SCISPACE
 formerly Typeset

〇 Open access • Journal Article • DOI:10.1055/S-2005-916138
Total Synthesis of (-)-Colchicine via a Rh-Triggered Cycloaddition Cascade
—Source link \square

Institutions: University of Cologne
Published on: 01 Dec 2005 - Synfacts (© Georg Thieme Verlag Stuttgart • New York)
Topics: Cycloaddition, Total synthesis, Ylide, Enantioselective synthesis and Tropolone

Related papers:

- Synthesis of (+/-)-3H-epivincamine via a Rh(II)-triggered cyclization/cycloaddition cascade.
- Total Synthesis of the Alkaloid (.+-.)-Aspidophytine Based on Carbonyl Ylide Cycloaddition Chemistry.
- A Rhodium Carbene Cyclization-Cycloaddition Cascade Strategy Toward the Pseudolaric Acids.
- Total Synthesis of (.+-.)-Lepadiformine via an Amidoacrolein Cycloaddition.
- Application of a rhodium-catalyzed cyclization cycloaddition cascade strategy to the total synthesis of (-)-curcumol

Share this paper: 9 in \square
View more about this paper here: https://typeset.io/papers/total-synthesis-of-colchicine-via-a-rh-triggered268c1nbt0n

Total Synthesis of (-)-Colchicine via a Rh-triggered Cycloaddition Cascade

Timm Graening, Virginie Bette, Jörg Neudörfl, Johann Lex and Hans-Günther Schmalz* Institut für Organische Chemie, Universität zu Köln, Greinstr. 4, D-50939 Köln, Germany
schmalz@uni-koeln.de

Supporting Information

General Procedures	2	Tropolones 21 and 22	17
Characterizations		Tropolonemethyl ethers 24 and 25	18
Propargylic ketone 6	2	7-Hydroxydesacetamidocolchicine 26	20
Propargylic alcohol 8	3	7-Hydroxydesacetamido-	
Silyl ether 9	4	-isocolchicine 27	21
4-oxobutyric acid 10	5	Methanesulfonic acid 28	22
Diazoketone 11	6	Azide 30	23
TBS-protected Cycloadduct 12	7	Colchicine 1	24
Cycloadduct 13	8	Crystallographic Data	25
Tropone 14	10	Compound 8	27
oxa-bridged compound 15	11	Compound 12	28
Diol 16	12	Compound 25	29
Aminotropones 17 and 18	13	Compound 32	
Aminotropones 19 and 20	15		

General Procedures. Reactions were conducted in flame-dried glassware under an atmosphere of argon using freshly distilled anhydrous solvents. NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on Bruker DRX 500, Bruker DPX 300 or Bruker AC 250 spectrometers. Proton chemical shifts are reported in $\mathrm{ppm}(\delta)$ relative to the solvent reference downfield from TMS and were determined by reference to the residual solvent peaks $\left(\mathrm{CDCl}_{3}: \delta 7.24 \mathrm{ppm}\right.$, DMSO [d6]: 2.50 ppm). Data are reported as follows: chemical shift (multiplicity [singlet (s), doublet (d), triplet (t), quartet (q) and multiplet (m)], coupling constants [Hz], integration). Carbon NMR spectra were recorded with complete proton decoupling and the multiplicity was assessed by DEPT measurements. Carbon chemical shifts are reported in $\mathrm{ppm}(\delta)$ relative to solvent resonance as the internal standard ($\mathrm{CDCl}_{3}: \delta 77.0 \mathrm{ppm}$, DMSO [d6]: 39.5 ppm). Infrared spectra were obtained on Perkin Elmer FT-IR Paragon 1000 spectrometer. Melting points were recorded on a Büchi B-545 and are not corrected. Optical rotations were recorded on a Perkin Elmer Polarimeter 343 plus at the given wavelengths (path length 100 mm). Mass spectra were obtained on Finnigan MAT Incos 50 Galaxy System (DIP-MS) (EI) or Finnigan MAT 900 (ESI) spectrometers, high resolution mass spectra on a Finnigan HSQ-30 (HR-EIMS) or on a Finnigan MAT 900 (HR-ESI-MS). The method of ionisation is given in parentheses.

Characterizations

5-(2-Iodo-3,4,5-trimethoxyphenyl)-1-(trimethylsilyl)pent-1-yn-3-one (6)

To a solution of TMS-acetylene ($15.5 \mathrm{~mL}, 112 \mathrm{mmol}, 1.53$ equiv.) in abs. THF (215 mL) was slowly added a solution of $n-\operatorname{BuLi}(68.1 \mathrm{~mL}, 106 \mathrm{mmol}, 1.45$ equiv., 1.56 M in hexane) under argon at $-78^{\circ} \mathrm{C}$. After 30 min , the resulting solution was warmed to $0^{\circ} \mathrm{C}$ and cooled then back to $-78^{\circ} \mathrm{C}$. The lithiumacetylid-solution obtained was added dropwise through a canula to a solution of Weinreb amide (7) ($30.0 \mathrm{~g}, 73.3 \mathrm{mmol}$) in abs. THF $(215 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting solution was warmed to $-10^{\circ} \mathrm{C}$ over 1 h , after 60 min cooled to $-40^{\circ} \mathrm{C}$ and then added to a mixture of ice and phosphate-buffer ($\mathrm{pH} 7,500 \mathrm{~mL}$). After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 500 \mathrm{~mL})$, the combined organic extracts were dried under ice-cooling over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration over a short bed of Celite and removing of the solvents under vacuum at room temperature afforded $32.2 \mathrm{~g}(98 \%)$ of a colorless oil.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} / n\right.$-hexane 1:6) $=0.29$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2958(\mathrm{~s}), 2934(\mathrm{~s}), 2845(\mathrm{w}), 2148(\mathrm{w}), 1673$ (ss), 1580 (w), 1558 (m), 1478 (s), 1425 (m), 1386 (s), 1339 (s), 1250 (s), 1197 (m), 1163 (m), 1100 (ss), 1047 (m), 1006 (s), 845 (ss), 761 (m), 703 (w).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.21\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 2.86(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H})$, 3.81 (s, 6H, 2 OMe), 3.84 (s, 3H, OMe), 6.65 (s, 1H, 6'-H).
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-0.79\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 34.97(\mathrm{t}), 45.43(\mathrm{t}), 56.09(\mathrm{q}$, OMe), 60.69 (q, OMe), 60.91 (q, OMe), 87.67 (s), 98.44 (s$), 101.71$ (s$), 109.10$ (d, C-6'), 138.46 (s), 140.54 (s$), 153.13$ (s$), 153.57$ (s$), 186.11$ ($\mathrm{s}, \mathrm{C}-3$).

MS (DIP-EI70 eV): $m / z(\%)=446(45)[M]^{+}, 374(17), 319(100)[-I], 307(34), 277(41)$, 247 (9), 194 (18), 125 (47), 97 (43), 83 (40).
HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{17} \mathrm{H}_{23}{ }^{127} \mathrm{I}^{16} \mathrm{O}_{4}^{28} \mathrm{Si}\right)$: 446.0410, found: 446.041.

(3R)-5-(2-Iodo-3,4,5-trimethoxyphenyl)-1-(trimethylsilyl)pent-1-yn-3-ol (8)

To a solution of alkynone (6) ($31.8 \mathrm{~g}, 71.2 \mathrm{mmol}$) in $i \mathrm{PrOH}$ (71 mL , HPLC-grade) under argon was added $1 \mathrm{~mol} \%$ of (R, R)-ruthenium-catalyst (7) ($427 \mathrm{mg}, 712 \mu \mathrm{~mol}$). The color of the solution turns to brown with the total dissolution of the catalyst. After 16 h , the solvent was removed under vacuum and the residu was purified by flash-chromatography (EtOAc/cyclohexane 1:5, 1:4, 1:3). Crystallisation from n-hexane afforded 30.5 g (96%) of colorless quadratic crystalline solid.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ cyclohexane 1:3) $=0.26$
mp.: $75{ }^{\circ} \mathrm{C}$ (n-hexane)
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3425$ (ss, br.), 2954 (m), 2935 (m), 2169 (w), 1560 (m), 1478 (s), 1425 (m), 1358 (s), 1332 (s), 1247 (s), 1197 (m), 1162 (m), 1103 (s), 1063 (m), 1042 (m), 1005 (s), 841 (ss), 759 (m).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.17\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 1.91\left(\mathrm{~d},{ }^{3} J=5.5 \mathrm{~Hz}, 1 \mathrm{OH}\right)$, $1.95\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}_{2}\right), 2.89\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}_{2}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.85(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OMe}), 4.38\left(\mathrm{~d} \psi \mathrm{t}, J_{\mathrm{d}}=5.5 \mathrm{~Hz}, J_{\mathrm{t}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 6.65\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right)$.
${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-0.11\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 36.67(\mathrm{t}), 37.81(\mathrm{t}), 56.11(\mathrm{q}$, $\mathrm{OMe}), 60.69(\mathrm{q}, \mathrm{OMe}), 60.94(\mathrm{q}, \mathrm{OMe}), 62.09$ (d, C-3), 87.96 (s$), 90.05$ (s$), 106.23$ (s$)$, 108.90 (d, C-6'), 139.59 (s), 140.40 (s), 153.11 (s$), 153.53$ (s).

MS (DIP-EI70 eV): $m / z(\%)=448$ (7) [M] ${ }^{+} 321$ (13) [-I], 308 (20), 277 (7), 205 (15), 191 (6), 181 (100), 165 (5), 99 (5), 75 (7), 73 (16).

HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{17} \mathrm{H}_{25}{ }^{127} \mathrm{I}^{16} \mathrm{O}_{4}{ }^{28} \mathrm{Si}\right)$: 448.0567 , found.: 448.056.
$[\alpha]_{\mathbf{D}}=-21.5,[\alpha]_{546}=-26.2,[\alpha]_{405}=-59.8,[\alpha]_{365}=-83.0\left(c=1.00, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$.
HPLC (Diacel Chiralpak AD-H, hexane $/ i \operatorname{PrOH} 98: 2, \mathrm{v}=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \sim 25^{\circ} \mathrm{C}$): $t_{\mathrm{R}}=20.36 \mathrm{~min}(100 \%),>99 \% e e$.

tert-Butyl(dimethyl)silyl[(1R)-1-[(2-iodo-3,4,5-trimethoxyphenyl)ethyl]-3-(trimethylsilyl)prop-2-ynyl]ether (9)

Propargylalcohol (8) ($30.0 \mathrm{~g}, 66.9 \mathrm{mmol}$), imidazole ($11.4 \mathrm{~g}, 167 \mathrm{mmol}, 2.5$ equiv.) and $\operatorname{TBSCl}(12.1 \mathrm{~g}, 80.3 \mathrm{mmol}, 1.2$ equiv.) were solubilized in abs. DMF (100 mL) and stirred under argon overnight. $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ was then added and the resulting mixture was extracted with MTBE ($3 \times 300 \mathrm{~mL}$). The combined organic extracts were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(300 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration over a short bed of Celite and removal of the solvent under vacuum, the raw product was purified by flash-chromatography (EtOAc/cyclohexane 1:20). Subsequent crystallisation from n-hexane afforded 35.1 g (93%) of colorless crystals.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} / n\right.$-hexane $\left.1: 10\right)=0.33$
mp.: $50-51{ }^{\circ} \mathrm{C}$ (n-hexane)
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2953$ (s), 2931 (s$), 2852$ (m), 2169 (w), 1561 (w), 1478 (s$), 1425$ (m), 1385 (s), 1332 (m), 1248 (s$), 1197$ (m), 1162 (m), 1103 (ss), 1006 (s$), 838$ (ss$), 776$ (m).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.15(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{SiMe}_{3}$), $0.91(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSitBu}), 1.91\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}_{2}\right), 2.84\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{2}\right), 3.83(\mathrm{~s}, 6 \mathrm{H}, 2$ OMe), 3.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $4.40\left(\psi \mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right), 6.62\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime}{ }^{\prime}-\mathrm{H}\right)$.
${ }^{13} \mathbf{C}$-NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-4.83(\mathrm{q}, \mathrm{OSiMe}),-4.36(\mathrm{q}, \mathrm{OSiMe}),-0.16(\mathrm{q}$, SiMe_{3}), 18.30 ($\mathrm{s}, \mathrm{OSiCMe}_{3}$), 25.86 (q, $\mathrm{OSiCMe} e_{3}$), 37.03 (d), 38.77 (d), 56.11 (q, OMe), 60.68
(q, OMe), 60.95 (q, OMe), 62.82 (d, C-1), 88.03 (s$), 89.13$ (s$), 107.21$ (s), 108.78 (d, C-6’)), 140.16 (s), 140.30 (s), 153.08 (s$), 153.50$ (s$).$

MS (DIP-EI, 70 eV): $m / z(\%)=562(6)[\mathrm{M}]^{+}, 505(9)\left[-\mathrm{C}_{4} \mathrm{H}_{9}\right], 435(18)[-\mathrm{I}], 420(14), 378$ (32), 363 (100), 348 (14), 307 (78), 305 (41), 181 (61), 155 (20), 75 (14), 73 (26).

HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{23} \mathrm{H}_{39}{ }^{127} \mathrm{I}^{16} \mathrm{O}_{4}{ }^{28} \mathrm{Si}_{2}\right)$: 562.1432, found.: 562.142.
$[\alpha]_{\mathrm{D}}=+8.2,[\alpha]_{546}=+9.3,[\alpha]_{405}=+15.3,[\alpha]_{365}=+17.1\left(\mathrm{c}=0.995, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$.

4-[6-((3R)-3-[[tert-Butyl(dimethyl)silyl]oxy]pent-4-ynyl)-2,3,4-trimethoxyphenyl]-4-oxobutyric acid (10)

To a solution of aryl iodide (9) ($14.7 \mathrm{~g}, 26.1 \mathrm{mmol})$ in abs. THF (275 mL) under argon was added dropwise a solution of $i \mathrm{PrMgCl}\left(26.1 \mathrm{~mL}, 52.2 \mathrm{mmol}\right.$, 2 equiv., 2 M in THF) at $-25^{\circ} \mathrm{C}$. After 4 h , the Grignard solution was cooled to $-40^{\circ} \mathrm{C}$ and added rapidly through a canula to a stirred suspension of succinic anhydride ($10.4 \mathrm{~g}, 104 \mathrm{mmol}, 4$ equiv.) in abs. THF (275 mL). The resulting mixture was warmed to RT over 1.5 h , added to a of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(450 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 250 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent under vacuum, the raw product was dissolved in abs. $\mathrm{MeOH}(750 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}(34.8 \mathrm{~g}, 261 \mathrm{mmol}, 10$ equiv.) was added to the resulting solution and the mixture was stirred 1.5 h at RT , then added to a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (750 mL) and extracted $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent under vacuum, the raw product was purified by flash-chromatography (EtOAc/cyclohexane 1:3, 1:2, 1:1, 2:1) to afford 8.91 g (73 \%) of a colorless viscose oil.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ cyclohexane 1:1) $=0.35$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3282(\mathrm{~m}), 2930(\mathrm{~s}), 2854(\mathrm{w}), 2109(\mathrm{w}), 1734(\mathrm{~m}), 1708(\mathrm{ss}), 1593(\mathrm{~m})$, 1493 (m), 1455 (m), 1399 (s), 1335 (s), 1249 (s), 1129 (s), 1091 (s), 999 (m), 836 (s), 777 (m), 667 (m).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.88$ (s, $9 \mathrm{H}, \mathrm{OSitBu}), 1.90\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime ’}-\mathrm{H}_{2}\right), 2.40\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}{ }^{\prime}-\mathrm{H}\right), 2.58\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}{ }^{\prime}-\mathrm{H}_{2}\right), 2.73$ $\left(\mathrm{m}, 2 \mathrm{H}, 2-\mathrm{H}_{2}\right), 3.10\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}_{2}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}\right.$ at $\left.\mathrm{C}-3^{\prime}\right), 3.837^{* *)}\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}\right.$ at $\left.\mathrm{C}-4^{\prime}\right)$,
$3.839^{* *)}\left(\mathrm{s}, 3 \mathrm{H}\right.$, OMe at C-2'), $4.34\left(\mathrm{dt},{ }^{4} \mathrm{~J}=2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}{ }^{\prime}-\mathrm{H}\right), 6.50(\mathrm{~s}, 1 \mathrm{H}$, 5^{\prime}-H). ${ }^{*}$)
${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-5.09$ (q, OSiMe), -4.59 (q, OSiMe), 18.18 (s, OSiCMe_{3}), 25.74 ($\mathrm{q}, \mathrm{OSiCMe}_{3}$), 28.12 (t, C-2), 28.67 ($\mathrm{t}, \mathrm{C}-1$ '’), 39.51 (t, C-3), 40.52 (t , C-2') $), 56.01^{* *)}$ (q, OMe at C-4'), 60.88 (q, OMe at C-3'), $61.67^{* *)}$ (q , OMe at C-2'), 62.26 (d, C-3''), 72.56 (d, C-5''), 85.02 (d, C-4'), 108.73 (d, C-5'), 127.94 (s, C-1'), 134.81 ($\mathrm{s}, \mathrm{C}-6$ '), 139.75 ($\mathrm{s}, \mathrm{C}-3^{\prime}$), $150.62^{* * *}$ ($\mathrm{s}, \mathrm{C}-2^{\prime}$), $154.31^{* * *}$ ($\mathrm{s}, \mathrm{C}-4^{\prime}$), 178.52 ($\mathrm{s}, \mathrm{C}-1$), 203.89 ($\mathrm{s}, \mathrm{C}-4$). ${ }^{*)}$

MS (DIP-EI, 70 eV): $m / z(\%)=407(16)\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right], 307$ (21), 287 (16), 263 (12), 250 (44), 235 (17), 231 (26), 219 (14), 182 (100), 167 (21), 151 (29), 101 (18), 97 (21), 83 (20).
HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{20} \mathrm{H}_{27}{ }^{16} \mathrm{O}_{7}{ }^{28} \mathrm{Si}\right)$: 407.1526 , found.: 407.153.
$[\alpha]_{\mathbf{D}}=+12.6,[\alpha]_{546}=+14.1,[\alpha]_{405}=+26.7,[\alpha]_{365}=+38.0\left(c=1.00, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$.
*) The peaks in ${ }^{1} \mathrm{H}$-NMR- and ${ }^{13} \mathrm{C}$-NMR-Spectrum were assignated with the help of H,H-Cosy-, HMQC-, HMBC- und NOESY-spectra.
**) The assignments of the peaks at $3.837 / 56.01 / 154.31 \mathrm{ppm}$ und $3.839 / 61.67 / 150.62 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$-NMR- und ${ }^{13} \mathrm{C}$-NMR-spectra were made based on the comparison with the corresponding signals of 13.

(3R)-5-Diazo-1-[6-[3-[[tert-butyl(dimethyl)silyl]oxy]pent-4-ynyl]-2,3,4-trimethoxy-phenyl]-pentan-1,4-dione (11)

To a solution of γ-oxocarboxylic acid (10) ($8.81 \mathrm{~g}, 19.0 \mathrm{mmol}$) in THF (160 mL) and $\mathrm{Et}_{2} \mathrm{O}$ $(160 \mathrm{~mL})$ under argon were sequently added at $-20^{\circ} \mathrm{C} \mathrm{NEt}_{3}(2.65 \mathrm{~mL}, 19.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{ClC}(\mathrm{O}) \mathrm{OiBu}(2.49 \mathrm{~mL}, 19.0 \mathrm{mmol}, 1.0 \mathrm{eq})$. After 1 h , the mixture was warmed to $-10^{\circ} \mathrm{C}$ and a solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}\left(380 \mathrm{~mL}, 87.4 \mathrm{mmol}, 4.6 \mathrm{eq}, 0.23 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ was added dropwise. After stirring at $-5^{\circ} \mathrm{C}$ overnight, the solution was warmed to RT and silica was added to destroy the excess of diazomethane. After filtration, the solution was washed with water (200 mL), saturated $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine (200 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under vacuum. Purification by flash-chromatography (EtOAc/cyclohexane 1:5, 1:4, 1:3, 1:2) afforded $6.59 \mathrm{~g}(71 \%)$ of a light yellow oil.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}\right.$, EtOAc/cyclohexane 1:3) $=0.24$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3272(\mathrm{w}), 3095(\mathrm{w}), 2928(\mathrm{~s}), 2853(\mathrm{~m}), 2100(\mathrm{ss}, \mathrm{C}=\mathrm{N}=\mathrm{N}), 1696(\mathrm{~m})$, 1643 (s , 1593 (m), 1571 (w), 1492 (m), 1461 (s), 1400 (s$), 1376$ (s$), 1344$ (ss), 1316 (s), 1250 (s), 1128 (s), 1093 (ss), 835 (ss), 777 (s$), 665$ (w).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.88(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{OSitBu}), 1.89\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}{ }^{\prime}-\mathrm{H}_{2}\right), 2.38\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}{ }^{\prime}-\mathrm{H}\right), 2.58\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}{ }^{\prime}-\mathrm{H}_{2}\right), 2.68$ (br. m, $2 \mathrm{H}, 3-\mathrm{H}_{2}$), $3.10\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}_{2}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}\right.$ at $\left.\mathrm{C}-3^{\prime}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}\right.$ at $\left.\mathrm{C}-4^{\prime}\right)$, $3.83(\mathrm{~s}, 3 \mathrm{H}$, OMe at $\mathrm{C}-2 '), 4.36\left(\mathrm{dt},{ }^{4} J=2 \mathrm{~Hz},{ }^{3} J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3{ }^{\prime}{ }^{\prime}-\mathrm{H}\right), 5.31$ (br. s, $1 \mathrm{H}, 5-\mathrm{H}$), 6.48 (s, 1H, $5^{\prime}-\mathrm{H}$). ${ }^{*)}$
${ }^{13} \mathbf{C}$-NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-5.10(\mathrm{q}, \mathrm{OSiMe}),-4.64(\mathrm{q}, \mathrm{OSiMe}), 18.15(\mathrm{~s}$, OSiCMe_{3}), 25.72 (q, OSiCMe_{3}), 28.70 (t, C-1'"), 34.23 (br. t, C-3), 39.54 (br. t, C-2), 40.52 (t, C-2'’), 54.39 (br. d, C-5), 55.96 (q, OMe at C-4'), 60.81 (q, OMe at C-3'), 61.59 (q, OMe at C-2'), 62.26 (d, C-3'’), 72.45 (d, C-5''), 85.05 (d, C-4'), 108.64 (d, C-5'), 128.04 ($\mathrm{s}, \mathrm{C}-1$ '), 134.66 ($\mathrm{s}, \mathrm{C}-6$ '), 139.65 ($\mathrm{s}, \mathrm{C}-3^{\prime}$), 150.49 ($\mathrm{s}, \mathrm{C}-\mathbf{2}^{\prime}$), 154.21 ($\mathrm{s}, \mathrm{C}-4^{\prime}$), 193.15 ($\mathrm{s}, \mathrm{C}-4$), 204.41 (C-1). ${ }^{*}$
MS (DIP-EI, 70 eV): $m / z(\%)=488(4)[\mathrm{M}]^{+}, 460(45)\left[-\mathrm{N}_{2}\right], 403(10)\left[-\mathrm{N}_{2}-\mathrm{C}_{4} \mathrm{H}_{9}\right], 351$ (9), 305 (7), 231 (56), 219 (15), 207 (14), 181 (20), 129 (48), 115 (15), 83 (30), 75 (92), 73 (86).
HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{25} \mathrm{H}_{36}{ }^{14} \mathrm{~N}_{2}{ }^{16} \mathrm{O}_{6}{ }^{28} \mathrm{Si}\right)$: 488.2343, found.: 488.235.
$[\alpha]_{\mathbf{D}}=+11.3,[\alpha]_{546}=+13.0\left(c=1.00, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$.
*) Peaks in ${ }^{1} \mathrm{H}$-NMR- und ${ }^{13} \mathrm{C}$-NMR-spectra were assigned with the help of H,H-Cosy-, HMQC-, HMBC- und NOESY-spectra.
(7R,9R,12aR)-7-[[tert-Butyl(dimethyl)silyl]oxy]-1,2,3-trimethoxy-9,12a-epoxy-6,7,9,11,12,12a-hexahydrobenzo $[a]$ heptalen-10(5H)-one (12)

To a stirred suspension of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(132 \mathrm{mg}, 298 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%)$ in abs. toluene (200 mL), was added over 6 h through via a syringe pump a solution of diazoketone (11) (4.86 g , $9.95 \mathrm{mmol})$ in abs. toluene (300 mL). After 60 min under reflux, the solution was cooled to RT and the solvent was removed under vacuum. The raw product was purified by flashchromatography (EtOAc/cyclohexane 1:5) to afford $2.94 \mathrm{~g}(64 \%)$ of a colorless viscose oil.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ cyclohexane 1:5) $=0.24$

IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2932(\mathrm{~m}), 2854(\mathrm{w}), 1726(\mathrm{ss}, \mathrm{C}=\mathrm{O}$ ketone), $1592(\mathrm{~m}), 1493(\mathrm{~m}), 1451$ (s), 1402 (m), 1347 (m), 1320 (m), 1291 (m), 1249 (s), 1197 (w), 1129 (s), 1087 (ss), 1031 (m), 1003 (m), 921 (m), 881 (m), 834 (s), 807 (m), 775 (m), 666 (w).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.88(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{OSitBu}$), 1.83 (ddd, ${ }^{3} J_{1}=6.5 \mathrm{~Hz},{ }^{3} J_{2}=7.5 \mathrm{~Hz},{ }^{2} J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}_{\mathrm{a}}$), 1.86 (dddd, ${ }^{3} J_{1}=4.0 \mathrm{~Hz},{ }^{3} J_{2}=4.5 \mathrm{~Hz},{ }^{3} J_{3}=5.5 \mathrm{~Hz},{ }^{2} J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}$), 2.32 (dddd, ${ }^{3} J_{1}=3.5 \mathrm{~Hz}$, $\left.{ }^{3} J_{2}=8.5 \mathrm{~Hz},{ }^{3} J_{3}=13.5 \mathrm{~Hz},{ }^{2} J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right), 2.41\left(\mathrm{ddd},{ }^{3} J_{1}=3.5 \mathrm{~Hz},{ }^{3} J_{2}=4 \mathrm{~Hz}\right.$, $\left.{ }^{2} J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.60\left(\mathrm{ddd},{ }^{3} J_{1}=3.5 \mathrm{~Hz},{ }^{3} J_{2}=7.5 \mathrm{~Hz},{ }^{2} J=17 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}_{\mathrm{a}}\right), 2.92$ (ddd, ${ }^{3} J_{1}=6.5 \mathrm{~Hz},{ }^{3} J_{2}=9 \mathrm{~Hz},{ }^{2} J=17 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}_{\mathrm{b}}$), $3.08\left(\mathrm{ddd},{ }^{3} J_{1}=4.5 \mathrm{~Hz},{ }^{3} J_{2}=13.5 \mathrm{~Hz}\right.$, $\left.{ }^{2} J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 3.33\left(\mathrm{ddd},{ }^{3} J_{1}=3.5 \mathrm{~Hz},{ }^{3} J_{2}=9 \mathrm{~Hz},{ }^{2} J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}_{\mathrm{b}}\right), 3.83(\mathrm{~s}$, 3 H , OMe at $\mathrm{C}-3$), $3.85\left(\mathrm{~s}, 3 \mathrm{H}\right.$, OMe at $\mathrm{C}-2$), $3.95\left(\mathrm{~s}, 3 \mathrm{H}\right.$, OMe at $\mathrm{C}-1$), 4.51 (ddd, ${ }^{4} \mathrm{~J}=2 \mathrm{~Hz}$, $\left.{ }^{3} J_{1}=5.5 \mathrm{~Hz},{ }^{3} J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right), 4.72\left(\mathrm{~d},{ }^{3} J=2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}\right), 6.00(\psi \mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$, C-8), 6.39 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{H}$). ${ }^{*}$)
${ }^{13} \mathbf{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-4.83\left(\mathrm{q}, \mathrm{OSiMe}_{2}\right), 18.05\left(\mathrm{~s}, \mathrm{OSiCMe}_{3}\right), 25.72(\mathrm{q}$, OSiCMe_{3}), 30.55 (t, C-12), 32.20 (t, C-5), 35.63 (t, C-11), 37.00 (t, C-6), 55.84 (q, OMe an C-3), 60.74 (q, OMe an C-2), 62.29 (q, OMe an C-1), 67.46 (d, C-7), 85.55 (d, C-9), 88.30 (s , C-12a), 109.68 (d, C-4), 120.05 (d, C-8), 123.69 (s, C-12b), 137.12 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 141.86 (s, C-2), 153.27 (s, C-3), 154.88 (s, C-1), 156.54 (s, C-7a), 204.41 (s, C-10). ${ }^{*}$

MS (DIP-EI, 70 eV): $m / z(\%)=460(15)[\mathrm{M}]^{+}, 403$ (100) [-C44 $\left.\mathrm{H}_{9}\right], 375$ (16), 361 (9), 329 (40), 285 (9), 273 (58), 181 (11), 75 (16), 73 (18).

HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{25} \mathrm{H}_{36}{ }^{16} \mathrm{O}_{6}{ }^{28} \mathrm{Si}\right)$: 460.2281 , found.: 460.228.
$[\alpha]_{\mathbf{D}}=+125.5, \quad[\alpha]_{546}=+161.9, \quad[\alpha]_{405}=+660.5, \quad[\alpha]_{365}=+1450[\alpha]_{334}=+5110 \quad(c=1.05$, $\mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}$).
*) Peaks in ${ }^{1} \mathrm{H}$-NMR- und ${ }^{13} \mathrm{C}$-NMR-spectra were assigned with the help of H,H-Cosy-, HMQC-, HMBC- und NOESY-spectra.
(7R,9R,12aR)-7-Hydroxy-1,2,3-trimethoxy-9,12a-epoxy-6,7,9,11,12,12ahexahydrobenzo $[a]$ heptalen-10(5H)-one (13)

To a solution of silylether ($\mathbf{1 2)}(98 \mathrm{mg}, 213 \mu \mathrm{~mol})$ in abs. THF (2 mL) under argon was added at $0^{\circ} \mathrm{C}$ a solution of TBAF ($0.64 \mathrm{~mL}, 640 \mu \mathrm{~mol}, 3$ equiv., 1 M in THF). After 30 min , water
(10 mL) was added and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 4 \mathrm{~mL})$. The combined organic extracts were filtered over a short bed of Celite in a Pasteur-pipette and the solvent was removed under vacuum. After radial chromatography over silica-gel (EtOAc/cyclohexane $2: 1), 68 \mathrm{mg}(92 \%)$ of a colorless solid were obtained.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ cyclohexane 3:1 $)=0.36$
mp.: 154-155 ${ }^{\circ} \mathrm{C}$ (EtOAc/cyclohexane)
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3443$ (s, br., OH), 2936 (m), 2854 (w), 1722 (ss, C=O ketone), 1592 (m), 1492 (m), 1451 (s), 1401 (m), 1320 (m), 1241 (w), 1195 (w), 1127 (s), 1088 (m), 1027 (s), 1002 (m), 918 (w), 833 (w), 808 (w), 750 (s), 665 (w).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.84\left(\mathrm{~m}, 1 \mathrm{H}, 12-\mathrm{H}_{\mathrm{a}}\right), 1.87\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 2.37$ (dddd, $\left.{ }^{3} J_{1}=3.5 \mathrm{~Hz},{ }^{3} J_{2}=8 \mathrm{~Hz},{ }^{3} J_{3}=13 \mathrm{~Hz},{ }^{2} J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right), 2.46\left(\mathrm{ddd},{ }^{3} J_{1}=3.5 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{2}=4 \mathrm{~Hz},{ }^{2} J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.60\left(\mathrm{ddd},{ }^{3} J_{1}=3 \mathrm{~Hz},{ }^{3} J_{2}=7.5 \mathrm{~Hz},{ }^{2} J=17 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $11-\mathrm{H}_{\mathrm{a}}$), 2.95 (ddd, ${ }^{3} J_{1}=7 \mathrm{~Hz},{ }^{3} J_{2}=9.5 \mathrm{~Hz},{ }^{2} J=17 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}_{\mathrm{b}}$), $3.04\left(\mathrm{ddd},{ }^{3} J_{1}=4 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{2}=13 \mathrm{~Hz},{ }^{2} J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 3.26\left(\mathrm{ddd},{ }^{3} J_{1}=3 \mathrm{~Hz},{ }^{3} J_{2}=9.5 \mathrm{~Hz},{ }^{2} J=13 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $12-\mathrm{H}_{\mathrm{b}}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}$, OMe an C-3), 3.84 ($\mathrm{s}, 3 \mathrm{H}$, OMe an C-2), 3.95 ($\mathrm{s}, 3 \mathrm{H}$, OMe an $\mathrm{C}-1$), 4.61 (ddd, $\left.{ }^{4} J=2 \mathrm{~Hz},{ }^{3} J_{1}=5.5 \mathrm{~Hz},{ }^{3} J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right), 4.74\left(\mathrm{~d},{ }^{3} J=2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}\right), 6.06(\psi \mathrm{t}$, $\left.J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-8), 6.40(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}) .{ }^{*}\right)$
${ }^{13} \mathbf{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=30.94(\mathrm{t}, \mathrm{C}-12), 31.87(\mathrm{t}, \mathrm{C}-5), 35.65(\mathrm{t}, \mathrm{C}-6), 36.00$ (t, C-11), 55.85 (q, OMe at C-3), 60.73 (q, OMe at C-2), 62.26 (q, OMe at C-1), 67.16 (d, C-7), 85.45 (d, C-9), 88.40 (s, C-12a), 109.69 (d, C-4), 120.10 (d, C-8), 123.82 (s, C-12b), 136.74 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 141.88 ($\mathrm{s}, \mathrm{C}-2$), 153.21 ($\mathrm{s}, \mathrm{C}-3$), 154.82 ($\mathrm{s}, \mathrm{C}-1$), 156.62 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 204.72 (s , C-10). ${ }^{*}$
MS (DIP-EI, 70 eV): $m / z(\%)=346(38)[\mathrm{M}]^{+}, 329(15), 318$ (39) [-CO], 299 (20), 290 (30), 273 (21), 259 (26), 220 (33), 181 (100), 128 (23), 115 (39), 91 (20), 77 (24).
HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{19} \mathrm{H}_{22}{ }^{16} \mathrm{O}_{6}\right): 346.1416$, found.: 346.142.
$[\alpha]_{\mathbf{D}}=+217.5,[\alpha]_{546}=+283.5,[\alpha]_{405}=+1117.7,[\alpha]_{365}=+2438.0\left(c=0.990, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$.
HPLC (Macherey-Nagel Nucleosil pre-column, Diacel Chiralpak AD-H, Hexane/iPrOH $\left.90: 10, \mathrm{v}=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \sim 25^{\circ} \mathrm{C}\right): t_{\mathrm{R}}=9.45 \mathrm{~min}(100 \%),>99 \% e e$.
*) Peaks in ${ }^{1} \mathrm{H}$-NMR- und ${ }^{13} \mathrm{C}$-NMR-spectra were assigned according to the data of the corresponding (rac) compound, with the help of H,H-Cosy-, HMQC-, HMBC- und NOESYspectra.

(7RS)-7-[[tert-Butyl(dimethyl)silyl]oxy]-1,2,3-trimethoxy-6,7-dihydrobenzo[a]heptalen-10(5H)-one (rac-14)

To a solution of ketone ($\mathrm{rac}-\mathbf{1 2})(400 \mathrm{mg}, 869 \mu \mathrm{~mol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under argon was added dropwise at $-78^{\circ} \mathrm{C}$ a solution of $\mathrm{Et}_{2} \mathrm{AlCl}(4.35 \mathrm{~mL}, 4.35 \mathrm{mmol}, 5$ equiv., 1 M in n hexane). The solution was warmed to $0^{\circ} \mathrm{C}$ over 2 h and cooled again to $-78^{\circ} \mathrm{C}$. After addition of $\mathrm{MeOH}(5 \mathrm{~mL})$, the solution was slowly warmed to RT and saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added. The aqueous phase was extracted $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent under vacuum, the raw product was purified by flash-chromatography (EtOAc/cyclohexane 1:4, 1:3, 1:2, 1:1) to afford 199 mg (52%) of a yellow oil.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ cyclohexane 1:2 $)=0.20$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2928(\mathrm{~s}), 2853(\mathrm{~m}), 1623(\mathrm{~s}), 1562(\mathrm{ss}), 1488(\mathrm{~m}), 1454(\mathrm{~s}), 1401(\mathrm{~m})$, 1341 (m), 1320 (m), 1234 (m), 1134 (s), 1093 (ss), 1003 (s), 876 (s), 835 (ss), 777 (s), 730 (w), 670 (w).
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-0.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}),-0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.82$ (s, $9 \mathrm{H}, \mathrm{OSi} t \mathrm{Bu}$), $1.95\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 2.32\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right), 2.35\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}_{2}\right), 3.64(\mathrm{~s}, 3 \mathrm{H}$, OMe an C-1), 3.89 (s, 3H, OMe an C-2), $3.90(\mathrm{~s}, 3 \mathrm{H}$, OMe an C-3), $4.27(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 6.54$ (s, 1H, 4-H), $6.95\left(\mathrm{dd},{ }^{4} J=3 \mathrm{~Hz},{ }^{3} J=12.5 \mathrm{~Hz}, 11-\mathrm{H}\right), 7.10\left(\mathrm{dd},{ }^{4} J=3 \mathrm{~Hz},{ }^{3} J=13 \mathrm{~Hz}, 9-\mathrm{H}\right)$, 7.23 (d, $\left.\left.{ }^{3} J=12.5 \mathrm{~Hz}, 12-\mathrm{H}\right), 7.77\left(\mathrm{~d},{ }^{3} J=13 \mathrm{~Hz}, 8-\mathrm{H}\right) .{ }^{*}\right)$
${ }^{13} \mathbf{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-5.09(\mathrm{q}, \mathrm{OSiMe}),-4.95(\mathrm{q}, \mathrm{OSiMe}), 18.16(\mathrm{~s}$, OSiCMe_{3}), 25.75 ($\mathrm{q}, \mathrm{OSiCMe}_{3}$), 29.99 ($\mathrm{t}, \mathrm{C}-5$), 42.16 (t, C-6), 56.01 (q, OMe an C-3), 61.00 (q, OMe an C-1), 61.23 (q, OMe an C-2), 71.80 (d, C-7), 107.24 (d, C-4), 124.93 (s, C-12b), 134.19 (d, C-8), 136.02 (s, C-4a), 138.23 (d, C-11), 139.05 ($\mathrm{s}, \mathrm{C}-12 \mathrm{a}$), 140.13 (d, C-9), 141.17 ($\mathrm{s}, \mathrm{C}-2$), 141.28 (d, C-12), 147.67 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 150.72 ($\mathrm{s}, \mathrm{C}-1$), 153.96 ($\mathrm{s}, \mathrm{C}-3$), 187.43 (s , C-10). ${ }^{*}$
MS (DIP-EI, 70 eV): $m / z(\%)=442(23)[\mathrm{M}]^{+}, 385(100)\left[-\mathrm{C}_{4} \mathrm{H}_{9}\right], 357(59)\left[-\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{CO}\right]$, 342 (27), 252 (16), 126 (65), 73 (42).
HRMS (EI): calc. für [M] ${ }^{+}\left({ }^{12} \mathrm{C}_{25} \mathrm{H}_{34}{ }^{16} \mathrm{O}_{5}{ }^{28} \mathrm{Si}\right): 442.2176$, found.: 442.217.
*) Peaks in ${ }^{1} \mathrm{H}$-NMR- und ${ }^{13} \mathrm{C}$-NMR-spectra were assigned with the help of H,H-Cosy-, HMQC-, HMBC- und NOESY-spectra.

To a solution of ketone ($\mathbf{(1 2)}(1.40 \mathrm{~g}, 3.04 \mathrm{mmol})$ in abs. THF (30 mL) under argon was added dropwise at $-78^{\circ} \mathrm{C}$ a solution of L-Selectride ($7.6 \mathrm{~mL}, 2.5$ equiv., 1 M in THF). After 3 h , $\mathrm{MeOH}(5 \mathrm{~mL})$ was added and the reaction mixture was slowly warmed to RT , gas evolution was observed. After addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, the mixture was extracted with MTBE ($3 \times 50 \mathrm{~mL}$) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent under vacuum, the raw product was purified by flashchromatography (EtOAc/cyclohexane $1: 4,1: 3,1: 2$) to afford $1.13 \mathrm{~g}(80 \%)$ of a colorless faum.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} / n\right.$-hexane 1:2) $=0.19$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3425$ (w, br.), 2930 (ss), 2854 (m), 1591 (m), 1490 (m), 1452 (s), 1399 (s), 1346 (m), 1319 (s), 1255 (s), 1197 (m), 1130 (s), 1088 (ss), 1017 (m), 950 (w), 883 (w), 835 (ss), 774 (m), 665 (w).
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.044(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.045(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.91$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{OSitBu}$), $1.18\left(\mathrm{dd},{ }^{3} J=6.5 \mathrm{~Hz},{ }^{2} J=14 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}_{\mathrm{a}}\right), 1.71\left(\mathrm{dd},{ }^{3} J=6.5 \mathrm{~Hz}\right.$, $\left.{ }^{2} J=14 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}_{\mathrm{a}}\right), 1.85\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 1.88\left(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H}_{\mathrm{b}}\right), 2.19\left(\mathrm{dddd},{ }^{3} J_{1}=3 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{2}=7.5 \mathrm{~Hz},{ }^{3} J_{3} \mathrm{~Hz}=12.5 \mathrm{~Hz},{ }^{2} J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right), 2.40\left(\mathrm{ddd},{ }^{3} J_{1}=3 \mathrm{~Hz},{ }^{3} J_{2}=5 \mathrm{~Hz}\right.$, ${ }^{2} J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}$), 2.90 (br. d, $J=10 \mathrm{~Hz}, 1 \mathrm{OH}$), 3.14 (ddd, ${ }^{3} J_{1}=4 \mathrm{~Hz},{ }^{3} J_{2}=12.5 \mathrm{~Hz}$, ${ }^{2} J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$), $3.35\left(\mathrm{ddd},{ }^{3} J_{1}=6.5 \mathrm{~Hz},{ }^{3} J_{2}=11.5 \mathrm{~Hz},{ }^{2} J=14 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}_{\mathrm{b}}\right), 3.48$ $(\mathrm{s}, 1 \mathrm{H}, 10-\mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}$, OMe an C-3), $3.84(\mathrm{~s}, 3 \mathrm{H}$, OMe an C-2), $3.93(\mathrm{~s}, 3 \mathrm{H}$, OMe an $\mathrm{C}-1), 4.30\left(\mathrm{ddd},{ }^{4} J=2 \mathrm{~Hz},{ }^{3} J_{1}=5.5 \mathrm{~Hz},{ }^{3} J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right), 4.64(\mathrm{~s}, 1 \mathrm{H}, 9-\mathrm{H}), 6.10(\psi \mathrm{t}$, $\left.J=2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}) .{ }^{*}\right)$
${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-4.88(\mathrm{q}, \mathrm{OSiMe}),-4.62(\mathrm{q}, \mathrm{OSiMe}), 18.06(\mathrm{~s}$, OSiCMe_{3}), 22.32 (t, C-12), 25.78 ($\mathrm{q}, \mathrm{OSiCMe} e_{3}$), 26.43 (t, C-11), 32.65 (t, C-5), 37.14 (t, C-6), 55.79 (q , OMe an C-3), 60.69 (q , OMe an C-2), 61.63 (q , OMe an $\mathrm{C}-1$), 63.67 (d, C-10), 68.38 (d, C-7), 82.51 (d, C-9), 89.55 ($\mathrm{s}, \mathrm{C}-12 \mathrm{a}$), 109.76 (d, C-4), 122.85 (d, C-8), 124.31 (s , C-12b), 137.07 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 141.91 ($\mathrm{s}, \mathrm{C}-2$), 149.12 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 152.71 ($\mathrm{s}, \mathrm{C}-3$), 155.36 ($\mathrm{s}, \mathrm{C}-1$). ${ }^{*}$ MS (DIP-EI, 70 eV): $m / z(\%)=462(16)[\mathrm{M}]^{+}, 405(7)\left[-\mathrm{C}_{4} \mathrm{H}_{9}\right], 387$ (8), 331 (77), 273 (21), 207 (26), 181 (23), 126 (20), 75 (26), 73 (38).
$[\alpha]_{\mathbf{D}}=-103.3,[\alpha]_{546}=-123.4,[\alpha]_{405}=-262.8,[\alpha]_{365}=-355.0\left(c=1.01, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$.
HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{25} \mathrm{H}_{38}{ }^{16} \mathrm{O}_{6}{ }^{28} \mathrm{Si}\right): 462.2438$, found.: 462.243.
*) Peaks in ${ }^{1} \mathrm{H}$-NMR- und ${ }^{13} \mathrm{C}$-NMR-spectra were assignated according to the data of the corresponding (rac) compound, with the help of H,H-Cosy-, HMQC-, HMBC- und NOESYspectra.

(7R,9R,10S)-7-[[tert-Butyl(dimethyl)silyl]oxy]-1,2,3-trimethoxy-5,6,7,9,10,11-hexahydrobenzo[a]heptalen-9,10-diol (16)

To a solution of endoxide (15) ($455 \mathrm{mg}, 983 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under argon were subsequently dropwise added at $-50^{\circ} \mathrm{C} \mathrm{NEt}_{3}(0.68 \mathrm{~mL}, 4.9 \mathrm{mmol}$, 5 equiv.) and TMSOTf ($0.89 \mathrm{~mL}, 4.9 \mathrm{mmol}, 5$ equiv.). The reaction mixture was warmed to $-10^{\circ} \mathrm{C}$ over 45 min and then cooled to $-50^{\circ} \mathrm{C}$. Abs. $\mathrm{MeOH}(1 \mathrm{~mL})$ was then added and the reaction mixture was warmed to RT. The solvent was removed under vacuum at RT and the residue was solved in abs. $\mathrm{MeOH}(30 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}(1.36 \mathrm{~g}, 9.84 \mathrm{mmol}, 10$ equiv. $)$ was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was warmed to RT over 45 min before addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under vacuum at RT. The raw product was purified by flash-chromatography (EtOAc/cyclohexane $1: 8,1: 6,1: 2,1: 1$) to afford $287 \mathrm{mg}(63 \%)$ of colorless oil.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ cyclohexane $\left.1: 1\right)=0.21$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3408(\mathrm{ss}, \mathrm{br} ., \mathrm{OH}), 2929(\mathrm{~s}), 2853(\mathrm{~m}), 1594(\mathrm{~m}), 1483(\mathrm{~m}), 1458(\mathrm{~s})$, 1406 (m), 1343 (m), 1322 (m), 1310 (m), 1249 (s , 1127 (s$), 1093$ (ss), 1004 (m), 886 (m), 833 (s), 775 (s), 668 (w).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}),-0.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.82$ ($\mathrm{s}, 9 \mathrm{H}, \operatorname{OSitBu}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, $3.83(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OMe}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 5.89\left(\mathrm{dd}, J_{1}=6 \mathrm{~Hz}, J_{2}=7 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 12-\mathrm{H}), 6.10(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-5.09(\mathrm{q}, \mathrm{OSiMe}),-4.98(\mathrm{q}, \mathrm{OSiMe}), 18.23(\mathrm{~s}$, OSiCMe_{3}), $25.83\left(\mathrm{q}, \mathrm{OSiCMe}_{3}\right), 29.65(\mathrm{t}), 34.51(\mathrm{t}), 36.39(\mathrm{t}), 55.98(\mathrm{q}, \mathrm{OMe}), 60.86(\mathrm{q}$,

OMe), 61.05 (q, OMe), 71.98 (d), 72.63 (d), 78.67 (d), 107.01 (d, C-4), 126.81 (s$), 127.12$ (d), 130.61 (d), 134.65 (s), 135.18 (s), 140.23 (s), 140.76 (s), 150.51 (s), 152.07.

MS (DIP-EI, 70 eV): $m / z(\%)=462(7)[M]^{+}, 405(19)\left[-\mathrm{C}_{4} \mathrm{H}_{9}\right], 387$ (24), 361 (12), 313 (21), 285 (22), 271 (18), 254 (12), 233 (11), 207 (23), 181 (28), 129 (17), 115 (14), 75 (88), 73 (100).

HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{25} \mathrm{H}_{38}{ }^{16} \mathrm{O}_{6}{ }^{28} \mathrm{Si}\right): 462.2438$, found.: 462.244 .
$[\alpha]_{\mathbf{D}}=-81.3,[\alpha]_{546}=-96.2,[\alpha]_{405}=-196.5,\left(c=1.31, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$.

(7RS)-11-Amino-7-[[tert-butyl(dimethyl)silyl]oxy]-1,2,3-trimethoxy-6,7dihydrobenzo $[a]$ heptalen-10(5H)-one (rac-17)

To a solution of tropone ($\mathrm{rac}-\mathbf{1 4}$) ($180 \mathrm{mg}, 407 \mu \mathrm{~mol}$) in abs. EtOH (8 mL) under argon was added dropwise $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.89 \mathrm{ml}, 18 \mathrm{mmol}, 45$ equiv. $)$ at $0^{\circ} \mathrm{C}$. The solution was warmed to RT and stirred 4.5 h . Solvent and liquid reagents were removed under vacuum. Radial chromotagraphy (EtOAc/cyclohexane $1: 4+2 \% \mathrm{NEt}_{3}, 1: 3+2 \% \mathrm{NEt}_{3}$) afforded in the first fraction a yellow oil and in the second fraction a orange-yellow oil. Crystallisation of the second fraction in EtOAc/cyclohexane afforded $72 \mathrm{mg}(39 \%)$ of orange-yellow needles.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ cyclohexane $\left.1: 3+2 \% \mathrm{NEt}_{3}\right)=0.31$
mp.: $173{ }^{\circ} \mathrm{C}$ (EtOAc/cyclohexane)
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3419$ (w), 3288 (s, br.), 3187 (w), 2929 (m), 2853 (w), 1591 (s), 1523 (s), 1461 (m), 1433 (w), 1399 (w), 1359 (s), 1309 (w), 1249 (m), 1193 (m), 1123 (s), 1094 (ss), 1003 (m), 881 (s), 835 (s), 776 (m), 731 (m), 668 (w).
${ }^{1} \mathbf{H}-$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-0.15(\mathrm{~s}, 3 \mathrm{H}$, OSiMe), $-0.10(\mathrm{~s}, 3 \mathrm{H}$, OSiMe), 0.82 (s, $9 \mathrm{H}, \mathrm{OSit} \mathrm{Bu}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.90(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 4.29$ (m, 1H, 7-H), 5.75 (br. s, 2 NH), 6.52 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{H}), 7.01$ (s, 1H, 12-H), 7.25 $\left(\mathrm{d}, 1 \mathrm{H},{ }^{3} J=12.5 \mathrm{~Hz}\right), 7.83\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=12.5 \mathrm{~Hz}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}$ ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-5.10(\mathrm{q}, \mathrm{OSiMe}),-5.03(\mathrm{q}, \mathrm{OSiMe}), 18.14$ (s, OSiCMe_{3}), 25.75 (q, OSiCMe ${ }_{3}$), 30.10 (t), 41.83 (t), 55.95 (q, OMe), 60.86 (q, OMe), 61.23 (q, OMe), 71.76 (d, C-7), 107.12 (d, C-4), 117.31 (d), 126.35 (s), 130.12 (d), 133.28 (d), 135.75 (s), 137.71 (s), 140.78 (s), 141.13 (s), 150.50 (s), 153.43 (s), 154.04 (s), 175.88 (s, C-10).

MS (DIP-EI, 70 eV): $m / z(\%)=457(21)[\mathrm{M}]^{+}, 426(36)[-\mathrm{OMe}], 400(12)\left[-\mathrm{C}_{4} \mathrm{H}_{9}\right], 326$ (12), 298 (10), 207 (19), 75 (30), 73 (100).
HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{25} \mathrm{H}_{35}{ }^{14} \mathrm{~N}^{16} \mathrm{O}_{5}{ }^{28} \mathrm{Si}\right): 457.2285$, found.: 457.228 .

(7RS)-9-Amino-7-[[tert-butyl(dimethyl)silyl]oxy]-1,2,3-trimethoxy-6,7dihydrobenzo $[a]$ heptalen-10(5H)-one (rac-18)

By the synthesis of (rac-17) from tropone (rac-14) ($180 \mathrm{mg}, 407 \mu \mathrm{~mol}$), a yellow oil was obtained after chromatography in a first fraction. Crystallisation in EtOAc/cyclohexane afforded $78 \mathrm{mg}(42 \%)$ of yellow crystals.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ cyclohexane $\left.1: 3+2 \% \mathrm{NEt}_{3}\right)=0.37$
mp.: 219-220 ${ }^{\circ} \mathrm{C}$ (destr.) (EtOAc/cyclohexane)
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3412$ (w), 3285 (s, br.), 2928 (m), 2852 (w), 1598 (s , 1522 (s), 1485 (m), 1444 (m), 1403 (m), 1341 (s), 1318 (m), 1258 (m), 1138 (m), 1095 (ss), 1004 (m), 885 (s), 835 (s), 777 (s$), 668(\mathrm{w})$.
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-0.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}),-0.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.84$ $(\mathrm{s}, 9 \mathrm{H}, \mathrm{OSitBu}), 1.88\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 2.31\left(\mathrm{~m}, 3 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right.$ und $\left.5-\mathrm{H}_{2}\right), 3.54(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}$ an $\mathrm{C}-1)$, 3.89 (s, 3H, OMe an C-3), 3.89 (s, 3H, OMe an C-2), 4.35 (m, 1H, 7-H), 5.88 (br. s, 2 NH), $6.51(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 7.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12.5 \mathrm{~Hz}, 11-\mathrm{H}\right), 7.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12.5 \mathrm{~Hz}, 12-\mathrm{H}\right), 7.50(\mathrm{~s}, 8-\mathrm{H}) .{ }^{*}{ }^{*}$
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-5.09$ (q, OSiMe), -4.95 (q, OSiMe), 18.24 (s, OSiCMe_{3}), 25.80 ($\mathrm{q}, \mathrm{OSiCMe}$), 30.03 (t, C-5), 41.95 (t, C-6), 55.99 (q, OMe at C-3), 60.62 (q, OMe at C-1), 61.24 (q, OMe at C-2), 72.34 (d, C-7), 107.00 (d, C-4), 109.51 (d, C-8), 125.93 ($\mathrm{s}, \mathrm{C}-12 \mathrm{~b}$), 128.70 (d, C-11), 129.14 ($\mathrm{s}, \mathrm{C}-12 \mathrm{a}$), 135.58 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 140.73 (d, C-12), 141.16 ($\mathrm{s}, \mathrm{C}-2$), 149.90 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 150.57 ($\mathrm{s}, \mathrm{C}-1$), 152.96 ($\mathrm{s}, \mathrm{C}-3$), 155.23 ($\mathrm{s}, \mathrm{C}-9$), 175.72 (s , C-10). ${ }^{*}$
MS (DIP-EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=457(17)[\mathrm{M}]^{+}, 400(9)\left[-\mathrm{C}_{4} \mathrm{H}_{9}\right], 287(10), 167(20), 149$ (48), 126 (100), 97 (28), 83 (21), 71 (38).
HRMS (EI): calc. for $[\mathrm{M}]{ }^{+}\left({ }^{12} \mathrm{C}_{25} \mathrm{H}_{35}{ }^{14} \mathrm{~N}^{16} \mathrm{O}_{5}{ }^{28} \mathrm{Si}\right)$: 457.2285, found.: 457.229.
*) Peaks in ${ }^{1} \mathrm{H}$-NMR- und ${ }^{13} \mathrm{C}$-NMR-spectra were assigned with the help of H,H-Cosy-, HMQC-, HMBC- und NOESY-spectra.

(7RS)-11-Amino-7-hydroxy-1,2,3-trimethoxy-6,7-dihydrobenzo[a]heptalen-10(5H)-one (rac-19)

To a solution of silylether (rac-17) ($54 \mathrm{mg}, 0.12 \mathrm{mmol}$) in abs. THF (1 mL) under argon was added dropwise at $0^{\circ} \mathrm{C}$ a solution of $\operatorname{TBAF}(0.35 \mathrm{~mL}, 0.35 \mathrm{mmol}, 2.9$ equiv., 1 M in THF). After 45 min , water (5 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 4 \mathrm{~mL})$. The combined organic extracts were filtered in a Pasteur-pipette over a short bed of Celite and the solvent was removed under vacuum. The raw product was purified by radial chromatography (EtOAC/cyclohexane 5:1 + $1 \% \mathrm{NEt}_{3}$) to afford $39 \mathrm{mg}(96 \%)$ of a yellow oil.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ cyclohexane $\left.10: 1\right)=0.13$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3433$ (m), 3323 (s, br.), 3194 (m), 2924 (s), 2850 (w), 1707 (w), 1592 (ss), 1517 (s), 1490 (s), 1445 (ss), 1402 (m), 1345 (s), 1313 (m), 1234 (m), 1194 (m), 1123 (ss), 1089 (m), 848 (w), 746 (w).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.85(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.87$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.88 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 4.41 (dd, $J_{1}=5.5 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 5.77 (br. s, 2 NH), $\left.6.53(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-12), 7.18^{*}\right)\left(\mathrm{d},{ }^{3} J=12.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.84\left(\mathrm{~d},{ }^{3} J=12.5 \mathrm{~Hz}\right.$, 1 H).
${ }^{13}$ C-NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=30.07(\mathrm{t}), 40.66(\mathrm{t}), 56.02(\mathrm{q}, \mathrm{OMe}), 61.00(\mathrm{q}$, OMe), 61.20 (q, OMe), 70.78 (d, C-7), 107.21 (d, C-4), 117.93 (d), 126.26 (s$), 130.11$ (d), 132.82 (d), 135.76 (s), 138.24 (s), 141.03 (s), 141.51 (s), 150.47 (s), 153.50 (s), 154.19 (s), 175.46 (s, C-10).

MS (DIP-EI, 70 eV): $m / z(\%)=343$ (100) [M] ${ }^{+}, 325(12)\left[-\mathrm{H}_{2} \mathrm{O}\right], 312$ (34) [-OMe], 284 (10), 267 (17), 256 (10), 207 (40), 181 (20), 128 (9), 115 (13), 83 (13) 77 (14).

HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{19} \mathrm{H}_{21}{ }^{14} \mathrm{~N}^{16} \mathrm{O}_{5}\right)$: 343.1420, found.: 343.142.
*) The doublet-signal at 7.18 ppm in ${ }^{1} \mathrm{H}$-NMR-Spectrum is strongly dependent on the concentration.
(7RS)-9-Amino-7-hydroxy-1,2,3-trimethoxy-6,7-dihydrobenzo[a]heptalen-10(5H)-one (rac-20)

To a solution of silylether ($\mathrm{rac}-\mathbf{1 8}$) $(51 \mathrm{mg}, 0.11 \mathrm{mmol})$ in abs. THF $(1 \mathrm{~mL})$ under argon was added dropwise at $0^{\circ} \mathrm{C}$ a solution of $\operatorname{TBAF}(0.30 \mathrm{~mL}, 0.30 \mathrm{mmol}, 2.7$ equiv., 1 M in THF). After 45 min , water (5 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 4 \mathrm{~mL})$. The combined organic extracts were filtered in a Pasteur-pipette over a short bed of Celite and the solvent was removed under vacuum. The raw product was purified by radial chromatography (EtOAC/Cyclohexane 5:1 $+2 \% \mathrm{NEt}_{3}, 10: 1+2 \% \mathrm{NEt}_{3}$) to afford $35 \mathrm{mg}(91$ \%) of a light yellow solid.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ cyclohexane $\left.10: 1+2 \% \mathrm{NEt}_{3}\right)=0.14$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3353(\mathrm{~s}), 3288(\mathrm{~m}), 3211(\mathrm{~m}), 2932(\mathrm{w}), 1643(\mathrm{w}), 1602(\mathrm{~s}), 1518(\mathrm{~s})$, 1476 (s), 1444 (ss), 1402 (m), 1338 (s), 1292 (m), 1195 (m), 1137 (s), 1097 (ss), 1054 (m), 857 (m), 726 (s), 648 (w).
${ }^{1} \mathbf{H}$-NMR (250 MHz, DMSO-[$\left.\left.\mathrm{D}_{6}\right]\right): \delta[\mathrm{ppm}]=1.72(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 3.53$ (s, 3H, OMe), 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.19(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 5.51(\mathrm{~d}, 1 \mathrm{OH}), 6.74$ (s, 1H, 4-H), $6.84\left(\mathrm{~d},{ }^{3} J=12 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.14\left(\mathrm{~d},{ }^{3} J=12 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.44$ (br. s, 2 NH), 7.62 (s, 1H, C-8).
${ }^{13}$ C-NMR (62.5 MHz, DMSO-[D $\left.\left.\left.\mathrm{D}_{6}\right]\right): \delta[\mathrm{ppm}]=29.28(\mathrm{t}), 40.43^{*}\right)(\mathrm{t}), 55.73(\mathrm{q}, \mathrm{OMe}), 60.24$ (q, OMe), 60.44 (q, OMe), 69.97 (d, C-7), 107.29 (d), 107.82 (d), 125.82 (d), 125.91 (s), 126.47 (s), 135.11 (s$), 139.18$ (d), 140.35 (s), 149.77 (s), 150.98 (s), 152.22 (s), 156.89 (s), 174.20 (s, C-10).

MS (DIP-EI, 70 eV$): m / z(\%)=344(21), 343(100)[\mathrm{M}]^{+}, 315(15), 256(12), 181(52), 128$ (10), 115 (10), 84 (12).

HRMS (EI): calc. für [M] ${ }^{+}\left({ }^{12} \mathrm{C}_{19} \mathrm{H}_{21}{ }^{14} \mathrm{~N}^{16} \mathrm{O}_{5}\right)$: 343.1420, found.: 343.142.
*) The signal at 40.43 ppm in ${ }^{13} \mathrm{C}$-NMR-spectrum was overlapped by the solvent signal and was determined using a DEPT-spectrum.

A solution of aminotropone ($\mathrm{rac}-19$) ($38 \mathrm{mg}, 0.11 \mathrm{mmol}$) in a mixture of EtOH (2 mL) and aq. $\mathrm{KOH}(2 \mathrm{~mL}, 2 \mathrm{~N})$ was heated overnight at $110{ }^{\circ} \mathrm{C}$ under argon.The solution was then cooled to $0^{\circ} \mathrm{C}$, neutralized with HCL 1 N and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 4 \mathrm{~mL})$. The combined organic extracts were filtered in a Pasteur-pipette over a short bed of Celite. Removal of the solvent under vacuum afforded 32 mg (82%) of a yellow oil, containing $\sim 5 \%$ impurities (according to NMR).

IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3378$ (ss, br), 3215 (s, br.), 2934 (s , 2853 (w), 1591 (ss), 1540 (m), 1456 (ss), 1399 (m), 1345 (m), 1316 (m), 1266 (s$), 1236$ (s$), 1193$ (m), 1130 (s$), 1109$ (s$)$, 1088 (s), 1050 (m), 997 (m), 970 (w), 919 (w), 850 (m), 733 (s).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}\right.$, DMSO-[D $\left.\left.{ }_{6}\right]\right): \delta[\mathrm{ppm}]=1.69(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 3.60$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.16\left(\mathrm{dd}, J_{1}=6.5, J_{2}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $7-\mathrm{H}), 5.51$ (br. s, 1 OH), 6.79 (s, $1 \mathrm{H}, 4-\mathrm{H}$), 7.15 (s, $1 \mathrm{H}, 12-\mathrm{H}), 7.33$ (d, $\left.{ }^{3} J=12 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}\right)$, 7.91 (d, $\left.{ }^{3} J=12 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}\right)$.
${ }^{13}$ C-NMR (75 MHz, DMSO-[D $\left.\left.{ }_{6}\right]\right): \delta[\mathrm{ppm}]=29.10(\mathrm{t}), 40.19(\mathrm{t}), 55.78(\mathrm{q}, \mathrm{OMe}), 60.49(\mathrm{q}$, OMe), 60.72 (q, OMe), 69.40 (d, C-7), 107.45 (d, C-4), 124.98 (s), 125.36 (d), 126.26 (d), 132.84 (d), 135.17 (s), 140.35 (s), 141.42 (s), 142.69 (s), 149.80 (s), 153.38 (s), 166.27 (s, C-11), 172.49 (s, C-10).
MS (DIP-EI, 70 eV): $m / z(\%)=344$ (34) $[\mathrm{M}]^{+}$, 298 (12) $\left[-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}\right], 207$ (9), 181 (16), 167
(16), 149 (36), 126 (20), 111 (32), 97 (48), 84 (75), 71 (53).

HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{19} \mathrm{H}_{20}{ }^{16} \mathrm{O}_{6}\right): 344.1260$, found.: 344.126.
(7RS)-7,9-Dihydroxy-1,2,3-trimethoxy-6,7-dihydrobenzo[a]heptalen-10(5H)-one (rac22) (\pm)-7-Hydroxydesacetamidocolchicein)

A solution of aminotropone ($\mathrm{rac}-\mathbf{2 0}$) ($31 \mathrm{mg}, 90 \mu \mathrm{~mol}$) in a mixture of EtOH (2 mL) and aq. $\mathrm{KOH}(2 \mathrm{~mL}, 2 \mathrm{~N})$ was heated overnight at $110^{\circ} \mathrm{C}$ under argon. The solution was then cooled to $0^{\circ} \mathrm{C}$, neutralized with HCL 1 N and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 4 \mathrm{~mL})$. The combined organic extracts were filtered in a Pasteur-pipette over a short bed of Celite. Removal of the solvent under vacuum afforded 23 mg (74%) of a yellow oil.

IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3340$ ($\mathrm{ss}, \mathrm{br} ., \mathrm{OH}$), 3215 (s, br), 2922 (s), 2850 (w), 1596 (ss), 1545 (m), 1487 (s$), 1453$ (m), 1401 (m), 1344 (m), 1318 (m), 1273 (s$), 1231$ (s$), 1194$ (m), 1137 (s), 1092 (ss), 1001 (m), 923 (m), 857 (w), 753 (w).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.84(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 3.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.44(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 5.57$ (br. s, 1 OH), 6.52 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{H}$), $7.34\left(\mathrm{~d},{ }^{3} J=12 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-12), 8.02\left(\mathrm{~d},{ }^{3} J=12 \mathrm{~Hz}, 1 \mathrm{H}\right)$.
${ }^{13} \mathbf{C}-$ NMR ($\left.75 \mathrm{MHz}, \operatorname{DMSO}-\left[\mathrm{D}_{6}\right]\right): \delta[\mathrm{ppm}]=29.05(\mathrm{t}), 40.34(\mathrm{t}), 55.77(\mathrm{q}, \mathrm{OMe}), 60.47(\mathrm{q}$, OMe), 60.54 (q, OMe), 69.84 (d, C-7), 107.42 (d, C-4), 118.10 (d), 124.33 (d), 124.81 (s$)$, 132.94 (s), 135.11 (s$), 140.16$ (d), 140.35 (s), 149.82 (s), 151.84 (s), 152.94 (s), 168.18 (s), 172.03 (s).

MS (DIP-EI, 70 eV$): m / z(\%)=344(100)[\mathrm{M}]^{+}, 316(20)[-\mathrm{CO}], 257(15), 197(10), 181$ (60), 169 (10), 152 (10), 128 (13), 115 (20), 99 (13), 77 (15), 71 (13), 69 (16).

HRMS (EI): calc. for [M] ${ }^{+}\left({ }^{12} \mathrm{C}_{19} \mathrm{H}_{20}{ }^{16} \mathrm{O}_{6}\right)$: 344.1260 , found.: 344.125.

(7R)-7-[[tert-Butyl(dimethyl)silyl]oxy]-1,2,3,10-tetramethoxy-6,7dihydrobenzo $[a]$ heptalen-9(5H)-one (24)

To a solution of DMSO ($0.70 \mathrm{~mL}, 9.8 \mathrm{mmol}, 36$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ under argon was added dropwise at $-60^{\circ} \mathrm{C}$ TFAA ($1.10 \mathrm{~mL}, 7.9 \mathrm{mmol}$, 29 equiv.). After 10 min , a solution of diol (16) ($125 \mathrm{mg}, 270 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added and the resulting solution was stirred 1.5 h at $-60^{\circ} \mathrm{C} . \mathrm{NEt}_{3}(2.73 \mathrm{~mL}, 19.7 \mathrm{mmol}, 73$ equiv.) was added and the solution was allowed to warm to RT overnight. $\mathrm{HCl} 0,1 \mathrm{~N}$ was then added to the pale-orange resulting solution and the phases were separated. The aqueous phase was extracted $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined organic extracts were filtrated through a short bed of Celite. The solvent was removed under vacuum and the residue was solubilized in $\mathrm{MeOH}(15 \mathrm{~mL})$. To this
solution, $\mathrm{CH}_{2} \mathrm{~N}_{2}\left(8 \mathrm{~mL}, 2.4 \mathrm{mmol}, 9\right.$ equiv., 0.3 M in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ was added at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred 1 h . Silica was then added until no more gas evolution was observed. After filtartion, the solvent was removed under vacuum. The raw product was purified by flash-chromatography (EtOAc/cyclohexane 1:2, 1:1, 2:1, 3:1) to afford 38 mg of a yellow oil in a first fraction, 20.5 mg of a colorless oil in a second fraction, 14.2 mg of a mixed fraction and 26.8 mg of a last fraction. Radial chromatography (EtOAc/cyclohexane 1:2, 1:1) of the mixed fraction and of the last fraction together afforded 25.5 mg (20\%) of a yellow oil (the less polar compound).
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} / n\right.$-hexane 1:2) $=0.20$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2928(\mathrm{~s}), 2853(\mathrm{w}), 1616(\mathrm{~m}), 1586(\mathrm{ss}), 1486(\mathrm{~m}), 1458(\mathrm{~s}), 1343(\mathrm{~m})$, 1317 (m), 1248 (ss), 1193 (w), 1137 (m), 1118 (m), 1096 (ss), 1005 (m), 889 (m), 836 (ss), 778 (m), 671 (w).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-0.09\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OSiMe}_{2}\right), 0.83(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSit} t \mathrm{Bu}), 1.80$ $\left(\mathrm{m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 2.21\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right), 2.39\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}_{2}\right), 3.57(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}$ an $\mathrm{C}-1), 3.912(\mathrm{~s}$, 3 H , OMe at C-3), $3.917\left(\mathrm{~s}, 3 \mathrm{H}\right.$, OMe at C-2), $3.97\left(\mathrm{~s}, 3 \mathrm{H}\right.$, OMe at C-9), $4.32\left(\mathrm{dd}, J_{1}=7 \mathrm{~Hz}\right.$, $\left.J_{2}=10 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right), 6.52(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.76\left(\mathrm{~d},{ }^{3} J=11 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}\right), 7.19\left(\mathrm{~d},{ }^{3} J=11 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 12-\mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}) .{ }^{*}\right)$
${ }^{13} \mathbf{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-5.01\left(\mathrm{q}, \mathrm{OSiMe}_{2}\right), 18.24\left(\mathrm{~s}, \mathrm{OSiCMe}_{3}\right), 25.82(\mathrm{q}$, OSiCMe_{3}), 29.99 (t, C-5), 40.46 (t, C-6), 55.99 (q, OMe at C-3), 56.17 (q, OMe at C-10), 60.78 (q, OMe at C-1), 61.22 (q, OMe at C-2), 72.12 (d, C-7), 107.02 (d, C-4), 111.53 (d, C-11), 125.08 ($\mathrm{s}, \mathrm{C}-12 \mathrm{~b}$), 132.21 (d, C-8), 134.32 (d, C-12), 134.71 ($\mathrm{s}, \mathrm{C}-12 \mathrm{a}$), 135.22 (s , C-4a), 141.19 ($\mathrm{s}, \mathrm{C}-2$), 150.75 ($\mathrm{s}, \mathrm{C}-1$), 152.29 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 153.27 ($\mathrm{s}, \mathrm{C}-3$), 164.02 ($\mathrm{s}, \mathrm{C}-10$), 179.65 (s, C-9). ${ }^{*}$

MS (DIP-EI, 70 eV): $m / z(\%)=472(43)[\mathrm{M}]^{+}, 415(65)\left[-\mathrm{C}_{4} \mathrm{H}_{9}\right], 387(62)\left[-\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{CO}\right], 372$ (27), 356 (17), 341 (10), 313 (16), 282 (16), 219 (12), 209 (24), 97 (17), 89 (50), 75 (68), 73 (100).

HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{26} \mathrm{H}_{36}{ }^{16} \mathrm{O}_{6}{ }^{28} \mathrm{Si}\right): 472.2281$, found.: 472.228.
$[\alpha]_{\mathbf{D}}=+137.8,[\alpha]_{546}=+182.1\left(c=0.95, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$.
*) Peaks in ${ }^{1} \mathrm{H}$-NMR- und ${ }^{13} \mathrm{C}$-NMR-spectra were assigned with the help of H,H-Cosy-, HMQC-, HMBC- und NOESY-spectra.

The second fraction obtained from the precedent synthesis of $\mathbf{2 4}$ and the more polar fraction obtained after chromatography of the mixed fraction afforded together $28.1 \mathrm{mg}(22 \%)$ of a colorless oil.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} / n\right.$-hexane 1:2) $=0.27$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2928(\mathrm{~m}), 2853(\mathrm{w}), 2148(\mathrm{w}), 1619(\mathrm{~s}), 1575(\mathrm{ss}), 1488(\mathrm{~m}), 1458(\mathrm{~s})$, 1402 (m), 1343 (m), 1320 (m), 1254 (s), 1191 (w), 1160 (m), 1139 (s), 1096 (ss), 1004 (m), 893 (m), 836 (ss), 778 (m), 671 (w).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}),-0.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSiMe}), 0.84$ (s, $9 \mathrm{H}, \operatorname{OSi} t \mathrm{Bu}), 1.98\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 2.30\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right), 2.35\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}_{2}\right), 3.59(\mathrm{~s}, 3 \mathrm{H}$, OMe at C-1), $3.891(\mathrm{~s}, 3 \mathrm{H}$, OMe at C-2), $3.894(\mathrm{~s}, 3 \mathrm{H}$, OMe at $\mathrm{C}-3), 3.99(\mathrm{~s}, 3 \mathrm{H}$, OMe at $\mathrm{C}-9), 4.39(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 7.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}\right), 7.34(\mathrm{~d}$, $\left.\left.{ }^{3} J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}\right), 7.55(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}) .{ }^{*}\right)$
${ }^{13} \mathbf{C}$-NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-4.97(\mathrm{q}$, OSiMe), $-4.91(\mathrm{q}$, OSiMe), $18.12(\mathrm{~s}$, OSiCMe_{3}), 25.77 ($\mathrm{q}, \mathrm{OSiCMe}_{3}$), 29.96 (t, C-5), 42.21 (t, C-6), $56.01^{* *)}$ (q, OMe an C-3), $56.06^{* *)}$ (q, OMe an C-9), 60.80 (q, OMe an C-1), 61.23 (q, OMe an C-2), 72.30 (d, C-7), 107.12 (d, C-4), 110.16 (d, C-8), 125.11 (s, C-12b), 132.61 ($s, C-12 \mathrm{a}$), 133.85 (d, C-11), 135.69 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 141.00 (d, C-12), 141.18 ($\mathrm{s}, \mathrm{C}-2$), 146.03 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 150.57 ($\mathrm{s}, \mathrm{C}-1$), 153.52 ($\mathrm{s}, \mathrm{C}-3$), 163.74 ($\mathrm{s}, \mathrm{C}-9$), 179.60 ($\mathrm{s}, \mathrm{C}-10$). ${ }^{*}$
MS (DIP-EI, 70 eV): $m / z(\%)=472(26)[\mathrm{M}]^{+}, 415(49)\left[-\mathrm{C}_{4} \mathrm{H}_{9}\right], 387(27)\left[-\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{CO}\right], 372$ (11), 341 (10), 313 (12), 285 (10), 97 (13), 83 (14), 75 (42), 73 (100).

HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{26} \mathrm{H}_{36}{ }^{16} \mathrm{O}_{6}{ }^{28} \mathrm{Si}\right)$: 472.2281 , found.: 472.228.
$[\alpha]_{\mathbf{D}}=+231.6,[\alpha]_{546}=+313.6\left(c=0.80, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$.
*) Peaks in ${ }^{1} \mathrm{H}$-NMR- und ${ }^{13} \mathrm{C}$-NMR-spectra were assigned with the help of H,H-Cosy-, HMQC-, HMBC- und NOESY-spectra.
**) The assignments of the signals at 56.01 ppm und 56.06 ppm in ${ }^{13} \mathrm{C}$-NMR-spectra could be exhanged.
(7R)-7-Hydroxy-1,2,3,10-tetramethoxy-6,7-dihydrobenzo[a]heptalen-9(5H)-one (26) (7-Hydroxydesacetamidocolchicine)

To a solution of silylether (24) ($20 \mathrm{mg}, 42 \mu \mathrm{~mol}$) in abs. THF (2 mL), HF.Py ($0.50 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added at $0{ }^{\circ} \mathrm{C}$. After 30 min the solution was warmed to RT and HF.Py (1.0 mL , 1 M in THF) was once more added. After 2 h , saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 4 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{HCl} 0.1 \mathrm{~N}(5 \mathrm{~mL})$, filtrated over a short bed of Celite and the solvent was removed under vacuum. Purification by radial chromatography on (EtOAc/cyclohexane 15:1, EtOAc, $\mathrm{CHCl}_{3} / \mathrm{MeOH} 20: 1$) afforded 13 mg (86%) of a colorless oil.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH} 20: 1\right)=0.10$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3363$ (s, br), 2921 (s , 2829 (m), 1612 (m), 1586 (s), 1555 (ss), 1486 (m), 1459 (m), 1344 (m), 1317 (m), 1250 (ss), 1192 (w), 1137 (m), 1092 (ss), 1013 (w), 1000 (w), 921 (w), 842 (w).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.80(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~d}, 1 \mathrm{OH}), 2.43(\mathrm{~m}, 3 \mathrm{H}), 3.57(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 3.89$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.90 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OMe}$), 3.94 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 4.47 (m, 1H, $7-\mathrm{H}$), 6.54 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{H}$), $6.79\left(\mathrm{~d},{ }^{3} \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.97(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H})$. ${ }^{13} \mathbf{C}$-NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=29.85(\mathrm{t}), 39.0(\mathrm{t}), 56.07(\mathrm{q}, \mathrm{OMe}), 56.20(\mathrm{q}, \mathrm{OMe})$, 60.96 (q, OMe), 61.17 (q, OMe), 71.23 (d, C-7), 107.08 (d, C-4), 112.20 (d), 124.91 (s), 131.35 (d), 134.87 (d), 135.11 (s), 135.50 (s), 141.14 (s), 150.71 (s), 153.40 (s), 153.47 (s), 163.90 (s, C-10), 179.56 ($\mathrm{s}, \mathrm{C}-9$).

MS (DIP-EI, 70 eV$): m / z(\%)=358(56)\left[\mathrm{M}^{+}\right], 330(46)[-\mathrm{CO}], 271$ (21), 255 (12), 241 (11), 181 (100), 152 (14), 128 (16), 115(19), 55 (12).
HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{20} \mathrm{H}_{22}{ }^{16} \mathrm{O}_{6}\right)$: 358.1416, found: 358.141.
$[\alpha]_{\mathbf{D}}=+109,[\alpha]_{546}=+162\left(c=1.05, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$.
(7R)-7-Hydroxy-1,2,3,9-tetramethoxy-6,7-dihydrobenzo[a]heptalen-10(5H)-one (27)

(7-Hydroxydesacetamidoisocolchicine)

To a solution of silylether ($\mathbf{2 5}$) $(45 \mathrm{mg}, 95 \mu \mathrm{~mol})$ in abs. THF (5 mL), HF.Py ($0.50 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added at $0{ }^{\circ} \mathrm{C}$. After 30 min the solution was warmed to RT and HF.Py (1.0 mL , 1 M in THF) was once more added. After 2 h , saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 4 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{HCl} 0.1 \mathrm{~N}(5 \mathrm{~mL})$, filtrated through a short bed of Celite and the solvent was removed under vacuum. Purification by radial chromatography (EtOAc/cyclohexane 20:1, EtOAc, $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH} 10: 0.4\right)$ afforded 34 mg (98%) of a pale yellow powder.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH} 10: 0.6\right)=0.29$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3347$ (s, br), 2929 (s), 2850 (m), 1606 (m), 1555 (ss), 1487 (m), 1453 (m), 1402 (m), 1344 (m), 1318 (m), 1255 (m), 1234 (w), 1192 (w), 1161 (w), 1138 (m), 1093 (ss), 1048 (w), 999 (w), 977 (w), 918 (w), 851 (w).
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=1.98(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 3.865 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.878 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OMe}$), 3.981 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $4.49(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}$, $4-\mathrm{H}), 7.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.62(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=29.93(\mathrm{t}, \mathrm{C}-5), 41.04(\mathrm{t}, \mathrm{C}-6), 56.04(\mathrm{q}, \mathrm{OMe}), 56.25$ (q, OMe), 61.01 (q, OMe), 61.13 (q, OMe), 71.29 (d, C-7), 107.17 (d, C-4), 110.60 (d, C-8), 124.92 (s, C-12b), 131.30, 133.46, 133.50, 135.71, 141.03 (s, C-2), 141.44 (s, C-7a), 150.55 ($\mathrm{s}, \mathrm{C}-1$), 153.61 ($\mathrm{s}, \mathrm{C}-3$), 163.79 ($\mathrm{s}, \mathrm{C}-9$), 179.35 ($\mathrm{s}, \mathrm{C}-10$).
MS (DIP-EI, 70 eV): $m / z(\%)=358(56)\left[\mathrm{M}^{+}\right], 330(46)[-\mathrm{CO}], 271$ (21), 255 (12), 241 (11), 181 (100), 152 (14), 128 (16), 115(19), 83 (12).
HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{20} \mathrm{H}_{22}{ }^{16} \mathrm{O}_{6}\right)$: 358.1416, found: 358.141.
$[\alpha]_{\mathbf{D}}=+170,[\alpha]_{546}=+239\left(c=1.037, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$.

(7RS)-Methanesulfonic acid 1,2,3,10-tetramethoxy-9-oxo-5,6,7-trihydro-benzo-

 [a]heptalen-7-yl ester (rac-28)

To a solution of alcohol (rac-26) ($316 \mathrm{mg}, 0.88 \mathrm{mmol}$) in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under argon were sequently added $\mathrm{NEt}_{3}(0.8 \mathrm{~mL}, 5.73 \mathrm{mmol}, 6.5$ equiv.) and freshly distilled $\mathrm{MsCl}(0.11$ $\mathrm{mL}, 1.41 \mathrm{mmol}, 1.4$ equiv.) at $0^{\circ} \mathrm{C}$. After 2 h , ice-water (5 mL) was added and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with HCl
$1 \mathrm{~N}(10 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed in vacuum and the raw product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ acetone $\left.1: 1\right)$ to afford $317.1 \mathrm{mg}(82 \%)$ of a yellow oil.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.1: 1\right)=0.32$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2934$ (s, br), 2832 (m), 2235 (m), 1617 (m), 1566 (ss), 1485 (m), 1454 (m), 1431 (w), 1398 (m), 1344 (ss), 1319 (m), 1282 (w), 1248 (ss), 1172 (ss), 1136 (ss), 1087 (ss), 1064 (w), 1021 (m), $983(\mathrm{~m}), 954(\mathrm{~m}), 910(\mathrm{~m}), 877(\mathrm{~m}), 824(\mathrm{~m}), 725(\mathrm{ss}), 643(\mathrm{~m})$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.0(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMs}), 3.54$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.84(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OMe}), 3.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 5.18(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H})$, $6.48(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.78\left(\mathrm{~d},{ }^{3} J=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.20\left(\mathrm{~d},{ }^{3} J=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=29.13(\mathrm{t}, \mathrm{C}-5), 37.59(\mathrm{t}, \mathrm{C}-6), 38.79\left(\mathrm{q}, \mathrm{SO}_{2} \mathrm{Me}\right)$, 55.89 (q, OMe), 56.31 (q, OMe), 61.05 ($2 \times$ q, OMe), 78.27 (d, C-7), 107.39 (d, C-4), 112.13 (d, C-11), 123.98 (s), 130.98 (d, C-8), 133.55 (s), 133.85 (s$), 135.60$ (d, C-12), 141.48 (s$)$, 146.55 (s), 150.85 (s), 153.69 (s , , 164.24 ($\mathrm{s}, \mathrm{C}-10$), 178.73 ($\mathrm{s}, \mathrm{C}-9$).

MS (DIP-EI, 70 eV): $m / z(\%)=436(26)\left[\mathrm{M}^{+}\right], 312(100), 297(28), 281(25), 269(10), 254$ (15), 79 (33).

HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{21} \mathrm{H}_{24}{ }^{16} \mathrm{O}_{8}{ }^{32} \mathrm{~S}\right)$: 436.1192, found: 436.119.

(7RS)-7-Azido-1,2,3,10-tetramethoxy-6,7-dihydrobenzo[a]heptalen-9(5H)-one (rac-30)

A solution of mesylether (rac-28) ($180 \mathrm{mg}, 0.41 \mathrm{mmol}$) and $\mathrm{NaN}_{3}(293 \mathrm{mg}, 11$ equiv.) in abs. DMSO (20 mL) was heated three days at $50{ }^{\circ} \mathrm{C}$. Water (5 mL) was then added and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were then washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The raw product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.1: 1\right)$ to afford $122 \mathrm{mg}(77 \%)$ of a yellow oil.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH} 20: 1\right)=0.30$
IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2936\left(\mathrm{~s}, \mathrm{br}\right.$.), 2103 ($\mathrm{ss}, \mathrm{N}_{3}$), 1614 (m), 1585 (ss), 1486 (m), 1454 (m), 1431 (w), 1395 (m), 1346 (m), 1319 (m), 1248 (ss), 1137 (m), 1088 (m), 1064 (w), 1021 (m), 983 (w), 910 (w), 877 (w), 730 (m).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.86(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.90$ ($\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{OMe}$), $3.98(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.25(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.64(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=29.75(\mathrm{t}, \mathrm{C}-5), 36.85(\mathrm{t}, \mathrm{C}-6), 56.05(\mathrm{q}, \mathrm{OMe}), 56.31$ (q, OMe), 61.07 (q, OMe), 61.13(q, OMe), 62.98 (d, C-7), 107.18 (d, C-4), 111.68 (d, C-11), 120.46 (s), 121.10 (s), 132.64 (d, C-8), 134.03 (s), 134.89 (s$), 135.02$ (d, C-12), 147.32 (s$)$, 153.66 (s), 164.11 ($\mathrm{s}, \mathrm{C}-10$), 179.48 ($\mathrm{s}, \mathrm{C}-9$).

MS (DIP-EI, 70 eV): $m / z(\%)=383(18)\left[\mathrm{M}^{+}\right], 355(12), 340(100), 312(43), 284$ (81), 268 (23), 254 (12), 240 (15), 226 (12), 198 (10), 181 (40), 155 (13), 139 (17), 127 (17), 115 (14), 77 (12), 63 (12).
HRMS (EI): calc. for [M] ${ }^{+}\left({ }^{12} \mathrm{C}_{20} \mathrm{H}_{21}{ }^{16} \mathrm{O}_{5}{ }^{14} \mathrm{~N}_{3}\right)$: 383.1481, found: 383.148.

(7RS)-Colchicine (rac-1)

$\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{wt})$ was added to a solution of azide ($\mathrm{rac}-\mathbf{2 8}$) ($48 \mathrm{mg}, 0.12 \mathrm{mmol}$) in abs. $\mathrm{EtOH}(2$ mL). The resulting suspension was placed under hydrogen (1 bar) and stirred overnight. The suspension was then filtered over a short bed of Celite, the solvent was removed under vacuum to afford a brown oil. The raw product was purified by radial chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone $\left.1: 1\right)$ to afford 35.7 mg of a yellow powder (79\%) corresponding to the deacetylaminocolchicine.

$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH} 20: 1\right)=0.10$

IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2946$ (s, br.), 1702 (m), 1590 (ss), 1488 (m), 1454 (m), 1401 (w), 1319 (m), 1247 (ss), 1137 (w), 1091 (m), 983 (w), 910 (w), 822 (w), 728 (m).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.58(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.69$ $(\mathrm{m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OMe}), 3.97(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 6.51(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}=11\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.71(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=30.60(\mathrm{t}, \mathrm{C}-5), 40.40(\mathrm{t}, \mathrm{C}-6), 53.76(\mathrm{q}, \mathrm{OMe})$, 56.04 (q, OMe), 56.22 (q, OMe), 61.01 (q, OMe), 84.77 (d, C-7), 106.98 (d, C-4), 111.73 (d, C-11), 131.71 (d, C-8), 134.47 (s), 136.37 (s), 141.15, 150.71 (s$), 153.31$ (s$), 163.77$ (s , $\mathrm{C}-10$), 179.61 ($\mathrm{s}, \mathrm{C}-9$).

MS (DIP-EI, 70 eV): $m / z(\%)=357(86)\left[\mathrm{M}^{+}\right], 328(25), 312(78), 298(100), 281$ (34), 254 (27), 239 (15), 207 (53), 181 (20), 165 (16), 152 (20), 141 (26), 115 (25), 77 (25).

HRMS (EI): calc. for $[\mathrm{M}]^{+}\left({ }^{12} \mathrm{C}_{20} \mathrm{H}_{23}{ }^{16} \mathrm{O}_{5}{ }^{14} \mathrm{~N}\right)$: 357.401 , found: 357.157

To a solution of this product ($20 \mathrm{mg}, 0.056 \mathrm{mmol}$) in distilled pyridine (2 mL) was added freshly distilled acetanhydride ($0.21 \mathrm{~mL}, 2.23 \mathrm{mmol}$) under argon. After 10 min , pyridine is evaporated under vaccum to give a brown oil. Purification by radial chromatography afforded 17.9 mg of a pale yellow solid (0.045 mmol). NMR data were compared to those of commercially available (-)-colchicine.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}\right.$, acetone $)=0.25$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}\right), 2.20(\mathrm{~m}, 3 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H})$, 3.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.94 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 4,57 (m, 1H, 7H), $6.47(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.84\left(\mathrm{~d},{ }^{3} J=11 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.29\left(\mathrm{~d},{ }^{3} J=11 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H})$. ${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=22.49(\mathrm{q}, \mathrm{Ac}), 29.72(\mathrm{t}, \mathrm{C}-5), 36.07(\mathrm{t}, \mathrm{C}-6), 52.68$ (d, C-7), 55.96 (q, OMe), 56.30 (q, OMe), 61.20 (q, OMe), 61.40 (q, OMe), 107.14 (d, C-4), 112.90 (d, C-11), 125.40 (s), 130.18 (d, C-8), 134.15 (s), 135.56 (d, C-12), 136.94 (s), 141.40 (s), 150.94 (s), 152.76 (s), 153.36 (s), 163.83(s, C-10), 170.06 (s, CO-Ac), 179.32 (s, C-9).

Crystallographic data

(3R)-5-(2-Iodo-3,4,5-trimethoxyphenyl)-1-(trimethylsilyl)pent-1-yn-3-ol (8)

Table 1. Crystal data and structure refinement for 8.

Identification code	tgr283
Empirical formula	C17 H25 Il O4 Sil
Formula weight	896.72
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P1
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=8.8676(2) \mathrm{A} \\ & \mathrm{alpha}=93.8080(10) \mathrm{deg} . \\ & \mathrm{b}=10.1283(2) \mathrm{A} \\ & \mathrm{beta}=106.9720(10) \mathrm{deg} . \\ & \mathrm{c}=12.0789(3) \mathrm{A} \\ & \text { gamma }=98.8980(10) \mathrm{deg} . \end{aligned}$
Volume	1017.95(4) A^3
Z, Calculated density	2, $1.463 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	1.647 mm - 1
F (000)	452
Crystal size	$0.1 \times 0.07 \times 0.07 \mathrm{~mm}$
Theta range for data collection	1.78 to 31.99 deg .
Limiting indices	$-13<=h<=13,-15<=k<=15,-18<=1<=17$
Reflections collected / unique	13817 / 13817 [R(int) $=0.0000]$
Reflection observed [I>2sigma(I)]	11690
Completeness to theta $=31.99$	99.8 \%
Absorption correction	None

Refinement method	Full-matrix least-squares on $F^{\wedge} 2$
Data / restraints / parameters	$13817 / 3 / 434$
Goodness-of-fit on $F^{\wedge} 2$	0.671
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0308, \mathrm{wR} 2=0.0836$
R indices (all data)	$\mathrm{R} 1=0.0427, \mathrm{wR} 2=0.0950$
Absolute structure parameter	$-0.007(12)$
Largest diff. peak and hole	0.501 and -0.837 e. $A^{\wedge}-3$

(7R,9R,12aR)-7-[[tert-Butyl(dimethyl)silyl]oxy]-1,2,3-trimethoxy-9,12a-epoxy-6,7,9,11,12,12a-hexahydrobenzo[a]heptalen-10(5H)-one (12)

Table 2. Crystal data and structure refinement for 12.

```
Identification code
Empirical formula C25 H36 O6 Si
Formula weight 460.63
Temperature 293(2) K
Wavelength 0.71073 A
Crystal system, space group
triclinic, P-1
Unit cell dimensions
Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
a = 7.296(1) A alpha = 86.86(1) deg.
b = 11.663(1) A beta = 81.56(1) deg.
c = 15.376(1) A gamma = 88.52(1) deg.
1292.1(2) A^3
2, 1.184 g/cm^3
0.126 mm^-1
4 9 6
0.20 x 0.15 x 0.10 mm
```

Theta range for data collection	1.34 to 27.00 deg.
Limiting indices	$-7<=h<=9,-14<=k<=14,-19<=1<=19$
Reflections collected / unique	$8682 / 5518[\mathrm{R}($ int $)=0.0616]$
Reflection observed [I>2sigma(I)]	2103
Completeness to theta $=27.00$	97.7 \%
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	5518 / 0 / 401
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	0.948
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0662, \mathrm{wR} 2=0.1287$
R indices (all data)	$\mathrm{R} 1=0.2112, \mathrm{wR} 2=0.1737$
Largest diff. peak and hole	0.175 and -0.234 e. $\mathrm{A}^{\wedge}-3$

(7R)-7-[[tert-Butyl(dimethyl)silyl]oxy]-1,2,3,9-tetramethoxy-6,7-dihydrobenzo[a]heptalen-10(5H)-one (25)

Table 3. Crystal data and structure refinement for 25.

Identification code	$\operatorname{trg} 348$
Empirical formula	C26 H36 O6 Si
Formula weight	472.64
Temperature	100 (2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, P212121
Unit cell dimensions	$\begin{array}{llrl} \mathrm{a}=7.45890(10) \mathrm{A} & \text { alpha }=90 \mathrm{deg} . \\ \mathrm{b}=12.9937(2) \mathrm{A} & \text { beta }=90 & \text { deg. } \\ \mathrm{c}=26.1200(5) \mathrm{A} & \text { gamma }=90 & \text { deg. } . \end{array}$
Volume	2531.52 (7) A^3
Z, Calculated density	4, $1.240 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$

Absorption coefficient	$0.131 \mathrm{~mm}^{\wedge}-1$
F(000)	1016
Crystal size	$0.2 \times 0.1 \times 0.1 \mathrm{~mm}$
Theta range for data collection	1.56 to 30.00 deg.
Limiting indices	$-10<=h<=10,-18<=k<=18,-36<=1<=36$
Reflections collected / unique	$7361 / 7361$ [R(int) $=0.0000]$
Reflection observed [I>2sigma(I)]	5410
Completeness to theta $=30.00$	100.0%
Absorption correction	None
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	7361 / 0 / 442
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.021
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0405, \mathrm{wR} 2=0.0803$
R indices (all data)	$\mathrm{R} 1=0.0731, \mathrm{wR} 2=0.1024$
Absolute structure parameter	-0.12(11)
Largest diff. peak and hole	0.291 and -0.286 e. $\mathrm{A}^{\wedge}-3$

(7R)-7-Acetamino-1,2,3,10-tetramethoxy-6,7-dihydrobenzo[a]heptalen-9(5H)-one (32)

Table 4. Crystal data and structure refinement for $\mathbf{3 2}$.

Identification code	vb 48
Empirical formula	$\mathrm{C} 32 \mathrm{H} 51 \mathrm{~N} \mathrm{O9}$
Formula weight	593.74
Temperature	$100(2) \mathrm{K}$
Wavelength	0.71073 A

Crystal system, space group Monoclinic, P21
Unit cell dimensions $\quad a=10.4972(19) \mathrm{A} \quad$ alpha $=90$ deg.
73.381(5) deg.
$\mathrm{b}=12.7999(14) \mathrm{A} \quad \mathrm{beta}=$
$\mathrm{C}=13.099(2) \mathrm{A}$ gamma $=90 \mathrm{deg}$.
1686.5(5) A^3

2, $1.169 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
$0.084 \mathrm{~mm}^{\wedge}-1$

644
$0.3 \times 0.2 \times 0.05 \mathrm{~mm}$
2.02 to 25.00 deg.
$-12<=\mathrm{h}<=12,-11<=\mathrm{k}<=15,-13<=1<=15$
7065 / 3080 [R(int) $=0.0786]$

1593
98.7 \%

None
Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
3080 / 1 / 404
1.011
$R 1=0.0818, \mathrm{wR} 2=0.1871$
$R 1=0.1691, w R 2=0.2284$
0 (3)
0.405 and -0.315 e.A^-3

