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Total Synthesis of (1-)-Clavilactones A, B, and Proposed D through
Iron-Catalyzed Carbonylation—Peroxidation of Olefin**

Leiyang Lv, Baojian Shen, and Zhiping Li*

Abstract: Biologically significant clavilactones A, B, and the
previously proposed D have been synthesized through iron-
catalyzed carbonylation—peroxidation of a 1,5-diene. Three
steps from aldehydes, alkenes, and tert-butylhydroperoxide
build up a,3-epoxy-y-butyrolactone skeleton as a key building
block for synthesis of clavilactone family and its derivatives.
Based on our results, the structure of the proposed clavilac-
tone D is not correct and requires revision.

Clavilactones A-E (1-5), isolated from cultures of the
Basidiomycetous fungus Clitocybe clavipes,''? are endowed
with an intriguing structure based on a ten-membered ring
fused to a a,f-epoxy-y-butyrolactone and a benzoquinone or
hydroquinone (Figure 1). Clavilactones A, B, and C (1, 2, and
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Figure 1. The clavilactone family.

3) exhibit antifungal and antibacterial activities® and inhibit
the germination of Lepidium sativum. Clavilactone A, B, and
D (1, 2, and 4) are potent kinase inhibitors against Ret/ptcl
and epidermal growth factor receptor (EGF-R) tyrosine
kinases,’! which might serve as potent molecularly targeted
anticancer agents.*’!

The significant biological properties of clavilactones have
attracted the endeavors from synthetic community and, to
date, the groups of Barrett®™ and Takaol”! have successfully
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achieved the total synthesis (Scheme 1), and several groups
have made great efforts in semisynthesis of clavilactones.
The macrocycle of clavilactones were realized by ring-closing
metathesis (RCM),*7? and the major difference is how to
build the a,B-epoxy-y-butyrolactone skeleton.'” It is worth
noting that clavilactone D (4, R =OH) is difficult to synthe-
size by strategyl owing to the selectivity of benzyne
coupling,' and five synthetic steps were used to transform
furan-2(5H)-one into a,3-epoxy-y-butyrolactone unit in strat-
egy IL.

Strategy I: Three-Component Benzyne Coupling by Barrett (2006)

OTBDPS (dr=2:1)

Strategy II: Ring-Opening/Ring-Closing Metathesis by Takao (2013)

Scheme 1. The developed strategies for clavilactones A and B.

Recently we reported a novel iron-catalyzed carbonyla-
tion—peroxidation of olefin, which provides a general and
concise way to synthesize a,f-epoxy-y-butyrolactones
through base-catalyzed epoxidation followed by reductive
lactonization (Scheme 2)."! Considering the efficiency and
high selectivity of the construction of the o,B-epoxy-y-
butyrolactone skeleton from simple alkenes, aldehydes, and
hydroperoxides, we then decided to use the developed
synthetic method to synthesize clavilactones.

Scheme 3 gives our retrosynthetic analysis to clavilac-
tones. The tri-substituted alkene C11—C12 of clavilactones

Iron-catalyzed carbonylation-peroxidation of olefin o
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Scheme 2. Our developed methodologies.
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Cross-Coupling Epoxidation
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Scheme 3. The retrosynthetic analysis for clavilactones.

can be constructed through RCM of diene 7, which might be
accessed by the cross-coupling reaction.!>l We envisioned that
8 can be constructed by a sequential steps of amine-catalyzed
epoxidation of a-ester-f-keto peroxide 9 followed by reduc-
tive lactonization. The designed key intermediate 9 can be
assembled by iron-catalyzed carbonylation—peroxidation of
alkene 10 with aldehyde 12 and fert-butyl hydroperoxide
(TBHP) 11. Herein, we report our efforts for synthesis of
clavilactones A, B, and D. The salient feature of our synthesis
is a highly convergent, general, and concise strategy to
accomplish the synthesis of diverse members of clavilactone
family as well as its analogues.

The synthesis began with three-component reactions of
10, 11, and 12 by the use of FeCl, as catalyst (Scheme 4). The
desired transformation underwent smoothly by using

COOMe OMe OMe
~ R Br R Br
10 _a. OO0tBu
* 42 CHO X
OMe O 9 COOMe

|b

OMe |
R Br
(o]
OMe O COOMe
8 (single diastereomer) 13 (d.r.>4:1)

Scheme 4. Reagents and conditions: a) FeCl,, MeCN, 85°C, 3 h, R=H
(9a, 60%), OMe (9b, 74%), OBn (9¢, 70%); b) pyrrolidine, MeCN,
0°C,3h, R=H (13a, 87%, d.r. 5:1), OMe (13b, 90%, d.r. 4:1), OBn
(13¢, 91%, d.r. 4:1); ¢) NaBH,, EtOH, 0°C, 3 h, R=H (8a, 73%),
OMe (8b, 71%), OBn (8¢, 78%).

2.5mol% FeCl, for syntheses of 9a and 9b. However,
a reduced amount of catalyst (0.1 mol % ) had to be used for
synthesis of 9¢ to avoid some unknown side reactions.
Subsequently, pyrrolidine-catalyzed epoxidation of 9 fol-
lowed by NaBH,-mediated reductive lactonization of 13
furnished a,B-epoxy-y-butyrolactones 8. The chelation
between the carbonyl and epoxy group with boron atom
allows hydride to attack the less hindered side of the
carbonyl.[?
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The Stille coupling of highly hindered 8 with tributyl(2-
methylallyl)stannane proved to be challenging. When 1,4-
dioxane was employed as the solvent,” the yield of the diene
7a was very poor and the debromination product was also
present. The desired products 7b and 7 ¢ were not observed if
1,2-dichloroethane was applied as the solvent.®™ Gratifyingly,
MeCN was found as effective solvent for the present Stille
coupling, and the expected dienes 7 were obtained in
excellent yields (Scheme 5).*! Finally, RCM reactions suc-
cessfully generated the ten-membered products 14 by
Grubbs’s second-generation catalyst.

Scheme 5. Reagents and conditions: a) tributyl(2-methyl-allyl)stannane,
[Pd(PPh,),], CsF, MeCN, 100°C, 12 h, R=H (7a, 87%), OMe (7b,
82%), OBn (7c, 88%); b) [Cl,(Cy;P) (sIMes)Ru=CHPh], tetrafluoroben-
zoquinone, toluene, 80°C, 18 h, R=H (14a, 65%), OMe (14b, 43 %),
OBn (14¢, 42%).

With the key precursor 14 in hand, we subsequently
investigated synthesis of diverse members of clavilactone
family (Scheme 6). Clavilactone B (2) was obtained by the
oxidative demethylation!®'® of 14a in 70% yield. The
reduction of clavilactone B by NaBH, afforded clavilacto-
ne A (1) in a quantitative yield. Initially, we expected that
clavilactone D could be generated by the deprotection of 6a
or 6b, which were obtained by the oxidation of 14b or 14c,
respectively. However, removal of the methyl group in 6 a and
the benzyl group in 6b turned out to be more difficult than
anticipated, which is mainly due to the frangible structure of
a,B-epoxy-y-butyrolactone skeleton and the feasible reduc-

6a, R = OMe

14 6b, R =0Bn

Clavilactone D (4)

Scheme 6. Reagents and conditions: a) CAN, MeCN/H,0 (2:1), 0°C,
R=H (2, 70%), OMe (6a, 65%), (6b, 60%); b) NaBH, EtOH, 0°C,
5 min, (1, 99%); c) 10 wt% Pd/C, 1,4-cyclohexadiene, EtOH, 25 °C,
1h, (15,99%); d) CAN, MeCN/H,O (2/1), 0°C, 10 min (4, 85%);

e) K,COs;, Me, SO, 25°C,3 h, (6a, 70%). CAN = ceric ammonium
nitrate.
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tion of 2-hydroxyquinone to 2-hydroxyhydroquinone simul-
taneously. With extensive efforts, we found that benzyl
protecting group of 14c¢ could be first removed in the
presence of 10 wt% Pd/C and 1,4-cyclohexadiene as the
hydrogen donor.'"”) Followed by oxidative demethylation of
15, clavilactone D (4) was successfully achieved for the first
time. To verify the structure of our synthesized clavilactone D
(4), the methylation of the obtained 4 gave 6a, which is
identical to that synthesized from 14b.

Surprisingly, it turned out that NMR spectroscopic data of
synthesized 4 is not identical with the data of clavilactone D
published by Merlini et al." The only difference (Ad=
0.25 ppm) in the 'H NMR chemical shifts was observed for
3-H, which appears at 6.15 ppm for our synthesized 4, while
5.90 ppm for the naturally isolated clavilactone D. Moreover,
significant deviations (Ad > 5.5 ppm) were also detected in
the *C NMR chemical shifts for C2, C3, and C5. On the basis
of NMR spectroscopic data analysis, we rationalized that:
1) the proposed structure for the natural clavilactone D does
not concur with NMR spectroscopic data; and 2) one of
possible structures for the natural clavilactone D is most
likely the other regioisomer of the proposed structure of
clavilactone D, in which the OH group is on 3-position of the
quinone ring instead of 2-position.

Guided by our established synthetic strategy, the newly
proposed structure of clavilactone D (22) was synthesized
(Scheme 7). The iron-catalyzed carbonylation—peroxidation
of alkene 10 with aldehyde 16 and fert-butyl hydroperoxide 11
gave the corresponding peroxide intermediate, which was
smoothly converted into the desired epoxide 17 by pyrroli-
dine. NaBH,-mediated reduction delivered the lactone 18.
The Stille coupling and RCM offered the macrolide 19. The
debenzylation of 19 by 10 wt % Pd/C gave 3-hydroxy inter-
mediate 20. Unexpectedly, various oxidative demethylation

OMe OMe |
Br a b Br c
- o =
BnO CHO BnO BnO
OMe OMe O COOMe
17 (d.r.>9:1)

Scheme 7. Reagents and conditions: a) FeCl, MeCN, 85°C, 3 h; b) pyr-
rolidine, MeCN, 0°C, 6 h, (17, 51 %, over 2 steps); c) NaBH,, EtOH,
0°C, 4.5 h, (18, 72%); d) tributyl(2-methyl-allyl)stannane, [Pd(PPh,),],
CsF, MeCN, 100°C, 9 h; e) [Cl,(Cy;P) (sIMes)Ru=CHPh], tetrafluoro-
benzoquinone, toluene, 80°C, 18 h, (19, 58 %, over 2 steps);

f) 10 wt% Pd/C, cyclohexene, EtOH/THF (3:1), 50°C, 1 h,(20, 90%);
g) CAN, MeCN/H,O (2:1), 0°C, 10 min, (21, 81%); h) MeCN, H,SO,
(10% aqueous), RT, 9 h, (22, 99%); i) K,CO;, Me,SO,, 25°C, 3 h, (23,
82%).
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methods failed to give the desired 3-hydroxy clavilactone D
(22) directly, while an ortho-quinone intermediate 21 was
generated. Fortunately, 21 could be transformed into the
desired product 22 through acid-catalyzed isomerization.!'”)
Furthermore, the methylation of 22 led to the corresponding
methylated product 23.

Unfortunately, NMR spectroscopic data of 3-hydroxycla-
vilactone D (22) is still not identical with the data of
clavilactone D (4). To exclude the possibility of an ortho-
quinone skeleton for clavilactone D, 29 was synthesized by
our strategy (Scheme 8). Based on the chemical shift of two
carbonyl groups on the quinine ring by *C NMR spectrum,”?”!
the possibility of an ortho-quinone structure of clavilactone D
could be ruled out.

Scheme 8. Reagents and conditions: a) FeCl,, MeCN, 85°C, 3 h;

b) pyrrolidine, MeCN, 0°C, 3 h, (25, 32%, over 2 steps); c) NaBH,,
EtOH, 0°C, 3 h, (26, 76%); d) tributyl(2-methyl-allyl)stannane, [Pd-
(PPh,).], CsF, MeCN, 100°C, 12 h; e) [Cl,(Cy,P) (sIMes)Ru=CHPh],
tetrafluorobenzoquinone, toluene, 80°C,18 h, (27, 47 %, over 2 steps);
f) 10 wt% Pd/C, cyclohexene, EtOH/THF (3:1), 50°C, 1 h, (28, 81%);
g) PIFA, MeCN/acetone/H,0 (30:10:1), —10°C, 30 min, (29, 78 %).
PIFA = phenyliodonium bis (trifluoroacetate).

If the details of the NMR spectroscopic data of the natural
clavilactone D are considered, the current spectral differ-
ences with our synthesized products might plausibly arise
from the different stereoconfiguration of a,f-epoxy-y-butyr-
olactone skeleton. To accomplish the structure elucidation
and synthesis of the natural clavilactone D, new methods for
the construction of other diastereomers of o,p-epoxy-y-
butyrolactone skeleton are needed.

In conclusion, we established a general, concise, and
efficient approach for synthesis of clavilactone family and its
derivatives. For examples, the total synthesis of (+) clavilac-
tone B was completed in 6 steps with 15.1 % yield, 7 steps with
14.9% yield for (+) clavilactone A, and 7 steps with 15.5%
yield for (+) the proposed clavilactone D. This step-econom-
ical approach features a key iron-catalyzed carbonylation—
peroxidation of olefin leading to a-ester-p-carbonyl perox-
ides, which can be transformed efficiently and selectively into
a,-epoxy-y-butyrolactone skeleton as the key building block.
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