SCISPACE
 formerly Typese

〕 Open access • Journal Article • DOI:10.1038/S41557-020-0442-3

Total synthesis of brevianamide A. - Source link

Robert C. Godfrey, Nicholas J. Green, Gary S. Nichol, Andy Lawrence
Institutions: University of Edinburgh
Published on: 13 Apr 2020 - Nature Chemistry (Nature Publishing Group)
Topics: Total synthesis and Chemical synthesis

Related papers:

- Structural and stereochemical diversity in prenylated indole alkaloids containing the bicyclo[2.2.2]diazaoctane ring system from marine and terrestrial fungi
- Unified Total Synthesis of the Brevianamide Alkaloids Enabled by Chemical Investigations into their Biosynthesis.
- Total Synthesis and Biosynthesis of the Paraherquamides: An Intriguing Story of the Biological Diels—Alder Construction.
- Total synthesis of (+)-11,11'-dideoxyverticillin A
- A Concise and Versatile Double-Cyclization Strategy for the Highly Stereoselective Synthesis and Arylative Dimerization of Aspidosperma Alkaloids

In the format provided by the authors and unedited.

Total synthesis of brevianamide A

Robert C. Godfrey, Nicholas J. Green © , Gary S. Nichol and Andrew L. Lawrence ${ }^{\star}{ }^{\boxtimes}$

EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK. \boxtimes_{e}-mail: a.lawrence@ed.ac.uk

SUPPORTING INFORMATION

Total synthesis of brevianamide A.

Robert C. Godfrey, Nicholas J. Green, Gary S. Nichol and Andrew L. Lawrence*

EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK, EH9 3FJ. E-mail: a.lawrence@ed.ac.uk

Supporting Information - Table of Contents

1. Overview of previous total and formal syntheses of brevianamide B. 4
1.1 Williams' 1988 synthesis of (-)-brevianamide B 5
1.2 Williams' 1998 synthesis of (\pm)-brevianamide B 6
1.3 Williams' 2006 synthesis of (\pm)-brevianamide B 7
1.4 Williams' 2007 synthesis of (\pm)-brevianamide B \& (\pm)-dehydrodeoxybreviaminde E 8
1.5 Simpkins' 2009 synthesis of (-)-brevianamide B 9
1.6 Scheerer's 2016 formal synthesis of (\pm)-brevianamide B 10
1.7 Scheerer's 2017 formal synthesis of (\pm)-brevianamide B 11
2. Quantitative analysis of brevianamide A and B in Penicillium brevicompactum 12
3. Experimental Conditions 13
3.1 Experimental Procedure for Compound 14 14
3.2 Experimental Procedure for Compound 15 15
3.3 Experimental Procedure for Compound 16 16
3.4 Experimental Procedure for Compound 17 17
3.5 Experimental Procedure for Compound 19 18
3.6 Experimental Procedure for Compound 9 19
3.7 Experimental Procedure for Compounds $\mathbf{1 2}$ and $\mathbf{2 0}$ 20
3.8 Experimental Procedure for Compounds $\mathbf{1}$ and $\mathbf{2}$ 22
3.9 Experimental Procedure for Compounds ent-1 and ent-2 25
3.10 Experimental Procedure for Compound 18 27
3.11 Experimental Procedure for B-Prenyl-9-BBN 28
3.12 Experimental Procedure for $t-\mathrm{BuOCl}$. 30
4 NMR Spectra. 31
4.1 ${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $14\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. 31
$4.2{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{1 4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 31
$4.3{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 15 ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)....... 32
$4.4{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{1 5}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. 32
$4.5{ }^{1} \mathrm{H}$ NMR Spectrum of Compound $\mathbf{1 6}$ ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 33
$4.6{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{1 6}$ ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 33
$4.7{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 17 ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 34
$4.8{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 17 ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 34
$4.9{ }^{1} \mathrm{H}$ NMR Spectrum of Compound $19\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 35
$4.10{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 19 ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) 35
4.11 ${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $9\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. 36
$4.12{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $9\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. 36
$4.13{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 12 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 37
$4.14{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 12 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 37
$4.15{ }^{1} \mathrm{H}$ NMR Spectrum of Compound $20\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 38
$4.16{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $20\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 38
$4.17{ }^{1} \mathrm{H}$ NMR Spectrum of Brevianamide $\mathrm{A}(1)\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3,} \sim 3.0 \mathrm{mg} / \mathrm{mL}\right)$ 39
$4.18{ }^{13} \mathrm{C}$ NMR Spectrum of Brevianamide $\mathrm{A}(1)\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \sim 3.0 \mathrm{mg} / \mathrm{mL}\right)$ 39
$4.19{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY Spectrum of Brevianamide $\mathrm{A}(1)\left(\mathrm{CDCl}_{3}\right)$. 40
$4.20{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC Spectrum of Brevianamide $\mathrm{A}(\mathbf{1})\left(\mathrm{CDCl}_{3}\right)$ 40
$4.21{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC Spectrum of Brevianamide $\mathrm{A}(1)\left(\mathrm{CDCl}_{3}\right)$ 41
$4.22{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY Spectrum of Brevianamide $\mathrm{A}(\mathbf{1})\left(\mathrm{CDCl}_{3}\right)$ 41
$4.23{ }^{1} \mathrm{H}$ NMR Spectra of Brevianamide A (1) $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ - conc. dependence) 42
4.24 ${ }^{1} \mathrm{H}$ NMR Spectrum of Brevianamide A (1) $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ 43
$4.25{ }^{13} \mathrm{C}$ NMR Spectrum of Brevianamide A (1) $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ 43
$4.26{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY Spectrum of Brevianamide A (1) ((CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right)$ 44
$4.27{ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HSQC Spectrum of Brevianamide A (1) (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ 44
$4.28{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC Spectrum of Brevianamide A (1) (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ 45
$4.29{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY Spectrum of Brevianamide A (1) (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ 45
$4.30{ }^{1} \mathrm{H}$ NMR Spectrum of Brevianamide B (2) (500 MHz, CDCl_{3}) 46
$4.31{ }^{13} \mathrm{C}$ NMR Spectrum of Brevianamide $\mathrm{B}(2)\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 46
$4.32{ }^{1} \mathrm{H}$ NMR Spectrum of Brevianamide B (2) (500 MHz, (CD3 $\left.)_{2} \mathrm{SO}\right)$ 47
$4.33{ }^{13} \mathrm{C}$ NMR Spectrum of Brevianamide B (2) (126 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ 47
$4.34{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY Spectrum of Brevianamide B (2) $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ 48
$4.35{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC Spectrum of Brevianamide B (2) (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ 48
$4.36{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC Spectrum of Brevianamide B (2) (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ 49
$4.37{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY Spectrum of Brevianamide B (2) (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ 49
$4.38{ }^{1} \mathrm{H}$ NMR Spectrum of Compound $18\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. 50
$4.39{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $18\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 50
$4.40{ }^{1} \mathrm{H}$ NMR Spectrum of 3-Chloro-3-methyl-1-butyne ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 51
$4.41{ }^{13} \mathrm{C}$ NMR Spectrum of 3-Chloro-3-methyl-1-butyne (101 MHz, CDCl_{3}) 51
$4.42{ }^{1} \mathrm{H}$ NMR Spectrum of 1,1-Dimethylallene ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 52
$4.43{ }^{13} \mathrm{C}$ NMR Spectrum of 1,1-Dimethylallene ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 52
4.44 ${ }^{1} \mathrm{H}$ NMR Spectrum of $t-\mathrm{BuOCl}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 53
$4.45{ }^{13} \mathrm{C}$ NMR Spectrum of $t-\mathrm{BuOCl}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 53
5 Chiral HPLC Chromatograms 54
5.1 Chiral HPLC Chromatograms of Brevianamide A 54
5.2 Chiral HPLC Chromatograms of Brevianamide B 56
6 X-ray Crystal Structure of (+)-Brevianamide A (1) 58
4. Overview of previous total and formal syntheses of brevianamide B.
1.1 Williams' 1988 synthesis of (-)-brevianamide B (cationic cyclization)

- 18 steps
- $1.5-2.5 \%$ overall yield
- $\quad 0.8 \mathrm{mg}$ prepared
1.2 Williams' 1998 synthesis of (\pm)-brevianamide B (first biomimetic)
- 12 steps
- 2.8% overall yield
- $\quad 7.7 \mathrm{mg}$ prepared
1.3 Williams' 2006 synthesis of (\pm)-brevianamide B (late-stage indole formation)
- 12 steps
- 1.4% overall yield
- 4.0 mg prepared

1.4 Williams' 2007 synthesis of (\pm)-brevianamide B (second biomimetic)

- 14 steps
- 0.9% overall yield
- $\quad 4.7 \mathrm{mg}$ prepared
1.5 Simpkins' 2009 synthesis of (-)-brevianamide B (cationic double-cyclization)
- 9 steps
- 1.4% overall yield
- $\quad 6.0 \mathrm{mg}$ prepared
1.6 Scheerer's 2016 formal synthesis of (\pm)-brevianamide B (first intermolecular [4+2])
- $\quad 13$ steps ($11+2$ formal steps)
- 2.9% overall yield $(6.4 \% \times 45 \%$ formal steps $)$
- $\quad 7.1 \mathrm{mg}$ of final intermediate
1.7 Scheerer's 2017 formal synthesis of (\pm)-brevianamide B (second intermolecular [4+2])
- 15 steps ($13+2$ formal steps $)$
- 2.1% overall yield $(4.6 \% \times 45 \%$ formal steps $)$
- 5.0 mg of final intermediate

1.1 Williams' 1988 synthesis of (-)-brevianamide B (cationic cyclization approach)

- 18 steps
- $1.5-2.5 \%$ overall yield
- 0.8 mg prepared

References:

1. Williams, R. M., Glinka, T. \& Kwast, E. Facial selectivity of the intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization: stereocontrolled total synthesis of brevianamide B. J. Am. Chem. Soc. 110, 59275929 (1988).
2. Williams, R. M. \& Kwast, E. Carbanion-mediated oxidative deprotection of non-enolizable benzylated amides. Tetrahedron Lett. 30, 451-454 (1989)
3. Williams, R. M., Glinka, T., Kwast, E., Coffman, H. \& Stille, J. K. Asymmetric, stereocontrolled total synthesis of (-)-brevianamide B. J. Am. Chem. Soc. 112, 808-821 (1990).

1.2 Williams' 1998 synthesis of (\pm)-brevianamide B (first biomimetic approach)

- 12 steps
- 2.8% overall yield
- 7.7 mg prepared

79%

(\pm

$$
\begin{gathered}
\text { 11. } 0.5 \mathrm{M} \mathrm{NaOH}, \mathrm{MeOH} \\
\text { rt to } 65{ }^{\circ} \mathrm{C} \\
12.4 \mathrm{M} \mathrm{HCl}, \text { rt } \\
80 \% \text { (3 steps) }
\end{gathered}
$$

References:

1. Williams, R. M., Sanz-Cervera, J. F., Sancenón, F., Marco, J. A. \& Halligan, K. Biomimetic Diels-Alder cyclizations for the construction of the brevianamide, paraherquamide sclerotamide, and VM55599 ring systems. J. Am. Chem. Soc. 120, 1090-1091 (1998).
2. Williams, R. M., Sanz-Cervera, J. F., Sancenón, F., Marco, J. A. \& Halligan, K. Biomimetic Diels-Alder cyclizations for the construction of the brevianamide, paraherquamide, sclerotamide, asperparaline and VM55599 ring systems. Bioorg. Med. Chem. 6, 1233-1241 (1998).
3. Steps 1-6 taken from; Kametani, T., Kanaya, N. \& Ihara, M. Studies on the syntheses of heterocyclic compounds. Part 876. The chiral total synthesis of brevianamide E and deoxybrevianamide E. J. Chem. Soc. Perkin Trans. I 959-963 (1981).

1.3 Williams' 2006 synthesis of (\pm)-brevianamide B (late-stage indole formation approach)

- 12 steps
- 1.4% overall yield
- 4.0 mg prepared

References:

1. Adams, L. A., Valente, M. W. N. \& Williams, R. M. A concise synthesis of d,l-brevianamide B via a biomimetically-inspired IMDA construction. Tetrahedron 62, 5195-5200 (2006).
2. Steps 1-3 taken from Dauben, W. G., Cogen, J. M., Ganzer, G. A. \& Behar, V. Photochemistry of 1,5-hexadien-3-ones: Wavelength-dependent selectivity in intramolecular enone-olefin photoadditions. J. Am. Chem. Soc. 113, 5817-5824 (1991).
1.4 Williams' 2007 synthesis of (\pm)-brevianamide B \& (\pm)-dehydrodeoxybreviaminde E (second biomimetic approach)
(\pm)-brevianamide B

- 14 steps
- 0.9% overall yield
- 4.7 mg prepared
(\pm)-dehydrodeoxybreviaminde E
- 12 steps
- 8% overall yield
- 98 mg prepared

(\pm)
(\pm

7. $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NaOH}$, dioxane, rt 8. $\mathrm{LiOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$, rt

78\% (2 steps)

References:

1. Greshock, T. J. \& Williams, R. M. Improved biomimetic total synthesis of d,l-stephacidin A. Org. Lett. 9, 4255-4258 (2007).
2. Steps 1-4 taken from; Sanz-Cervera, J. F., Glinka, T. \& Williams, R. M. Biosynthesis of brevianamides A and B: In search of the biosynthetic Diels-Alder construction. Tetrahedron 49, 8471-8482 (1993). (which used ${ }^{3} \mathrm{H}_{2} \mathrm{CO}$ in step 4)
3. Steps 5-8 taken from; Stocking, E. M., Sanz-Cervera, J. F. \& Williams, R. M. Total Synthesis of VM55599. Utilization of an Intramolecular Diels-Alder Cycloaddition of Potential Biogenetic Relevance. J. Am. Chem. Soc. 122, 1675-1683 (2000).

1.5 Simpkins' 2009 synthesis of (-)-brevianamide B (cationic double-cyclization approach)

- 9 steps
- 1.4% overall yield
- 6.0 mg prepared

References:

1. Frebault, F. C., Simpkins, N. S. \& Fenwick, A. A concise enantioselective synthesis of entmalbrancheamide B. J. Am. Chem. Soc. 131, 4214-4215 (2009).
2. Frebault, F. C. \& Simpkins, N. S. A cationic cyclisation route to prenylated indole alkaloids: synthesis of malbrancheamide B and brevianamide B, and progress towards stephacidin A. Tetrahedron 66, 6585-6596 (2010).

1.6 Scheerer's 2016 formal synthesis of (\pm)-brevianamide B (first intermolecular [4+2] approach)

- 13 steps ($11+2$ formal steps)
- 2.9% overall yield $(6.4 \% \times 45 \%$ formal steps)
- 7.1 mg of final intermediate

References:

1. Robins, J. G., Kim, K. J., Chinn, A. J., Woo, J. S. \& Scheerer, J. R. Intermolecular Diels-Alder Cycloaddition for the Construction of Bicyclo[2.2.2]diazaoctane Structures: Formal Synthesis of Brevianamide B and Premalbrancheamide. J. Org. Chem. 81, 2293-2301 (2016).
2. Steps 1-3 taken from; Laws, S. W. \& Scheerer, J. R. Enantioselective Synthesis of (+)Malbrancheamide B. J. Org. Chem. 78, 2422-2429 (2013).
3. Steps 12-13 taken from; Greshock, T. J. \& Williams, R. M. Improved biomimetic total synthesis of d,l-stephacidin A. Org. Lett. 9, 4255-4258 (2007).

1.7 Scheerer's 2017 formal synthesis of (\pm)-brevianamide B (second intermolecular [4+2] approach)

- 15 steps ($13+2$ formal steps)
- 2.1% overall yield $(4.6 \% \times 45 \%$ formal steps)
- 5.0 mg of final intermediate

References:

1. Perkins, J. C., Wang, X., Pike, R. D. \& Scheerer, J. R. Further investigation of the intermolecular Diels-Alder cycloaddition for the synthesis of bicyclo[2.2.2]diazaoctane alkaloids. J. Org. Chem. 82, 13656-13662 (2017).
2. Steps 1-3 taken from; Laws, S. W. \& Scheerer, J. R. Enantioselective Synthesis of (+)Malbrancheamide B. J. Org. Chem. 78, 2422-2429 (2013).
3. Step 4 taken from; Robins, J. G., Kim, K. J., Chinn, A. J., Woo, J. S. \& Scheerer, J. R. Intermolecular Diels-Alder Cycloaddition for the Construction of Bicyclo[2.2.2]diazaoctane Structures: Formal Synthesis of Brevianamide B and Premalbrancheamide. J. Org. Chem. 81, 2293-2301 (2016).
4. Steps 14-15 taken from; Greshock, T. J. \& Williams, R. M. Improved biomimetic total synthesis of d,l-stephacidin A. Org. Lett. 9, 4255-4258 (2007).

2. Quantitative analysis of brevianamide A and B in Penicillium brevicompactum

The ratio of brevianamide A and B in Penicillium brevicompactum cultures was determined to be consistently $\gtrsim 90: 10$ by Campbell and co-workers (see tables below). ${ }^{1}$

Supplementary Table 1. Brevianamide A and B production from P. brevicompactum colony growth: over culture, inoculum 4.8×10^{6} spores per plate.

Time after inoculation	Brevianamide A (h)	Brevianamide Ber plate) (mg per plate)	A : B
72	0.07	0.01	$87.5: 12.5$
84	0.19	0.02	$90.5: 9.5$
96	0.21	0.02	$91.3: 8.7$
108	0.45	0.03	$93.9: 6.1$
120	0.42	0.04	$91.3: 8.7$
144	0.50	0.04	$92.6: 7.4$
168	0.52	0.04	$92.9: 7.1$
192	0.53	0.05	91.4 .8 .6
216	0.49	0.04	$92.5: 7.5$

Supplementary Table 2. Brevianamide A and B production from P. brevicompactum colony growth: over culture without medium replacement, inoculum 3.6×10^{6} spores per plate.

Time after inoculation (h)	Brevianamide A $(\mathbf{m g}$ per plate)	Brevianamide B (mg per plate)	A : B
72	0.18	0.02	$90: 10$
84	0.28	0.03	$90.3: 9.7$
96	0.14	0.01	$93.3: 6.7$
108	0.19	0.02	$90.5: 9.5$
120	0.67	0.06	91.888 .2
144	0.66	0.06	$91.7: 8.3$

Supplementary Table 3. Brevianamide A and B production from P. brevicompactum colony growth: over culture with continual medium replacement, inoculum 3.6×10^{6} spores per plate.

Time after inoculation	Brevianamide A A $(\mathbf{m g}$ per plate) $)$	Brevianamide B (mg per plate)	A : B
72	0.12	0.01	$92.3: 7.7$
84	0.54	0.04	$93.1: 6.9$
96	0.84	0.08	$91.3: 8.7$
108	1.08	0.09	$92.3: 7.7$
120	1.27	0.13	$90.7: 1.3$
144	1.61	0.14	$92: 8$

References:

1. Bird, B. A. \& Campbell, I. M. Brevianamides A and B are formed only after conidiation has begun in solid cultures of Penicillium brevicompactum. Appl. Environ. Microbiol. 42, 521-525 (1981).

3. Experimental Conditions

NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 600 MHz on a Bruker 600 spectrometer with a AVANCE 3HD console, at 500 MHz on Ascend 500 spectrometers with AVANCE 3 and AVANCE 3HD consoles, and at 400 MHz on a Bruker 400 spectrometer with AVANCE 3 console. Residual solvent peaks were used as an internal reference for ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3} \delta 7.26 \mathrm{ppm}\right.$, $\mathrm{CD}_{3} \mathrm{OD} \delta 3.31 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2} \delta 5.32 \mathrm{ppm}$, and $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} \delta 2.50 \mathrm{ppm}\right)$. Coupling constants (J) are quoted to the nearest $0.1 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at 151 MHz on a Bruker 600 spectrometer with an AVANCE 3HD console, 126 MHz on Ascend 500 spectrometers with AVANCE 3 and AVANCE 3HD consoles, and at 101 MHz on a Bruker 400 spectrometer with AVANCE 3 console. Solvent peaks were used as an internal reference for ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3} \delta 77.16 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD} \delta 49.00 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2} \delta 54.00 \mathrm{ppm}\right.$, and $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} \delta 39.52 \mathrm{ppm}\right)$. Assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals was assisted by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}$ HSQC, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC and ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ NOESY experiments.

IR Spectroscopy: IR spectra were recorded as neat samples on a Shimadzu IR affinity-1 FTIR spectrometer fitted with an ATR attachment.

Mass Spectroscopy: EI mass spectra were recorded on a MAT 900 XP double focussing high resolution sector, run at 70 eV . ESI spectra were recorded on a Bruker microTOF, calibrated with sodium formate clusters, with data analysis using Data Analysis 4.1 (Bruker Daltonics).

Analytical TLC: TLC analyses were performed on Merck silica plates coated with silica gel 60 F254 (0.2 mm) and were visualised with UV light and by staining with p-anisaldehyde or KMnO_{4} standard TLC stain solutions, followed by heating.

Flash Chromatography: Flash chromatography was performed using Merck silica gel 60 (40-63 $\mu \mathrm{m})$ for routine separations and Fluorochem silica gel $60(20-45 \mu \mathrm{~m})$ for more challenging separations. Neutralised silica refers to columns packed with solvent containing $1 \% \mathrm{NEt}_{3}$ and rinsed with between 1 and 2 column volumes of solvent (free of NEt_{3}) before use.

Optical Rotation: Optical rotations were recorded using a Bellingham Stanley ADP450 polarimeter with a Bellingham Stanley 0.5 mL cell $(l=0.25 \mathrm{dm})$. Concentrations (c) are reported in $\mathrm{g} / 100 \mathrm{~mL}$.

Chiral HPLC: Analytical chiral HPLC was conducted using a modular Shimadzu system using a LC-20AD pump, DGU-20A 5R degassing unit, SIL-20A HT autosampler, CTO-20A column oven, SPD-20A UV/Vis detector and CDM-20A communications module.

Experimental Procedures, Reagents and Solvents: Unless stated otherwise, reactions were performed under a positive pressure of dry nitrogen using anhydrous solvents. Commercially available chemicals were used as received, unless specified otherwise. Solvents and reagents dried over $4 \AA$ molecular sieves were dried for at least 24 h before use. Distillates were collected in flasks cooled with a dry ice/acetone bath to avoid loss of material. For reactions performed under anhydrous reaction conditions the reaction vessels were dried with a heat gun under vacuum prior to use. For anhydrous reactions, NEt_{3} was dried over activated $4 \AA$ molecular sieves for at least 24 h before use.

Step (1) - Based on conditions reported by Vederas and co-workers. ${ }^{1}$ To a stirred suspension of L-tryptophan methyl ester hydrochloride ($25.0 \mathrm{~g}, 98.2 \mathrm{mmol}$) and phthalic anhydride (14.5 g , $98.2 \mathrm{mmol})$ in toluene $(1000 \mathrm{~mL})$ was added $\mathrm{NEt}_{3}(27.4 \mathrm{~mL}, 196 \mathrm{mmol})$ and the mixture heated at reflux for 18 h . The reaction was allowed to cool to room temperature and a mixture of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$ and water $(150 \mathrm{~mL})$ was added. The organic phase was separated, washed with brine (300 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to yield crude 14 ($33.6 \mathrm{~g}, 98 \%$ crude mass recovery) which was used without further purification in the next step. A small sample was purified by flash chromatography ($2: 3 \mathrm{EtOAc} /$ petroleum spirit) to give compound 14 as a pale-yellow foam suitable for characterisation. All data for compound 14 matched literature values. ${ }^{1}$

14
$\mathbf{R}_{\mathbf{f}} 0.24$ (2:3 EtOAc/petroleum spirit)
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (br. s, 1H), $7.74(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=5.5$, $3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.60 (app. dt, $J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (app. dt, $J=7.3,0.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.12 (ddd, $J=8.1,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (dd, J $=9.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,167.7,136.2,134.1,131.8,127.3,123.5,122.7,122.2$, $119.6,118.6,111.2,111.2,53.0,52.7,24.9 \mathrm{ppm}$;
IR (film, cm^{-1}) 3404, 3057, 3013, 2953, 2924, 2849, 1775, 1740, 1705, 1612, 1555;
HRMS (ESI ${ }^{+}$) m/z 349.1211 (calculated $[\mathrm{M}+\mathrm{H}]^{+} 349.1183$), 371.1033 (calculated $[\mathrm{M}+\mathrm{Na}]^{+}$ 371.1002)
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{23.3}-201.1^{\circ}\left(c\right.$ 1.07, $\left.\mathrm{CHCl}_{3}\right)$

Reference:

1. Liu, H., Pattabiraman, V. R. \& Vederas, J. C. Stereoselective Syntheses of 4-Oxa Diaminopimelic Acid and Its Protected Derivatives via Aziridine Ring Opening. Org. Lett. 9, 4211-4214 (2007).

Step (2) - Based on a procedure reported by Danishefsky and co-workers. ${ }^{1}$ Reaction performed under anhydrous reaction conditions. A solution of crude compound $\mathbf{1 4}(25.0 \mathrm{~g})$ and dry NEt_{3} $(12.0 \mathrm{~mL}, 86.1 \mathrm{mmol})$ in THF (250 mL) was cooled to $-78^{\circ} \mathrm{C}$, and the lights in the vicinity of the reaction were turned off. t - $\mathrm{BuOCl}(9.7 \mathrm{~mL}, 86.1 \mathrm{mmol}$, see page 30 for preparation) was added dropwise and the reaction stirred for 30 minutes at $-78^{\circ} \mathrm{C}$. A solution of B-Prenyl-9-BBN (360 $\mathrm{mL}, 180 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF, see pages $28-29$ for preparation) was added dropwise at $-78{ }^{\circ} \mathrm{C}$, over 50 min . After stirring for 1 h at $-78^{\circ} \mathrm{C}$ the cooling bath was removed and the reaction slowly allowed to warm to room temperature. Reaction progress was monitored by TLC analysis, following the disappearance of starting material $14, \mathrm{R}_{\mathrm{f}} 0.24$ (1:1 EtOAc/petroleum spirit) and appearance of an intermediate with $\mathrm{R}_{\mathrm{f}} 0.63$ (1:1 EtOAc/petroleum spirit). After stirring for 2 h saturated aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(75 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer extracted with EtOAc $(3 \times 125 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The crude product was filtered through silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated and purified by flash chromatography ($1: 9$ to $1: 3 \mathrm{EtOAc} /$ petroleum spirit) to give compound $\mathbf{1 5}$ ($21.1 \mathrm{~g}, 50.7 \mathrm{mmol}, 69 \%$ over 2 steps) as a pale-yellow foam. All spectroscopic data matched literature values. ${ }^{1}$

$\mathbf{R}_{\mathbf{f}} 0.55$ (1:1 EtOAc/petroleum spirit), 0.24 ($1: 4 \mathrm{EtOAc} /$ petroleum spirit);
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86$ (br. s, 1 H), $7.69(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{dd}, J=5.5$, $3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (app. dt, $J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (app. dt, $J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{ddd}, J=$ $8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (ddd, $J=8.0,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (dd, $J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-$ 5.17 (m, 2H), 5.15 (dd, $J=10.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (dd, $J=15.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (s, 3H), 3.67 (dd, $J=15.4,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$
${ }^{13}$ C NMR (151 MHz, CDCl_{3}) $\delta 169.7$, 167.8, 146.0, 140.3, 134.0, 134.0, 132.0, 129.9, 123.3, $121.3,119.3,117.9,112.3,110.3,106.4,53.6,52.9,39.3,27.8,27.7,24.6 \mathrm{ppm} ;$
$[\boldsymbol{\alpha}]_{D}^{23.7}-221.6^{\circ}\left(c 3.97, \mathrm{CHCl}_{3}\right)$, literature: $[\boldsymbol{\alpha}]_{D}^{\mathbf{2 5}}-180.8^{\circ}\left(c 3.9, \mathrm{CHCl}_{3}\right) .{ }^{1}$

Reference:

1. Schkeryantz, J. M., Woo, J. C. G., Siliphaivanh, P., Depew, K. M. \& Danishefsky, S. J. Total synthesis of gypsetin, deoxybrevianamide E, brevianamide E, and tryprostatin B: Novel constructions of 2,3-disubstituted indoles. J. Am. Chem. Soc. 121, 11964-11975 (1999).

Compound 16 was prepared based on conditions reported by Ley and co-workers. ${ }^{1}$ To a solution of compound $15(67 \mathrm{mg}, 0.16 \mathrm{mmol})$ in 1:1 $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added solid $\mathrm{LiOH}(19 \mathrm{mg}$, $0.79 \mathrm{mmol})$. The solution was stirred at rt for 3 h before being neutralised with $1 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organics were washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 2.5 \mathrm{~mL})$, brine $(2.5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give crude compound 16 ($62 \mathrm{mg}, 0.15 \mathrm{mmol}, 94 \%$ crude mass recovery) as a yellow foam, which was sufficiently pure for characterisation purposes.

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.91(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (app. td, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (app. td, $J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (ddd, J $=8.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=17.5,10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17$ (dd, $J=17.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=10.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (app. t, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.51$ (dd, $J=14.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=14.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$ ppm;
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.3,172.2,169.2,147.6,142.1,139.4,136.4,132.9,131.2$, 131.1, 130.5, 130.4, 129.0, 121.7, 119.6, 119.3, 112.1, 111.6, 106.6, 55.6, 40.4, 28.9, 28.5, 28.4 ppm;
IR (film, cm^{-1}) 3000, 1771, 1694, 1597, 1525, 1462, 1389;
HRMS (EI ${ }^{+}$m/z 420.16655 (calculated $[\mathrm{M}]^{+}: 420.16797$);
$[\boldsymbol{\alpha}]_{D}^{23.4}-28.3^{\circ}(c 0.10, \mathrm{MeOH})$.

Reference:

1. Hewitt, P. R., Cleator, E. \& Ley, S. V. A concise total synthesis of (+)-okaramine C. Org. Biomol. Chem. 2, 2415-2417 (2004).

Step (3) - Inspired by the work of Hell, ${ }^{1,2}$ and Fisher. ${ }^{3}$ Compound 15 ($24.6 \mathrm{~g}, 59.0 \mathrm{mmol}$) and $\mathrm{LiCl}(50.0 \mathrm{~g}, 1180 \mathrm{mmol})$ were suspended in DMF $(125 \mathrm{~mL})$ and the resulting mixture heated at $160{ }^{\circ} \mathrm{C}$ for 21 h under a flow of nitrogen. The thick brown suspension was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(300 \mathrm{~mL})$, sonicated for 30 minutes and the solid removed by filtration. The residual solid was broken up, suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$, stirred for 30 minutes and filtered. The combined filtrates were concentrated under reduced pressure, then dried at $160^{\circ} \mathrm{C}$ under reduced pressure. The crude product was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered and concentrated twice to remove any residual LiCl solid, before being dried at $160{ }^{\circ} \mathrm{C}$ under reduced pressure to give crude lithium carboxylate $\mathbf{1 7}(23.6 \mathrm{~g})$, which was used without further purification in the next step.

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.62$ (app. s, 4 H), 7.21 (app. dt, $J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (app. t, $J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{ddd}, J=8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{ddd}, J=8.0,7.0,1.0 \mathrm{~Hz} 1 \mathrm{H}), 6.26$ (dd, $J=17.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (dd, $J=17.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=10.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (dd, $J=12.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=15.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=15.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59$ (s, 3H), $1.54(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 176.1,170.1,147.8,141.3,136.2,134.6,133.7,131.1,123.5$, $121.2,118.9,118.6,111.7,111.2,108.5,57.8,40.4,28.6,28.3,26.0 \mathrm{ppm}$;
IR (film, cm^{-1}) 2924, 2365, 1773, 1701, 1611, 1466, 1396, 1350;
HRMS (ESI-) $m / z 401.1476$ (calculated [M - Li] ${ }^{-}$401.1507);
$[\boldsymbol{\alpha}]_{D}^{22.9}-226.0^{\circ}(c 0.20, \mathrm{MeOH})$.

References:

1. Fölling, J., Belov, V., Kunetsky, R., Medda, R., Schönle, A., Egner, A., Eggeling, C., Bossi, M. \& Hell, S. W. Photochromic rhodamines provide nanoscopy with optical sectioning. Angew. Chem. Int. Ed. 46, 6266-6270 (2007).
2. Belov, V. N., Bossi, M. L., Fölling, J., Boyarskiy, V. P. \& Hell, S. W. Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy. Chem. Eur. J. 15, 10762-10776 (2009).
3. Fisher, J. W. \& Trinkle, K. L. Iodide dealkylation of benzyl, PMB, PNB, and t-Butyl N-acyl amino acid esters via lithium ion coordination. Tetrahedron Lett. 35, 2505-2508 (1994).

Step (4) - Inspired by the work of Schmalz, ${ }^{1}$ and Soai. ${ }^{2}$ Reaction performed under anhydrous reaction conditions. DMF ($1.90 \mathrm{~mL}, 24.6 \mathrm{mmol}$) was added dropwise to a solution of oxalyl chloride ($6.24 \mathrm{~mL}, 73.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. A suspension of crude compound $\mathbf{1 7}$ from Step (3) $(20.1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was then added dropwise over 30 min at $0^{\circ} \mathrm{C}$ and the residual 17 was washed into the reaction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . A solution of compound $18(5.84 \mathrm{~mL}, 49.2 \mathrm{mmol}$, see page 27 for preparation) and $\mathrm{NEt}_{3}(10.3 \mathrm{~mL}, 73.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise over 20 min at $0^{\circ} \mathrm{C}$. The cooling bath was then removed and the reaction stirred for 21 h at rt . The reaction was quenched by the addition of $1 \mathrm{M} \mathrm{aq} . \mathrm{HCl}(80 \mathrm{~mL})$, the phases separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organics were washed with saturated aq. $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$, and the aqueous layer then back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organics were washed with brine (120 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give crude compound $\mathbf{1 9}(23.9 \mathrm{~g})$ which was used without further purification in the next step. A small sample could be purified by flash chromatography ($1: 1 \mathrm{EtOAc} /$ petroleum spirit) to give compound $\mathbf{1 9}$ as a lemon-yellow foam suitable for characterisation.

$\mathbf{R}_{\mathbf{f}} 0.28$ (1:1 EtOAc/petroleum spirit);
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.64($ app. s, 4 H$), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{dd}, J=$ $8.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (app. t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=17.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=3.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=10.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=17.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=10.6$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (br. s, 1H), 3.83 (dd, $J=15.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (s, 3 H), 3.62 (app. q, $J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.46$ (dd, $J=15.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (app. dtd, $J=17.6,10.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 (app. ddt, $J=17.5,10.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 167.8,167.7,162.1,146.6,140.9,137.0,134.5,134.5,131.9$, $130.3,123.6,123.5,121.5,119.4,118.1,112.3,110.6,106.6,54.2$ (beneath solvent peak), 52.6, 50.4 (br.), 39.7, 29.6, 27.9, 27.9, 25.4;

IR (film, cm^{-1}) 1775, 1713, 1655, 1639, 1611, 1437, 1381;
HRMS $\left(\mathrm{ESI}^{+}\right) m / z 512.2202$ (calculated $[\mathrm{M}+\mathrm{H}]^{+} 512.2180$), 534.2016 (calculated $[\mathrm{M}+\mathrm{Na}]^{+}$ 534.1999);
$[\boldsymbol{\alpha}]_{D}^{23.0}-130.1^{\circ}(c 0.38, \mathrm{MeOH})$.

References:

1. Huy, P., Neudörfl, J.-M. \& Schmalz, H.-G. A practical synthesis of trans-3-substituted proline derivatives through 1,4-addition. Org. Lett. 13, 216-219 (2011).
2. Ookawa, A. \& Soai, K. Asymmetric synthesis of optically active threo- and erythropyrrolidinylbenzyl alcohol by the highly stereospecific arylation of (S)-proline and the subsequent highly diastereoselective reduction of the α-amino ketone. J. Chem. Soc., Perkin Trans. 1 14651465 (1987).

Step (5) - The crude product 19 (23.9 g) from Step (4) was dissolved in a solution of NH_{3} in $\mathrm{MeOH}(7 \mathrm{M}, 1200 \mathrm{~mL})$ and stirred at room temperature for 18 h . The crude reaction mixture was concentrated under reduced pressure. Flash chromatography on neutralised silica (7:3 to 8:2 $\mathrm{EtOAc} /$ petroleum spirit) gave (+)-dehydrodeoxybrevianamide E (9) ($8.51 \mathrm{~g}, 24.4 \mathrm{mmol}, 49 \%$ over 3 steps) as a pale-yellow foam. All spectroscopic data matched literature values. ${ }^{1}$

$\mathbf{R}_{\mathbf{f}} 0.19$ (8:2 EtOAc/petroleum spirit);
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08$ (br. s, 1 H), 7.53 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (app. dt, $J=8.1,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17$ (ddd, $J=8.1,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (ddd, $J=8.1,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (app. t, $J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=17.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (br. s, 1 H), $5.20-5.15$ (m, 2H), 4.52 (ddd, $J=$ $11.3,3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=14.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=14.6$, $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (app. td, $J=9.1,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$;
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7,156.6,145.8,141.8,134.4,133.2,128.9,122.3,120.2$, $118.9,118.3,112.6,110.9,104.6,57.6,45.7,39.2,30.9,28.1,28.0,27.9 \mathrm{ppm} ;$
IR (film, cm^{-1}) 3331 br., 2967, 2926, 1672, 1639, 1435;
HRMS (ESI ${ }^{+}$) m/z 350.1875 (calculated $[\mathrm{M}+\mathrm{H}]^{+} 350.1863$), 372.1689 (calculated $[\mathrm{M}+\mathrm{Na}]^{+}$ 372.1682);
$[\boldsymbol{\alpha}]_{D}^{23.1}-33.2^{\circ}\left(c 1.30, \mathrm{CHCl}_{3}\right)$, literature: $[\boldsymbol{\alpha}]_{D}^{22}-38^{\circ}\left(c 1.3, \mathrm{CHCl}_{3}\right) .{ }^{2}$

References:

1. Greshock, T. J. \& Williams, R. M. Improved biomimetic total synthesis of d,1-stephacidin A. Org. Lett. 9, 4255-4258 (2007).
2. Steyn, P. S. The structures of five diketopiperazines from Aspergillus ustus. Tetrahedron 29, 107-120 (1973).

Step (6) - Inspired by the work of Kametani ${ }^{1}$ and Wolff. ${ }^{2}$ To a rapidly stirred solution of dehydrodeoxy-brevianamide $\mathrm{E}(9)(4.00 \mathrm{~g}, 11.5 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(80 \mathrm{~mL})$ at room temperature was added dropwise over 4 h a solution of m-CPBA in $\mathrm{CHCl}_{3}(0.29 \mathrm{M}, 40 \mathrm{~mL}, 11.7 \mathrm{mmol})$.* The reaction was stirred for 2 h at room temperature and quenched by the addition of saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$ and saturated aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The reaction mixture was diluted with EtOAc (200 mL) and $\mathrm{CHCl}_{3}(150 \mathrm{~mL})$ and the phases separated. The aqueous phase was back-extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ and the combined organics washed with saturated aq. NaHCO_{3} $(80 \mathrm{~mL})$, brine (80 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. A diastereomeric ratio of 63:37 for $\mathbf{1 2 : 2 0}$ was determined by analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of this crude reaction product. Flash column chromatography (1.5:7:3 petroleum spirit/ $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / i-\mathrm{Pr}_{2} \mathrm{O}$ to $7: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} / i-\mathrm{Pr}_{2} \mathrm{O}$ to EtOAc to $\left.i-\mathrm{PrOH}\right)$ of the crude reaction product gave dehydro-
 dehydro-brevianamide $\mathrm{E}(\mathbf{1 2})$ and compound $\mathbf{2 0}(1.37 \mathrm{~g}, 18: 82 \mathbf{1 2} / \mathbf{2 0}, 3.75 \mathrm{mmol}, 33 \%)$ as a cream foam, alongside recovered starting material dehydrodeoxy-brevianamide E (9) ($0.270 \mathrm{~g}, 0.774$ $\mathrm{mmol}, \mathbf{7 \%}$) as a cream foam. A second round of chromatography on the mixed $\mathbf{1 2 / 2 0}$ fraction gave additional pure dehydro-brevianamide $\mathrm{E}(\mathbf{1 2})(0.108 \mathrm{~g}, 0.296 \mathrm{mmol}, 3 \%)$ as a cream glass, pure minor diastereomer $20(0.454 \mathrm{~g}, 1.24 \mathrm{mmol}, 11 \%)$ as a white foam, and a fraction containing mixed dehydro-brevianamide $\mathrm{E}(\mathbf{1 2})$ and compound $\mathbf{2 0}(0.638 \mathrm{~g}, 9: 91 \mathbf{1 2} / \mathbf{2 0}, 1.75 \mathrm{mmol}, 15 \%)$. A third round of chromatography on this mixed $\mathbf{1 2} / \mathbf{2 0}$ fraction gave additional pure minor diastereomer $20(0.405 \mathrm{~g}, 1.11 \mathrm{mmol}, 10 \%)$ as a white foam. Overall, purification by column chromatography gave dehydro-brevianamide $\mathrm{E}(\mathbf{1 2})(1.54 \mathrm{~g}, 4.21 \mathrm{mmol}, 37 \%)$, compound $20(0.859 \mathrm{~g}, 2.35 \mathrm{mmol}$, 20%), and recovered dehydrodeoxy-brevianamide E (9) ($0.270 \mathrm{~g}, 0.774 \mathrm{mmol}, 7 \%$).

* m-CPBA ($69 \% \mathrm{w} / \mathrm{w}$ by iodometric titration, $4.38 \mathrm{~g}, 17.5 \mathrm{mmol}$) was added to $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(27.5 \mathrm{~g})$ with stirring for 40 mins.

$\mathbf{R}_{\mathbf{f}} 0.15\left(7: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} / i-\mathrm{Pr}_{2} \mathrm{O}\right)$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (app. td, $\left.J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 6.81 (td, $J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.74 (app. dt, $J=7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40-6.34$ (m, 2H), 6.16 (app. $\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=17.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=10.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (ddd, $J=$ $12.0,8.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=11.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 4 \mathrm{H})$, 2.43 (br. s, 1H), 1.34 (s, 3H), 1.27 (s, 3H) ppm;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.7,162.1,149.4,144.7,136.4,131.0,129.8,123.8,120.6$, $120.2,113.4,111.2,91.5,89.3,60.3,45.8,45.0,36.7,29.0,27.6,23.2 \mathrm{ppm}$;
IR (film, cm^{-1}) 3362, 2967, 2926, 1670, 1634, 1609, 1485, 1468, 1437, 1393, 1360;
HRMS $\left(\mathrm{ESI}^{+}\right) m / z 366.1814$ (calculated $[\mathrm{M}+\mathrm{H}]^{+} 366.1812$), 388.1629 (calculated $[\mathrm{M}+\mathrm{Na}]^{+}$ 388.1632);
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20.9}-208^{\circ}(c 0.23, \mathrm{EtOH})$.

20
$\mathbf{R}_{\mathbf{f}} 0.09\left(7: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} / i-\mathrm{Pr}_{2} \mathrm{O}\right)$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (app. td, $\left.J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.76$ (app. td, $J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (app. dt, $J=7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (br. s, 1 H), 6.34 (dd, $J=$ $17.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (app. t, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=17.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=$ $10.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (app. t, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{ddd}, J=12.4,11.1,6.1 \mathrm{~Hz} 1 \mathrm{H}), 3.82$ (dddd, $J=12.3,11.4,8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=13.6,8.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.57$ (br. s 1 H$), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 161.9,156.2,147.0,144.8,134.7,131.5,130.4,123.8,119.5$, $119.3,114.1,109.9,95.3,89.6,60.5,46.6,45.4,43.4,28.2,27.2,22.5 \mathrm{ppm} ;$

IR (film, cm^{-1}) 3360, 2965, 2924, 2854, 1665, 1632, 1611, 1487, 1466, 1439, 1414, 1371;
HRMS (ESI ${ }^{+}$) $m / z 366.1807$ (calculated $[\mathrm{M}+\mathrm{H}]^{+} 366.1812$);
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{22.3}+86.3^{\circ}(c 0.19, \mathrm{EtOH})$.

References:

1. Kametani, T., Kanaya, N. \& Ihara, M. Asymmetric total synthesis of brevianamide E. J. Am. Chem. Soc. 1980, 102 (11), 3974-3975.
2. Adam, W., Bosio, S. G. \& Wolff, B. T. Chiral-Auxiliary-Controlled Diastereoselectivity in the Epoxidation of Enecarbamates with DMD and mCPBA. Org. Lett. 2003, 5 (6), 819-822.

3.8 Experimental Procedure for Compounds $\mathbf{1}$ and 2

Step (7) - The synthesis of brevianamide A (1) was carried out under aerobic conditions, inspired by the work of Kishi ${ }^{1}$ and Williams. ${ }^{2}$ Effort was made to limit the exposure of the material to light once the reaction was complete, to prevent photolysis of brevianamide A (1) to brevianamide C and $\mathrm{D} .{ }^{3}$ To a solution of dehydro-brevianamide $\mathrm{E}(\mathbf{1 2)}(1.30 \mathrm{~g}, 3.56 \mathrm{mmol})$ was added a 1 M solution of aq. $\mathrm{LiOH}(450 \mathrm{~mL})$ and the reaction stirred rapidly, with vigorous manual shaking every 2-3 minutes to facilitate gradual dissolution of the starting material. After 30 minutes the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 450 \mathrm{~mL}, 2 \times 200 \mathrm{~mL})$, and the combined organics dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Flash column chromatography ($2: 8$ to $3: 7$ to $1: 1 \mathrm{THF} / \mathrm{CHCl}_{3}$ to $25: 25: 1$ $\left.\mathrm{THF} / \mathrm{CHCl}_{3} / i-\mathrm{PrOH}\right)$ gave $(+)$-brevianamide $\mathrm{A}(\mathbf{1})\left(905 \mathrm{mg}, 16.2 \% \mathrm{CHCl}_{3} \mathrm{w} / \mathrm{w}, 2.07 \mathrm{mmol}\right.$, $58 \%)^{*}$ as a yellow amorphous solid and (+)-brevianamide B (2) ($59.8 \mathrm{mg}, 0.164 \mathrm{mmol}, 5 \%$) as a yellow crystalline solid. A sample of (+)-brevianamide A (1) was crystallised from CHCl_{3} by slow vapour diffusion with $\mathrm{Et}_{2} \mathrm{O}$. See pages $58-68$ for X-ray crystal structure of brevianamide $\mathrm{A} \cdot \mathrm{CHCl}_{3}$.
*In Birch's original isolation paper brevianamide A 'crystallized from CHCl_{3} in needles containing one molecule of solvent of crystallisation'. ${ }^{4}$ The reported crystal structure for 5-bromo-brevianamide A also showed co-crystallisation with one molecule of acetone. ${ }^{5}$ Consistent with these observations, we found that a certain portion of solvent could not be removed from brevianamide A under high vacuum. Proteo-solvent was replaced with deutero-solvent to record NMR spectra for characterisation.

Spectroscopic data matched literature values reported by Zhu Weiming and co-workers. ${ }^{6}$ Subtle differences in ${ }^{1} \mathrm{H}$ NMR data are attributed to concentration effects in CDCl_{3} (see page 42).
$\mathbf{R}_{\mathbf{f}} 0.21$ (3:7 THF/ CHCl_{3});
MP $173-179{ }^{\circ} \mathrm{C}$, literature: $175-180^{\circ} \mathrm{C}$ 'with loss of solvent'; ${ }^{4}$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{ddd}, J=8.3,7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.62$ (br. s, 1 H), 4.98 (br. s, 1 H), $3.52-3.41$ (m, 2 H), $2.81-2.74(\mathrm{~m}, 2 \mathrm{H})$, $2.40(\mathrm{ddd}, J=9.8,7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (app. pd, $J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.96-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.2,172.4,169.8,160.2,137.8,124.8,121.2,119.3,112.1,78.9$, $69.5,67.8,55.7,48.4,44.1,37.4,29.2,29.0,25.1,24.1,19.9 \mathrm{ppm}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 8.65$ (br. s, 1 H), 7.84 (br. s, 1 H), 7.41 (ddd, $J=8.3,7.0,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ (ddd, $J=7.8,7.0,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{ddd}, J=10.1,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~d}, J=15.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{dd}, J=13.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H})$, 0.68 ($\mathrm{s}, 3 \mathrm{H}$) ppm;
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 199.9,172.1,169.5,160.5,137.2,123.6,119.4,116.7,111.1$, $79.0,68.5,66.4,53.1,48.3,43.2,39.5,28.4,27.2,24.6,21.2,17.7 \mathrm{ppm}$;
IR (film, cm^{-1}) 3314, 3229, 2938, 2876, 1667, 1618, 1491, 1466, 1395;
HRMS (ESI ${ }^{+}$) m/z 366.1818 (calculated [M + H] ${ }^{+} 366.1812$);
$[\boldsymbol{\alpha}]_{D}^{23.5}+316^{\circ}(c 0.12, \mathrm{EtOH})$, literature: $[\boldsymbol{\alpha}]_{D}^{\mathbf{2 5}}+413^{\circ}(\mathrm{EtOH}) ;{ }^{4}$
e.r. 93:7, after crystallisation 99:1 (Chiralpak IA, $1: 1 i-\mathrm{PrOH} /$ hexane, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}, \lambda 254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{Rminor}}$ $=5.41 \mathrm{~min}, \mathrm{t}_{\text {Rmajor }}=6.72 \mathrm{~min}$. See Pages $54-55$ for chiral HPLC traces.

Brevianamide $\mathrm{B}(\mathbf{2})$ was only sparingly soluble in CDCl_{3}, consistent with the observation in Birch's original isolation paper that brevianamide B 'was insoluble in most solvents except hot DMSO and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, the latter causing decomposition'. ${ }^{3}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra could be recorded using a saturated sample in CDCl_{3}, to enable comparison to literature data, ${ }^{7,8}$ however 2D NMR spectra were unobtainable. High quality 1D and 2D NMR spectra were instead recorded in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.

$\mathbf{R}_{\mathbf{f}} 0.08$ ($3: 7 \mathrm{THF} / \mathrm{CHCl}_{3}$);

MP 286-290 ${ }^{\circ} \mathrm{C}$ (decomposition), literature: $324-328{ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{3}$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56$ (app. ddt, $J=7.6,1.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (ddd, $J=8.4,7.1,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84-6.78$ (m, 2H), 5.78 (br. s, 1H), 4.73 (br. s, 1H), $3.50-3.44$ (m, 2H), 3.31 (ddd, J $=10.3,7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{ddd}, J=13.1,7.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-$ $1.93(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~d}, J=15.7,1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.9,173.4,169.2,160.3,137.5,125.2,120.1,119.2,111.5,77.7$, $68.9,66.5,49.7,46.6,44.0,36.8,29.3,28.6,25.1,22.6,20.5 \mathrm{ppm}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 8.64$ (br. s, 1 H$), 7.41$ (ddd, $\left.J=8.3,7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33$ (d, J $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (br. s, 1H), 6.89 (app. dt, $J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ (ddd, $J=7.8,7.0,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.01$ (ddd, $J=10.3,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (dd, $J=11.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{dd}, J=13.0,7.5 \mathrm{~Hz}$, 1 H), 1.05 ($\mathrm{s}, 3 \mathrm{H}$), 0.63 (s, 3H) ppm;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 204.7,172.6,169.2,161.3,137.2,123.8,118.1,116.9,111.4$, $77.5,68.1,65.2,48.8,46.0,43.3,33.4,28.4,27.5,24.4,21.9,19.7 \mathrm{ppm} ;$
IR (film, cm^{-1}) 3348, 3231, 2949, 2878, 1705, 1664, 1653, 1616, 1587, 1495, 1468;
HRMS (ESI ${ }^{+}$) m/z 366.1796 (calculated [M + H] ${ }^{+} 366.1812$);
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 4 . 7}}+136^{\circ}\left(c 0.23,2.5 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, literature (enantiomer): $[\boldsymbol{\alpha}]_{D}^{\mathbf{2 5}}-147^{\circ}(c 0.23,2.5 \%$ $\mathrm{HCO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), ${ }^{8}[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 5}}-124^{\circ}\left(c 0.81,2.5 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{7}$
e.r. 93:7 (Chiralpak IA, 1:3 EtOH/hexane, $1 \mathrm{~mL} \mathrm{~min}-\lambda 254 \mathrm{~nm}$) $\mathrm{t}_{\text {Rminor }}=13.99 \mathrm{~min}$, $\mathrm{t}_{\text {Rmajor }}=$ 26.10 min . See Pages 56-57 for chiral HPLC traces.

References:

1. Hutchison, A. J. \& Kishi, Y. Stereospecific total synthesis of dl-austamide. J. Am. Chem. Soc. 101, 6786-6788 (1979).
2. Greshock, T. J. \& Williams, R. M. Improved biomimetic total synthesis of d,l- stephacidin A. Org. Lett. 9, 4255-4258 (2007).
3. Birch, A. J. \& Russell, R. A. Studies in relation to biosynthesis-XLIV: Structural elucidations of brevianamides-B, -C, -D and -F. Tetrahedron 28, 2999-3008 (1972).
4. Birch, A. J. \& Wright, J. J. Studies in relation to biosynthesis-XLII: The structural elucidation and some aspects of the biosynthesis of the brevianamides-A and -E. Tetrahedron 26, 2329-2344 (1970).
5. Coetzer, J. The structure and absolute configuration of 5-bromobrevianamide A. Acta Crystallographica Section B 30, 2254-2256 (1974).
6. Lingling, C., Tonghan, Z., Guoliang, Z., Yunlong, L., Cong, W., Pawinee, P., Arthit, C. \& Weiming, Z. Bioactive Natural Products from the Marine-Derived Penicillium brevicompactum OUCMDZ-4920. Chin. J. Org. Chem. 37, 2752-2762 (2017).
7. Williams, R. M., Glinka, T., Kwast, E., Coffman, H. \& Stille, J. K. Asymmetric, stereocontrolled total synthesis of (-)-brevianamide B. J. Am. Chem. Soc. 112, 808-821 (1990).
8. Frebault, F. C. \& Simpkins, N. S. A cationic cyclisation route to prenylated indole alkaloids: synthesis of malbrancheamide B and brevianamide B , and progress towards stephacidin A. Tetrahedron 66, 6585-6596 (2010).

To a solution of compound $\mathbf{2 0}(234 \mathrm{mg}, 0.640 \mathrm{mmol})$ was added a 1 M solution of aq. LiOH $(80 \mathrm{~mL})$ and the reaction stirred rapidly, with vigorous manual shaking every $2-3$ minutes to facilitate gradual dissolution of the starting material. After 30 minutes the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 100 \mathrm{~mL})$, and the combined organics dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Flash column chromatography ($2: 8$ to $3: 7$ to $1: 1 \mathrm{THF} / \mathrm{CHCl}_{3}$ to $25: 25: 1 \mathrm{THF} / \mathrm{CHCl}_{3} / i-\mathrm{PrOH}$) gave (-)brevianamide A (ent-1) ($\left.155 \mathrm{mg}, 17.5 \% \mathrm{CHCl}_{3} \mathrm{w} / \mathrm{w}, 0.350 \mathrm{mmol}, 55 \%\right)^{*}$ as a yellow amorphous solid and (-)-brevianamide B (ent-2) ($12 \mathrm{mg}, 0.032 \mathrm{mmol}, 5 \%$) as a yellow crystalline solid.
*In Birch's original isolation paper brevianamide A 'crystallized from CHCl_{3} in needles containing one molecule of solvent of crystallisation'. ${ }^{1}$ The reported crystal structure for 5-bromo-brevianamide A also showed co-crystallisation with one molecule of acetone. ${ }^{2}$ Consistent with these observations, we found that a certain portion of solvent could not be removed from brevianamide A under high vacuum. Proteo-solvent was replaced with deutero-solvent to record NMR spectra for characterisation.

$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{24.7}-281^{\circ}(c 0.12, \mathrm{EtOH})$, literature (enantiomer): $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{25}+413^{\circ}(\mathrm{EtOH}) ;{ }^{1}$
e.r. $95: 5$ (Chiralpak IA, $1: 1 i-\mathrm{PrOH} /$ hexane, $\left.1 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda 254 \mathrm{~nm}\right) \mathrm{t}_{\mathrm{Rmajor}}=5.38 \mathrm{~min}, \mathrm{t}_{\mathrm{Rminor}}=$ 6.74 min . See Pages 54-55 for chiral HPLC traces.

$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{25.1}-119^{\circ}\left(c 0.23,2.5 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, literature: $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{25}-147^{\circ}\left(c 0.23,2.5 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), ${ }^{3}[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{25}-124^{\circ}\left(c 0.81,2.5 \% \mathrm{HCO}_{2} \mathrm{H}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, ${ }^{4}$
e.r. 92:8 (Chiralpak IA, $1: 3 \mathrm{EtOH} /$ hexane, $\left.1 \mathrm{~mL} \mathrm{~min}{ }^{-1}, \lambda 254 \mathrm{~nm}\right) \mathrm{t}_{\mathrm{Rmajar}}=13.86 \mathrm{~min}, \mathrm{t}_{\mathrm{Rminor}}=$ 26.14 min . See Pages 56-57 for chiral HPLC traces.

References:

1. Birch, A. J., \& Wright, J. J. Studies in relation to biosynthesis-XLII: The structural elucidation and some aspects of the biosynthesis of the brevianamides-A and -E. Tetrahedron 1970, 26 (10), 2329-2344.
2. Coetzer, J. The structure and absolute configuration of 5-bromobrevianamide A. Acta Crystallographica Section B 30, 2254-2256 (1974).
3. Frebault, F. C. \& Simpkins, N. S. A cationic cyclisation route to prenylated indole alkaloids: synthesis of malbrancheamide B and brevianamide B, and progress towards stephacidin A. Tetrahedron 66, 6585-6596 (2010).
4. Williams, R. M., Glinka, T., Kwast, E., Coffman, H. \& Stille, J. K. Asymmetric, stereocontrolled total synthesis of (-)-brevianamide B. J. Am. Chem. Soc. 112, 808-821 (1990).
3.10 Experimental Procedure for Compound 18

Compound $\mathbf{1 8}$ was prepared under anhydrous conditions, based on a procedure reported by Schmalz and co-workers. ${ }^{1}$ To a rapidly stirred suspension of L-proline methyl ester hydrochloride $(25.0 \mathrm{~g}, 151 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(48.3 \mathrm{~mL}, 347 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(450 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added slowly, portion-wise, solid NCS ($22.2 \mathrm{~g}, 166 \mathrm{mmol}$). The mixture was stirred at room temperature for 3 h and then diluted with $\mathrm{Et}_{2} \mathrm{O}(350 \mathrm{~mL})$. A mixture of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$ and water (150 mL) was added, the organic phase was separated and the aqueous phase was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 150 \mathrm{~mL})$. The combined organics were washed with a mixture of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$, saturated aq. $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$, brine $(150 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Vacuum distillation under reduced pressure (5 mbar) gave imine $\mathbf{1 8}(15.1 \mathrm{~g}, 119 \mathrm{mmol}, 79 \%)$ as a pale-yellow liquid. All spectroscopic data matched literature values. ${ }^{2}$
$\mathrm{C}_{18}^{\mathrm{N}} \mathrm{CO}_{2} \mathrm{Me}$
BP $60-64{ }^{\circ} \mathrm{C}$ (5 mbar);
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.04$ (app. $\mathrm{tt}, J=7.6,2.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.80 ($\mathrm{s}, 3 \mathrm{H}$), 2.76 (app. ddt, $J=$ $8.5,7.6,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,163.2,62.5,52.5,35.3,22.1 \mathrm{ppm}$.

References:

1. Huy, P., Neudörfl, J.-M. \& Schmalz, H.-G. A practical synthesis of trans-3- substituted proline derivatives through 1,4-addition. Org. Lett. 13, 216-219 (2011).
2. Sezen, B. \& Sames, D. Oxidative C-Arylation of Free (NH)-Heterocycles via Direct (sp^{3}) C-H Bond Functionalization. J. Am. Chem. Soc. 126, 13244-13246 (2004).

1,1-Dimethylallene is a commercially available reagent, but was prepared on large scale based on a procedure reported by Pfeffer and co-workers. ${ }^{1}$

Step (1) - Anhydrous $\mathrm{CaCl}_{2}(229 \mathrm{~g}, 2.06 \mathrm{~mol})$ was added in portions to a stirred mixture of concentrated hydrochloric acid (800 mL), 2-methyl-3-butyn-2-ol ($200 \mathrm{~mL}, 2.06 \mathrm{~mol}$) and hydroquinone ($1.82 \mathrm{~g}, 16.5 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ over 7 minutes and the reaction was stirred for 1 h at room temperature. The layers were seperated and solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ added cautiously to the organic phase until effervescence ceased. The organic phase was then distilled under reduced pressure, collected up to $50{ }^{\circ} \mathrm{C}$ at 147 mbar. The crude distilate was redistilled under reduced pressure (147 mbar) to give 3-chloro-3-methyl-1-butyne ($103 \mathrm{~g}, 1.00 \mathrm{~mol}, 49 \%$) as a colourless oil. All spectroscopic data matched a comercially available sample.

BP $32-36{ }^{\circ} \mathrm{C}$ (147 mbar);
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.62(\mathrm{~s}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 86.7,72.0,57.1,34.7 \mathrm{ppm}$.
Step (2) - Zinc powder ($52.0 \mathrm{~g}, 760 \mathrm{mmol}$) was washed with 3% aq. $\mathrm{HCl}(4 \times 40 \mathrm{~mL})$, 2% aq. $\mathrm{CuSO}_{4}(2 \times 60 \mathrm{~mL})$, ethanol $(2 \times 60 \mathrm{~mL})$ and n-butanol $(2 \times 60 \mathrm{~mL})$. The treated zinc was suspended in n-butanol (110 mL) in a 3 neck RBF with a dropping funnel, magnetic stirrer bar and a distillation head fitted with a 30 cm Vigreux column. 3-Chloro-3-methyl-1-butyne (44.4 mL , 390 mmol) was placed in the dropping funnel along with 1,2-dibromoethane (2.50 mL , 29.0 mmol). A portion of the alkyne mixture (3 mL) was added to the zinc butanol slurry along with a few crystals of iodine and 1,2-dibromoethane ($2.50 \mathrm{~mL}, 29.0 \mathrm{mmol}$). The mixture was then heated cautiously (using a heat gun) with stirring until the reaction had clearly commenced. Slow addition of the remaining alkyne mixture followed, with external heating applied to maintain the reaction. The crude product was collected by distillation from the reaction mixture during the course of the reaction, and external heat applied to continue collection up to a temperature of 44 ${ }^{\circ} \mathrm{C}$. The crude distillate was redistilled to give 1,1-dimethylallene ($17.5 \mathrm{~g}, 257 \mathrm{mmol}, 66 \%$) as a colourless liquid. All spectroscopic data matched literature values. ${ }^{1}$

BP $40-42{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.52(\mathrm{hept}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{t}, J=3.2 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.8,94.2,72.7,20.3 \mathrm{ppm}$.
Step (3) - A solution of B-Prenyl-9-BBN was prepared under anhydrous conditions, based on a procedure reported by Trauner and co-workers. ${ }^{66}$ A solution of $9-\mathrm{BBN}$ in THF (360 mL , $179 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF) was cooled to $0^{\circ} \mathrm{C}$. Once the solution was observed to go cloudy, $1,1-$ dimethylallene ($20.5 \mathrm{~mL}, 208 \mathrm{mmol}$) was added dropwise over 30 minutes with stirring. The reaction was warmed to room temperature and stirred for 18 h before being used directly in the reverse prenylation procedure described on page 15.

References:

1. Chengebroyen, J., Linke, M., Robitzer, M., Sirlin, C. \& Pfeffer, M. Palladium-mediated intramolecular $\mathrm{C}-\mathrm{N}$ bond formation involving allyl substituted pyridines. Application to a novel strategy for the synthesis of the skeleton of berberinium derivatives. J. Organomet. Chem. 687, 313-321 (2003).
2. Kuttruff, C. A., Zipse, H. \& Trauner, D. Concise Total Syntheses of Variecolortides A and B through an Unusual Hetero-Diels-Alder Reaction. Angew. Chem. Int. Ed. 50, 1402-1405 (2011).
3.12 Experimental Procedure for $t-\mathrm{BuOCl}$

$$
t-\mathrm{BuOH} \xrightarrow[{\substack{39 \% \\[16 \mathrm{~g} \mathrm{scale}]}}]{\substack{\text { aq. } \mathrm{NaOCl}, \mathrm{AcOH} \\<10{ }^{\circ} \mathrm{C}, 3 \mathrm{~min}}} t \text {-BuOCl }
$$

$t-\mathrm{BuOCl}$ was prepared based on a procedure reported by Mintz and co-workers. ${ }^{1}$ For safety reasons exposure of the reaction and product to light was minimised.

An aqueous solution of bleach ($500 \mathrm{~mL}, 0.767 \mathrm{M}, 384 \mathrm{mmol}$)* was cooled below $10{ }^{\circ} \mathrm{C}$ with stirring. A solution of $t-\mathrm{BuOH}(43.3 \mathrm{~mL}, 383 \mathrm{mmol})$ and glacial acetic acid ($24.1 \mathrm{~mL}, 421 \mathrm{mmol}$) was added in a single portion to the rapidly stirred bleach and the stirring continued for 3 min . The entire reaction mixture was transferred to a separating funnel, the aqueous layer discarded, the yellow organic layer washed with 10% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The product was dried $\left(\mathrm{CaCl}_{2}\right.$ approximately 3 g$)$ and decanted into its final container via pipette. The $t-\mathrm{BuOCl}$ $(16.4 \mathrm{~g}, 151 \mathrm{mmol}, 39 \%)$ was stored in a fridge over CaCl_{2} in an amber glass bottle as a yellow liquid.
*Bleach solution was titrated to a concentration of 0.767 M by iodometric titration using sodium thiosulfate prior to use.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;$
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 84.1,27.0 \mathrm{ppm}$.

References:

1. Mintz, M. J. \& Walling, C. t-BUTYL HYPOCHLORITE. Org. Synth. 49, 9 (1969).
4.1 ${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 14 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4.2 ${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $14\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4.4 ${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $15\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4.5 ${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $16\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

4.6 ${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{1 6}$ ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

4.7 ${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $17\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

4.8 ${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 17 ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

4.10 ${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $19\left(151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$

4.11 ${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 9 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4.12 ${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $9\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4.14 ${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{1 2}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4.15 ${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $20\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4.16 ${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 20 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4.17 ${ }^{1} \mathrm{H}$ NMR Spectrum of Brevianamide A (1) ($500 \mathrm{MHz}, \mathrm{CDCl}_{3,} \sim 3.0 \mathrm{mg} / \mathrm{mL}$)

4.18 ${ }^{13} \mathrm{C}$ NMR Spectrum of Brevianamide A (1) ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \sim 3.0 \mathrm{mg} / \mathrm{mL}$)

4.19 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY Spectrum of Brevianamide A (1) $\left(\mathrm{CDCl}_{3}\right)$

$4.20{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC Spectrum of Brevianamide A (1) $\left(\mathrm{CDCl}_{3}\right)$

4.21 ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC Spectrum of Brevianamide A (1) $\left(\mathrm{CDCl}_{3}\right)$

4.22 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY Spectrum of Brevianamide A (1) $\left(\mathrm{CDCl}_{3}\right)$

4.23 ${ }^{1} \mathrm{H}$ NMR Spectra of Brevianamide A (1) $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ - conc. dependence)

$\sim 3.0 \mathrm{mg} / \mathrm{mL}$

\qquad suru
$\sim 1.5 \mathrm{mg} / \mathrm{mL}$

\qquad Ω uru
$\sim 0.75 \mathrm{mg} / \mathrm{mL}$

\qquad nus

$\sim 0.38 \mathrm{mg} / \mathrm{mL}$
culu \qquad nurl

[^0]

		な.		¢	$\underset{\sim}{\text { İ }}$							$\underset{\sim}{\underset{\sim}{4}}$						$\underset{\substack{\text { I }}}{\substack{\text { N }}}$	$$	
J. 0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0
										(pp							1.5	1.0		0

4.25 ${ }^{13} \mathrm{C}$ NMR Spectrum of Brevianamide A (1) $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

$4.26{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY Spectrum of Brevianamide A (1) ((CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right)$

$4.27{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC Spectrum of Brevianamide A (1) (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

$4.28{ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HMBC Spectrum of Brevianamide A (1) $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

$4.29{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ NOESY Spectrum of Brevianamide A (1) $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

4.30 ${ }^{1} \mathrm{H}$ NMR Spectrum of Brevianamide B (2) ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4.31 ${ }^{13} \mathrm{C}$ NMR Spectrum of Brevianamide $\mathrm{B}(\mathbf{2})\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4.33 ${ }^{13} \mathrm{C}$ NMR Spectrum of Brevianamide B (2) (126 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

$4.34{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY Spectrum of Brevianamide B(2)((CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right)$

$4.35{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC Spectrum of Brevianamide B (2) (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

$4.36{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC Spectrum of Brevianamide B(2) $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

$4.37{ }^{1} \mathrm{H}^{-1} \mathrm{H}$ NOESY Spectrum of Brevianamide B (2) (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

4.38 ${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $\mathbf{1 8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4.39 ${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{1 8}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4.40 ${ }^{1} \mathrm{H}$ NMR Spectrum of 3-Chloro-3-methyl-1-butyne ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\overbrace{=}^{\mathrm{Cl}}=$

4.41 ${ }^{13} \mathrm{C}$ NMR Spectrum of 3-Chloro-3-methyl-1-butyne ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4.42 ${ }^{1} \mathrm{H}$ NMR Spectrum of 1,1-Dimethylallene ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
\geqslant.

4.43 ${ }^{13} \mathrm{C}$ NMR Spectrum of 1,1-Dimethylallene ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4.44 ${ }^{1} \mathrm{H}$ NMR Spectrum of $t-\mathrm{BuOCl}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\overbrace{\mathrm{Me}}^{\mathrm{Me}}$
4.45 ${ }^{13} \mathrm{C}$ NMR Spectrum of t - $\mathrm{BuOCl}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\overbrace{\mathrm{Me}}^{\mathrm{Me}} i_{\mathrm{Cl}}$

5 Chiral HPLC Chromatograms

5.1 Chiral HPLC Chromatograms of Brevianamide A
$(+) /(-)$-brevianamide A (1)
(Chiralpak IA, 1:1 i-PrOH/hexane, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}, \lambda 254 \mathrm{~nm}$)
$\mathrm{t}_{\mathrm{R} 1}=5.40 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 2}=6.74 \mathrm{~min}$.

\section*{<Chromatogram>
 mV

 <Peak Table>
 | Detector A Channel 1 254nm | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak\# | Ret. Time 5.402 | Area 2456350 | Height 202003 | Conc. 53.925 | Unit | Mark | Name |
| 2 | 6.735 | 2098773 | 147492 | 46.075 | | | |
| Total | | 4555123 | 349495 | | | | |

(+)-brevianamide A (1) e.r. 93:7
(Chiralpak IA, 1:1 $i-\mathrm{PrOH} /$ hexane, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}, \lambda 254 \mathrm{~nm}$)
$\mathrm{t}_{\text {Rminor }}=5.41 \mathrm{~min}, \mathrm{t}_{\text {Rmajor }}=6.72 \mathrm{~min}$.

<Chromatogram>

mV

<Peak Table>

Detector A Channel 1254 nm							
Peak\# Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	5.414	289622	23737	7.232			
2	6.717	3715018	269840	92.768			
Total		4004641	293577				

(+)-brevianamide A (1) e.r. 99:1 after crystallisation
(Chiralpak IA, 1:1 i-PrOH/hexane, $1 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda 254 \mathrm{~nm}$)
$\mathrm{t}_{\text {Rminor }}=5.51 \mathrm{~min}, \mathrm{t}_{\text {Rmajor }}=6.84 \mathrm{~min}$.

<Chromatogram>

mV

<Peak Table>

Detector A Channel 1254 nm							
Peak\# Ret. Time	Area	Height	Conc.	Unit	Mark		
1	5.507	24842	2113	1.220			
2	6.835	2010703	140355	98.780			
Total		2035545	142469				

(-)-brevianamide A (1) e.r. 95:5
(Chiralpak IA, 1:1 i-PrOH/hexane, $1 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda 254 \mathrm{~nm}$)
$\mathrm{t}_{\text {Rmajor }}=5.38 \mathrm{~min}, \mathrm{t}_{\text {Rminor }}=6.74 \mathrm{~min}$.

<Chromatogram>

mV

<Peak Table>

| Detector A Channel 1254 nm | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark | Name |
| 1 | 5.383 | 4758681 | 396107 | 95.170 | | | |
| 2 | 6.738 | 241511 | 19400 | 4.830 | | | |
| Total | | 5000192 | 415507 | | | | |

5.2 Chiral HPLC Chromatograms of Brevianamide B

(+)/(-)-Brevianamide B (2)
(Chiralpak IA, 1:3 EtOH/hexane, $1 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda 254 \mathrm{~nm}$)
$\mathrm{t}_{\mathrm{R} 1}=13.86 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 2}=26.03 \mathrm{~min}$.

<Chromatogram>

mV

<Peak Table>

Detecto	or A Chann	254 nm					
Peak\#	$\begin{array}{r} \text { Ret. Time } \\ 13.860 \end{array}$	Area 1202069	Height 38310	Conc. 45.782	Unit	Mark	Name
2 Total	26.032	$\begin{aligned} & 1423551 \\ & 2625620 \end{aligned}$	$\begin{aligned} & 30114 \\ & 68424 \end{aligned}$	54.218			

(+)-Brevianamide B (2) e.r. 93:7
(Chiralpak IA, 1:3 EtOH/hexane, $1 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda 254 \mathrm{~nm}$)
$\mathrm{t}_{\text {Rminor }}=13.99 \mathrm{~min}, \mathrm{t}_{\text {Rmajor }}=26.10 \mathrm{~min}$.
<Chromatogram>
mV

<Peak Table>

Detector A Channel 1254 nm							
Peak\# 1	Ret. Time 13.987	Area 162378	Height 5219	Conc. 6.875	Unit	Mark	Name
2	26.097	2199609	46337	93.125			
Total		2361987	51556				

(-)-Brevianamide B (2) e.r. 92:8
(Chiralpak IA, 1:3 EtOH/hexane, $1 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda 254 \mathrm{~nm}$)
$\mathrm{t}_{\text {Rmajor }}=13.86 \mathrm{~min}, \mathrm{t}_{\text {Rminor }}=26.14 \mathrm{~min}$.

<Chromatogram>

mV

<Peak Table>

Detector A Channel 1254 nm						
Peak\# Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.856	2058078	66555	91.955		
2	26.142	180065	3929	8.045		
Total		2238144	70484			

Submitted by: Robert Godfrey
The University of Edinburgh
Solved by: Gary S Nichol
Sample ID: RG-G-96

Compound RG-G-96 was provided as orange prism/plate-shaped crystals suitable for single crystal Xray diffraction, yielding structure AL19001.

Crystal Data and Experimental

Experimental. Single yellow plate-shaped crystals of AL19001 were recrystallised from a mixture of chloroform and diethyl ether by vapour diffusion. A suitable crystal $0.24 \times 0.09 \times 0.05 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder in Paratone oil on an Rigaku Oxford Diffraction SuperNova diffractometer. The crystal was kept at a steady $T=120.0 \mathrm{~K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}, M_{r}=484.79$, monoclinic, $I 2$ (No. 5), $a=13.2441(2) \AA, \quad b=8.65980(10) \AA, \quad c=$ 20.3280(2) $\AA, \quad \beta=104.2140(10)^{\circ}, \quad \alpha=\gamma=90^{\circ}, \quad V=$ $2260.07(5) \AA^{3}, T=120.0 \mathrm{~K}, Z=4, Z^{\prime}=1, \mu\left(\mathrm{CuK}_{\alpha}\right)=3.919$, 22429 reflections measured, 4696 unique ($R_{\text {int }}=0.0715$) which were used in all calculations. The final $w R_{2}$ was 0.1135 (all data) and R_{1} was 0.0434 (I > 2(I)).

Compound	AL19001
Formula	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.425
μ / mm^{-1}	3.919
Formula Weight	484.79
Colour	yellow
Shape	plate
Size/mm ${ }^{3}$	$0.24 \times 0.09 \times 0.05$
T/K	120.0
Crystal System	monoclinic
Flack Parameter	-0.007(8)
Hooft Parameter	-0.004(5)
Space Group	I2
$a / \AA ̊$	13.2441(2)
b / \AA	8.65980(10)
c / \AA	20.3280(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	104.2140(10)
$\gamma /{ }^{\circ}$	90
V/ \AA^{3}	2260.07(5)
Z	4
Z'	1
Wavelength/Å	1.54184
Radiation type	CuK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	3.618
$\Theta_{\max } /{ }^{\circ}$	76.076
Measured Refl.	22429
Independent Refl.	4696
Reflections with I > 2(I)	4622
$R_{\text {int }}$	0.0715
Parameters	301
Restraints	12
Largest Peak	0.283
Deepest Hole	-0.377
GooF	1.040
$w R_{2}$ (all data)	0.1135
$w^{2} 2$	0.1130
R_{1} (all data)	0.0437
R_{1}	0.0434

Structure Quality Indicators

Reflections:
 Refinement:
 d min (Cu)
 $0.79^{1 / \sigma}$
 29.7
 7.15% complete 100% (UUCr) 100%
 Shift 0.000 Max Peak 0.3
 Min Peak -0.4

A yellow plate-shaped crystal with dimensions $0.24 \times 0.09 \times 0.05 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder in Paratone oil. Data were collected using an Rigaku Oxford Diffraction SuperNova diffractometer equipped with an Oxford Cryosystems Cryostream 700+ low-temperature device operating at $T=120.0 \mathrm{~K}$.

Data were measured using ω scans using CuK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.39.46, 2018) The maximum resolution that was achieved was $\Theta=76.076^{\circ}(0.79 \AA$ Å).

The diffraction pattern was indexed The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.39.46, 2018) and the unit cell was refined using CrysAlisPro (Rigaku, V1.171.39.46, 2018) on 18841 reflections, 84% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro (Rigaku, V1.171.39.46, 2018). The final completeness is 100.00% out to 76.076° in Θ. A multi-scan absorption correction was performed using CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) using spherical harmonicsas implemented in SCALE3 ABSPACK.. The absorption coefficient μ of this material is $3.919 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=1.542 \AA$) and the minimum and maximum transmissions are 0.732 and 1.000 .

The structure was solved and the space group I2 (\# 5) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Most hydrogen atom positions were calculated geometrically and refined using the riding model, but some hydrogen atoms were refined freely.
_refine_special_details: N-bound H atoms were identified from a difference Fourier map and freely refined. C14 was modelled as disordered over two sites consistent with a residual peak in a difference map. Geometric and displacement ellipsoid restraints were used

The Flack parameter was refined to $-0.007(8)$. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in $-0.004(5)$. Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Data Plots: Diffraction Data

Data Plots: Refinement and Data

Reflection Statistics

Total reflections (after filtering)	22429	Unique reflections	4696
Completeness	0.992	Mean I/ σ	22.37
$\mathrm{hkl} \mathrm{max}^{\text {collected }}$	$(16,10,24)$	$\mathrm{hkl}_{\text {min }}$ collected	(-16, -10, -25)
$\mathrm{hkl}_{\text {max }}$ used	$(16,10,25)$	$\mathrm{hkl}_{\text {min }}$ used	$(-16,-10,0)$
Lim dmax ${ }_{\text {max }}$ collected	100.0	Lim dmin ${ }_{\text {min }}$ collected	0.77
$\mathrm{d}_{\text {max }}$ used	12.22	$\mathrm{d}_{\text {min }}$ used	0.79
Friedel pairs	3373	Friedel pairs merged	0
Inconsistent equivalents	39	Rint	0.0715
$\mathrm{R}_{\text {sigma }}$	0.0337	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	0
Multiplicity	$\begin{aligned} & (2018,2488,1509,896,509 \\ & 293,113,66,60,54,32,17,4 \end{aligned}$ 1)	Maximum multiplicity	16
Removed systematic abse		Filtered off (Shel/OMIT)	0

Table 1: Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for AL19001. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\boldsymbol{U}_{\boldsymbol{e q}}$
Cl 1	$5403.6(6)$	$10543.2(12)$	$957.1(4)$	$45.8(2)$
Cl 2	$4150.5(11)$	$7793.6(15)$	$635.0(6)$	$69.2(4)$

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\boldsymbol{U}_{e q}$
Cl3	$3665.4(6)$	$10071.0(11)$	$1550.5(4)$	$41.5(2)$
C51	$4662(2)$	$9167(4)$	$1266.6(15)$	$34.0(6)$
O3	$5568.8(19)$	$7723(3)$	$2669.1(11)$	$36.9(5)$
O11	$2503.3(16)$	$1574(2)$	$2500.9(11)$	$26.4(4)$
O17	$3852.8(16)$	$4056(3)$	$4699.3(10)$	$29.8(4)$
N1	$6559.5(18)$	$5817(3)$	$4225.4(11)$	$26.7(5)$
N10	$3504.9(17)$	$3609(2)$	$3018.7(11)$	$20.9(4)$
N16	$3939.4(18)$	$1792(3)$	$4142.0(11)$	$23.1(5)$
C2	$5805(2)$	$5759(3)$	$3567.3(12)$	$23.4(5)$
C3	$6069(2)$	$7250(3)$	$3219.7(14)$	$26.5(5)$
C3A	$6966(2)$	$7942(3)$	$3680.1(14)$	$24.9(5)$
C4	$7527(2)$	$9290(3)$	$3620.3(16)$	$29.1(6)$
C5	$8325(2)$	$9736(4)$	$4167.3(18)$	$35.3(6)$
C6	$8552(2)$	$8836(4)$	$4760.7(16)$	$32.2(6)$
C7	$8008(2)$	$7506(4)$	$4827.0(14)$	$27.3(5)$
C7A	$7192(2)$	$7061(3)$	$4272.6(14)$	$23.5(5)$
C8	$4665.0(19)$	$5717(3)$	$3638.1(13)$	$23.4(5)$
C9	$4365.4(19)$	$4010(3)$	$3612.1(12)$	$19.6(5)$
C11	$3239(2)$	$2112(3)$	$2940.0(12)$	$21.5(5)$
C12	$4003(2)$	$1148(3)$	$3472.1(13)$	$23.0(5)$
C13	$3702(2)$	$-526(3)$	$3521.8(14)$	$30.2(6)$
C14	$2973(4)$	$-500(5)$	$3972(2)$	$36.3(11)$
C15	$3492(3)$	$696(4)$	$4537.2(17)$	$36.7(7)$
C17	$4024(2)$	$3337(3)$	$4222.6(13)$	$22.0(5)$
C18	$5096(2)$	$1458(3)$	$3355.3(13)$	$24.6(5)$
C19	$5368.9(19)$	$3125(3)$	$3569.7(12)$	$20.5(5)$
C20	$5928(2)$	$4224(3)$	$3178.2(13)$	$23.3(5)$
C21	$7064(2)$	$3757(4)$	$3255.3(17)$	$34.7(6)$
C22	$5389(2)$	$4348(4)$	$2418.1(13)$	$30.5(6)$
C14A	$3891(9)$	$-875(12)$	$4304(5)$	$26(3)$

Table 2: Anisotropic Displacement Parameters ($\times 10^{4}$) AL19001. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \times U_{11}+\ldots+2 h k a^{*} \times b^{*} \times U_{12}\right]$

Atom	\boldsymbol{U}_{11}	\boldsymbol{U}_{22}	U_{33}	\boldsymbol{U}_{23}	\boldsymbol{U}_{13}	\boldsymbol{U}_{12}
Cl1	29.5(3)	62.4(6)	46.8(4)	16.5(4)	11.7(3)	-3.2(3)
Cl 2	85.4(8)	62.6(7)	67.8(6)	-27.0(6)	34.6(6)	-18.1(6)
Cl3	36.2(4)	58.8(5)	33.6(3)	-0.8(3)	16.4(3)	0.7(3)
C51	34.4(14)	41.9(16)	27.0(13)	5.8(12)	10.3(11)	0.8(13)
03	42.3(12)	35.4(12)	27.3(9)	13.2(9)	-2.4(9)	-4.3(9)
011	27.0(9)	21.8(8)	27.5(8)	-3.7(7)	1.4(7)	-1.0(7)
017	34.1(10)	30.3(10)	27.5(9)	-7.2(8)	12.3(8)	-0.5(8)
N1	26.3(10)	29.0(12)	21.1(10)	8.0(9)	-1.0(8)	-5.9(9)
N10	22.4(10)	18.5(10)	20.3(9)	-0.8(8)	2.2(8)	0.6(8)
N16	28.7(10)	22.2(11)	19.0(10)	0.6(8)	6.8(8)	-2.4(8)
C2	25.3(12)	23.1(12)	19.8(11)	4.3(9)	1.4(9)	-1.3(10)
C3	30.4(13)	22.2(12)	26.8(12)	5.4(10)	7.0(10)	-1.6(10)
C3A	24.5(12)	23.1(12)	27.9(12)	1.0(10)	7.9(10)	-1.2(10)
C4	29.1(13)	23.0(12)	38.9(14)	1.3(11)	15.3(11)	-2.8(11)
C5	31.0(13)	29.2(14)	49.8(17)	-5.9(12)	17.9(13)	-8.5(11)
C6	22.5(12)	35.8(15)	38.6(15)	-11.0(12)	7.7(11)	-2.5(11)
C7	23.6(12)	31.1(13)	26.0(12)	-3.6(10)	4.0(10)	1.5(10)
C7A	21.5(11)	23.6(12)	27.2(12)	0.9(10)	9.6(10)	-0.2(9)
C8	23.1(11)	17.7(11)	28.1(12)	0.3(10)	3.8(9)	-0.5(9)
C9	21.3(11)	17.1(10)	19.8(11)	-0.9(8)	3.9(9)	0.0(9)
C11	25.8(12)	19.7(11)	18.9(11)	-2.1(9)	5.4(9)	$1.2(9)$
C12	29.4(13)	18.6(11)	20.6(11)	-1.7(9)	5.0(9)	0.4(9)
C13	40.7(15)	17.1(11)	29.7(13)	0.6(10)	2.6(12)	-1.1(10)
C14	44(2)	27.3(18)	40(2)	0.8(16)	14.8(17)	-9.9(16)
C15	52.0(17)	29.4(14)	36.7(14)	-0.8(13)	25.9(13)	-11.7(14)
C17	21.3(11)	22.2(12)	22.0(11)	-1.8(9)	4.2(9)	-0.4(9)
C18	26.5(12)	19.4(12)	27.5(12)	-2.7(10)	6.0(9)	4.7(10)

Atom	$\boldsymbol{U}_{\mathbf{1 1}}$	$\boldsymbol{U}_{\mathbf{2 2}}$	$\boldsymbol{U}_{\mathbf{3 3}}$	$\boldsymbol{U}_{\mathbf{2 3}}$	$\boldsymbol{U}_{\mathbf{1 3}}$	$\boldsymbol{\boldsymbol { U } _ { \mathbf { 1 2 } }}$
C19	$21.0(11)$	$19.5(11)$	$20.9(10)$	$0.5(9)$	$5.1(8)$	$1.4(9)$
C20	$24.2(12)$	$23.3(12)$	$22.7(11)$	$2.3(9)$	$6.2(9)$	$0.0(9)$
C21	$26.3(13)$	$37.4(16)$	$42.9(16)$	$7.0(13)$	$13.3(11)$	$3.6(11)$
C22	$35.8(14)$	$35.4(14)$	$21.0(12)$	$1.7(11)$	$8.1(10)$	$-1.2(12)$
C14A	$32(6)$	$21(5)$	$27(5)$	$3(4)$	$8(4)$	$-6(4)$

Table 3: Bond Lengths in Å for AL19001.

Atom	Atom	
Cl1	C51	$1.756(3)$
Cl2	C51	$1.759(3)$
Cl3	C51	$1.750(3)$
O3	C3	$1.223(4)$
O11	C11	$1.240(3)$
O17	C17	$1.219(3)$
N1	C2	$1.461(3)$
N1	C7A	$1.354(4)$
N10	C9	$1.483(3)$
N10	C11	$1.342(3)$
N16	C12	$1.493(3)$
N16	C15	$1.460(4)$
N16	C17	$1.349(4)$
C2	C3	$1.552(4)$
C2	C8	$1.552(3)$
C2	C20	$1.575(4)$
C3	C3A	$1.449(4)$
C3A	C4	$1.406(4)$
C3A	C7A	$1.394(4)$

Atom	Atom	Length/Å
C4	C5	$1.387(5)$
C5	C6	$1.405(5)$
C6	C7	$1.383(4)$
C7	C7A	$1.410(4)$
C8	C9	$1.528(3)$
C9	C17	$1.537(4)$
C9	C19	$1.555(3)$
C11	C12	$1.534(3)$
C12	C13	$1.513(4)$
C12	C18	$1.546(4)$
C13	C14	$1.485(5)$
C13	C14A	$1.577(11)$
C14	C15	$1.573(5)$
C15	C14A	$1.574(11)$
C18	C19	$1.525(3)$
C19	C20	$1.542(3)$
C20	C21	$1.529(4)$
C20	C22	$1.538(3)$

Table 4: Bond Angles in ${ }^{\circ}$ for AL19001.

Atom	Atom	Atom	Angle ${ }^{\circ}$
Cl1	C51	Cl2	$110.26(16)$
Cl3	C51	Cl1	$110.35(19)$
Cl3	C51	Cl2	$110.90(18)$
C7A	N1	C2	$111.4(2)$
C11	N10	C9	$116.7(2)$
C15	N16	C12	$112.4(2)$
C17	N16	C12	$117.4(2)$
C17	N16	C15	$127.6(2)$
N1	C2	C3	$102.0(2)$
N1	C2	C8	$112.2(2)$
N1	C2	C20	$110.9(2)$
C3	C2	C20	$114.2(2)$
C8	C2	C3	$113.2(2)$
C8	C2	C20	$104.4(2)$
O3	C3	C2	$124.3(3)$
O3	C3	C3A	$128.8(3)$
C3A	C3	C2	$106.9(2)$
C4	C3A	C3	$130.9(3)$
C7A	C3A	C3	$107.5(2)$
C7A	C3A	C4	$121.5(3)$
C5	C4	C3A	$118.5(3)$
C4	C5	C6	$119.6(3)$
C7	C6	C5	$122.6(3)$
C6	C7	C7A	$117.7(3)$
N1	C7A	C3A	$112.1(2)$
N1	C7A	C7	$127.9(3)$
C3A	C7A	C7	$120.1(3)$
C9	C8	C2	$105.7(2)$

Atom	Atom	Atom	Angle ${ }^{\circ}$
N10	C9	C8	$113.3(2)$
N10	C9	C17	$104.4(2)$
N10	C9	C19	$109.62(19)$
C8	C9	C17	$117.7(2)$
C8	C9	C19	$105.1(2)$
C17	C9	C19	$106.4(2)$
011	C11	N10	$125.8(2)$
011	C11	C12	$124.7(2)$
N10	C11	C12	$109.5(2)$
N16	C12	C11	$105.3(2)$
N16	C12	C13	$102.8(2)$
N16	C12	C18	$109.9(2)$
C11	C12	C18	$106.1(2)$
C13	C12	C11	$115.4(2)$
C13	C12	C18	$116.7(2)$
C12	C13	C14A	$105.8(4)$
C14	C13	C12	$104.4(3)$
C13	C14	C15	$103.1(3)$
N16	C15	C14	$100.9(2)$
N16	C15	C14A	$100.6(4)$
017	C17	N16	$125.3(3)$
017	C17	C9	$126.6(3)$
N16	C17	C9	$108.1(2)$
C19	C18	C12	$106.6(2)$
C18	C19	C9	$109.7(2)$
C18	C19	C20	$123.2(2)$
C19	C19	C9	$104.42(19)$
		C2	$98.06(19)$

Atom	Atom	Atom	Angle $^{\circ}{ }^{\circ}$
C21	C20	C2	$113.1(2)$
C21	C20	C19	$111.6(2)$
C21	C20	C22	$108.9(2)$

Atom	Atom	Atom	Angle $^{\circ}{ }^{\circ}$
C22	C20	C2	$111.5(2)$
C22	C20	C19	$113.5(2)$
C15	C14A	C13	$99.0(6)$

Table 5: Torsion Angles in ${ }^{\circ}$ for AL19001.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
O3	C3	C3A	C4	$-2.4(5)$
O3	C3	C3A	C7A	$173.7(3)$
011	C11	C12	N16	$-123.4(3)$
011	C11	C12	C13	$-10.7(4)$
011	C11	C12	C18	$120.2(3)$
N1	C2	C3	O3	$-174.4(3)$
N1	C2	C3	C3A	$3.6(3)$
N1	C2	C8	C9	$-94.9(3)$
N1	C2	C20	C19	$77.9(2)$
N1	C2	C20	C21	$-39.9(3)$
N1	C2	C20	C22	$-162.9(2)$
N10	C9	C17	O17	$-117.8(3)$
N10	C9	C17	N16	$62.0(3)$
N10	C9	C19	C18	$-43.0(3)$
N10	C9	C19	C20	$90.7(2)$
N10	C11	C12	N16	$57.7(3)$
N10	C11	C12	C13	$170.4(2)$
N10	C11	C12	C18	$-58.8(3)$
N16	C12	C13	C14	$30.4(3)$
N16	C12	C13	C14A	$-20.7(5)$
N16	C12	C18	C19	$-44.0(3)$
N16	C15	C14A	C13	$-41.9(6)$
C2	N1	C7A	C3A	$-0.7(3)$
C2	N1	C7A	C7	$179.7(3)$
C8	C8	C3	C3	C3A
C8	C2	C2	C17	C2

Atom	Atom	Atom	Atom	Angle ${ }^{\circ}$
C8	C9	C17	N16	$-171.4(2)$
C8	C9	C19	C18	$-165.2(2)$
C8	C9	C19	C20	$-31.4(2)$
C9	N10	C11	011	$175.4(2)$
C9	N10	C11	C12	$-5.7(3)$
C9	C19	C20	C2	$45.4(2)$
C9	C19	C20	C21	$164.2(2)$
C9	C19	C20	C22	$-72.3(3)$
C11	N10	C9	C8	$176.2(2)$
C11	N10	C9	C17	$-54.5(3)$
C11	N10	C9	C19	$59.2(3)$
C11	C12	C13	C14	$-83.7(3)$
C11	C12	C13	C14A	$-134.8(5)$
C11	C12	C18	C19	$69.4(2)$
C12	N16	C15	C14	$-16.3(3)$
C12	N16	C15	C14A	$32.6(5)$
C12	N16	C17	017	$169.8(3)$
C12	N16	C17	C9	$-10.0(3)$
C12	C13	C14	C15	$-40.8(3)$
C12	C13	C14A	C15	$39.3(6)$
C12	C18	C19	C9	$-16.8(3)$
C12	C18	C19	C20	$-140.2(2)$
C13	C12	C18	C19	$-160.4(2)$
C13	C14	C15	N16	$34.7(4)$
C15	N16	C12	C11	$113.4(3)$
C15	N16	C12	C13	$-7.8(3)$
C15	N16	C12	C18	$-132.7(3)$
C15	N16	C17	O17	$9.8(5)$
C17	N16	C17	C9	$-170.1(3)$
C17	N16	C12	C11	$-49.6(3)$
C17	N16	C12	N16	C12

Table 6: Hydrogen Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for AL19001. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\boldsymbol{U}_{\boldsymbol{e q}}$
H51	5128.69	8622.02	1659.55	41
H1	$6570(30)$	$5250(50)$	$4627(18)$	$24(8)$
H10	$3110(30)$	$4460(50)$	$2772(19)$	$28(9)$
H4	7364.24	9882.45	3214.65	35
H5	8714.89	10643.93	4140.78	42
H6	9101.52	9154.41	5130.9	39
H7	8177.38	6912.99	5232.33	33
H8A	4616.39	6182.66	4074.01	28

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}		$\boldsymbol{U}_{\boldsymbol{e q}}$
H8B	4199.62	6290.87	3262.1	28	
H13A	3355.24	-941.82	3068.99	36	
H13B	4321.47	-1164.53	3720.26	36	
H13C	4137.02	-1207.49	3313.56	36	
H13D	2960.9	-689.35	3287.26	36	
H14A	2918.46	-1531.99	4170.17	44	
H14B	2270.92	-154.12	3723.55	44	
H15A	2968.09	1194.96	4741.07	44	
H15B	4035.38	206.61	4899.29	44	
H15C	2721.33	749.45	4418.23	44	
H15D	3759.98	864.76	5030.98	44	
H18A	5613.77	741.95	3630.73	29	
H18B	5087.98	1312.67	2871.04	29	
H19	5815.11	3076.07	4043.76	25	
H21A	7443.49	4612.39	3110.21	52	
H21B	7094.76	2848.39	2973.46	52	
H21C	7383.25	3510.98	3731.58	52	
H22A	4703.81	4829.65	2362.55	46	
H22B	5304.54	3313.25	2216.75	46	
H22C	5816.08	4979.4	2190.88	46	
H14C	3473.8	-1764.57	4392.32	32	
H14D	4636.59	-1055.16	4521.23	32	

Table 7: Hydrogen Bond information for AL19001.

D	H	A	d(D-H)/Å	d(H-A)/®̊	d(D-A)/Å	D-H-A/deg
N1	H1	$017{ }^{1}$	0.95(4)	1.91(4)	2.826(3)	162(3)

Table 8: Atomic Occupancies for all atoms that are not fully occupied in AL19001.

Atom	Occupancy
H13A	$0.759(11)$
H13B	$0.759(11)$
H13C	$0.241(11)$
H13D	$0.241(11)$
C14	$0.759(11)$
H14A	$0.759(11)$
H14B	$0.759(11)$
H15A	$0.759(11)$
H15B	$0.759(11)$
H15C	$0.241(11)$
H15D	$0.241(11)$
C14A	$0.241(11)$
H14C	$0.241(11)$
H14D	$0.241(11)$

Citations

CrysAlisPro Software System, Rigaku Oxford Diffraction, (2018).
O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, J. Appl. Cryst., (2009), 42, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C27, 3-8.
Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst., (2015), A71, 3-8.

```
# PLATON/CHECK-(220119) versus check.def version 190121, Entry: al19001
# Data: AL19001.cif - Type: CIF Bond Precision C-C = 0.0041 A
# Refl: AL19001.fcf - Type: LIST4 Temp = 120 K
# Audit:OLEX2 1.2-BETA (COMPILED 2018.05.29 SVN.R3508 FOR OLEXSYS, GUI SVN.R5506
# Refin:SHELXL (SHELDRICK, 2015)
# X-ray CuKa R(int) = 0.072, wR2/R(int) = 1.6, Nref/Npar = 8.4
# Cell 13.2441(2) 8.6598(1) 20.3280(2) 90 104.214(1) 90
# Wavelength 1.54184 Volume Reported 2260.07(5) Calculated 2260.07(5)
# SpaceGroup from Symmetry I 2 Hall: I 2y monoclinic
# Reported I 1 2 1 I 2y monoclinic
# MoietyFormula C21 H23 N3 O3, C H Cl3
            Reported C H Cl3, C21 H23 N3 O3
        SumFormula C22 H24 Cl3 N3 O3
            Reported C22 H24 Cl3 N3 O3
Mr = 484.79[Calc], 484.79[Rep] Volume/NonHatoms = 18.2
# Dx,gcm-3 = 1.425[Calc], 1.425[Rep]
# Z = 4[Calc], 4[Rep]
# Mu (mm-1) = 3.919[Calc], 3.919[Rep] Xtal Size = 0.051x0.091x0.238 mm
# F000 = 1008.0[Calc], 1008.0[Rep]
# Reported T Limits: Tmin=0.732
# Calculated T Limits: Tmin=0.684 Tmin'=0.375 Tmax=0.819 Exti = 0.00130
# Reported Hmax= 16, Kmax= 10, Lmax= 25, Nref= 4696 , Th(max) = 76.076
# Obs in FCF Hmax= 16, Kmax= 10, Lmax= 25, Nref= 4696[ 2523], Th(max)= 76.076
# Calculated Hmax= 16, Kmax= 10, Lmax= 25, Nref= 4735[ 2530], Ratio=1.86/0.99
# Reported Rho(min) = -0.38, Rho(max) = 0.28 e/Ang**3 (From CIF)
# Calculated Rho(min) = -0.40, Rho(max) = 0.28 e/Ang**3 (From CIF+FCF data)
# w=1/[sigma**2(FO**2)+(0.0887P)**2+ 0.4125P], P=(FO**2+2*FC**2)/3
# R= 0.0434( 4622), wR2= 0.1135( 4696), S = 1.040 (From CIF+FCF data)
# R= 0.0434( 4622), wR2= 0.1135( 4696), S = 1.040 (From FCF data only)
# R= 0.0434( 4622), wR2= 0.1135( 4696), S = 1.040, Npar= 301, Flack -0.007(8)
# Number Bijvoet Pairs = 2173 ( 99%), 2108 Selected for: Parsons -0.004 (5)
# P2(tr) 1.000, P3(tr) 1.000, P3(tw) 0.000, Student-T Nu = 20, Hooft -0.005(7)
For Documentation: http://http://www.platonsoft.nl/CIF-VALIDATION.pdf
# ===================================================================================
#====================================================================================
>>> The Following Improvement and Query ALERTS were generated - (Acta-Mode) <<<
Format: alert-number_ALERT_alert-type_alert-level text
244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of 340_ALERT_3_C Low Bond Precision on C-C Bonds ..................
#===================================================================
002_ALERT_2_G Number of Distance or Angle Restraints on AtSite
003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ...
042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ
143_ALERT_4_G s.u. on c - Axis Small or Missing ................
176_ALERT_4_G The CIF-Embedded .res File Contains SADI Records
187-ALERT-4-G The CIF-Embedded .res File Contains RIGU Records
301_ALERT_3_G Main Residue Disorder ..............(Resd 1 )
431_ALERT_2_G Short Inter HL..A Contact Cl3 ..O11
x,1+y,z `- 1_565 Check
791_ALERT_4_G Modèl has Chirality at C2 (Chiral SPGR) R Verify
791_ALERT_4_G Model has Chirality at C9 (Chiral SPGR) R Verify
791_ALERT_4_G Model has Chirality at C12 (Chiral SPGR) R Verify
791_ALERT_4_G Model has Chirality at C19 (Chiral SPGR) S Verify
802_ALERT_4_G CIF Input Record(s) with more than 80 Characters 1 Info
860_ALERT_3_G Number of Least-Squares Restraints ................ }12\mathrm{ Note
912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
#========================================================================================
```

ALERT_Level and ALERT_Type Summary
====================================
2 ALERT_Level_C = Check. Ensure it is Not caused by an Omission or Oversight
16 ALERT_Leve \bar{l}_{-}G General Info/Check that it is not Something Unexpected

1 ALERT_Type_1 CIF Construction/Syntax Error, Inconsistent or Missing Data.
4 ALERT Type 2 Indicator that the Structure Model may be Wrong or Deficient.
3 ALERT_Type_3 Indicator that the Structure Quality may be Low.
10 ALERT_Type_4 Improvement, Methodology, Query or Suggestion.
\# ===12

1 Missing Experimental Info Issue(s) (Out of 60 Tests) - 98 \% Satisfied
0 Experimental Data Related Issue(s) (Out of 30 Tests) - 100 \% Satisfied
7 Structural Model Related Issue(s) (Out of 131 Tests) - 95 \% Satisfied
10 Unresolved or to be Checked Issue(s) (Out of 257 Tests) - 96 \% Satisfied

[^0]: $\begin{array}{lll}2.80 & 2.78 & 2.76 & 2.74 & 2.72 & 2.70 & 2.68 & 2.66 & 2.64 & 2.62 & 2.60 & 2.58 & 2.56 & 2.54 & 2.52 & 2.50 & 2.48 & 2.46 & 2.44 & 2.42 & 2.40 & 2.38 & 2.36 & 2.34 & 2.32 & 2.30 & 2.28 & 2.26\end{array}$

