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Abstract

Derivatives of the fully twisted bicyclic amide 7-hypoquinuclidone are synthesized using a 

Schmidt-Aubé reaction. Their structures were unambiguously confirmed by X-ray diffraction 

analysis and extensive spectroscopic characterization. Furthermore, the stability and chemical 

reactivity of these anti-Bredt amides are investigated. 7-hypoquinuclidonium tetrafluoroborate is 

shown to decompose to a unique nitrogen bound amide-BF3 complex of 7-hypoquinuclidone 

under anhydrous conditions and to react instantaneously with water making it one of the most 

reactive amides known to date.

Graphical abstract

Introduction

The importance of the amide bond cannot be overstated.1 Typical amides are planar 

structures,2 however, amide bonds can be highly twisted such as in bicyclic bridgehead 

lactams.3 The distortion of the orbitals from planarity and the pyramidalization of the 

nitrogen from sp2 toward sp3 dramatically affect the stability and reactivity3,4 of anti- Bredt 
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amides.5 In 2006, our group published the first unambiguous synthesis and characterization 

of 2-quinuclidonium tetrafluoroborate 1 (Figure 1).6 Most recently Kirby and co-workers 

reported on the synthesis and characterization of the “most reactive” twisted amide, an 1-

aza-2-adamantone HBF4 salt 2,7 which provoked us to explore the synthesis of an even more 

reactive amide.

Of interest to us was a 1958 paper, in which Hall failed to synthesize 7-hypoquinuclidone 4 
by heating piperidine-4-carboxylic acid (3) in a free flame (Figure 1). Instead, sublimation 

of the amino acid was observed.8 The highly strained structure of a [2.2.1] bridged bicyclic 

lactam was also proposed as an intermediate in a model system toward the synthesis of 

perophoramidine.9 Most recently, the structure, energetics and protonation of 7-

hypoquinuclidone 4 were investigated by DFT calculations10 and the molecule has been 

suggested to be too strained to be isolated.10c

Results and Discussion

Based on the knowledge and experience in our research group with the synthesis of 2-

quinuclidonium tetrafluoroborate 1, we proposed a synthesis of 7-hypoquinuclidone 4 using 

an intramolecular Schmidt-Aubé reaction11 leading to ketoazide 8 as the key fragment 

(Scheme 1).

Synthesis

The synthesis commenced from literature known cyclobutanone N,N-dimethylhydrazone 

512, which was alkylated with TBS protected 2-bromoethanol (Scheme 1).13,14 The 

corresponding intermediate was fully deprotected under acidic conditions to afford hydroxy 

ketone 6 in 45% yield. Tosylation of the alcohol and substitution with sodium azide gave 

access to substrate 8 for the intramolecular Schmidt-Aubé reaction. Since it was uncertain, if 

this highly strained and fully twisted lactam 4·H+ would even exist, we decided to solvolyze 

this hypothetical intermediate 4·H+ in situ with methanol as the nucleophile. Moreover, the 

reaction was performed under Fischer esterification conditions to ensure protection of the 

corresponding amino acid, in case 4·H+ would have been hydrolyzed with traces of water. 

Thus, treatment of ketoazide 8 with triflic acid15 followed by solvolysis/esterification with 

methanol and tosyl protection of the amine furnished N-tosyl piperidine 4-carboxylic acid 

methyl ester (9) in 56% yield over 3 steps after column chromatography.16 It should be 

noted that the corresponding protected azetidine 10 was not observed at all (it would 

originate from migration of the other single bond in the Schmidt-Aubé reaction).17

With a first proof for the existence of 7-hypoquinculidone in hand, ketoazide 8 was treated 

with tetrafluoroboric acid in diethylether, which led to immediate gas evolution and 

precipitation of a colorless solid (97% mass recovery). NMR experiments revealed the 

presence of three species in a 77:15:12 ratio: the protonated amide 7-hypoquinuclidonium 

tetrafluoroborate 4·HBF4, the hydrolysis product 11 and, unexpectedly, the BF3 complex of 

7-hypoquinuclidone 4·BF3 (Scheme 2).

Since the formation of 4·BF3 was at first mysterious and somehow unexpected, we were 

wondering, if traces of BF3 etherate are present in our commercial 50-54% HBF4 solution, 

Liniger et al. Page 2

J Am Chem Soc. Author manuscript; available in PMC 2017 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which would catalyze the Schmidt-Aubé reaction.18 The inherent instability of HBF4 in 

acidic solutions was further supported by voltammetric investigations, which indicated 

decomposition of HBF4 to a BF3-solvent complex and HF.19 To check this hypothesis, 

ketoazide 8 was subjected to two equivalents of BF3 etherate instead of HBF4 with the 

ultimate goal to selectively prepare 4·BF3. However, neither gas evolution nor consumption 

of the starting material was observed, even at room temperature. Subsequently, a catalytic 

amount of HBF4 was added with the idea that the proton of the Brønsted acid would be 

formally released after formation of product 4·BF3. In contrast, the catalytic amount of acid 

was consumed instantaneously with concomitant gas evolution and precipitation of a solid. 

Thereafter, the reaction did not proceed any further without adding a stoichiometric amount 

of HBF4 (two equivalents in total). After stirring overnight, we isolated instead of 4·BF3 the 

hydrolyzed amino acid 11 as the major product (73%) along with 15% of 4·HBF4 and a 

third unknown species (ca. 12%) according to 1H-NMR spectroscopy.20 When the spectrum 

was recorded again the next day, the later two species had converted to 11 in a quantitative 

fashion. At this point, it was still unclear how 4·BF3 was formed, but we gained first 

evidence for the inherent instability of 4·HBF4 toward hydrolysis in dry CD3CN leading to 

the expected hydrolysis product isonipecotic acid tetrafluoroborate (11).

Proof of Structure and Spectroscopic Data

7-Hypoquinuclidonium tetrafluoroborate (4·HBF4) was isolated as a stable, colorless solid, 

which can be stored in a −40 °C freezer of a nitrogen filled glovebox for several weeks 

without decomposition. However, as soon as the solid is dissolved in any rigorously dried 

solvent, decomposition starts immediately, even upon handling in the dry atmosphere of a 

glovebox (N2). For this reason, all of our attempts failed to grow single crystals of 4·HBF4 

via precipitation, recrystallization or vapor diffusion method between −40 °C and 23 °C. 

Fortunately, decomposition was slow enough to characterize 4·HBF4 spectroscopically in 

CD3CN solution by multinuclear 1H-, 11B-, 19F-, 13C-, 14N-, 15N-NMR spectroscopy in a J. 

Young NMR tube and as a solid by attenuated total reflectance infrared spectroscopy (ATR-

IR, Table 1). By contrast, 4·HBF4 was hydrolyzed instantaneously in the matrix of the fast 

atom bombardment high-resolution mass spectrometer (FAB-HRMS) and in the electrospray 

ionization chamber (ESI) of a linear ion trap mass spectrometer (LTQ-CID-MS). The mass 

spectra for 4·HBF4 were identical to those recorded for the hydrolysis product 11. A very 

characteristic 1:1:1 triplet at 7.76 ppm was observed for the NH+ group in the 1H-NMR 

spectrum of 4·HBF4 (Figure 2) showing a 1H-14N coupling (J = 63 Hz, I = 1, Table 1). This 

indicated a highly symmetric environment around the nitrogen, since otherwise the 1H-14N 

splitting pattern would not be resolved due to significant quadrupolar line broadening.21

These findings for 4·HBF4 were further confirmed by the observed doublets in the 14N- 

and 15N-NMR spectra (Table 1). The carbonyl infrared absorption band of 4·HBF4 was 

observed at 1877 cm-1 (ATR), which is the highest value we have ever observed for an 

organic molecule, even higher than acid chlorides or anhydrides. This value suggests a rather 

short and strong C=O bond in a highly strained molecule. These conclusions were in line 

with our DFT calculations for the structure of 4·HBF4 (see Table 21 in the SI).22 Moreover, 

since we did not observe any other C=O bands nor overlapping IR signals originating from 

the other two species (4·BF3 and 11), the recorded IR spectrum of 4·HBF4 was evidence for 
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high purity of the isolated crude solid after the reaction. The observed mixture in the 1H-

NMR spectrum of 4·HBF4, 4·BF3 and 11 (Scheme 2) most likely resulted from 

decomposition by dissolving the solid in CD3CN and in the time until the NMR spectra 

were recorded.

A single crystal of 4·BF3 suitable for X-ray diffraction analysis was grown over four weeks 

by slow diffusion of diethyl ether into a solution of the crude twisted amide 4·HBF4 in 

acetonitrile at −40 °C in the glove box (N2). The crystal structure of 4·BF3 is depicted in 

Figure 3.

In all our attempts to crystallize the protonated twisted amide 4·HBF4, we could only isolate 

crystals of the BF3 complex 4·BF3, which apparently is the more stable compound of the 

two amides (Figure 3). To our knowledge, the BF3 complex of 7-hypoquinuclidone 4·BF3 is 

the first and only nitrogen bound BF3-amide complex reported to date. A single molecule of 

4·BF3 was observed in the unit cell of the crystal with a high degree of symmetry (mirror 

plane through the F-B-N-C=O axis). The compound clearly belongs among the most twisted 

amides with a torsion angle τ of 90.0°. The nitrogen is highly pyramidalized with an out-of-

plane parameter χN of 69.8°, while the carbonyl carbon is exactly planar and sp2 hybridized 

(χC = 0.0°). The observed length of the N-C(O) bond is 1.526 Å, 1.186 Å for the C=O bond 

and 1.606 Å for N-B bond, respectively. These parameters were all in close agreement to the 

calculated structure of 4·BF3 (see Table 21 in the SI and compare with parameters of other 

twisted amides and more calculated structures). Selected spectroscopic parameters of 4·BF3 

are summarized in Table 1. The 13C chemical shift of the carbonyl group in 4·BF3 is 5 ppm 

more downfield than in 4·HBF4, which is also true for the 19F chemical shift at −154.9 ppm. 

In the later case, the 1J coupling to 11B (I = 3/2) was observed as a 1:1:1:1 quartet with a 

coupling constant of 14 Hz.23 The reverse coupling to 19F (I = ½) was visible at −0.3 ppm as 

a 1:3:3:1 quartet in the 11B-NMR spectrum, however without any coupling to 14N.24 The 

carbonyl stretching vibration for 4·BF3 was observed at 1860 cm-1, which is a slightly lower 

frequency than for 4·HBF4. This trend is in line with a slightly longer C=O bond for 4·BF3 

than for 4·HBF4 according to our DFT calculations (see Table 21 in the SI).

The formal hydrolysis product of 4·HBF4, isonipecotic acid tetrafluoroborate (11), was fully 

characterized by spectroscopic methods (Table 1) and the structure was unambiguously 

confirmed by X-ray diffraction analysis (see the SI). As for the protonated twisted amide 

4·HBF4, spin couplings of 1H-14N and 1H-15N were observed with coupling constants of 55 

Hz and 77 Hz, respectively. Remarkably, the C=O IR stretching frequency at 1814 cm-1 

(NaCl) was rather high for a carboxylic acid.

Chemical Behavior

As described earlier in this paper, the protonated amide 4·HBF4 was much more sensitive to 

nucleophiles than the BF3 complex 4·BF3. 4·HBF4 decomposed very quickly in solution, 

even in rigorously dried solvents and with careful handling in the glovebox. For this reason, 

the NMR spectra of dissolved 4·HBF4 had to be recoded as fast as possible, since the signals 

corresponding to 4·HBF4 disappeared very quickly and several new species were formed 

over time. In contrast, solutions of the corresponding BF3 complex 4·BF3 were fairly stable 

Liniger et al. Page 4

J Am Chem Soc. Author manuscript; available in PMC 2017 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



according to NMR spectroscopy. This raised the question, if the BF3 complex 4·BF3 is the 

decomposition product of the very labile amide 4·HBF4 in dry solution, which would also 

explain, why we could grow crystals of 4·BF3 out of a solution of 4·HBF4.

To answer these questions, we studied the decomposition and reactivity of both twisted 

amides 4·BF3 and 4·HBF4 in CD3CN in the presence or absence of D2O over time using a 

series of 1H-NMR measurements with 1,3,5-trichlorobenzene as the internal standard 

(Scheme 3, see the SI for more details).

4·BF3 was fairly stable in wet CD3CN with a half-life of 87 minutes (9.6 equivalents of 

D2O, 10.6 μM) yielding a complex mixture of products along with amino acid 11 (Scheme 

3). By contrast, the protonated amide 4·HBF4 was hydrolyzed instantaneously upon addition 

of 5 equivalents of D2O (t1/2 = <1 min, 87.4 μM) to give amino acid 11 as the major product. 

Compared to the half-lives of 2-quinuclidonium tetrafluoroborate 1 (t1/2 = 135 min, 84 μM, 

5 equiv)6a and Kirby's “most reactive amide” 2 (t1/2 = 8.4 min, 84 μM, 5 equiv D2O, Figure 

1),7 7-hypoquinuclidonium tetrafluoroborate 4·HBF4 is now the most reactive twisted amide 

prepared to date. In addition, 4·HBF4 decomposed in dry CD3CN with a half-life of 119 

minutes (117 μM). At the same time, saturation growth of the BF3 complex 4·BF3 was 

observed over time, which strongly indicated that 4·BF3 is indeed formed from 4·HBF4 in 

dry CD3CN solution. It should be noted that several other unidentified species were 

observed together with 4·BF3. However, amino acid 11 was not detected at all due to the 

absence of water.

When the twisted amides 4·HBF4 and 4·BF3 and the amino acid 11 were characterized by 

FAB-HRMS, we found identical spectra due to fast hydrolysis in the matrix, but also a 

common dehydration fragment with m/z 112.1 corresponding to the protonated twisted 

amide 4·H+ or its ring-chain tautomer as an oxocarbonium ion (Scheme 4). Since we 

previously observed dehydration of the hydrolyzed twisted amide 1 (Figure 1) via collision 

induced dissociation (CID),6b this raised the question if 11 was dehydrated to 4·H+ by FAB 

ionization in the matrix or in the gas phase. To investigate this, we isolated the ammonium 

ion of 11 with m/z 130.1 in the ion trap of the LTQ-MS. Upon collisional excitation (MS2-

CID), we did indeed observe dehydration giving an ion 4·H+ with m/z 112.1 in the mass 

spectrum (see the SI for the spectra). When isolation and excitation of 4·H+ was continued 

in a multistage MS experiment (MS3), a formal loss of CO (M-28) corresponding to an ion 

with m/z 81.4 was observed.

Inspired by Kirby's observation for thermal cyclization to adamantane type twisted amides in 

the gas phase,7 we attempted to cyclize amino acid 11 and the commercially available Boc 

protected derivative 12 by gas chromatography (Scheme 4). However, all attempts failed and 

no ions were observed at all.

Definition of Bending Angle ξ

We observed significant bending of the carbonyl oxygen towards the nitrogen in the crystal 

structure of 4·BF3 (Figure 3) and we found that this phenomenon was significantly 

underestimated in our calculated structure of 4·BF3 (see Table 21 in the SI). Since there 

wasn't any parameter available in the literature to describe C=O bending, we introduced a 
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C=O bending angle ξ, which is defined as the deviation of the imaginary CCN angle bisector 

(Figure 4). Mathematically, ξ can be calculated with the bond path angles CCN, OCC and 

OCN:25 ξ = ((360°-CCN)/2-OCN. A positive value means bending toward the nitrogen and a 

negative one bending into the opposite direction. For the crystal and the calculated structure 

of 4·BF3, we observed ξ values of 5.8° and 4.5°, respectively.

In 1985, Bürgi and Schmidt investigated C=O bending in lactones and lactams for the first 

time based on X-ray structures and molecular orbital calculations.26 An anomeric effect was 

proposed to explain this phenomenon, which involves destabilizing interactions of the p-type 

lone pair at oxygen with the bonding σ(C-C) orbital and favorable overlap with the 

antibonding σ*(C-N) orbital (Figure 4). Thus, C=O bending will reduce the former 

interaction and increase the later one.26 At the same time, C=O bending is an early sign of 

C-N bond breakage leading to an oxocarbonium ion similar to 4·H+ (Scheme 4) with 

concomitant C-N bond elongation.26 In line with our own data (see Table 21 in the SI), 

significant deviations of calculated ξ values were observed compared to X-ray structures by 

Bürgi26 and others.10c, 27

Since C=O bending is a significant deformation of the amide bond in anti-Bredt lactams and 

an additional measure for their stability, we suggest to use the Bürgi-Dunitz-Winkler 

parameters (χC, χN, τ, ξ) to describe twisted amides in the future.

Conclusions

Almost 60 years after Hall's first attempt to prepare 7-hypoquinuclidone 4,8 we have 

successfully accomplished the first total synthesis and complete characterization of the 

protonated twisted amide 4·HBF4 and its BF3 complex 4·BF3. The use of a Schmidt-Aubé 

reaction proved again to be key for success.6a Moreover, the stability and reactivity of both 

4·HBF4 and 4·BF3 were thoroughly investigated in solution and in the gas phase. These 

studies revealed that 4·HBF4 is to our knowledge the most reactive amide prepared to date 

with a half-life of less than one minute in the presence of water. The reverse reaction to 4·H+ 

was rendered possible in the gas phase by formal dehydration of isonipecotic acid 11 using 

FAB or CID excitation. Since C=O bending contributes to the stability of twisted amides26 

and is still difficult to predict by DFT calculations,10c, 26, 27 a novel bending angle ξ was 

defined as an addition to the already existing Dunitz-Winkler parameters.5 Looking ahead, 

the limits are still open for the synthesis of more or less reactive but structurally unique 

twisted amides.

Methods

Standard methods were used for the preparation, isolation, and analysis of all new 

compounds (for experimental details and complete characterization see the SI).

Preparation of 4·HBF4 and Crystallization of 4·BF3 from keto azide 8

To a solution of 8 (52.0 mg, 0.37 mmol, 1.0 equiv) in Et2O (0.75 mL) was added at 0 °C 

HBF4 (0.10 mL, 0.71 mmol, 1.9 equiv, 50-54% wt/wt in Et2O). Gas evolution was observed 

immediately. After stirring for 1 h at room temperature, the starting material was fully 
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consumed and a colorless precipitate had been formed. The solvent was decanted off with a 

syringe under argon. The solids were washed with Et2O (3 × 0.8 mL) and dried under high 

vacuum to afford crude 4·HBF4 (72.0 mg, 97% mass recovery) as a colorless solid. Slow 

diffusion of Et2O into a solution of the crude product in acetonitrile at −40 °C over four 

weeks yielded one single crystal of 4·BF3 (2.0 mg, 3%) as a colorless needle.
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Figure 1. 
Stoltz's 2-Quinuclidonium tetrafluoroborate (1), Kirby's “most reactive amide” 2 and Hall's 

attempted synthesis of 7-hypoquinuclidone 4 from piperidine-4-carboxylic acid (3).
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Figure 2. 
Detail of the 1H-NMR spectrum of 4·HBF4 showing the distinctive 1:1:1 triplet of the 

protonated amide.
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Figure 3. 
X-ray structure of 7-hypoquinuclidone BF3 complex 4·BF3 (ellipsoids at the 50% 

probability level, oxygen = red, nitrogen = blue, boron = pink, fluorine = yellow, carbon = 

dark gray, hydrogen = white).
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Figure 4. 
Definition of the bending angle ξ and the dominant orbital interactions of the p-type lone 

pair of the C=O oxygen.
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Scheme 1. 
Synthesis of protected piperidine 4-carboxylic acid methylester 9 – first proof for the 

existence of 7-hypoquinuclidone 4.
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Scheme 2. 
Total synthesis of 7-hypoquinuclidonium tetrafluoroborate 4·HBF4 and 7-hypoquinuclidone 

BF3 complex 4·BF3.
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Scheme 3. 
Reactivity for 4·HBF4 and 4·BF3 in solution and determination of their half-lives.
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Scheme 4. 
Gas phase and thermal reactivity of isonipectotic acid derivatives.
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Table 1
Selected spectroscopic properties for twisted amides 4·HBF4 and 4·BF3 and for the 

hydrolysis product isonipecotic acid tetrafluoroborate (11)

Compounda 4·HBF4 4·BF3 11

δ1H of NHx 7.76 (t, 1J1H14N = 63 Hz) − 6.90-6.12 (m, 1J1H14N = ∼55 Hz)

δ13C of C=O 174.7 179.8 169.7

δ11B −1.2 (s) −0.3 (q, 1J11B19F = 13.8 Hz) −1.2 (s)

δ19F −151.3 (s) −154.9 (q, 1J19F11B = 13.9 Hz) −151.2 (s)

δ14N 34.8 (d, 1 J14N1H = 62.8 Hz) 39.3 (s) −4.9 (m, 1J14N1H = not resolved)

δ15Nb 78.6 (1J15N1H = ∼88 Hz) − 38.8 (1J15N1H = ∼77 Hz)c

IR, νmax C=O, cm-1 1877d 1860d 1814e

a
All NMR spectra were recorded in CD3CN.

b
Due to the low abundance of this isotope, the chemical shifts and coupling constants were determined by 1H-15N and 1H{15N}-15N correlation 

experiments.

c
A vicinal proton coupling constant of 2J1H1H = 10.8 Hz was observed.

d
Measured using an ATR-IR in an argon filled glovebox.

e
Neat film on a NaCl plate.
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