Total Synthesis of Ecteinascidin 743
Atsushi Endo, Arata Yanagisawa, Masanao Abe, Shigemitsu Tohma, Toshiyuki Kan, and Tohru Fukuyama*

Supporting Information

96\%

97\%
$\xrightarrow[\mathrm{MeOH}, \mathrm{rt}]{\mathrm{HC}(\mathrm{OMe})_{3}, \mathrm{CSA}}$
94\%

10

11

79\%

1) TBAF, THF, rt

2) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine DMAP, $50^{\circ} \mathrm{C}$ 93\%

Experimental Section

General

All non-aqueous reactions were carried out in oven-dried glass tubes under a slight positive pressure of argon unless otherwise noted. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene were distilled from calcium hydride. Dehydrated THF, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{DMF}, \mathrm{MeOH}$, and EtOH were purchased from Kanto Chemical Co., Inc. and stored over molecular sieves 3 A or 4A. Pyridine, $\mathrm{Et}_{3} \mathrm{~N}$ and i $\mathrm{Pr}_{2} \mathrm{NEt}$ were dried over KOH . All other reagents were commercially available and used without further purification. Preparative flash chromatography was performed using Silica Gel 60 (spherical, 40-100 $\mu \mathrm{m}$) purchased from Kanto Chemical Co., Inc. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on JEOL LA- 400 MHz . IR spectra were recorded on a JASCO FT/IR410 Fourier Transform Infrared Spectrophotometer. Mass spectra (MS) were obtained on a JEOL JMS-GCmate. Optical rotations were measured on a JASCO DIP-1000.

MOM Ether

To a solution of $\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, $40 \mathrm{~g}, 1.0 \mathrm{~mol}, 1.0$ equiv) in a mixture of THF $(500 \mathrm{ml})$ and DMF $(200 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was slowly added sesamol ($138 \mathrm{~g}, 1.0 \mathrm{~mol}$) in THF (300 ml), and the mixture was stirred at room temperature for 30 min . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, and to the solution was added chloromethyl methyl ether ($84.5 \mathrm{~g}, 1.05 \mathrm{~mol}$, 1.05 equiv) dropwise. The resulting slurry was allowed to warm to room temperature and stirred for additional 1 h . To the reaction mixture were added n-hexane and $\mathrm{H}_{2} \mathrm{O}$, and the organic layer was separated. The aqueous phase was further extracted with hexane (200 ml x 2), and the combined organic phase was concentrated under reduced pressure. The residue was dissolved in n-hexane and washed with saturated aqueous NaCl . The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, and the crude product was purified by distillation ($103{ }^{\circ} \mathrm{C} / 0.35 \mathrm{mmHg}$) to afford the MOM ether ($177 \mathrm{~g}, 0.97 \mathrm{~mol}, 97 \%$) as a colorless oil. IR (neat film) 1244, 1215, 1176, 1153, 1099, 1069, 1040, 1004, 940, 922, $842,813 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.5$, 148.1, 142.5, 108.4, 108.0, 101.2, 99.7, 95.4, 55.8; HRMS (FAB ${ }^{+}$m/z: Calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ $\left(\mathrm{M}^{+}\right) 182.0579$, found 182.0563 .

Phenol 5

To a solution of the MOM ether ($5.44 \mathrm{~g}, 29.9 \mathrm{mmol}$) in THF (100 ml) at $0^{\circ} \mathrm{C}$ was added n BuLi (3.02 M solution in n-hexane, $11.0 \mathrm{ml}, 33.2 \mathrm{mmol}, 1.1$ equiv), and the mixture was allowed to warm to room temperature. After cooling to $0^{\circ} \mathrm{C}$, to the solution were sequentially added trimethylboronate ($4.10 \mathrm{ml}, 36.1 \mathrm{mmol}, 1.2$ equiv), $\mathrm{AcOH}(3.4 \mathrm{ml}, 59 \mathrm{mmol}, 2.0$ equiv), and 7% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ ($26 \mathrm{ml}, 60 \mathrm{mmol}, 2.0$ equiv). The resulting mixture was allowed to warm to room temperature and stirred for additional 4.5 h . To the reaction mixture were added saturated aqueous $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(100 \mathrm{ml})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(50 \mathrm{ml})$, and the organic phase was separated. The aqueous phase was further extracted with CHCl_{3}, and the combined organic phase was concentrated under reduced pressure. The residue was diluted with CHCl_{3} and washed with saturated aqueous NaHCO_{3}, and the organic phase was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The crude product was purified by flash column chromatography ($70 \% \mathrm{EtOAc}$ in n-hexane) to afford $5(5.42 \mathrm{~g}, 27.3 \mathrm{mmol}, 92 \%$) as a yellow oil. IR (neat film) 3439, 1652, 1493, 1292, 1245, 1157, 1044, 932, 791 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{br}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}$, $2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.3,141.3,134.4,132.0$, 109.2, 101.6, 99.1, 97.3, 60.4, 56.3; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 198.0528$, found 198.0558.

Aminolactone 7

To a mixture of $5(19.8 \mathrm{~g}, 100 \mathrm{mmol})$ and $\mathbf{6}(20.3 \mathrm{~g}, 100 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ at $-10{ }^{\circ} \mathrm{C}$ was slowly added TFA ($38 \mathrm{ml}, 0.49 \mathrm{~mol}, 5$ equiv) over 1.5 h . After addition was completed, the reaction mixture was stirred at this temperature for additional 40 min . To the reaction mixture was carefully added a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(40 \mathrm{~g}, 0.38 \mathrm{~mol}, 3.8\right.$ equiv) and $\mathrm{H}_{2} \mathrm{O}$ (200 ml), and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, and the aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$. The combined organic phase was washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (30% EtOAc in n-hexane) to afford $7(35.6 \mathrm{~g}, 89 \mathrm{mmol}, 89 \%)$ as a yellow amorphous. $[\alpha]_{\mathrm{D}}{ }^{27}-75^{\circ}$ (c $=1.7, \mathrm{CHCl}_{3}$); IR (neat film) 3327, 1724, 1506, 1457, 1299, 1151, 1118, 1082, 1049, 1101, $934 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}) 5,93(\mathrm{~s}, 1 \mathrm{H}), 5,91(\mathrm{~s}$, $1 \mathrm{H}), 5.09$ (d, $J=8,0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}) 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.51$ (s, 3H), 2.03 (br, 1H), 1.37 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,141.8,141.4,138.2,134.8$, $132.4,128.4,128.3,128.3,111.6,110.0,101.9,86.7,61.0,57.1,56.4,26.6,22.0$; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{7}\left(\mathrm{M}^{+}\right) 401.1475$, found 401.1467.

Triflate

To a mixture of $7(242 \mathrm{mg}, 0.603 \mathrm{mmol})$ and pyridine ($0.15 \mathrm{ml}, 1.9 \mathrm{mmol}, 3.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Tf}_{2} \mathrm{O}(0.13 \mathrm{ml}, 0.77 \mathrm{mmol}, 1.3$ equiv), and the resulting mixture was stirred for 5 minutes, poured into saturated aqueous NaHCO_{3}, and extracted with EtOAc. The organic phase was sequentially washed with 1 M aqueous HCl , saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The solution was dried over anhydrous MgSO_{4}, and concentrated under reduced pressure, and the residue was purified by flash column chromatography ($50 \% \mathrm{EtOAc}$ in n-hexane) to afford the triflate ($290 \mathrm{mg}, 0.544 \mathrm{mmol}, 90 \%$) as a white foam. $[\alpha]_{D}{ }^{26}-32^{\circ}\left(\mathrm{c}=2.6, \mathrm{CHCl}_{3}\right)$; IR (neat film) 3333, 1733, 1496, 1462, 1427, 1299, 1216, 1138, 1056, 999, 979, 936, $832 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.40(\mathrm{~m}$, $5 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}) 6,06(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=5,8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{~s}, 1 \mathrm{H}) 4.23(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{br}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.8,144.9,141.2,140.2,137.8,128.3,128.2,128.1,123.1,120.2,116.7,108.0$,
103.1, $95.9,86.7,61.3,56.9,56.3,26.4,21.8 ;$ HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}:$ Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{9} \mathrm{~S}$ $\left(\mathrm{M}^{+}\right)$533.0967, found 553.0993.

Amino Alcohol

To a solution of the triflate ($4.70 \mathrm{~g}, 8.8 \mathrm{mmol}$) in $\mathrm{MeOH}(50 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added NaBH_{4} ($1.33 \mathrm{~g}, 35 \mathrm{mmol}, 4.0$ equiv), and the mixture was stirred for 30 min . The reaction mixture was diluted with $\operatorname{EtOAc}(300 \mathrm{ml})$ and sequentially washed with 1 M aqueous $\mathrm{HCl}(100 \mathrm{ml})$ and saturated aqueous NaHCO_{3}. The organic phase was dried over MgSO_{4} and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (60% EtOAc in n-hexane) to afford the amino alcohol ($4.04 \mathrm{~g}, 7.5 \mathrm{mmol}, 85 \%$) as a colorless foam. $[\alpha]_{\mathrm{D}}{ }^{27}-102^{\circ}\left(\mathrm{c}=1.7, \mathrm{CHCl}_{3}\right)$. IR (neat film) $3398,1497,1456,1426,1218,1136,1054,937$, $833 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}) 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}$, $1 \mathrm{H}), 5.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (br, 1h), 3.52-3.64 (br, 2H), 3.50 (s, 3H), $3.39(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{br}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.8,141.6$, $139.9,139.2,128.7,128.1,127.5,122.4,120.9,120.1,116.9,107.1,102.9,95.6,72.7,68.9$, 64.9, 56.9, 56.3, 27.9, 23.8; HRMS (FAB ${ }^{+}$) m/z: Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{9} \mathrm{~S}\left(\mathrm{M}^{+}\right)$537.1280, found 537.1222.

Silyl Ether 8

To a mixture of the amino alcohol $(1.00 \mathrm{~g}, 1.86 \mathrm{mmol})$ and imidazole $(0.63 \mathrm{~g}, 9.3 \mathrm{mmol}, 5.0$ equiv) in DMF was added TBDPSCl ($1.22 \mathrm{ml}, 4.7 \mathrm{mmol}, 2.5$ equiv), and the solution was stirred at room temperature and partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The ethereal layer was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography ($10 \% \mathrm{EtOAc}$ in n-hexane) to afford $\mathbf{8}(1.31 \mathrm{~g}, 1.69 \mathrm{mmol}, 91 \%)$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}{ }^{27}-75^{\circ}$ (c $=1.7$, CHCl_{3}). IR (neat film) $3445,1469,1428,1363,1263,1109,1062,991,944,826 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.42(\mathrm{~m}$, $11 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J$ $=6.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{br}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 6 \mathrm{H}), 1.08(\mathrm{~s}$, 9H), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7,141.8,139.8,139.5,135.6,132.9,129.7,128.5$,
128.1, 127.7, 127.6, 127.4, 122.5, 121.0, 120.1, 116.9, 107.7, 102.7, 95.8, 72.2, 68.6, 66.4, $56.8,56.3,27.4,26.8,24.2,19.2$; $\mathrm{HRMS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{NO}_{9} \mathrm{SSi}(\mathrm{M}+\mathrm{H})^{+}$ 776.2536 , found 776.2596 .

Amino Alcohol

To a degassed solution of $\mathbf{8}(16.7 \mathrm{~g}, 21.5 \mathrm{mmol})$ in THF (105 ml) at $0^{\circ} \mathrm{C}$ was added MeZnCl (2.0 M solution in THF, $37.5 \mathrm{ml}, 75.1 \mathrm{mmol}, 3.5$ equiv), and the mixture was allowed to warm to room temperature. To the mixture was added $\mathrm{PdCl}_{2}(\mathrm{dppf})(314 \mathrm{mg}, 0.43 \mathrm{mmol}, 2.0$ $\mathrm{mol} \%$), and the resulting mixture was heated to reflux. After stirring for 1 h , to the mixture was added $\mathrm{PdCl}_{2}(\mathrm{dppf})(472 \mathrm{mg}, 0.65 \mathrm{mmol}, 3.0 \mathrm{~mol} \%)$, and the mixture was heated at reflux for additional 3.5 h . The reaction mixture was diluted with EtOAc and washed sequentially with 1 N aqueous HCl , saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography ($10 \% \mathrm{EtOAc}$ in n-hexane) to afford the amino alcohol ($13.4 \mathrm{~g}, 20.9 \mathrm{mmol}, 97 \%$) as a white amorphous. $[\alpha]_{\mathrm{D}}{ }^{26}-99^{\circ}$ (c $=$ $0.81, \mathrm{CHCl}_{3}$). IR (neat film) 3457, 2931, 1494, 1457, 1427, 1362, 1216, 1139, 1110, 1056, $1006,936,828 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.22-7.47(\mathrm{~m}, 11 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=10.8,10.8,1 \mathrm{H}), 3.61-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 2.08$ (s, 3H), $1.09(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 6 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.8,146.6,140.0,139.7$, 135.6, 135.6, 133.2, 133.1, 130.9, 130.4, 130.0, 129.7, 129.6, 128.5, 128.4, 128.0, 127.7, $127.6,127.2,117.7,109.6,107.0,100.8,95.6,72.1,68.5,66.6,57.7,56.0,27.3,26.8,24.0$, 19.2. 8.8; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{38} \mathrm{H}_{47} \mathrm{NO}_{6} \mathrm{Si}\left(\mathrm{M}^{+}\right)$641.3173, found 641.3156 .

Amine 9

To a solution of the amino alcohol ($640 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}(0.56 \mathrm{~g}, 1.26 \mathrm{mmol}, 1.3$ equiv). To the reaction mixture was added saturated aqueous NaHCO_{3}, and extracted with EtOAc. The organic layer was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford the crude product, which was used in the next step without further purification. To a
mixture of hydroxylamine hydrochloride ($347 \mathrm{mg}, 5.0 \mathrm{mmol}, 5.0$ equiv) and sodium acetate ($410 \mathrm{mg}, 5.0 \mathrm{mmol}, 5.0$ equiv) in $\mathrm{EtOH}(10 \mathrm{ml})$ at room temperature was added the crude product, and the resulting slurry was stirred for 1.5 h . The reaction mixture was diluted with EtOAc , filtered through a pad of Celite, and concentrated under reduced pressure. The residue was dissolved in EtOAc, and sequentially washed with 1 N aqueous HCl , saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting crude product was purified by flash column chromatography (EtOAc) to afford 9 ($436 \mathrm{mg}, 0.88 \mathrm{mmol}, 89 \%$ in 2 steps, $>98 \%$ ee (ee was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the corresponding (R)-MTPA amide)) as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{23}-2.0^{\circ}\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$. IR (neat film) 1440, 1115, 1062, 991, 938, $826 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.45(\mathrm{~m}, 6 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~s}$, $2 \mathrm{H}), 4.16(\mathrm{dd}, J=6.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.0,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.8,146.1$, $139.1,135.5,135.5,133.4,133.3,129.5,129.5,127.5,120.7,109.1,105.8,100.7,95.7,68.1$, 55.9, 53.4, 26.7, 19.1, 8.8; HRMS (FAB ${ }^{+}$m/z: Calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 494.2363$, found 494.2387.

Tosylate

3-methylcatechol

83\%

To a mixture of 3-methylcatechol ($185 \mathrm{mg}, 1.49 \mathrm{mmol}$) and TEA ($0.315 \mathrm{ml}, 2.26 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added p-toluenesulfonyl chloride ($292 \mathrm{mg}, 1.53 \mathrm{mmol}$, 1.03 equiv) portionwise. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and sequentially washed with 10% aqueous citric acid and saturated aqueous NaCl . The organic layer was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The crude product was purified by flash column chromatography ($20 \% \mathrm{EtOAc}$ in n-hexane) to afford the tosylate $(345 \mathrm{mg}, 1.24 \mathrm{mmol}, 83 \%)$ as a white solid. IR (neat film) 3488, 1597, 1473, 1373, 1249, $1199,1173,1092,1007,941,785 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.6$, 146.1, 137.0, 131.3, 129.9, 129.5, 128.6, 127.8, 120.3, 119.8, 21.7, 15.9; HRMS (FAB ${ }^{+}$m/z: Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$278.0613, found 278.0639.

Bromide

To a mixture of the tosylate ($193 \mathrm{mg}, 0.693 \mathrm{mmol}$) and acetic acid $(0.20 \mathrm{ml}, 3.5 \mathrm{mmol}, 5.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{ml})$ at room temperature was added bromine ($36.0 \mu \mathrm{l}, 0.70 \mathrm{mmol}, 1.0$ equiv). After stirring for 30 min , the reaction mixture was poured into saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layer was sequentially washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by flash column chromatography ($20 \% \mathrm{EtOAc}$ in n-hexane) to afford the bromide ($240 \mathrm{mg}, 0.672 \mathrm{mmol}, 97 \%$) as a white solid. IR (neat film) 3503, 1569, 1482, 1373, 1204, 1175, 1090, 1013, 961, 870, $815 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.5,146.0,137.0,132.3,130.9,130.1,129.6,128.6,123.3$, 110.8, 21.8, 15.8; HRMS (FAB^{+}) m/z: Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 356.9796$, found 356.9792 .

Methyl Ether

To a mixture of the bromide ($143 \mathrm{mg}, 0.401 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(275 \mathrm{mg}, 1.99 \mathrm{mmol}, 5.0$ equiv) in acetone (2.0 ml) was added iodomethane ($75.0 \mu \mathrm{l}, 1.20 \mathrm{mmol}, 3.0$ equiv), and the resulting slurry was heated at reflux for 1 h . After cooling, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through a pad of Celite, and concentrated under reduced pressure. The crude product was purified by flash column chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O}$ in n-hexane) to afford the methyl ether ($142 \mathrm{mg}, 0.385 \mathrm{mmol}, 96 \%$) as a colorless oil. IR (neat film) 1596, 1479, 1404, 1377, 1273, 1221, 1189, 1178, 1093, 1020, 969, 860, $814 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=83 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $3,69(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,145.5,142.7$, 134.9, 132.7, 132.2, 129.7, 128.2, 124.3, 115.1, 60.6, 21.7, 15.8; HRMS (FAB ${ }^{+}$m/z: Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) 369.9874$, found 369.9835 .

Phenol

To a solution of the methyl ether ($98.9 \mathrm{mg}, 0.267 \mathrm{mmol}$) in $\mathrm{EtOH}(1.5 \mathrm{ml})$ was added 2 M aqueous $\mathrm{NaOH}(0.20 \mathrm{ml}, 0.40 \mathrm{mmol}, 1.5$ equiv), and the mixture was heated at reflux for 30 min. After cooling, the reaction mixture was poured into 10% aqueous citric acid and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was washed with saturated aqueous NaCl , dried over
anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash column chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O}$ in n-hexane) to afford the phenol ($56.0 \mathrm{mg}, 0.258$ $\mathrm{mmol}, 97 \%$) as a colorless oil: IR (neat film) 3336, 1717, 1457, 1367, 1249, 1160, 1065, 1003 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.96(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~s}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.6,144.6,132.5,125.2$, 116.8, 116.5, 60.7, 15.6; HRMS (FAB^{+}) m/z: Calcd. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrO}_{2}\left(\mathrm{M}^{+}\right) 215.9786$, found 215.9809.

MOM Ether 10

To a mixture of the phenol $(116 \mathrm{mg}, 0.532 \mathrm{mmol})$ and $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.186 \mathrm{ml}, 1.07 \mathrm{mmol}, 2.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added chloromethylmethyl ether ($60 \mu \mathrm{l}, 0.80 \mathrm{mmol}, 1.5$ equiv), and the reaction mixture was allowed to warm to room temperature, poured into 10% aqueous citric acid, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash column chromatography ($20 \% \mathrm{EtOAc}$ in n-hexane) to afford $\mathbf{1 0}$ ($136 \mathrm{mg}, 0.521 \mathrm{mmol}, 97 \%$) as a colorless oil. IR (neat film) 1592, 1480, 1423, 1394, 1269, 1221, 1155, 1095, 1048, $1007 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$, $5.16(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 150.7, 147.2, 133.8, 126.8, 117.4, 115.8, 95.1, 60.1, 56.2, 15.7; HRMS (FAB ${ }^{+}$) m/z: Calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrO}_{3}\left(\mathrm{M}^{+}\right) 260.0048$, found 260.0079 .

Benzaldehyde

10

79%

To a solution of $\mathbf{1 0}(114 \mathrm{~g}, 437 \mathrm{mmol})$ in THF (900 ml) at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.46 \mathrm{M}$ solution in n-hexane, $270 \mathrm{ml}, 664 \mathrm{mmol}, 1.5$ equiv), and to the resultant mixture was slowly added DMF ($170 \mathrm{ml}, 2.20 \mathrm{~mol}, 5.0$ equiv), maintaining the internal temperature below $-60{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature, quenched with $\mathrm{H}_{2} \mathrm{O}$, and concentrated under reduced pressure. The resulting residue was diluted with $\mathrm{Et}_{2} \mathrm{O}$, and sequentially washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl . The ethereal layer was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The crude product was purified by flash column chromatography ($30 \% \mathrm{Et}_{2} \mathrm{O}$ in n-hexane) to afford the benzaldehyde ($73.0 \mathrm{~g}, 347 \mathrm{mmol}, 79 \%$) as a colorless oil. IR (neat film) 1699, $1585,1488,1451,1382,1299,1235,1155,1133,1099,1051,1003,928,863 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}$, $3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.2,153.5,150.5,132.8,132.1,126.9$, 114.2, 95.0, 60.3, 56.3, 16.0; HRMS (FAB ${ }^{+}$) m/z: Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 210.0892$, found 210.0870.

Iodobenzaldehyde

To a mixture of the benzaldehyde ($331 \mathrm{mg}, 1.57 \mathrm{mmol}$) and trimethyl orthoformate (1.0 ml , 9.14 mmol , 5.8 equiv) in $\mathrm{MeOH}(5.0 \mathrm{ml})$ was added CSA ($20.2 \mathrm{mg}, 0.09 \mathrm{mmol}, 5.5 \mathrm{~mol} \%$), and the resulting mixture was stirred at room temperature for 1 h . To the reaction mixture was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($103 \mathrm{mg}, 0.75 \mathrm{mmol}, 0.47$ equiv) and concentrated to a small volume. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and passed through a pad of basic alumina, and the ethereal solution was concentrated to afford the dimethylacetal ($381 \mathrm{mg}, 1.49 \mathrm{mmol}, 94 \%$) as a colorless oil, which was used for the next reaction without further purification. To a solution of the dimethyl acetal ($381 \mathrm{mg}, 1.49 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.46$ M solution in n-hexane, $0.95 \mathrm{ml}, 2.34 \mathrm{mmol}, 1.57$ equiv), and the resulting mixture was allowed to warm to room temperature. After cooling to $0{ }^{\circ} \mathrm{C}$, to the reaction mixture was added a solution of $\mathrm{I}_{2}\left(648 \mathrm{mg}, 2.55 \mathrm{mmol}, 1.7\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(3.0 \mathrm{ml})$, and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and partitioned between EtOAc and saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The organic layer was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The resulting crude yellow syrup was dissolved in THF $(5.0 \mathrm{ml})$, and to the solution at room temperature was added concentrated HCl solution (2.0 $\mathrm{ml})$. After stirring for 15 min , the reaction mixture was neutralized with saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic phase was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated. The resulting crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a pad of silica gel, and the filtrate was concentrated, and triturated with n-hexane to afford the iodobenzaldehyde ($314 \mathrm{mg}, 1.07 \mathrm{mmol}, 72 \%$ in 2 steps) as a yellow solid. IR (neat film) 3389, 1670, 1583, 1464, 1412, 1299, 1247, 1127, 997 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.0(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{bs}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.32$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9,149.9,149.2,131.3,130.9,125.3,125.3,60.8$, 15.8; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3}\left(\mathrm{M}^{+}\right)$291.9596, found 291.9583 .

Benzyl Ether 11

To a mixture of the iodobenzaldehyde ($325 \mathrm{mg}, 1.11 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(465 \mathrm{mg}, 3.37 \mathrm{mmmol}$, 3.07 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(3.0 \mathrm{ml})$ was added benzyl bromide ($140 \mu \mathrm{l}, 1.18 \mathrm{mmol}, 1.05$ equiv), and the resulting mixture was heated at reflux for 40 min . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a pad of Celite, and concentrated under reduced pressure. The residue was purified by flash column chromatography ($50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in n-hexane) to afford $\mathbf{1 1}$ ($415 \mathrm{mg}, 1.09 \mathrm{mmol}, 98 \%$) as a yellow solid. IR (neat film) 1684, 1576, 1464, 1303, 1153, $1068,1005 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.0(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, 8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~s}$, $1 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 3 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1953,157.1,151.3,136.3,133.3,131.3,128.7$, 128.5, 128.4, 128.2. 98.2, 74.9, 60.6, 15.7; HRMS (FAB^{+}) m/z: Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{IO}_{3}\left(\mathrm{M}^{+}\right)$382.0066, found 382.0083.

Dehydroamino Ester 13

To a mixture of $\mathbf{1 1}(8.30 \mathrm{~g}, 21.7 \mathrm{mmol})$ and phosphonate $\mathbf{1 2}$ ($7.76 \mathrm{~g}, 26.1 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ at $10{ }^{\circ} \mathrm{C}$ was added $N, N, N^{\prime}, N^{\prime}$-tetramethylguanidine $(4.10 \mathrm{ml}, 32.7 \mathrm{mmol}, 1.5$ equiv), and the mixture was allowed to warm to room temperature and stirred for 24 h . The reaction mixture was sequentially washed with 10% aqueous citric acid and saturated aqueous NaHCO_{3}, and the organic layer was dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (30% EtOAc in n-hexane) to afford $\mathbf{1 3}(11.2 \mathrm{~g}, 20.2 \mathrm{mmol}, 93 \%)$ as a yellow solid. Recrystallization of the crude product from EtOAc/n-hexane also afforded a pure sample of 13. IR (neat film) $3336,1717,1457,1367,1249,1160,1065,1003 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60$ (d. $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86$ (s, 3H), 2.23 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,152.4,151.6,151.5,136.8,134.2$, $132.5,131.7,128.7,128.4,128.2,126.8,125.4,96.9,80.9,74.6,60.5,52.7,28.0,15.8$; HRMS $\left(\mathrm{FA} \mathrm{B}^{+}\right) \mathrm{m} / \mathrm{z}:$ Calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{I} \mathrm{N} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$553.0961, found 553.0982.

Amino Ester 14

A degassed mixture of $\mathbf{1 3}(5.04 \mathrm{~g}, 9.10 \mathrm{mmol})$ and $\mathrm{Rh}\left[(\mathrm{COD})-(S, S)\right.$-Et-DuPHOS] ${ }^{+} \mathrm{TfO}^{-}(99.0$ $\mathrm{mg}, 0.14 \mathrm{mmol}, 1.5 \mathrm{~mol} \%$) in EtOAc (30 ml) was placed in a high pressure Parr reactor and sealed under hydrogen (500 psi). After stirring at $50{ }^{\circ} \mathrm{C}$ for 22 h , the solution was concentrated under reduced pressure, and the residue was purified by flash column chromatography ($50 \% \mathrm{EtOAc}$ in n-hexane) to afford 14 ($5.01 \mathrm{~g}, 9.02 \mathrm{mmol}, 99 \%, 94 \% \mathrm{ee}$) as a pale yellow foam. Enantiomeric excess was determined by chiral HPLC (Chiralcel OD column, 97:3 n-hexane/2-propanol). $[\alpha]_{\mathrm{D}}{ }^{27}+7.4^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right.$); IR (neat film) 3374, 1746, $1711,1510,1457,1363,1162,1068,1003 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32-7.45(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{ddd}, J=$ $9.2,8.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dd}, J=14.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=$ $14.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,154.9$, $151.7,150.4,136.9,135.4,132.3,128.6,128.4,128.1,127.8,97.0,79.8,74.5,60.4,53.8,52.3$, 42.7, 28.2, 15.6; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{INO}_{6}(\mathrm{M}+\mathrm{H})^{+} 556.1196$, found
556.1222.

Carboxylic Acid 15

To a solution of $\mathbf{1 4}(5.01 \mathrm{~g}, 9.02 \mathrm{mmol})$ in a mixture of $\mathrm{MeOH}(40 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$, and THF $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added lithium hydroxide ($750 \mathrm{mg}, 17.9 \mathrm{mmol}, 2.0$ equiv), and the mixture was allowed to warm to room temperature. The reaction mixture was diluted with benzene and concentrated under reduced pressure. To the residue was added 10% aqueous citric acid, and the resulting suspension was extracted with EtOAc. The organic layer was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure to afford 15 ($4.90 \mathrm{~g}, 9.05 \mathrm{mmol}$, quant) as a white foam. $[\alpha]_{\mathrm{D}}{ }^{27}-14^{\circ}$ (c = 5.0, CHCl_{3}). IR (neat film) $3309,2560,1716,1497,1471,1404,1368,1307,1243,1163,1063$, $1008,907,845,804 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61$ (br, 2H), 7.36-7.44 (br, 3 H), $6.90(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{br}, 2 \mathrm{H}), 4.63(\mathrm{br}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{br}, 1 \mathrm{H}), 2.94-3.20(\mathrm{br}, 1 \mathrm{H}), 2.25$ (s, 3H), 1.10-1.40 (br, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,175.4,156.7,155.2,151.4$, $150.4,150.3,136.9,135.8,135.3,132.3,132.2,128.7,128.6,128.4,128.4,128.1,127.9,97.1$, 96.7, 81.1, 80.1, 77.2, 74.5, 60.4, 60.3, 54.1, 53.8, 53.7, 44.6, 42.3, 42.2, 42.2, 28.2, 27.9, 15.6; HRMS (FAB^{+}) m/z: Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{INO}_{6}(\mathrm{M}+\mathrm{H})^{+} 542.1039$, found 542.1083.

Amide 18 (epimeric mixture)

9

15

90\%

18

To a mixture of amine $9(9.63 \mathrm{~g}, 19.5 \mathrm{mmol})$, carboxylic acid $15(10.57 \mathrm{~g}, 19.5 \mathrm{mmol}, 1.0$ equiv), and p-methoxy isocyanide (PMP-NC) (16) ($3.90 \mathrm{~g}, 29.3 \mathrm{mmol}, 1.5$ equiv) in MeOH $(200 \mathrm{ml})$ at room temperature was added acetaldehyde (17) ($22 \mathrm{ml}, 0.39 \mathrm{~mol}, 20$ equiv), and the resulting solution was heated at reflux for 1 h . The reaction mixture was concentrated under reduced pressure, and the resulting orange syrup was purified by flash column chromatography (40% EtOAc in n-hexane) to afford 18 ($21.02 \mathrm{~g}, 17.6 \mathrm{mmol}, 90 \%$) as a yellow solid. IR (neat film) 3315, 1699, 1687, 1511, 1463, 1428, 1367, 1245, 1159, 1112, $1062,826 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60-9.20(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.75(\mathrm{~m}, 17 \mathrm{H}), 6.50-$ $7.20(\mathrm{~m}, 4 \mathrm{H}), 4.80-5.85(\mathrm{~m}, 9 \mathrm{H}), 3.90-4.80(\mathrm{~m}, 3 \mathrm{H}), 3.60-3.85(\mathrm{~m}, 6 \mathrm{H}), 3.40-3.50(\mathrm{~m}, 3 \mathrm{H})$,
2.90-3.50 (m, 2H), 1.85-2.25 (m, 6H), 0.75-1.50 (m, 21H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $173.4,172.0,171.3,170.1,168.7,167.9,156.2,156.1,155.9,155.6,155.3,154.3,151.5$, $151.4,151.3,151.0,150.9,150.8,150.5,150.1,150.0,146.9,146.5,139.8,139.7,136.8$, $136.7,136.6,136.5,135.6,135.5,135.4,135.3,135.2,132.6,132.5,132.4,132.2,132.1$, $132.0,131.6,131.1,131.0,129.9,129.7,129.6,129.3,128.5,128.4,128.3,128.2$, 128.0 , 127.9, 127.7, 127.5, 127.4, 127.3, 123.0, 121.7, 121.5, 120.5, 113.7, 113.5, 113.4, 113.3, $113.1,110.9,106.2,106.0,100.9,100.8,100.6,97.5,96.7,96.6,96.2,95.8,95.5,95.3,80.6$, $80.5,80.3,79.3,79.0,74.4,74.3,71.5,70.4,62.6,62.5,60.2,60.1,59.7,57.2,56.2,56.1,55.9$, $55.1,54.5,54.4,51.5,51.3,42.9,41.8,41.1,41.1,28.1,28.0,27.9,27.8,27.1,27.0,26.9,26.4$, $19.1,19.0,18.9,17.8,17.1,15.4,15.3,15.2,15.1,14.9,14.8,8.8,8.7,8.5 ;$ LRMS (FAB ${ }^{+}$) m/z: $1193.4\left(\mathrm{M}^{+}\right)$.

Alcohol (epimeric mixture)

To a solution of $\mathbf{1 8}(21.02 \mathrm{~g}, 17.6 \mathrm{mmol})$ in THF (200 ml) at room temperature was added TBAF (1 M solution in THF, $20 \mathrm{ml}, 020 \mathrm{mmol}, 1.1$ equiv), and the mixture was stirred for 30 min . The reaction mixture was diluted with a mixture of EtOAc and n-hexane and concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc) to afford the alcohol ($14.90 \mathrm{~g}, 15.6 \mathrm{mmol}, 89 \%$) as a yellow solid. IR (neat film) $3309,1699,1694,1652,1511,1435,1367,1304,1245,1170,1112,1060,1008$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84 \& 7.91(\mathrm{br}, 1 \mathrm{H}), 7.31-7.63(\mathrm{~m}, 5 \mathrm{H}), 6.81-7.10(\mathrm{~m}$, $3 \mathrm{H}), 6.46-6.74(\mathrm{~m}, 2 \mathrm{H}), 5.81-5.97(\mathrm{~m}, 2 \mathrm{H}), 5.59-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.46(\mathrm{~m}, 1 \mathrm{H}), 4.78-5.30$ $(\mathrm{m}, 6 \mathrm{H}), 4.33-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.88(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.78-3.67(\mathrm{~m}$, $3 \mathrm{H}), 3.47 \& 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.37(\mathrm{~m}, 6 \mathrm{H}), 1.09-1.47(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,170.5,156.3,156.2,156.1,154.6,15.5,151.4,151.2,151.1,151.0,150.6,150.5$, $151.2,146.8,140.2,137.1,137.0,136.9,135.9,132.3,131.8,131.0,130.6,129.2,128.7$, $128.5,128.4,128.3,128.2,128.1,128.0,122.2,122.1,122.0,121.9,121.8,121.7,121.6$, $121.3,116.7,114.2,114.1,114.0,113.9,113.8,113.7,113.6,113.4,111.2,105.9,105.7,101.2$, $100.9,97.2,95.7,95.5,95.2,79.9,79.7,79.4,78.9,77.6,74.6,74.5,74.4,68.5,60.5,60.4$, $60.3,58.1,56.4,56.3,56.2,56.0,55.3,54.0,53.7,50.4,43.2,42.3,28.3,28.1,28.0,21.0,20.2$, 15.6, 15.5, 15.4, 14.9, 14.0, 13.9, 9.0, 8.9, 8.7; LRMS (FAB ${ }^{+}$m/z: $955.4\left(\mathrm{M}^{+}\right)$.

Acetate (epimeric mixture)

The alcohol ($14.90 \mathrm{~g}, 15.6 \mathrm{mmol}$) was dissolved in a mixture of acetic anhydride (30 ml) and pyridine (60 ml), and to the solution at room temperature was added DMAP ($97 \mathrm{mg}, 0.79$ $\mathrm{mmol}, 0.05$ equiv). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 30 min , and concentrated under reduced pressure. The residue was diluted with toluene and concentrated under reduced pressure. The crude product was purified by flash column chromatography ($60 \% \mathrm{EtOAc}$ in n hexane) to afford the acetate ($14.54 \mathrm{~g}, 14.6 \mathrm{mmol}, 93 \%$) as a yellow solid. IR (neat film) $3318,1743,1700,1511,1436,1368,1304,1245,1170,1112,1060,830 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.90-9.30(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.50(\mathrm{~m}, 5 \mathrm{H}), 6.30-7.20(\mathrm{~m}$, $2 \mathrm{H}), 6.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.84-5.88(\mathrm{br}, 2 \mathrm{H}), 5.60-5.80(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.45(\mathrm{~m}, 2 \mathrm{H}), 5.00-$ $5.20(\mathrm{~m}, 2 \mathrm{H}), 4.93-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.80(\mathrm{~m}, 6 \mathrm{H})$, 3.35-3.50 (m, 3H), 2.90-3.35 (m, 1H), 1.80-2.25 (m, 9H), 1.10-1.55 (m, 12H); ${ }^{13}$ C NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6,173.2,172.7,172.0,170.1,170.0,169.7,169.5,169.5,169.4,168.2$, $168.2,156.4,156.1,155.8,155.2,154.3,151.5,151.3,151.2,151.2,151.1,150.6,150.3$, $147.1,146.8,146.6,140.0,139.8,139.3$, 136.8, 136.7, 136.7, 136.7, 136.5, 135.0, 134.9, $134.6,132.5,132.0,131.1,131.0,130.1,128.8,128.5,128.4,128.4,128.3,128.2,128.1$, $128.0,127.9,121.8,121.8,121.8,121.6,121.4,121.2,120.6,113.9,113.9,113.8,113.5$, 113.1, 112.6, 112.1, 111.7, 111.3, 105.9, 105.7, 105.3, 101.1, 101.0, 100.7, 96.8, 96.5, 95.9, $95.4,95.4,95.1,79.6,79.1,74.4,70.6,62.0,60.3,60.2,57.3,56.5,56.2,56.0,55.8,55.2,50.6$, 50.1, 43.5, 28.1, 28.0, 27.9, 27.8, 20.9, 20.7, 17.6, 15.3, 14.8, 8.8; LRMS (FAB ${ }^{+}$m/z: 997.3 $\left(\mathrm{M}^{+}\right)$.

Diketopiperazine 19 (epimeric mixture)

To a mixture of the acetate ($14.5 \mathrm{~g}, 14.5 \mathrm{mmol}$) and anisole ($79 \mathrm{ml}, 0.73 \mathrm{~mol}, 50$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(290 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added TFA ($58 \mathrm{ml}, 0.75 \mathrm{~mol}$, 52 equiv), and the mixture was allowed to warm to room temperature and stirred for 9 h . The resulting red solution was poured into water and extracted with EtOAc. The organic phase was separated, and sequentially washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl . The solution was dried over anhydrous MgSO_{4}, concentrated under reduced pressure to a volume of about 300 ml , and heated at reflux for 1 h . The reaction mixture was concentrated under reduced pressure, and the resultant residue was purified by flash column chromatography (70% EtOAc in n-hexane) to afford $19(19.7 \mathrm{~g}, 27.0 \mathrm{mmol}, 87 \%$ in 2 steps $)$ as a pale brown amorphous. 19a (minor isomer) IR (neat film) 3345, 1752, 1683, 1652, 1456, 1306, 1232, 1093, 1037, $1007 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.38-7.41(\mathrm{~m}, 3 \mathrm{H})$, $6.85(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{br}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=8.4,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{dd}, J=11.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=11.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=$ $9.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{dd}, J=13.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (dd, $J=13.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,168.7,166.5,151.8,15.0,151.0,147.0,139.0,136.7,134.5$, $133.2,128.6,128.4,128.2,128.1,111.8,109.1,106.3,100.9,97.3,74.6,62.7,60.4,57.0,55.0$, 44.9, 21.2, 20.8, 15.5, 8.7; LRMS (FAB ${ }^{+}$m/z: $731.3(\mathrm{M}+\mathrm{H})^{+}$. 19b (major isomer) IR (neat film) $3374,1751,1683,1651,1430,1314,1265,1233,1094,1040,1006 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.43(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}$, $1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=8.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{br}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.01$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (dd, $J=11.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=11.7,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34(\mathrm{dd}, J=10.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{dd}, J=14.2$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=14.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,170.3,166.9,152.2,151.0,150.8$, $146.8,138.9,136.6,134.1,133.4,128.6,128.4,128.3,128.2,112.5,108.9,106.5,101.0,96.2$, $74.6,62.0,60.4,54.9,53.3,52.5,41.5,20.8,18.0,15.6,8.7 ;$ LRMS (FAB ${ }^{+}$) m/z: 731.4 $(\mathrm{M}+\mathrm{H})^{+}$.

Mesylate (epimeric mixture)

To a mixture of $\mathbf{1 5 4}(19.3 \mathrm{~g}, 26.4 \mathrm{mmol})$ and TEA ($11.8 \mathrm{ml}, 84.6 \mathrm{mmol}, 3.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was slowly added methanesulfonyl chloride ($2.60 \mathrm{ml}, 33.8 \mathrm{mmol}, 1.3$ equiv). After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was diluted with EtOAc (400 ml), and sequentially washed with 6% aqueous $\mathrm{NaCl}(230 \mathrm{ml})$, saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The organic phase was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography (70% EtOAc in n-hexane) to afford the mesylate ($19.4 \mathrm{~g}, 24.0 \mathrm{mmol}, 91 \%$) as a pale yellow amorphous. minor isomer: IR (neat film) 1743, 1685, 1424, 1367, 1307, 1230, $1172,1126,1065,1006,970 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.32-7.41 (m, 3H), $6.87(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 5.49(\mathrm{dd}, J$ $=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=12.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{ddd}, J=8.8,4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=14.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, J=14.0,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,168.1,165.6,151.9,151.0,147.1,144.0,142.4,136.6,134.4,133.1$, $128.6,128.4,128.3,128.2,115.1,113.3,102.1,97.1,74.6,62.0,60.4,56.7,55.2,54.3,45.0$, 37.9, 21.1, 20.7, 15.5, 9.8; HRMS (FAB^{+}) m/z: Calcd. for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{IN}_{2} \mathrm{O}_{9} \mathrm{~S}(\mathrm{M}-\mathrm{AcO})^{+} 749.1029$, found 749.1046. major isomer: IR (neat film) 1743, 1688, 1424, 1367, 1312, 1229, 1173, 1132, 1065, 1006, $970 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.39$ $(\mathrm{m}, 3 \mathrm{H}), 6.91,(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=11.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=$ $11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=10.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68$ (dd, $J=13.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (s, 3H), 2.83 (dd, $J=13.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (s, 3H), 2.20 (s, $3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,169.5$, $166.2,151.9,150.8,146.8,144.0,142.3,136.5$, 134.1, 133.1, 128.4, 128.2, 128.0, 115.1, $115.1,113.9,102.0,96.1,74.4,61.5,60.2,56.2,53.2,52.3,41.2,37.7,20.6,17.8,15.5,14.0$, 9.8; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}(\mathrm{M}-\mathrm{AcO})^{+} 749.1029$, found 749.0997.

Imide (epimeric mixture)

To a mixture of the mesylate $(3.00 \mathrm{~g}, 3.71 \mathrm{mmol})$ and $(\mathrm{Boc})_{2} \mathrm{O}(1.36 \mathrm{~g}, 6.22 \mathrm{mmol}, 1.7$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{ml})$ was added DMAP $(45 \mathrm{mg}, 0.37 \mathrm{mmol}, 0.1$ equiv), and the solution was stirred at room temperature for 6.5 h . The reaction mixture was diluted with EtOAc, and sequentially washed with 0.5 M aqueous HCl , saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The organic layer was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography ($50 \% \mathrm{EtOAc}$ in
n-hexane) to afford the imide ($3.27 \mathrm{~g}, 3.60 \mathrm{mmol}, 97 \%$) as a pale yellow amorphous. minor isomer: IR (neat film) 1775, 1733, 1670, 1455, 1429, 1368, 1308, 1285, 1244, 1172, 1148, 1066, 1007, 970, $937 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.41$ $(\mathrm{m}, 3 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.14(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J$ $=10.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=10.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=8.0,1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.53$ (dd, $J=14.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=14.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}$, 3 H), $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5$, $167.8,166.0,151.8,150.9,149.5,147.3,144.1,142.5,136.8,134.9,132.9,128.7,128.4$, $128.4,128.2,115.3,115.1,113.1,102.1,97.5,84.4,74.6,62.0,60.4,59.5,56.5,56.5,53.5$, 44.6, 38.0, 27.8, 20.8, 20.8, 15.5, 9.9; LRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 909.1(\mathrm{M}+\mathrm{H})^{+}$. major isomer: IR (film) 1777, 1737, 1672, 1468, 1455, 1424, 1368, 1308, 1285, 1245, 1172, 1150, 1064, 1008, $970,934 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.04$ (s, 1H), 6.73 ($\mathrm{s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ (s, 2H), 4.80-4.90 (m, 3H), $4.30(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dd}, J=13.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ ($\mathrm{s}, 3 \mathrm{H}$), $3.01(\mathrm{dd}, J=8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,167.7,167.5,151.5,150.6,149.4$, $146.6,143.5,142.3,136.7,134.1,132.5,128.5,128.3,128.1,128.1,115.1,115.1,114.8$, $101.8,97.3,83.8,74.4,62.4,60.3,58.7,56.8,52.7,42.5,37.7,27.5,20.7,16.7,15.3,9.8$; LRMS (FAB^{+}) m/z: $909.2(\mathrm{M}+\mathrm{H})^{+}$.

Enamide 20

To a solution of the imide ($4.11 \mathrm{~g}, 4.52 \mathrm{mmol}$) in a mixture of $\mathrm{EtOH}(100 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ $\mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{H}_{2} \mathrm{SO}_{4}(3.0 \mathrm{M}$ solution in $\mathrm{EtOH}, 3.0 \mathrm{ml}, 9.0 \mathrm{mmol}, 2.0$ equiv), and to the mixture was added $\mathrm{NaBH}_{4}(867 \mathrm{mg}, 22,9 \mathrm{mmol}, 5.1$ equiv) portionwise. Excess reagent was quenched with acetone (10 ml), and the mixture was neutralized with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$, diluted with EtOAc, and filtered through a pad of Celite. The filtrate was concentrated under reduced pressure, and the residue was partitioned between EtOAc and saturated aqueous NaHCO_{3}. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure to give the crude aminal (4.19 g), which was used in the next step without further purification. To a solution of the aminal in toluene (40 ml) were added CSA (1.07 g , $4.61 \mathrm{mmol}, 1.0$ equiv) and quinoline ($0.82 \mathrm{ml}, 7.0 \mathrm{mmol}, 1.5$ equiv), and the resulting mixture was heated at reflux for 3 h . The reaction mixture was diluted with EtOAc , and sequentially washed with 1 M aqueous HCl , saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The
organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography ($50 \% \mathrm{EtOAc}$ in n-hexane) to afford $\mathbf{2 0}$ (3.54 g , $3.97 \mathrm{mmol}, 88 \%$ in 2 steps) as a yellow foam. $[\alpha]_{\mathrm{D}}{ }^{27}+2.9^{\circ}\left(\mathrm{c}=3.0, \mathrm{CHCl}_{3}\right)$. IR (neat film) 1742, 1692, 1463, 1418, 1362, 1336, 1240, 1172, 1065, 1005, 962, 890, $805 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{br}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, $6.21(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{br}, 1 \mathrm{H}), 4.85(\mathrm{br}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3,19(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{br}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,151.5,151.3,151.1,150.9,150.1,150.1,150.1,146.7,143.1,143.0$, $142.2,142.1,136.7,136.6,135.8,134.7,134.7$, 132.0, 131.5, 129.2, 129.1, 128.4, 128.4, 128.2 , 127.9, 127.9, 127.9, 127.7, 127.5, 126.2, 121.3, 120.8, 115.4, 115.2, 114.0, 113.9, $101.7,97.0,96.5,80.8,80.7,77.3,77.2,77.0,76.7,74.2,62.4,62.3,60.1,60.0,57.2,55.7$, 39.1, 38.8, 37.4, 37.4, 27.8, 27.5, 20.4, 16.3, 15.2, 9.6; HRMS (FAB ${ }^{+}$) m/z: Calcd. for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{IN}_{2} \mathrm{O}_{12} \mathrm{~S}\left(\mathrm{M}^{+}\right) 892.1738$, found 892.1750.

Tricycle 21

To a degassed mixture of $\mathbf{2 0}(6.27 \mathrm{~g}, 7.02 \mathrm{mmol})$, tris $(o$-tolyl)phosphine ($428 \mathrm{mg}, 1.41 \mathrm{mmol}$, 0.2 equiv), and TEA ($4.0 \mathrm{ml}, 29 \mathrm{mmol}, 4.1$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{ml})$ under argon was added tris(dibenzylideneacetone)dipalladium $(0)\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right)(325 \mathrm{mg}, 0.36 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, and the solution was heated at reflux for 2 h . The reaction mixture was diluted with EtOAc and concentrated under reduced pressure. The residue was dissolved in EtOAc and sequentially washed with 10% aqueous citric acid, saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The organic phase was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The crude product was purified by flash column chromatography ($50 \% \mathrm{EtOAc}$ in n hexane) to afford 21 ($4.44 \mathrm{~g}, 5.81 \mathrm{mmol}, 83 \%$) as a yellow solid. $[\alpha]_{\mathrm{D}}{ }^{27}+38^{\circ}$ (c = 1.9, CHCl_{3}); IR (neat film) 1743, 1699, 1636, 1424, 1367, 1309, 1233, 1173, 1113, 1065, 861, 808 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.70(\mathrm{~m}, 5 \mathrm{H}), 6.60-6.75(\mathrm{br}, 1 \mathrm{H}), 6.30-6.50(\mathrm{br}, 1 \mathrm{H})$, 5.65-6.20 (br, 3H), 4.20-5.30 (br, 8H), 3.80 (s, 3H), 3.09 (s, 3H), 2.90-3.30 (br, 2H), 2.24 (s, 3 H), 2.15 ($\mathrm{s}, 3 \mathrm{H}$), $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,149.7$, $148.8,147.0,142.9,142.6,137.6,132.3,128.5,127.8,125.7,115.2,115.2,114.0,113.2$, $113.1,113.0,113.0,112.9,101.8,96.3,95.4,81.1,74.1,73.7,60.3,60.2,59.9,54.0,54.0$, $52.6,50.5,50.5,37.5,31.9,28.3,20.1,15.7,9.9$; HRMS (FAB ${ }^{+}$) m/z: Calcd. for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+} 765.2693$, found 765.2653 .

Acetate

To a solution of $21(120 \mathrm{mg}, 0.157 \mathrm{mmol})$ in $\mathrm{MeOH}(1.5 \mathrm{ml})$ was added 2 M aqueous NaOH $(0.5 \mathrm{ml}, 1 \mathrm{mmol}, 6$ equiv), and the resulting mixture was heated at reflux for 2.5 h . The reaction mixture was diluted with a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$, acidified with 1 M aqueous HCl , and extracted with EtOAc. The organic phase was sequentially washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. To a solution of the crude product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ at room temperature were added pyridine $(0.26 \mathrm{ml}, 3.2 \mathrm{mmol}, 20$ equiv), acetic anhydride $(0.15 \mathrm{ml}, 1.6 \mathrm{mmol}, 10$ equiv), and DMAP ($1 \mathrm{mg}, 0.008 \mathrm{mmol}$). The reaction mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography ($30 \% \mathrm{EtOAc}$ in n hexane) to afford the acetate ($106 \mathrm{mg}, 0.145 \mathrm{mmol}, 93 \%$ in 2 steps) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{26}$ $+47^{\circ}\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$; IR (neat film) 1766, 1746, 1699, 1634, 1484, 1427, 1368, 1307, 1208, $1183,1109,1081,937,913,862 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.42(\mathrm{~m}, 5 \mathrm{H}), 6.64$ (br, $1 \mathrm{H}), 6.13(\mathrm{br}, 1 \mathrm{H}), 5.70-5.95(\mathrm{br}, 3 \mathrm{H}), 4.15-5.30(\mathrm{br}, 8 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.90-3.20(\mathrm{br}, 2 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,169.2,169.1,149.8,149.7,149.7,148.8,146.8,146.8,146.7,144.3,141.8,140.4$, 137.6, 137.6, 137.6, 132.1, 132.1, 128.6, 128.5, 128.0, 128.0, 128.0, 127.9, 127.9, 127.8, 127.8 , 127.7, 127.7, 127.7, 127.6, 127.6, 127.5, 127.5, 127.5, 127.5, 125.7, 125.7, 125.7, $125.7,115.3,115.2,115.2,115.2,115.2,112.6,112.2,112.2,112.2,112.2,101.6,101.5,81.0$, $81.0,81.0,74.1,74.1,74.1,73.6,60.2,59.6,54.0,52.8,52.7,52.7,52.5,52.5,50.8,50.8,50.7$, 50.7, 50.7, 32.0, 28.3, 20.6, 20.6, 20.0, 15.7, 9.3; HRMS (FAB ${ }^{+}$) m/z: Calcd. for $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{11}$ $(\mathrm{M}+\mathrm{H})^{+} 729.3024$, found 729.3038 .

Enamide

To a solution of the acetate $(2.56 \mathrm{~g}, 3.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{ml})$ was added TFA ($3.0 \mathrm{ml}, 39$
mmol, 11 equiv), and the resulting mixture was stirred at room temperature for 4 h . The reaction mixture was carefully poured into cold saturated aqueous NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was concentrated under reduced pressure, and the resulting brown oil was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{ml})$ and saturated aqueous $\mathrm{NaHCO}_{3}(20$ $\mathrm{ml})$. To the two-phase mixture at $0^{\circ} \mathrm{C}$ was added 2,2,2-trichloroethyl chloroformate $(0.47 \mathrm{ml}$, $3.5 \mathrm{mmol}, 1.0$ equiv), and the reaction mixture was vigorously stirred for 10 min . The organic phase was separated, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography ($40 \% \mathrm{EtOAc}$ in n-hexane) to afford the enamide ($2.08 \mathrm{~g}, 2.59 \mathrm{mmol}, 74 \%$ in 2 steps) as a white foam. $[\alpha]_{\mathrm{D}}{ }^{26}+40^{\circ}(\mathrm{c}=$ $1.1, \mathrm{CHCl}_{3}$); IR (neat film) 1763, 1724, 1684, 1636, 1486, 1429, 1368, 1353, 1298, 1222, $1209,1184,1124,1078,1031,913,863$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.50(\mathrm{~m}, 5 \mathrm{H})$, $6.72 \& 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.22 \& 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.00 \& 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.87 \& 5.77(\mathrm{~s}, 2 \mathrm{H}), 4.50-5.25$ $(\mathrm{m}, 9 \mathrm{H}), 4.37 \& 4.29(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.95$ (s, 3H), 1.55 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,169.2,149.8,144.3,141.8,137.4$, $132.5,128.5,128.5,127.9,127.8,127.6,125.7,124.8,115.0,112.5,112.2,101.5,95.1,75.0$, $74.0,73.8,60.2,53.9,53.3,52.5,32.2,31.8,20.6,19.9,15.7,9.2 ;$ HRMS $^{\left(F^{+}\right)}$m/z: Calcd. for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{11}\left(\mathrm{M}^{+}\right)$802.1463, found 802.1413.

Methoxyalcohol 22

To a solution of the enamide ($681 \mathrm{mg}, 0.847 \mathrm{mmol}$) in $\mathrm{MeOH}(15.0 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added freshly prepared dimethyldioxirane (0.1 M solution in acetone, $15 \mathrm{ml}, 1.5 \mathrm{mmol}, 2$ equiv), and the resulting mixture was stirred at this temperature for 2 h . To the reaction mixture was added anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(10 \mathrm{~g})$, and the resulting slurry was stirred for 10 minutes. To the reaction mixture was added CSA ($7.2 \mathrm{mg}, 0.03 \mathrm{mmol}, 4 \mathrm{~mol} \%$) and allowed to warm to room temperature, and the mixture was neutralized with pyridine ($25 \mu \mathrm{l}, 0.31 \mathrm{mmol}, 0.4$ equiv), filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography ($50 \% \mathrm{EtOAc}$ in n-hexane) to afford 22 ($652 \mathrm{mg}, 0.765 \mathrm{mmol}, 90 \%$) as a yellow foam. $[\alpha]_{\mathrm{D}}{ }^{23}+66^{\circ}\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$; IR (neat film) $3445,1722,1668,1418,1369$, $1339,1300,1228,1183,1124,1097 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.60(\mathrm{~m}, 5 \mathrm{H})$, 6.60-6.80 (br, 2H), 5.78-5.95 (br, 3H), $5.28(\mathrm{br}, 1 \mathrm{H}), 5.16(\mathrm{br}, 1 \mathrm{H}), 5.06(\mathrm{br}, 1 \mathrm{H}), 4.75-4.95(\mathrm{~m}$, $4 \mathrm{H}), 4.60-4.75(\mathrm{~m}, 2 \mathrm{H}), 3.82 \& 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.61 \& 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{dd}$, $J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27 \& 3.25(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13 \& 3.12(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,170.8,170.3,170.2,168.7,151.7,151.6,149.5,149.4,148.6,148.1,145.9,145.9$,
$144.2,141.8,141.7,136.4,136.2,133.1,132.9,129.3,129.1,129.0,128.6,128.5,128.4$, 128.2 , 128.0, 127.6, 126.6, 126.5, 123.6, 123.3, 116.7, 114.3, 114.2, 112.8, 112.7, 101.3, $101.3,95.0,94.8,93.3,92.9,77.2,76.2,75.3,75.2,74.9,63.5,62.8,62.1,60.3,53.2,52.7$, $51.6,51.2,51.2,51.0,50.8,50.3,30.5,29.9,20.8,20.4,15.7,9.2 ;$ HRMS $^{\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: ~ C a l c d .}$ for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{12}(\mathrm{M}-\mathrm{MeO})^{+}$819.1490, found 819.1467.

Alcohol 23

To a solution of sodium cyanoborohydride ($330 \mathrm{mg}, 5.25 \mathrm{mmol}, 10$ equiv) in TFA (9.0 ml) at 0 ${ }^{\circ} \mathrm{C}$ was added $22(440 \mathrm{mg}, 0.516 \mathrm{mmol})$ in THF (1.5 ml), and the resulting mixture was stirred at this temperature for 30 min . The reaction mixture was diluted with CHCl_{3} and carefully poured into vigorously stirred saturated aqueous NaHCO_{3}. The organic layer was separated, washed with saturated aqueous NaCl , and concentrated under reduced pressure. The residue was purified by flash column chromatography ($50 \% \mathrm{EtOAc}$ in n-hexane) to afford $\mathbf{2 3}$ (400 mg , $0.535 \mathrm{mmol}, 94 \%)$ as a white foam. $[\alpha]_{\mathrm{D}}{ }^{22}+33^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$; IR (neat film) 3510,1764 , 1722, 1664, 1484, 1428, 1369, 1342, 1304, 1227, 1185, 1126, 1062, $938,911 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 3 \mathrm{H}), 6.83 \& 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.36 \&$ $6.33(\mathrm{~s}, 1 \mathrm{H}), 5.78-5.87(\mathrm{~m}, 3 \mathrm{H}), 5.40(\mathrm{br}, 1 \mathrm{H}), 5.26-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.93$ $(\mathrm{m}, 3 \mathrm{H}), 4.52(\mathrm{br}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 3.91 \& 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.65(\mathrm{br}, 2 \mathrm{H}), 3.00-3.30(\mathrm{~m}$, $3 \mathrm{H}), 2.29 \& 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4$, $170.3,170.2,169.8,169.1,152.0,151.6,149.4,149.0,148.5,146.5,146.4,144.3,144.2$, $142.0,142.0$, 135.2, 135.2, 133.4, 133.2, 129.4, 129.2, 129.2, 129.1, 129.0, 129.0, 128.9, $127.3,127.2,122.3,121.8,113.7,113.5,113.1,113.0,101.7,101.6,95.2,95.1,77.2,76.4$, $75.2,75.1,62.7,62.6,60.5,60.5,59.5,53.9,53.2,47.5,46.9,31.9,31.6,20.7,20.6,20.6,15.7$, 9.3; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{12}(\mathrm{M}+\mathrm{H})^{+} 821.1647$, found 821.1671.

Silyl Ether

To a mixture of $\mathbf{2 3}$ ($101 \mathrm{mg}, 0.123 \mathrm{mmol}$) and imidazole ($21.3 \mathrm{mg} 0.313 \mathrm{mmol}, 2.5$ equiv) in

DMF (0.10 ml) was added $\mathrm{TBSCl}(28.0 \mathrm{mg}, 0.186 \mathrm{mmol}, 1.5$ equiv), and the mixture was stirred at room temperature for 2 h . The reaction mixture was directly purified by flash column chromatography ($40 \% \mathrm{EtOAc}$ in n-hexane) to afford the silyl ether ($106 \mathrm{mg}, 0.127 \mathrm{mmol}$, 92%) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{23}-8.0^{\circ}\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right.$); IR (neat film) $1766,1723,1669,1424$, 1368, 1340, 1299, 1255, 1208, 1184, 1126, 1097, 1036, 1006, 935, 908, $838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.60(\mathrm{~m}, 5 \mathrm{H}), 6.78 \& 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.99 \& 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.68-5.78$ $(\mathrm{m}, 2 \mathrm{H}), 5.60-5.68(\mathrm{~m}, 2 \mathrm{H}), 5.13-5.28(\mathrm{br}, 1 \mathrm{H}), 4.96-5.07(\mathrm{br}, 1 \mathrm{H}), 4.64-4.90(\mathrm{~m}, 5 \mathrm{H}), 4.49$ (dd, $J=15.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17 (ddd, $J=15.6,8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87 \& 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.21$ $(\mathrm{dd}, J=12.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{br}, 2 \mathrm{H}), 2.29 \& 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.02 \& 2.00(\mathrm{~s}$, $3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 0.69 \& 0.68(\mathrm{~s}, 9 \mathrm{H}),-0.26 \&-0.29(\mathrm{~s}, 3 \mathrm{H}),-0.33 \&-0.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.4,168.9,168.8,168.5,153.4,152.2,151.5,150.0,148.6,148.1$, $146.1,145.0,143.7,143.2,141.1,141.1,139.4,136.7,134.4,132.7,132.5,129.3,129.1$, 128.9, 128.7, 128.7, 128.6, 128.5, 128.4, 126.1, 123.2, 122.7, 116.8, 113.0, 113.0, 111.4, $101.0,101.0,95.3,95.1,75.5,75.2,75.1,67.3,66.5,62.7,62.7,62.6,60.3,60.3,55.0,54.9$, $53.5,52.8,48.1,47.5,31.9,31.7,25.5,20.9,20.9,20.6,17.8,17.8,15.9,9.1,-5.9,-6.0,-6.1$, -6.3; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{14} \mathrm{H}_{54} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 935.2511$, found 935.2400.

Phenol

The alcohol ($524 \mathrm{mg}, 0.560 \mathrm{mmol}$) was dissolved in guanidine/guanidinium nitrate solution $(8.0 \mathrm{ml})^{29}$. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 2.5 h . The reaction mixture was diluted with EtOAc, and sequentially washed with 1 M HCl , saturate aqueous NaHCO_{3}, and saturated aqueous NaCl . The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (50% EtoAc in n-hexane) to afford the phenol ($405 \mathrm{mg}, 0.475 \mathrm{mmol}, 85 \%$) as a yellow foam. $[\alpha]_{\mathrm{D}}^{23}-34^{\circ}$ (c $=1.5, \mathrm{CHCl}_{3}$); IR (neat film) 3309, 1723, 1640, 1423, 1345, 1304, 1257, 1133, 1127, 1095, $838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.54(\mathrm{~m}, 5 \mathrm{H}), 6.87 \& 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{br}, 1 \mathrm{H})$, $5.35-5.73(\mathrm{~m}, 5 \mathrm{H}), 5.17-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.98 \& 4.90(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.60-4.86 (m, 3H), 4.27-4.40 (m, 3H), 4.08 (br, 1H), 3.80 \& 3.74 ($\mathrm{s}, 3 \mathrm{H}), 3.15-3.35(\mathrm{~m}, 3 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 1.94 \& 1.91(\mathrm{~s}, 3 \mathrm{H}), 0,69 \& 0.68(\mathrm{~s}, 9 \mathrm{H}),-0.27 \&-0.30(\mathrm{~s}, 3 \mathrm{H}),-0.32 \&-0.35$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,151.3,150.1,149.4,148.7,146.0,136.6,136.4$, 133.2 , 132.8, 129.2, 129.1, 128.7, 128.7, 128.6, 128.5, 128.4, 128.4, 126.5, 126.3, 123.2, $116.1,106.3,106.2,105.0,100.2,95.0,75.5,75.3,75.1,68.3,67.3,63.1,62.9,62.0,60.2$, 58.7, 58.7, 53.6, 53.0, 48.8, 47.9, 32.2, 25.5, 17.8, 17.8, 15.6, 15.6, 8.4, 8.4, -5.9, -6.0, -6.1, -6.2; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$851.2300, found 851.2337.

Benzyl Ether

To a mixture of the phenol ($404 \mathrm{mg}, 0.474 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(196 \mathrm{mg}, 1.42 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(6.0 \mathrm{ml})$ was added benzyl bromide ($73.0 \mu \mathrm{l}, 0.615 \mathrm{mmol}, 1.3$ equiv), and the resulting mixture was heated at reflux for 1 h . After cooling, the reaction mixture was diluted with CHCl_{3} and filtered through a pad of Celite. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography ($50 \% \mathrm{EtOAc}$ in n hexane) to afford the benzyl ether ($409 \mathrm{mg}, 0.434 \mathrm{mmol}, 91 \%$) as a yellow foam. $[\alpha]_{\mathrm{D}}{ }^{23}-37^{\circ}$ ($\mathrm{c}=2.1, \mathrm{CHCl}_{3}$); IR (neat film) $3749,1717,1419,1340,1253,1111,838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.60(\mathrm{~m}, 10 \mathrm{H}), 6.77 \& 6.73(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{br}, 2 \mathrm{H}), 5.69(\mathrm{~s}$, $1 \mathrm{H}), 5.51(\mathrm{br}, 1 \mathrm{H}), 5.22 \& 5.21$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{br}, 1 \mathrm{H}), 5.00 \& 4.88$ (d, $J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=108 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ \& $4.46(\mathrm{~d}, J=11,6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37 \& 4.25(\mathrm{br}, 1 \mathrm{H}), 4.30 \& 4.29(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ \& 3.95 (br, 2H), $3.80 \& 3.75$ (s, 3H), 3.13-3.37 (m, 3H), $1.99 \& 1.96$ ($\mathrm{s}, 9 \mathrm{H}),-0.27 \&-0.32(\mathrm{~s}$, $3 \mathrm{H}),-0.33 \&-0.36(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,152.1,152.1,150.0,148.8$, $146.2,137.2,137.1,136.5,133.1,129.2,128.7,128.7,128.6,128.6,128.5,128.5,128.0$, $127.9,127.8,126.4,126.3,123.3,115.8,108.1,102.6,100.6,75.5,75.3,75.2,70.8,67.5,66.7$, $63.5,62.3,60.3,60.3,59.8,53.4,52.7,47.9,47.2,32.0,31.5,25.5,22.6,17.8,15.5,14.1,8.7$, $-5.9,-6.0,-6.3$; LRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 940.5\left(\mathrm{M}^{+}\right)$.

Oxazolidine 24

To a solution of the benzyl ether ($224 \mathrm{mg}, 0.238 \mathrm{mmol}$) in THF (2.0 ml) at $0^{\circ} \mathrm{C}$ was slowly added Red-Al (1.3 M solution in toluene, $0.25 \mathrm{ml}, 0.325 \mathrm{mmol}, 1.4$ equiv). The reaction mixture was quenched with 1 M aqueous HCl , and extracted with EtOAc. The organic layer was sequentially washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography ($30 \% \mathrm{EtOAc}$ in n-hexane) to afford 24 (181 mg , $0.195 \mathrm{mmol}, 82 \%$) as a white foam. $[\alpha]_{\mathrm{D}}{ }^{22}-37^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$; IR (neat film) 1717, 1435, 1263, 1118, 1024, $840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.49(\mathrm{~m}, 8 \mathrm{H}), 6.77 \& 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.41 \& 6.40(\mathrm{~s}, 1 \mathrm{H}) 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.77$ (s, 1H), $5.57 \& 5.51$ (s, 1H), 5.41 (br, 1H), 5.21 (dd, $J=10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (dd, $J=7.2$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-5.02(\mathrm{~m}, 5 \mathrm{H}), 4.20-4.35(\mathrm{~m}, 3 \mathrm{H}), 3.87 \& 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.14-$ $3.35(\mathrm{~m}, 3 \mathrm{H}), 2.73(\mathrm{dd}, J=17.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 0.71 \& 0.69(\mathrm{~s}, 9 \mathrm{H})$, $-0.21 \&-0.26(\mathrm{~s}, 3 \mathrm{H}),-0.27 \&-0.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,153.5$, $151.8,149.5,149.4,148.1,147.6,146.5,138.2,137.4,137.3,131.4,131.2,130.2,129.9$, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.7, 127.7, 127.2, 127.2, 125.5, 125.0, 124.4, $120.7,120.6,107.9,101.9,101.7,100.7,100.6,95.4,92.1,92.1,75.5,75.2,75.0,74.8,70.3$, $68.9,68.3,68.1,66.7,66.6,60.5,60.3,60.2,60.1,60.0,59.9,48.5,48.1,47.5,46.7,30.7,30.5$, $25.6,17.8,15.7,15.7,8.7,-5.9,-5.9,-6.0,-6.0 ;$ LRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 925.3(\mathrm{M}+\mathrm{H})^{+}$.

Aminonitrile

To a mixture of $\mathbf{2 4}(295 \mathrm{mg}, 0.318 \mathrm{mmol})$ and trimethylsilyl cyanide ($127 \mu \mathrm{l}, 0.952 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left(1.0 \mathrm{M}\right.$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 480 \mu \mathrm{l}, 0.48$ mmol, 1.5 equiv). The reaction mixture was poured into cold saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure, and the resulting crude product was purified by flash column chromatography (50% EtOAc in n-hexane) to afford the aminonitrile ($221 \mathrm{mg}, 0.23 \mathrm{mmol}$, 73%) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{23}+47^{\circ}\left(\mathrm{c}=1.6, \mathrm{CHCl}_{3}\right.$); IR (neat film) $3457,1718,1498,1429$, $1309,1259,1120,1065,902 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.60(\mathrm{~m}, 10 \mathrm{H}), 6.46 \&$ $6.50(\mathrm{~s}, 1 \mathrm{H}), 5.92 \& 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.30-5.47(\mathrm{~m}, 2 \mathrm{H}), 4.85-5.30(\mathrm{~m}, 3 \mathrm{H}), 4.65-$ $4.80(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.88 \& 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80-4.00(\mathrm{~m}, 2 \mathrm{H})$, $3.35-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.15 \& 3.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75 \& 2.80(\mathrm{dd}, J=17.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20 \& 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.60 \& 1.50(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.77 \& 0.75(\mathrm{~s}, 9 \mathrm{H}),-0.04$ $\&-0.10(\mathrm{~s}, 3 \mathrm{H}),-0.09 \&-0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.7,152.3,151.2$, 151.0, 149.0, 148.9, 147.6, 147.0, 146.6, 139.5, 139.5, 137.5, 137.3, 137.1, 131.5, 131.1, $130.9,130.6,128.9,128.7,128.6,128.5,128.2,128.1,128.1,127.9,127.8,127.1,125.4$, $125.1,125.0,124.8,117.8,117.7,115.8,109.6,109.5,103.5,100.5,95.2,75.8,75.3,75.1$, $75.0,70.5,70.3,63.7,63.6,62.5,61.9,60.3,60.2,56.3,56.1,51.1,50.9,50.4,49.6,49.3,49.1$, 29.9, 29.7, 25.7, 18.2, 18.2, 15.6, 8.9, -5.6, -5.7, -6.0, -6.2; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{47} \mathrm{H}_{56} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Si}(\mathrm{M}-\mathrm{CN})^{+} 925.2820$, found 925.2774 .

Acetate

To a solution of the aminonitrile ($221 \mathrm{mg}, 0.232 \mathrm{mmol}$) in a mixture of acetic anhydride (1.0 ml) and pyridine (2.0 ml) was added DMAP ($5.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.2$ equiv), and the mixture was stirred at room temperature. The reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by flash column chromatography ($30 \% \mathrm{EtOAc}$ in n-hexane) to afford the acetate ($213 \mathrm{mg}, 0.214 \mathrm{mmol}, 92 \%$) as a white solid. $[\alpha]_{\mathrm{D}}^{23}+50^{\circ}$ (c $=1.8, \mathrm{CHCl}_{3}$) IR (neat film) $1720,1430,1251,1122,840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.65(\mathrm{~m}, 10 \mathrm{H}), 6.52,6.49(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{br}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 5.50 \& 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.37$ $(\mathrm{s}, 1 \mathrm{H}), 4.55-5.30(\mathrm{~m}, 8 \mathrm{H}), 5.50-5.55(\mathrm{~m}, 3 \mathrm{H}), 3.89 \& 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.80(\mathrm{br}, 1 \mathrm{H}), 3.40-$ 3.55 (br, 2H), $2.85 \& 2.80(\mathrm{dd}, J=17.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.30(\mathrm{br}, 6 \mathrm{H}), 1.90-2.00(\mathrm{br}, 3 \mathrm{H})$, $1.53 \& 1.65(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.77(\mathrm{br}, 9 \mathrm{H}),-0.04 \&-0.11(\mathrm{~s}, 3 \mathrm{H}),-0.08 \&-0.14(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,170.1,152.6,152.2,151.0,150.8,149.0,148.9,147.6$, $147.0,146.7,139.7,139.7,137.6,137.4,137.2,131.2,130.9,130.6,128.6,128.6,128.5$, $128.4,128.4,128.1,128.0,127.8,127.7,127.1,125.4,124.9,124.9,124.8,117.9,1117.9$, $117.8,115.6,115.6,109.4,109.3,103.6,103.5,100.5,95.2,95.1,75.6,75.2,75.1,74.8,70.4$, $70.2,63.3,63.1,61.9,61.2,60.2,59.3,54.2,54.0,51.8,51.6,50.2,49.3,49.1,48.7,29.8,29.7$, $25.7,20.8,20.8,18.1,18.1,15.5,8.9,-5.7,-5.8,-6.0,-6.1 ;$ LRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 993.5\left(\mathrm{M}^{+}\right)$.

Alcohol

To a solution of the acetate ($200 \mathrm{mg}, 0.20 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{ml})$ was added $\mathrm{HF}(48 \mathrm{wt} . \%$ solution in $\mathrm{H}_{2} \mathrm{O}, 1.0 \mathrm{ml}, 28 \mathrm{mmol}$), and the mixture was stirred at room temperature for 3 h . The reaction mixture was poured into saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with saturated aqueous NaCl , dried with MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash column chromatography ($40 \% \mathrm{EtOAc}$ in n-hexane) to afford the alcohol ($180 \mathrm{mg}, 0.20 \mathrm{mmol}$, quant) as a white foam. $[\alpha]_{D}{ }^{24}+67^{\circ}\left(\mathrm{c}=2.3, \mathrm{CHCl}_{3}\right)$; IR (neat film) $3504,1717,1453,1436,1373$, $1312,1258,1236,1122,1058 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.70(\mathrm{~m}, 10 \mathrm{H}), 6.60 \&$ $6.56(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.69 \& 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.48 \& 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.23 \& 5.25$ $(\mathrm{d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-5.02(\mathrm{~m}, 4 \mathrm{H}), 4.50-4.75(\mathrm{~m}, 3 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~m}$, $1 \mathrm{H}), 3.93 \& 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.58 \& 3.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.30$ (m, 1H), $2.95 \& 2.88$ (dd, $J=17.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.16$ ($\mathrm{s}, 3 \mathrm{H}), 2.07$ (s, 3H), 1.80 \& $1.69(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,170.3,152.8,152.3,151.5$, $151.3,148.5,148.4,148.1,147.4,146.6,139.2,139.2,137.2,137.1,135.8,135.6,131.5$, $131.4,131.2,131.1,128.9,128.8,127.9,127.8,127.0,125.6,124.6,124.1,117.4,117.4$, $114.5,110.0,109.9,103.4,100.7,95.2,95.1,75.3,75.1,70.4,70.3,61.3,61.3,61.2,60.6$, $60.6,60.5,59.9,53.4,53.1,51.8,51.6,50.1,49.0,48.8,48.3,30.1,29.9,20.8,15.6,8.9$; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{10}(\mathrm{M}-\mathrm{CN})^{+}$853.2061, found 853.2082.

Aldehyde 25

To a solution of the alcohol ($180 \mathrm{mg}, 0.204 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{ml})$ at room temperature was added Dess-Martin periodinane ($103 \mathrm{mg}, 0.243 \mathrm{mmol}, 1.2$ equiv), and the resulting slurry was stirred at room temperature for 40 min . Excess reagent was quenched with 2-propanol (2 drops), and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through a pad of Celite, and concentrated under reduced pressure. The residue was dissolved in EtOAc, and sequentially washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl . The organic layer was dried over anhydrous MgSO_{4} and concentrated under reduced pressure, and the resultant residue was purified by flash column chromatography ($40 \% \mathrm{EtOAc}$ in n-hexane) to afford $\mathbf{2 5}$ $(165 \mathrm{mg}, 0.188 \mathrm{mmol}, 92 \%)$ as a white foam. $[\alpha]_{\mathrm{D}}{ }^{24}+23^{\circ}\left(\mathrm{c}=0.90, \mathrm{CHCl}_{3}\right)$; IR (neat film) 1732, 1607, 1584, 1488, 1428, 1382, 1315, 1238, 1122, 1035, 939, 906, $826 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.17 \& 9.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 7.23-7.45(\mathrm{~m}, 10 \mathrm{H}), 6.61 \& 6.59(\mathrm{~s}, 1 \mathrm{H})$, $5.93(\mathrm{br}, 1 \mathrm{H}), 5.80(\mathrm{br}, 1 \mathrm{H}), 5.75 \& 5.72(\mathrm{br}, 1 \mathrm{H}), 5.62(\mathrm{br}, 1 \mathrm{H}), 5.21 \& 5.18(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.65-5.00(\mathrm{~m}, 8 \mathrm{H}), 4.27-4.52(\mathrm{~m}, 3 \mathrm{H}), 3.78 \& 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{br}, 1 \mathrm{H}), 3.13 \& 3.08$ $(\mathrm{dd}, J=17.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{br}, 1 \mathrm{H}), 2.04-2.11(\mathrm{br}, 6 \mathrm{H}), 2.01 \& 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 196.9,196.4,170.2,152.4,152.1,146.7,139.8,137.1,137.1,132.0$, $130.5,128.6,128.5,128.4,128.0,128.0,127.9,127.9,127.8,127.2,127.2,127.0,125.0$, $124.9,123.9,113.5,113.4,110.4,103.9,100.9,95.0,75.3,75.3,74.4,70.5,70.4,68.9,68.4$, $62.3,60.5,60.4,56.8,51.8,51.7,50.1,49.1,47.2,30.0,20.9,15.8,9.0 ; \mathrm{HRMS}^{\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}:}$ Calcd. for $\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{10}\left(\mathrm{M}^{+}\right)$877.1936, found 877.1921.

Pentacycle 26

A mixture of 25 ($51.2 \mathrm{mg}, 0.058 \mathrm{mmol}$) and 10% palladium on carbon (AD-type (wet, 50% water), purchased from Kawaken Fine Chemicals Co., $51.1 \mathrm{mg}, 0.024 \mathrm{mmol}, 0.41$ equiv) in THF (1.2 ml) was stirred under 1 atm of hydrogen at room temperature for 18 h . The reaction mixture was filtered through a pad of Cellite, and concentrated under reduced pressure. The resulting crude product was purified by flash column chromatography ($50 \% \mathrm{EtOAc}$ in n hexane) to afford $26(34.2 \mathrm{mg}, 0.049 \mathrm{mmol}, 84 \%)$ as a yellow film. $[\alpha]_{\mathrm{D}}{ }^{24}+23^{\circ}(\mathrm{c}=1.4$, CHCl_{3}); IR (neat film) $3749,1722,1623,1587,1501,1435,1380,1317,1265,1232,1127$, 1105, 1056, 1032, 1012, $965 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H})$, $5.85 \& 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 4.91 \& 4.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87 \& 4.85(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69 \& 4.67(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{br}, 1 \mathrm{H})$, 4.07 (br, 1H), $3.77 \& 3.76$ (s, 3H), 3.66 (dd, $J=10.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34 \& 3.31$ (dd, $J=10.4$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=17.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85 \& 2.80(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25 \& 2.24(\mathrm{~s}$, $3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,153.1,152.5,149.3,149.2,145.9$, 145.9 , 144.0, 143.7, 142.5, 142.3, 135.4, 135.3, 131.6, 131.3, 130.1, 130.1, 123.2, 122.9, $117.0,116.9,115.9,115.8,110.0,109.9,108.0,101.0,95.3,95.0,75.3,75.1,68.9,68.8,64.1$, 61.6, 61.5, 61.1, 61.0, 58.9, 58.8, 56.3, 49.6, 48.9, 47.1, 46.4, 30.5, 29.6, 20.2, 15.7, 15.7, 8.6; HRMS (FAB^{+}) m/z: Calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{10}\left(\mathrm{M}^{+}\right)$697.0997, found 697.0983.

Allyl Ether

To a mixture of $26(34.2 \mathrm{mg}, 0.049 \mathrm{mmol})$ and $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.20 \mathrm{ml}, 1.2 \mathrm{mmol}, 24$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{ml})$ was added allyl bromide ($40 \mu \mathrm{l}, 0.47 \mathrm{mmol}, 10$ equiv), and the resulting mixture was heated at reflux for 3 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and sequentially washed with 1 M aqueous HCl , saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The organic layer was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography ($50 \% \mathrm{EtoAc}$ in n-hexane) to afford the allyl ether ($32.3 \mathrm{mg}, 0.044 \mathrm{mmol}, 89 \%$) as a colorless film. $[\alpha]_{\mathrm{D}}{ }^{23}+33$ ${ }^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$; IR (neat film) 3290, 1724, 1435, 1378, 1338, 1313, 1297, 1264, 1227, 1125, 1102, 1057, 1032, 1013, 967, 940, 914, $827 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.65$ \& $9.62(\mathrm{~s}, 1 \mathrm{H}), 6.78 \& 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~m}, 1 \mathrm{H}), 6.12 \& 6.10(\mathrm{~d}, J=17,6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H})$, $5.84 \& 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.78 \& 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.37-5.60(\mathrm{~m}, 2 \mathrm{H}), 4.75-5.00(\mathrm{~m}, 3 \mathrm{H}), 4.69 \& 4.69$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.10(\mathrm{~m}$, $1 \mathrm{H}), 3.83 \& 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~d}, J=176 \mathrm{~Hz}, 1 \mathrm{H}), 2.24 \&$ 2.23 (s, 3H), $2.09(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,170.2,152.9,152.2,149.4$, $149.4,148.5,147.4,146.9,146.0,145.9,135.4,135.4,132.6,132.5,132.0,131.4,131.0$, 127.0, 123.9, 123.1, 121.8, 121.3, 115.8, 110.0, 109.9, 109.9, 108.1, 101.1, 95.1, 76.3, 75.8, $75.6,75.3,69.0,68.9,64.2,61.9,61.5,60.7,60.6,58.9,56.5,56.4,49.8,48.5,47.3,47.0,30.4$, 30.3, 20.3, 15.7, 14.3, 8.6; HRMS (FAB ${ }^{+}$) m/z: Calcd. for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{10}\left(\mathrm{M}^{+}\right) 737.1310$, found 737.1328.

Alcohol

To a solution of the allyl ether ($32.3 \mathrm{mg}, 0.044 \mathrm{mmol}$) in $\mathrm{MeOH}(0.6 \mathrm{ml})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($70.8 \mathrm{mg}, 0.51 \mathrm{mmol}, 12$ equiv), and the resulting slurry was stirred at room temperature for 30 min . The reaction mixture was diluted with EtOAc, and sequentially washed with 10% aqueous citric acid, saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The organic layer was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The resulting crude product was purified by flash column chromatography ($50 \% \mathrm{EtOAc}$ in n hexane) to afford the alcohol ($30.3 \mathrm{mg}, 0.044 \mathrm{mmol}, 99 \%$) as a colorless film. $[\alpha]_{\mathrm{D}}{ }^{26}+44^{\circ}$ (c $=1.1, \mathrm{CHCl}_{3}$); IR (neat film) 3298, 1720, 1486, 1434, 1378, 1336, 1315, 1267, 1229, 1125, $1058,1032,965,827 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.59 \& 9.57(\mathrm{~s}, 1 \mathrm{H}), 6.81 \& 6.78(\mathrm{~s}$, $1 \mathrm{H}), 6.20(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.95(\mathrm{~m}, 4 \mathrm{H}), 5.40-5.60(\mathrm{~m}, 2 \mathrm{H}), 4.60-5.00(\mathrm{~m}, 4 \mathrm{H}), 4.50(\mathrm{~m}, 2 \mathrm{H})$, 4,20-4.40 (m, 2H), $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.84 \& 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.35(\mathrm{~m}, 3 \mathrm{H}), 2.86$ (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.24 \& 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.06 \& 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $152.8,152.2,149.4,149.3,148.7,148.7,147.4,147.0,145.8,135.4,135.3,133.0,132.7$, $132.0,130.5,130.1,126.5,126.5,123.8,123.0,121.7,121.3,115.7,115.7,110.2,109.5$, $109.4,107.9,100.9,100.9,95.1,15.0,77.2,76.1,75.6,75.5,75.2,68.9,68.7,68.5,65.5,65.5$, $62.0,61.4,60.6,60.6,59.3,59.3,58.3,58.2,49.8,48.6,47.4,47.0,30.7,30.7,30.6,15.8 ;$ HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{9}(\mathrm{M}-\mathrm{CN})^{+} 669.1173$, found 669.1201.

Ester 28

To a mixture of the alcohol ($51.0 \mathrm{mg}, 0.073 \mathrm{mmol}$) and acid $27(42.7 \mathrm{mg}, 0.173 \mathrm{mmol}, 2.4$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{ml})$ at room temperature was added $\mathrm{WSCD} \cdot \mathrm{HCl}(37.2 \mathrm{mg}, 0.194 \mathrm{mmol}$, 2.7 equiv) followed by DMAP ($1.0 \mathrm{mg}, 0.008 \mathrm{mmol}, 0.1$ equiv). After 10 min ., the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and sequentially washed with 1 M aqueous HCl , saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The organic phase was concentrated under reduced pressure, and the residue was purified by flash column chromatography ($50 \% \mathrm{EtOAc}$ in n-hexane) to afford $28(64.0 \mathrm{mg}, 0.070 \mathrm{mmol}, 94 \%)$ as a pale yellow film. $[\alpha]_{\mathrm{D}}{ }^{21}+24^{\circ}(\mathrm{c}=$ $0.5, \mathrm{CHCl}_{3}$); IR (neat film) $3351,1725,1520,1436,1262,1214,1129,1102,1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.62 \& 9.63(\mathrm{~s}, 1 \mathrm{H}), 6.78 \& 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.75-6.30(\mathrm{~m}, 5 \mathrm{H}), 5.00-$ $5.75(\mathrm{~m}, 6 \mathrm{H}), 4.63-5.03(\mathrm{~m}, 3 \mathrm{H}), 4.45-4.63(\mathrm{~m}, 5 \mathrm{H}), 4.05-4.45(\mathrm{~m}, 3 \mathrm{H}), 3.80-3.90(\mathrm{br}, 2 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 2.80-3.50(\mathrm{~m}, 4 \mathrm{H}), 2.05-2.45(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.0,169.8,154.7,152.0,151.3,148.7, .613431 .7,131.6,131.5,131.2,131.2,130.0$, $125.8,120.7,117.2,117.1,108.1,100.1,74.4,68.0,65.1,60.8,59.9,58.4,55.3,52.7,52.0$, 49.0, 46.1, 30.3, 29.7, 15.0, 15.0, 13.2, 7.7; HRMS (FAB ${ }^{+}$) m/z: Calcd. for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{~S}$ $\left(\mathrm{M}^{+}\right) 924.1613$, found 924.1609.

Thiol

28
To a solution of $28(29.5 \mathrm{mg}, 0.032 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.80 \mathrm{ml})$ was added hydrazine solution (the upper phase of a $1: 3(\mathrm{v} / \mathrm{v})$ mixture of hydrazine hydrate and $\mathrm{CH}_{3} \mathrm{CN}_{3}, 35 \mu \mathrm{l}$), and the resulting mixture was stirred at room temperature for 80 min . The reaction mixture was diluted with CHCl_{3} and sequentially washed with 1 M aqueous HCl , saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the thiol ($27.8 \mathrm{mg}, 0.031 \mathrm{mmol}, 98 \%$) as a colorless film. $[\alpha]_{D}{ }^{24}+23^{\circ}\left(c=1.1, \mathrm{CHCl}_{3}\right)$; IR (neat film) $3297,1718,1507,1436,1375$, 1338, 1298, 1263, 1125, 1102, 1059, 1032, 1013, 968, 939, $827 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 9.50-9.65 (m, 1H), 7.26-7.40 (m, 5H), 6.72-6.83 (m, 1H), $6.23(\mathrm{~m}, 1 \mathrm{H}), 6.12 \& 6.09$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.79 \& 5.69(\mathrm{~s}, 1 \mathrm{H}) 5.20-5.60(\mathrm{~m}$, $4 \mathrm{H})$, 4.77-5.02 (m, 3H), 4.63-4.72 (m, 1H), 4.27-4.64 (m, 4H), 4.08-4.27 (m, 3H), 3.95-4.68 $(\mathrm{m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.70-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.24 \& 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 0.85-1.45(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,169.5,155.3,152.8,152.2,149.6,149.5,148.6,148.5,147.5,147.0$, $145.9,135.4,135.3,132.7,132.5,132.4,132.4,132.3,132.0,132.0,131.0,130.6,126.7$, $126.6,123.9,123.2,121.7,121.6,121.1,118.4,118.2,118.1,115.6,115.6,110.0,109.9,109.2$, 108.4, 108.2, 101.0, 95.2, 95.1, 76.2, 75.6, 75.6, 75.3, 68.9, 68.7, 68.6, 66.2, 66.1, 66.0, 65.1, $61.9,61.4,60.8,60.7,59.1,58.8,56.7,55.2,55.1,54.8,52.8,49.7,48.4,47.1,46.9,46.8,31.6$, $30.5,30.3,30.1,27.2,26.8,26.5,22.6,15.9,15.8,15.8,14.2,14.1,8.6$; HRMS (FAB ${ }^{+}$) m/z: Calcd. for $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}\left(\mathrm{M}^{+}\right) 882.1507$, found 882.1577.

Sulfide 29

29

To a solution of the thiol ($24.6 \mathrm{mg}, 0.028 \mathrm{mmol}$) in 2,2,2-trifluoroethanol (3.0 ml) at room temperature was added TFA (10% solution in 2,2,2-trifluoroethanol, $0.15 \mathrm{ml}, 0.19 \mathrm{mmol}, 7$ equiv), and the mixture was stirred at room temperature for 3 h . The reaction mixture was diluted with a large excess of benzene (50 ml), and concentrated under reduced pressure. The resulting yellow syrup was dissolved in a mixture of acetic anhydride (0.1 ml) and pyridine $(0.2 \mathrm{ml})$. To the mixture at room temperature was added DMAP $(1.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.4$ equiv), and the reaction was stirred for 30 min and concentrated under reduced pressure. The residue was purified by PTLC ($30 \% \mathrm{EtOAc}$ in n-hexane) to afford the sulfide 29 (18.0 mg , $0.020 \mathrm{mmol}, 71 \%$ in 2 steps) as a colorless film. $[\alpha]_{\mathrm{D}}{ }^{23}-22^{\circ}$ (c $=1.1, \mathrm{CHCl}_{3}$); IR (neat film) $3402,1759,1721,1510,1431,1372,1332,1309,1265,1236,1193,1125,1101,1087,1060$, 1029, 1007, $983,916,826 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79 \& 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~m}$, $1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 6.01 \& 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.68(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.35(\mathrm{~m}, 3 \mathrm{H})$, 4.97-5.15 (m, 3H), 4.65-4.90 (m, 3H), 4.42-4.63 (m, 5H), $4.33(\mathrm{br}, 1 \mathrm{H}), 4.15-4.27(\mathrm{~m}, 4 \mathrm{H})$, $3.81 \& 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 3.12-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.29 \& 2.28(\mathrm{~s}, 3 \mathrm{H})$, $2.26 \& 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,168.6,168.5,155.3$, $152.6,152.2,149.5,148.9,148.8,148.7,146.0,146.0,141.0,140.3,140.3,134.6,134.5$, 132.9 , 132.7, 132.7, 132.6, 130.1, 129.6, 127.1, 126.5, 125.1, 125.0, 119.5, 119.4, 118.1, $116.2,116.2,116.2,116.0,115.9,113.9,112.7,112.6,102.1,102.1,95.2,95.0,75.3,75.3$, $73.4,72.7,65.9,61.3,61.3,60.4,60.4,60.4,59.4,59.4,58.4,58.2,58.0,57.7,53.8,49.0,48.1$, $47.9,47.7,41.2,41.1,32.9,32.9,28.1,27.7,20.5,20.4,15.8,15.8,9.6 ;$ HRMS $\left.^{(F A B}{ }^{+}\right) \mathrm{m} / \mathrm{z}:$ Calcd. for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}\left(\mathrm{M}^{+}\right) 906.1507$, found 906.1494.

Amine

29

To a mixture of 29 ($17.3 \mathrm{mg}, 0.0190 \mathrm{mmol}$) and zinc powder ($96.1 \mathrm{mg}, 1.47 \mathrm{mmol}$, 78 equiv) in $\mathrm{Et}_{2} \mathrm{O}(0.40 \mathrm{ml})$ at room temperature was added $\mathrm{AcOH}(0.20 \mathrm{ml})$, and the resulting slurry was stirred at room temperature for 2.5 hours. The reaction mixture was filtered through a pad of Celite, and the filtrate was concentrated under reduced pressure. The residue was dissolved in EtOAc, and sequentially washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl . The organic phase was concentrated under reduced pressure, and the crude product was purified by PTLC (50% EtOAc in n-hexane) to afford the amine ($12.8 \mathrm{mg}, 0.0175 \mathrm{mmol}$, 92%) as a colorless film. $[\alpha]_{\mathrm{D}}^{22}-12^{\circ}\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$; IR (neat film) $3393,1758,1724,1509$, 1448, 1432, 1372, 1332, 1241, 1229, 1195, 1101, 1086, 1065, $915 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=17.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-$ $4.80(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.55(\mathrm{~m}, 5 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 4.10-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=17.6,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,168.6,155.4,148.6,148.5,145.8,140.9,140.3,134.3,132.8,131.9,130.4,130.4$, $125.2,120.1,118.0,117.9,116.7,113.5,113.2,102.0,73.0,65.8,61.4,60.4,60.4,59.3,58.8$, 58.4, 53.8, 48.6, 47.9, 41.7, 32.6, 27.9, 20.4, 15.7, 9.6; HRMS (FAB ${ }^{+}$) m/z: Calcd. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S}(\mathrm{M}-\mathrm{CN})^{+} 706.2434$, found 706.2411.

Methylamine

To a mixture of the amine ($5.6 \mathrm{mg}, 0.0076 \mathrm{mmol}$), formalin solution ($30 \mu \mathrm{l}$), and sodium cyanoborohydride ($12 \mathrm{mg}, 0.19 \mathrm{mmol}, 24$ equiv) in $\mathrm{MeOH}(0.4 \mathrm{ml})$ was slowly added AcOH $(0.10 \mathrm{ml})$, and the resulting mixture was stirred at room temperature for 1 h . The reaction mixture was concentrated under reduced pressure, and the residue was diluted with EtOAc and sequentially washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl . The organic layer was concentrated under reduced pressure, and the the residue was purified by PTLC (50% EtOAc in hexane) to afford the methylamine ($5.5 \mathrm{mg}, 0.0074 \mathrm{mmol}, 96 \%$) as a colorless film. $[\alpha]_{\mathrm{D}}{ }^{23}-26^{\circ}\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right.$); IR (neat film) 3401, 1759, 1724, 1507, 1446, 1372, 1331, 1235, 1194, 1145, 1106, 1088, 1067, $998,915 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.31(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~m}$, 2H), 4.40-4.55 (m, 3H), 4.27-4.40 (m, 2H), $4.24(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.35-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.20$
(s, 3H), $2.13(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,168.6$, $155.4,150.8,148.8,145.7,140.9,140.3,134.5,132.8,131.7,129.9,124.7,124.6,120.2$, $118.0,116.6,113.5,113.3,102.0,72.9,65.8,61.3,60.4,59.4,59.2,59.1,55.0,54.5,53.8$, 41.6, 41.5, 32.8, 23.7, 20.4, 15.7, 9.6; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 747.2700 , found 747.2769

Aminophenol

To a mixture of the methylamine ($8.6 \mathrm{mg}, 0.012 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.2 \mathrm{mg}, 0.0045 \mathrm{mmol}$, 0.4 equiv), and $\mathrm{AcOH}\left(15 \mu \mathrm{l}, 0.26 \mathrm{mmol}, 23\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{ml})$ was added tri-nbutyltin hydride ($30 \mathrm{ml}, 0.11 \mathrm{mmol}, 10$ equiv), and the resulting slurry was stirred at room temperature for 20 min . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through a pad of celite, and concentrated under reduced pressure. The residue was purified by flash column chromatography ($10 \%(\mathrm{v} / \mathrm{v}) \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the aminophenol ($6.4 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 89 \%$) as a white film. $[\alpha]_{\mathrm{D}}^{22}-15^{\circ}\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right)$; IR (neat film) $1750,1457,1419$, 1374, 1307, 1237, 1194, 1108, 1088, 1065, 1029, $915,861 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{br}, 1 \mathrm{H})$, $4.25(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=11.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~m}$, 2 H), $3.27(\mathrm{br}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, 2.02 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,168.8,148.0,145.8,143.0,141.1,140.5$, $130.7,129.4,121.0,120.6,118.4,113.9,102.1,61.5,60.4,60.2,59.5,59.3,54.8,54.2,41.8$, 41.7, 34.6, 28.1, 27.2, 24.0, 20.8, 15.8, 13.9, 9.8; HRMS (FAB^{+}) m/z: Calcd. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+} 623.2175$, found 623.2201.

Ketolactone

To a solution of the aminophenol ($3.7 \mathrm{mg}, 0.0059 \mathrm{mmol}$) in a mixture of DMF (0.15 ml) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{ml})$ was added 4-formyl-1-methylpyridinium benzenesulfonate ($16.5 \mathrm{mg}, 0.057$ $\mathrm{mmol}, 10$ equiv), and the solution was stirred at room temperature for 15 min . To the mixture was added DBU ($8.0 \mu \mathrm{l}, 0.053 \mathrm{mmol}, 9$ equiv), and the resulting dark purple suspension was stirred at room temperature. After 25 min , to the mixture were added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.30 \mathrm{ml})$ and saturated aqueous citric acid (10 drops). The resulting orange solution was stirred at room temperature for 40 min before it was partitioned between saturated aqueous NaHCO_{3} and $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was concentrated under reduced pressure, and the crude product was purified by PTLC (70% EtOAc in n-hexane) to afford the ketolactone ($2.0 \mathrm{mg}, 0.0032 \mathrm{mmol}$, $54 \%)$ as a white film. $[\alpha]_{\mathrm{D}}{ }^{22}+153^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$; IR (neat film) $3447,1763,1728,1622$, 1589, 1500, 1456, 1373, 1270, 1236, 1194, 1160, 1145, 1108, 1087, $1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.66(\mathrm{br}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=$ $18.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, 1 H), 2.33 ($\mathrm{s}, 3 \mathrm{H}$), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.7,168.5,160.5,147.1,146.4,142.9,141.6,140.7,130.4,129.8,121.7,121.7,120.0$, $117.9,117.1,113.5,113.3,102.2,61.7,61.4,60.3,59.8,58.9,54.6,43.2,41.6,36.8,24.1$, 20.4, 15.8, 9.7; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: Calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 622.1859$, found 622.1812 .

Ecteinascidin 770 (2)

To a mixture of the ketolactone ($2.0 \mathrm{mg}, 0.0026 \mathrm{mmol}$) and amine $30(12.4 \mathrm{mg}, 0.062 \mathrm{mmol}$, 19 equiv) in $\mathrm{EtOH}(0.25 \mathrm{ml})$ at room temperature was added sodium acetate $(7.4 \mathrm{mg}, 0.090$ $\mathrm{mmol}, 28$ equiv), and the slurry was stirred at room temperature for 5.5 h . The reaction mixture was purified by PTLC ($5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford Et 770 (2) ($2.4 \mathrm{mg}, 0.0031$ $\mathrm{mmol}, 96 \%)$ as a white film. $[\alpha]_{\mathrm{D}}{ }^{23}-57^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$; IR (neat film) $3437,2931,1743$, 1591, 1507, 1456, 1369, 1236, 1193, 1107, 1087, 1053, $1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.38$ (br, 1H), $5.02(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{br}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=11.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{ddd}, J=11.6,10.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.62$ $(\mathrm{m}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,168.1,147.8,145.3,144.5,144.3,143.0$, $141.3,140.1,130.8,129.3,129.1,125.8,121.2,120.7,118.2,118.1,114.1,114.1,113.4$, $109.8,101.9,64.6,61.1,60.4,60.0,59.7,59.5,55.2,54.7,54.6,42.2,41.8,41.6,39.6,28.8$, 24.2, 20.5, 15.8, 9.7; HRMS (FAB+) m/z: Calcd. for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}(\mathrm{MH})^{+} 744.2704$, found 744.2698 .

Ecteinascidin 743 (1)

Ecteinascidin 770 (2)

Ecteinascidin 743 (1)

To a solution of Et $770(\mathbf{2})\left(2.4 \mathrm{mg}, 0.0031 \mathrm{mmol}, 1.0\right.$ equiv) in a mixture of $\mathrm{CH}_{3} \mathrm{CN}(0.3 \mathrm{ml})$ and water (0.2 ml) was added silver nitrate ($10.2 \mathrm{mg}, 0.060 \mathrm{mmol}, 19$ equiv), and the suspension was stirred at room temperature for 17 h . The reaction mixture was partitioned between EtOAc ($2 \mathrm{ml} \times 3$) and saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{ml})$, and the combined organic layer (6 ml) was washed again with saturated aqueous NaHCO_{3}. The aqueous layer was further extracted with EtOAc (1.5 ml) and the combined organic layer (7.5 ml) was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated under reduced pressure to afford Et 743 (1) ($2.2 \mathrm{mg}, 0.0029 \mathrm{mmol}, 93 \%$) as a pale yellow film. $[\alpha]_{\mathrm{D}}{ }^{22}-58^{\circ}(\mathrm{c}=0.2$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat film) 3347, 2930, 1763, 1741, 1590, 1509, 1458, 1431, 1369, 1237, 1195, 1122, 1109, 1088, 1053, 1029, 1003, 958, $916 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.61$ (s, $1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{br}, 1 \mathrm{H}), 5.39(\mathrm{br}, 1 \mathrm{H}), 5.13(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{br}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.05(\mathrm{dd}, J=11.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{br}$, 1 H), 3.12 (ddd, $J=10.0,10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=$ $15.9,10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48 (ddd, $J=15.9,4.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (br, 1H), 2.32 (s, 3H), 2.27 (s, 3H), $2.20(\mathrm{~s}, 3 \mathrm{H}) 2.19(\mathrm{br}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,168.3$, $147.7,145.1,144.4,144.2,142.9,141.3,140.5,131.5,129.2,129.1,126.1,121.8,120.9$, $117.9,115.9,114.0,112.5,109.8,101.7,82.1,64.7,61,3,60.4,57.8,57.7,56.0,55.1,54.9$, 42.2, 42.1, 41.4, 39.7, 28.9, 24.1, 20.5, 15.8, 9.7; HRMS (FAB ${ }^{+}$) m/z: Calcd. for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S}$ $(\mathrm{M}-\mathrm{OH})^{+} 744.2591$, found 744.2629.

