here: the first one is
the generalization of this type of games to a novelmodelwhere players, instead ofmaximizing
some payoff accumulated over the entire game, maximize the reward obtained during their
lifetime, which may be different for different players. Since any dead player can be replaced
after some time by a newborn one, after some time stationary behavior of the system is
obtained, which is then used to define a mean-field-type equilibrium. We have provided an

11 Also with δ selected in a way guaranteing that the difference between the sides of (22) is below ε
3 .
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approximation result linking this newmodel with its n-player counterparts for n approaching
infinity under some very mild assumptions.

The secondmain contribution of the paper is an equilibrium-existence result formean-field
game model discussed in this paper under some strategic complementarity conditions. These
assumptions differ significantly from those discussed in the mean-field game literature, as no
conditions based on convexity or strict monotonicity of the functions defining our model are
required. Instead, properties implying that an increase in states of most of the players makes
increase in any individual’s state profitable and that an increase in one’s state makes higher
actions more profitable are assumed. This allows us to obtain the existence of equilibria
in strategies with some monotonicity properties as well as the convergence of a myopic
learning procedure. What is important, it turns out that many real-life applications of mean-
field models satisfy our strategic complementarity assumptions. However, the applications
of our contributions are limited especially due to two of them: positivity of reward functions
and one-dimensional state space. It will be very interesting to see a generalization of our
results getting rid of these two assumptions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
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