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Total tardiness minimisation in permutation flow shops: a simple approach based 

on a variable greedy algorithm 

 

J.M. FRAMINAN
† * and R. LEISTEN

‡
 

 

In this paper, we address the problem of scheduling jobs in a permutation 

flowshop with the objective of minimizing the total tardiness of jobs. To tackle 

this problem, we suggest employing a procedure based on a greedy algorithm 

that successively iterates over an increasing number of candidate solutions. 

The computational experiments carried out show this algorithm to outperform 

the best existing one for the problem under consideration. In addition, we carry 

out some tests to analyse the efficiency of the adopted design. 

 

 

1.  Introduction 

A flowshop is a common manufacturing layout where the operation sequence for 

all jobs is the same. Additionally, it is usually assumed that jobs cannot overtake one 

another from machine to machine and therefore, once a sequence is fixed for all jobs on 

the first machine, this sequence is maintained for all machines (permutation flowshop). 
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Several objectives may be considered when scheduling in a flowshop. Without 

any doubt, the most widely studied is the makespan objective (see e.g. Reza Hejazi and 

Saghafian 2005; or Ruiz and Maroto 2005 for recent reviews on this problem). In 

contrast, significantly less attention has been paid until recent years to other objectives, 

particularly those involving due dates. Among due-date related objectives, minimisation 

of total tardiness aims to find schedules that satisfy the due dates committed to 

customers and it is therefore of significance and importance to real life considerations 

(Hasija and Rajendran 2004). 

In this paper, we propose an algorithm with the objective of minimizing the total 

tardiness of jobs. The algorithm is based on a variable greedy algorithm concept. A 

salient feature of the algorithm is that it employs a tailored design for the problem, 

which is based on the slack-concept, i.e. jobs with minimum slacks are removed from a 

given solution in order to find for them a better position in the schedule. Besides, the 

algorithm is parameter-free (with the exception of the running time), so it does not 

require any parameter setting and parameter tuning. This simplicity and the lack of 

control parameters is a desired characteristic of any heuristic approach as makes it more 

user-friendly (Hansen and Mladenović 2001). 

The remainder of the paper is organised as follows: in the next section we review 

in more detail the problem under consideration and the contributions up-to now. Next, 

we present the proposed algorithm for the problem. We then discuss and set up an 

extensive computational experiment in order to validate the suggested approach and to 

compare with the best-so-far ones. Finally, we present the main conclusions and some 

future research lines. 
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2.  Problem statement and literature review  

The problem under consideration refers to the scheduling of n jobs in a 

permutation flow shop consisting of m machines. Each job i has a processing time on 

each machine j, which is denoted by pij. Additionally, a due date di for each job i is 

given. In a permutation flowshop, the completion time of the i-th job in a given 

schedule σ on a machine j, C[i]j(σ), is given by the following recursive equations: 

 

C[i]j(σ) = max{ C[i-1]j(σ) ; C[i]j-1(σ) } + pij 

C[0]j(σ) :=0; C[i]0(σ):=0; 

 

With these equations, Ci(σ), the completion time of a job i (i.e. the earliest time 

when this job can be can released to the customer), can be computed. Ti, the tardiness of 

a job i is then defined as the maximum of the difference between its completion time 

and its due date, and zero, i.e.: Ti = max{ Ci(σ) – di ;0}. The total tardiness TARD is the 

sum of the tardiness across all jobs: TARD = Σ Ti . 

Clearly, tardiness minimisation is related to maintaining high service levels, as it 

aims to respect the committed due dates. Research on the topic has been carried out by 

Gelders and Sambandam (1978), Kim (1993), Parthasarathy and Rajendran (1998), 

Armentano and Ronconi (1999), and Hasija and Rajendran (2004). 

Gelders and Sambandam develop constructive heuristics for the problem, while 

Kim suggests an algorithm based on the NEH heuristic (Nawaz et al., 1983) for 

makespan minimisation. His proposal is not compared to these from Gelders and 

Sambandam. Parthasarathy and Rajendran present two versions of Simulated Annealing 

(SA) for the problem and compare them with those of Gelders and Sambandam, and 

that of Kim. They found their proposal to outperform all these heuristics. Armentano 
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and Ronconi design a tabu search procedure that is compared with an adaptation of the 

NEH heuristic for the problem under consideration, but not with other heuristics 

available for the problem. Hasija and Rajendran propose a SA algorithm for the 

problem (HR in the following) by introducing new perturbation and improvement 

schemes. They compare their algorithm with the most efficient version of the heuristic 

by Parthasarathy and Rajendran (PR in the following) and the one by Armentano and 

Ronconi using an adaptation of the benchmark problems by Taillard (1993). The results 

of this computational experience show that (at least for the test-bed employed), the 

heuristic by Hasija and Rajendran clearly outperforms the existing ones and henceforth 

it should be considered the best heuristic for the problem up to date. In their 

computational experience, the heuristic by Parthasarathy and Rajendran also 

outperforms the one by Armentano and Ronconi.  

As a summary, it can be concluded that the most efficient heuristics for the 

problem under consideration are PR and HR. Both heuristics use the same heuristic for 

generating the initial sequence, i.e. the so-called Earliest Apportioned Due Date Method 

(EADD). In EADD, jobs are ordered for each machine in ascending order of a value 

proportional to the processing times of the job and its due date. In this manner, one 

order of jobs is obtained for each machine. Among these, the ordering with the least 

value of total tardiness is chosen. PR employs a Random Insertion Perturbation Scheme 

(RIPS) for generating new solutions from a given sequence in the following manner: for 

each job in the seed sequence, two random positions are generated (one on its right and 

other on its left) to insert it, thus obtaining two new sequences. Obviously, the first 

(last) job cannot be inserted on any position on its left (right), hence only one new 

sequence can be obtained from these extreme positions. In total, 2·(n – 1) new 

sequences are obtained. Among them, the one with the least total tardiness is selected.  
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HR employs sophisticated mechanisms for the generation of new solutions, 

namely Job Index Based Insertion Scheme (JIBIS), Job Shift-Based (JSB) scheme, and 

Probabilistic Step Swap (PSS) perturbation scheme. Using JIBIS, each job (starting 

from job 1 to job n) in a seed sequence is selected for insertion in all possible positions 

of the sequence. If the total tardiness of the so-obtained sequence is lower than the one 

for the seed, it replaces the seed. Note that JIBIS obtains a solution which is not worse 

than the initial seed. In the JSB scheme, a job in the seed sequence is chosen based on a 

probabilistic function and then inserted either on the right or on the left of its original 

position (the same probability is assigned to the insertion on the left and on the right). 

The job in the seed sequence is chosen according to the relative displacement of the 

job’s position in the current sequence from the job’s position in the best-so-far 

sequence. Finally, PSS generates sequences from a seed sequence by probabilistically 

swapping jobs close to each other, and far from each other. Among them, the one with 

the least total tardiness is chosen. In Figures 1 and 2 we present the detailed pseudocode 

of both heuristics, keeping the same steps and the programme structure as in the original 

descriptions. 

 

[INSERT FIGURE 1 ABOUT HERE] 

 

[INSERT FIGURE 2 ABOUT HERE] 

 

3.  Proposed heuristic 

In recent years, a number of general-purpose heuristic approaches (also known as 

meta-heuristics) have been introduced to tackle combinatorial optimisation problems. 

Two of the newest approaches are the Iterated Greedy (IG) algorithm and the Variable 
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Neighbourhood Search (VNS). As our proposal combines features of both meta-

heuristics, we first briefly introduce these. 

IG (see e.g. Marchiori and Steenbeek 2000, and Ruiz and Stützle 2006) generates 

a sequence of solutions by iterating over a constructive heuristic using two phases, 

namely destruction and construction. During the destruction phase, k components 

(destruction level) are removed from a given solution π , thus obtaining a set of 

removed components ( )
k

S π  and a partial solution ( )R k
π  formed by the non-removed 

components of π . During the construction phase, a greedy constructive heuristic is 

applied to the problem in order to obtain a (possibly new) solution 'π  by adding to 

( )R k
π  the components in ( )

k
S π . Then, it is decided whether or not 'π  substitutes π  as 

the incumbent solution for the next iteration according to some pre-defined acceptance 

criterion (e.g. if 'π  is better than π ). In addition, a local search procedure can be 

implemented before this step in order to improve 'π . 

IG is closely related to another technique, Iterated Local Search (ILS), in which 

the algorithm iterates over a local search neighbourhood (see e.g. Lourenço et al. 2002). 

To the best of our knowledge, IG has been only applied to few problems, including 

crew scheduling (Marchiori and Steenbeek 2000) and flowshop scheduling with 

makespan objective (Ruiz and Stützle 2006). Salient features of IG are its simplicity and 

the possibility to use a tailored heuristic to obtain good solutions for the problem under 

consideration.  

Clearly, an obvious drawback of the method is the stagnation due to the ‘greedy’ 

nature of the procedure. In order to overcome this problem, Ruiz and Stützle (2006) 

adopt a simulated annealing-based acceptance criterion, i.e.: accepting worse solutions 

with some probability depending on the number of iterations of the algorithm. A similar 

approach is also adopted in Marchiori and Steenbeek (2000). 
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In this paper, we propose a different procedure for overcoming local optima, 

which is based on the VNS concept (Mladenović and Hansen 1997). VNS uses a finite 

set of pre-selected neighbourhood structures that we denote by Nk (k= 1, …, kmax). Let 

us denote by Nk (x) the set of solutions in the neighbourhood of x. The pseudo-code of 

the basic structure of a VNS algorithm can be described as follows: 

 

(1) Generate an initial solution x; 

(2) While termination conditions are not met, repeat: 

(2.1) Set k ← 1; 

(2.2) Until k = kmax, repeat: 

(2.2.1) Find the best neighbour x’ of x ( x’ ∈ Nk (x) ); 

(2.2.2) If x’ is better than x, then set x ← x’ and set k ← 1;  

otherwise set k ← k + 1; 

 

Sophisticated features can be added to this most basic procedure. For these, we 

refer the reader to Hansen and Mladenović (2001). VNS has shown to be efficient for a 

number of NP-hard problems, including some scheduling problems (see e.g. Gagné et 

al. 2003, Schuster and Framinan 2003, and Tasgetiren et al. 2004). In our proposal, we 

use the VNS concept of varying the neighbourhood, but we apply it to the destruction 

and construction phases of the IG algorithm. To do so, a greedy mechanism specifically 

tailored for the problem is described in the next section. 

 

3.1.  Slack-based greedy algorithm 

For a schedule σ := ( σ1, ...), let us define ( )
i

s σ  the slack of job σi in the sequence 

σ in the following manner: ,( ) :
i ii ms d Cσ σσ = − . It is clear that ( )

i
s σ  is sequence-
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dependent and that it is possible to express the total tardiness in terms of the slacks, i.e.: 

( ) max[ ( );0]i

i

TARD sσ σ= −∑ . Consequently, if a job 
i

σ  has a negative value for ( )
i

s σ , 

then this job is contributing to increase the total tardiness. 

Based on this idea, it is possible to define a greedy algorithm to obtain a sequence 

σ’ from another sequence σ  in the following manner: 

(1) Remove from σ the k jobs with lowest ( )
i

s σ . Store them in 
k

R . Let µ  be the 

remaining subsequence from σ  after removing the k jobs.  

(2) For each job 
r k

Rσ ∈ , repeat: 

(2.1) Insert 
r

σ  in all possible slots of µ (starting from the first position). Let ν  be 

the best subsequence obtained, and b the position of 
r

σ  in ν . 

(2.2) Perform an adjacent pairwise exchange among all jobs in positions b+1 to (n – 

k + 1). Let π  be the best sequence obtained by this approach.  

(2.3) If π  improves ν , then set µ π← ; otherwise set µ ν← . 

(3) Set 'σ µ← . 

 

According to this approach, it is possible to define k different types of movements, 

depending on the number of jobs to be removed. Aside, this construction mechanism is 

related to the heuristic by Kim, which in turn is based on the NEH heuristic. 

Nevertheless, we added step (2.2) as we try to allow some small perturbation of the 

solution for those jobs after the one for which the minimum tardiness has been found. 

In addition, it is possible to introduce a speed up in order to reduce the 

computational effort. When executing step (2.1), instead of calculating the completion 

times from scratch for every slot j (j = 1, …, n – k + 1) in which the job 
r

σ  is inserted, 

the completion time in all machines for jobs preceding job (j – 1) do not need to be 
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recomputed. By this procedure, the computation times are reduced roughly to the half of 

the time.  

 

3.2.  Insertion-based local search 

In order to improve the solution provided by the slack-based greedy algorithm, a 

local search in the neighbourhood of the solution is accomplished. Usual neighbourhood 

definitions for flowshop scheduling problems include adjacent pairwise interchange 

(exchanging the positions of two adjacent jobs), general pairwise interchange 

(exchanging the positions of each two jobs), and insertion (removing one job from its 

position and inserting it into a different one). Among these possibilities, the experiences 

conducted produced the best result for the last one. Consequently, an insertion-based 

neighbourhood is adopted.  

The local search algorithm then obtains n positions at random (without 

repetition), and for each position, the job occupying this position is removed and 

inserted in all possible slots. If the best solution out of the n insertions is better than the 

current solution, then it replaces the latter as the best incumbent solution. The pseudo-

code of this procedure is as follows: 

 

(1) Let σ  be the current solution. 

(2) For i = 1 to n do: 

(2.1) Obtain k = random (1, n) (without repetition). 

(2.2) Remove 
k

σ , the job in position k, in σ and insert it in all possible slots. 

Let 'σ  be the best solution found by this way. 

(2.3) If 'σ  improves σ, then set 'σ σ← . 

(3) Return σ as solution. 
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3.3.  Pseudo-code of the algorithm 

The algorithm operates as follows: 

 

(1) While computation time does not exceed a given time limit, repeat: 

(1.1) Generate a solution x at random. 

(1.2) Set k ← 1; 

(1.3) Until k = (n – 1), repeat: 

(1.3.1) Obtain x’ from x according to the procedure explained in Section  3.1. i.e. 

using the slack-based greedy algorithm. 

(1.3.2) Obtain x’’ from x’ according to the procedure explained in Section  3.2. , 

i.e. using the insertion-based local search. 

(1.3.3) If x’’ is better than x, then set x ← x’’  and set k ← 1;   

otherwise set k ← k + 1; 

 

The algorithm starts with a random solution. Then, this solution is improved by a 

stepwise approach that systematically enhances the capabilities of the greedy algorithm 

until it shuffles all jobs. If a better solution is found, then the process starts again. 

Otherwise, if the greedy algorithm has been expanded without reaching a better solution 

(i.e., k = n – 1), then a new random solution is tried. This allows a diversification of the 

exploration once all greedy structures have been tried. Note that this algorithm is 

parameter-free, with the exception of the CPU time.  

With respect to the stopping criterion, it has been chosen as the decision interval 

for scheduling problems is usually very short and hence the total running time of a 

heuristic is a critical issue. However, replacing the original criterion by a different one 
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based e.g. on the number of solutions evaluated, the number of iterations without 

improvement, etc. is straightforward. 

 

4.  Computational experiments 

In this section we present the results of the computational experiments carried out 

in order to validate our proposed procedure. We first discuss the experimental design 

and particularly the setting of due dates in the problem instances. We then compare our 

proposal with the best-so-far algorithms for the problem under consideration. Finally, 

we analyse how the different design decisions in the algorithm (namely the design of 

the destruction phase, and the concept of ‘variable destruction’) affect its performance. 

 

4.1.  Experimental design 

It is clear that the design of the experimental test-bed may have a huge influence 

on the results. Particularly, being a due-date problem, several types of problems can be 

distinguished, each one with a different degree of difficulty. Henceforth, we first review 

the different settings for due dates that have been adopted in the literature.  

Rather different procedures for establishing due dates in permutation flowshops 

can be found in the papers by Gelders and Sambandam (1978), Armentano and Ronconi 

(1999), Demirkol et al. (1998), and Hasija and Rajendan (2004). In all these, the 

processing times of the problems are obtained from a uniform distribution. In fact, the 

[1, 99] distribution is employed for all test-beds except for the one by Demirkol et al., 

where processing times are drawn from a [1, 200] uniform distribution. Therefore, in 

the following we focus our discussion on how due dates are established in these papers. 

Armentano and Ronconi suggest using the following distribution to generate due 

dates: 
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[ (1 ), (1 )]
2 2

R R
Uniform P T P T− − − +  

where T and R are the tardiness factor of jobs and the dispersion range of due dates, 

respectively, and P is a lower bound of the makespan, defined as follows: 

1

1
1 1 1 1

max max min min ,max
jn m m

ij il il ij
i ij m i

i l l j j

P p p p p
−

≤ ≤
= = = + =

 
  

= + +   
  

 

∑ ∑ ∑ ∑  

With the above setting, they define four scenarios depending on the values of T 

and R. This way of generating due dates is nearly identical to the one employed by 

Demirkol et al. who build a test-bed for several due date problems, including 160 

problem instances of flowshops with due dates. They employ different T and R factors 

that produce much tighter due dates as compared with the paper by Armentano and 

Ronconi. Additionally, from a bigger subset of problems, the 160 hardest instances were 

collected.  

Gelders and Sambandam propose a different method for generating due dates, 

consisting of employing the following uniform distribution: 

[∑ =

m

j
ijp

1
,∑ =

m

j
ijp

1
+ 0.5 × mean processing time of a job on machine m]. 

 

This due-date setting would result in approximately 50% of the jobs being late, and 

it has been used also by Chakravarthy and Rajendran (1999), and Framinan and Leisten 

(2006) due to its ability to produce tight due dates. 

Finally, we describe the due date setting in the test-bed developed by Hasija and 

Rajendran, which is based on Taillard’s test-bed (Taillard 1993). Taillard’s test-bed 

consists of a collection of 120 flowshop problem instances chosen so as ‘good’ 

makespan values are difficult to obtain. In this test-bed, (n,m) ∈ {(20,5), (20,10), 
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(20,20), (50,5), (50,10), (50,20), (100,5), (100,10), (100,20), (200,10), (200,20), 

(500,20)}. For each problem size, 10 instances are available.  

In order to provide due dates di for the problem under consideration, Hasija and 

Rajendran propose the following method to generate them: 

1

[1 3 ]
m

i ij

j

d u p
=

= + ∑  

where u is a real random number uniformly distributed in the interval [0,1]. 

In view of the different contributions, we select three different test-beds for the 

comparison of the heuristics. For these, we use the following acronyms:  

DMU: The test-bed by Demirkol et al. As mentioned before, this test-bed consists of 

160 instances, where (n,m) ∈ {(20,15), (20,20), (30,15), (30,20), (40,15), 

(40,20), (50,15), (50,20)}. For each problem size, there are 20 instances.  

T-GS: The test-bed obtained using the processing times of the test-bed of Taillard, 

and due dates generated according to the method proposed by Gelders and 

Sambandam. In view of the prohibitive computation times required to solve the 

10 biggest instances of Taillard's test-bed (instances ta110-ta120, n = 500) by 

using the existing algorithms for the problem, we exclude them from T-GS. 

Therefore, the test-bed under consideration consists of 110 instances. 

T-HR: The test-bed obtained using the processing times of the test-bed of Taillard, 

and due dates generated according to the method proposed by Hasija and 

Rajendran. Analogously to the previous test-bed, the 10 biggest instances by 

Taillard are removed. 

 

4.2.  Comparison with existing heuristics 

As mentioned in the introduction, the procedure proposed by Hasija and Rajendran 

(HR in the following) is the best algorithm so far for the problem under consideration, 
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followed by the procedure of Parthasarathy and Rajendran (PR in the following). In 

order to compare them with our algorithm, we employ the three test-beds described in 

the previous section. Note that neither HR nor PR have a simple termination criterion 

(such as the computation time, or the number of iterations without improvement), but 

use a rather sophisticated combination of parameters depending on the temperature 

(number of iterations, number of accepted moves, and number of sequences generated). 

Moreover, it is not possible to establish a fair comparison based on the number of 

solutions evaluated by each algorithm, as our proposal constructs (complete) solutions 

by exhaustively selecting and exploring partial sequences, therefore the number of final 

solutions evaluated is much lower than in PR and HR (less than 1% in the DMU test-

bed, as we will show later). Consequently, the fairest comparison with HR is running 

this algorithm exactly with the same parameter setting described by the authors, and 

then compare its results to those obtained by the new heuristic proposal, using as 

termination criterion the same CPU time taken by the HR algorithm for this problem.  

Each instance is solved by 24 runs of each algorithm. The average and the best value 

of the total tardiness for each algorithm and instance are obtained. Then, the quality of 

the solutions obtained for each instance and each heuristic i is measured in terms of 

RPD (Relative Percentage Deviation) with respect to the average and the best solution, 

in the following manner: 

*

*

( )
100i

i

T T
PRD

T

−
= ×  

* *
*

*

( )
100i

i

T T
PRD

T

−
= ×  

where 
i

T is the average tardiness obtained over the 24 runs of algorithm i, *

i
T  is the 

best tardiness among the 24 runs, and *T  is the best known solution for this instance. 

For all instances of a given problem size, the average and the standard deviation of both 
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iPRD  and *

i
PRD  are obtained, and shown in Tables 1, 2, and 3 for the DMU, T-GS, 

and T-HR test-beds, respectively.  

The tables show the quality of the solutions obtained in terms of the 
i

ARPD  

(Average Relative Percentage Deviation) of heuristic i for each problem size. 
i

ARPD  

values are obtained by averaging across a number of instances the Relative Percentage 

Deviation (
i

RPD ), measured as follows: 

min

min

( )
100i

RPD RPD
RPD

RPD

−
= ×  

where 
i

RPD  is the tardiness obtained by the application of the heuristic i to the problem 

instance, and minRPD  is the minimum tardiness found by any heuristic for this instance. 

 

[INSERT TABLE 1 ABOUT HERE] 

[INSERT TABLE 2 ABOUT HERE] 

[INSERT TABLE 3 ABOUT HERE] 

 

As can be seen from Tables 1, 2, and 3, the algorithm proposed exhibits a very 

good performance for the three test-beds. Both the best solution (out of 24 runs) and the 

average obtain better results than those of HR and PR.  

In order to test the performance of our proposal for different CPU times, we 

change the original design of PR and HR in order to introduce CPU time as stopping 

criterion. Then, we run all three algorithms with fractions of the CPU time invested for 

the original design. More specifically, let TIME be the CPU time required (average over 

24 runs) for a given instance in the experiments presented in Tables 1, 2, and 3. Then 

we solve the DMU test-bed with all three algorithms for a CPU time of TIME/2, and 
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TIME/4. The quality of the solutions obtained is shown in Table 4 in terms of the best 

solution and the average over 24 runs of each algorithm.  

 

[INSERT TABLE 4 ABOUT HERE] 

 

As can be seen from Table 4, the algorithm outperforms HR and PR for the different 

CPU times. It is interesting to note that, for all three algorithms, the results for different 

CPU times are similar with respect to the best solution. Regarding the average solution, 

there is a steady improvement for our proposal, but not for HR and PR, which may 

indicate that both algorithms could stagnate for longer CPU times.  

Finally, in Table 5 we give the average number of solutions explored by HR and our 

proposal in the DMU test bed for each problem size (the CPU allowed is that of the 

original HR description, see Table 1). It has to be noted that this value is not an 

indicator of the computational effort of each algorithm, as in the case of our proposal, 

most of the effort is devoted to insert the jobs removed in the destruction phase in the 

different slots of the remaining schedules. Therefore, the number of (complete) 

solutions explored by our proposal is very low as compared to HR, which use most of 

the CPU time to explore and evaluate new (complete) solutions.  

 

[INSERT TABLE 5 ABOUT HERE] 

 

4.3.  Effectiveness of the variable greedy design 

The proposed algorithm is based on a variable neighbourhood depending on k, 

which determines the number of elements in the sequence to be destroyed and later 

reconstructed in a range from 1 to (n – 1). Therefore, it is of interest to assess the 
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contribution of this design to the performance of the algorithm. More specifically, we 

are interested in answering the following questions: 

a) Does the variable design contribute to improve the solution with respect 

e.g. fixed value of k? 

b) Are there alternative upper values of k (other than n – 1) for which the 

algorithm yields a higher performance? 

 

In order to answer the first question, we analyse the contribution of each value of k 

to improve the current solution of the algorithm. More specifically, for a given problem 

instance, we record the value of k for which a new best-so-far solution is obtained. We 

then calculate the frequency of each value of k and plot the results. In Figure 3, we 

show the plot for different problems in the T-HR test-bed. Each line shows the 

frequency of the improvements of k for 20 runs of 10 instances of a given (n,m). 

 

[INSERT FIGURE 3 ABOUT HERE] 

 

In Figure 3, it is shown that all values of k in the range contribute to the 

improvement of the solution. The frequency decreases with k, which is not surprising, 

since in the algorithm, every time a new solution is found, the value of k is set to 1 and 

starts increasing once the solutions found with this destruction level are worse than the 

best-so-far sequence. The only exception is k = 1, indicating the relatively low ability of 

this destruction level to find better solutions as compared to k = 2. Nevertheless, the 

second highest frequencies are obtained for k = 1. Finally, it has to be noted that the 

pattern of the frequencies is the same for different number of machines. 
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In a different experiment also aimed to the first question, we compare the results 

obtained by this algorithm in the DMU test-bed with those obtained using different 

(fixed) numbers of components in the destruction phase. For all runs, the stopping 

criterion is the same as in the previous sub-section, i.e. the CPU time required for each 

problem by the HR heuristic. Consequently, the CPU time is again the same for all 

algorithms. The results are shown in Table 6 in terms of the APRD with respect to the 

best solution found by the different settings. 

 

[INSERT TABLE 6 ABOUT HERE] 

 

In view of the results in Table 6, the best overall results are obtained by the 

variable destruction design. While some results with a fixed k are very good, these are 

strongly dependent on the particular problem size.  

Once the convenience of using a variable k as compared to employing fixed values 

has been established, we check whether there exist other upper values of k yielding 

better results than the original proposal (n – 1). To do so, we run different versions of 

our heuristic with several upper levels of k for the DMU test-bed. More specifically, we 

test n/10, n/5 and n/2. All versions are allowed to use the same CPU time (that 

employed for the comparison of the different heuristics in Section 4.2., see Table 1). 

The results are shown in Table 7 in terms of the RPD.  

 

[INSERT TABLE 7 ABOUT HERE] 

 

As can be seen from Table 7, employing other values as upper limit of the level of 

destruction is less efficient than the original proposal. Particularly, incorporating large 
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destruction levels seems suitable to obtain better results for a given CPU time, 

confirming the results in Figure 3 showing that also large k contribute to improve 

current best solutions. 

 

4.4.  Effectiveness of the slack-based greedy algorithm 

In this subsection we investigate whether the mechanism adopted for selecting the 

k components to be destroyed (i.e. those k with least slack) is more efficient than, for 

instance, picking these k at random, or picking them in reverse order (descending order 

of their slacks). The results are shown in Table 8 in terms of the ARPD with respect to 

the best results obtained for the three approaches. In this table, ‘NEW’ denotes the 

approach proposed, while ‘random’ and ‘inverse’ indicates picking the components in 

the destruction phase at random, or with descending order of the slacks, respectively. 

 

[INSERT TABLE 8 ABOUT HERE]  

 

As can be seen from Table 8, the slack-based definition of the greedy algorithm is, on 

the overall results, more efficient than picking the solutions at random or in descending 

order of their slack. It is to note that, for the problem size n = 50 and m = 15, the inverse 

ordering obtains slightly better results. However, this small difference is not supported 

for the rest of the problem sizes. 

 

5.  Conclusions 

We have presented a new algorithm for the problem of minimising total tardiness 

in permutation flowshops. A salient feature of the proposed method is that it does not 

require any parameter, with the exception of the computation time. This means that 
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there is no need to adjust or tune it for different problems. The computational 

experience carried out shows the proposal to outperform the best-so-far available 

algorithms. The algorithm is shown to be efficient for different computational efforts, 

and its design is checked to be more suitable as compared to different options regarding 

a variable/fixed destruction level, different upper limits for k, and other mechanisms for 

selecting the components to be destroyed. Further sophisticated features may be added 

to the suggested algorithm, such employing a more complex criterion for accepting new 

solutions. However, these enhancements must be contrasted with the simplicity and the 

speed of the current design. 
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  PR HR NEW 

  Average Standard dev. Average Standard dev. Average Standard dev. 

n m i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

Avg. 

CPU 

(secs) 

20 15 5.918 3.119 2.478 1.990 2.275 0.573 1.349 0.579 0.675 0.020 0.470 0.070 1.379 

20 20 5.664 2.618 2.787 2.523 1.397 0.536 0.891 0.593 0.429 0.020 0.228 0.051 1.644 

30 15 8.303 4.644 2.083 2.317 3.483 1.196 1.854 1.443 1.647 0.254 0.848 0.461 4.875 

30 20 6.822 3.549 2.366 1.416 2.493 0.993 1.388 1.285 1.119 0.114 0.375 0.265 5.801 

40 15 9.815 4.895 3.646 1.771 3.760 1.271 1.698 1.488 2.031 0.279 0.911 0.508 12.143 

40 20 7.482 3.778 2.217 1.946 3.047 1.241 1.315 1.411 1.633 0.189 0.794 0.463 14.329 

50 15 8.631 4.411 2.975 2.087 3.793 0.815 1.933 0.865 2.310 0.330 0.978 0.501 24.928 

50 20 8.352 4.704 2.664 1.830 3.217 1.001 1.477 1.200 2.216 0.519 1.245 1.113 29.121 

               

  7.623 3.965 2.652 1.985 2.933 0.953 1.488 1.108 1.508 0.215 0.731 0.429  

 

Table 1. ARPD obtained in DMU test-bed (all heuristics use the same CPU time) 

  PR HR NEW 

  Average Standard dev. Average Standard dev. Average Standard dev. 

n m i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

Avg.  

CPU 

(secs) 

20 5 6.829 2.526 3.077 1.986 3.405 1.427 2.012 1.545 1.197 0.083 0.399 0.156 0.880 

20 10 7.230 2.474 2.315 1.597 4.190 1.831 2.179 1.627 0.953 0.000 0.222 0.000 1.112 

20 20 6.086 2.439 1.964 1.362 3.201 1.613 1.418 0.976 0.943 0.000 0.407 0.000 1.641 

50 5 6.216 2.600 1.264 1.215 3.810 0.838 1.577 0.698 2.198 0.008 0.521 0.024 16.739 

50 10 7.939 4.026 2.037 1.454 4.162 1.198 2.034 1.664 1.957 0.047 0.590 0.085 20.544 

50 20 8.858 4.785 2.522 2.036 4.529 1.948 1.852 1.735 2.086 0.135 0.589 0.426 29.108 

100 5 4.045 1.627 1.595 1.216 2.376 0.455 1.136 0.672 2.148 0.404 0.614 0.493 182.619 

100 10 5.732 2.948 1.748 1.570 3.339 1.109 0.923 0.907 1.724 0.085 0.516 0.197 212.163 

100 20 6.135 3.288 1.339 1.058 3.040 1.190 1.199 1.082 1.331 0.000 0.351 0.000 281.492 

200 10 4.131 2.109 1.089 0.638 4.491 3.111 1.167 1.089 1.073 0.000 0.180 0.000 2486.117 

200 20 4.688 2.467 0.804 0.963 4.337 2.941 0.804 0.666 1.022 0.000 0.297 0.000 3012.467 

               

  6.172 2.844 1.796 1.372 3.716 1.605 1.482 1.151 1.512 0.069 0.426 0.126  

 

Table 2. ARPD obtained in the T-GS test-bed (all heuristics use the same CPU time) 

  PR HR NEW 

  Average Standard dev. Average Standard dev. Average Standard dev. 

n m i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

Avg.  

CPU 

(secs) 

20 5 14.764 7.267 8.064 6.969 3.621 1.639 4.019 3.455 2.352 0.208 1.600 0.657 0.880 

20 10 7.747 1.249 7.531 2.348 1.294 0.277 2.868 0.807 1.159 0.000 3.067 0.000 1.107 

20 20 0.752 0.632 2.378 1.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.644 

50 5 2.909 0.863 0.637 0.573 1.828 0.397 0.642 0.501 1.343 0.297 0.415 0.330 16.686 

50 10 7.208 2.884 2.072 1.672 5.827 2.366 1.238 1.460 2.527 0.106 0.778 0.252 20.444 

50 20 29.604 14.699 12.312 10.201 14.088 2.725 5.728 6.268 18.565 8.436 11.678 7.564 29.083 

100 5 1.999 0.854 0.579 0.542 1.214 0.497 0.877 0.694 1.247 0.331 0.421 0.452 182.924 

100 10 4.073 1.961 0.880 0.866 2.565 0.812 1.314 0.835 1.166 0.118 0.228 0.213 211.100 

100 20 4.820 1.391 0.832 1.176 4.135 1.517 1.398 1.132 1.608 0.133 0.449 0.294 283.643 

200 10 3.222 2.150 0.617 0.556 2.332 1.588 0.886 0.865 0.789 0.000 0.175 0.000 2480.877 

200 20 4.325 2.843 0.616 0.724 3.716 2.688 0.572 0.518 0.836 0.000 0.123 0.000 3002.736 

               

  7.402 3.345 3.320 2.512 3.693 1.319 1.777 1.503 2.872 0.875 1.721 0.887  

 

Table 3. ARPD obtained in the T-HR test-bed (all heuristics use the same CPU time) 
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  PR HR NEW 

  T/2 T/4 T/2 T/4 T/2 T/4 

n m i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

i
PRD  

*

i
PRD  

20 15 6.117 3.628 6.096 3.543 2.548 0.517 2.858 1.267 0.806 0.123 1.039 0.156 

20 20 5.509 2.185 5.972 2.642 1.510 0.672 1.772 0.851 0.567 0.068 0.749 0.197 

30 15 8.326 4.786 8.216 4.549 3.862 1.447 4.006 1.570 2.047 0.699 2.285 0.789 

30 20 7.098 4.169 7.071 3.897 2.798 1.181 2.946 1.392 1.394 0.374 1.608 0.431 

40 15 10.007 4.798 10.052 4.805 4.283 1.540 4.400 1.625 2.610 0.877 2.757 0.759 

40 20 7.651 3.863 7.691 3.831 3.247 1.152 3.520 1.163 1.923 0.608 2.227 0.843 

50 15 8.666 4.426 8.742 4.362 4.288 1.333 4.561 1.890 2.934 1.097 3.228 0.954 

50 20 8.355 4.418 8.586 4.992 3.375 1.154 3.574 1.237 2.623 1.088 3.018 1.258 

              

  7.716 4.034 7.803 4.078 3.239 1.124 3.455 1.374 1.863 0.617 2.114 0.673 
 

Table 4. ARPD obtained in for different CPU times (average on 24 runs) 

 

 

n m HR NEW 

20 15 109152,5 1947,6 

20 20 108766,9 1796,2 

30 15 243373,2 2223,3 

30 20 243452,5 2014,5 

40 15 431356,5 2449,7 

40 20 432307,4 2235,5 

50 15 673924,0 2771,9 

50 20 673929,0 2474,2 

 

Table 5. Number of solutions explored by HR and NEW in the DMU-testbed 

 

 

n m k=1 k=2 k=10 k=19 k=20 k=29 k=30 k=39 k=40 k=49 NEW 

20 15 2.14 1.79 0.39 0.42       0.40 

20 20 1.68 1.42 0.45 0.17       0.37 

30 15 3.68 3.88 1.88 1.10 1.00 0.82     0.84 

30 20 3.16 2.81 0.84 0.61 0.62 0.64     0.58 

40 15 4.56 4.79 1.94 1.64 1.69 1.92 1.14 1.68   1.51 

40 20 3.83 3.88 1.66 1.23 1.12 1.11 1.33 1.14   1.36 

50 15 6.07 6.78 3.19 1.87 2.21 1.96 1.12 2.00 1.06 1.66 2.28 

50 20 4.29 4.30 1.67 1.69 1.73 1.17 1.49 1.51 1.44 1.58 1.15 

             

Average

: 3.68 3.71 1.50 1.09 1.40 1.27 1.27 1.58 1.25 1.62 1.06 
 

Table 5. ARPD for different greedy algorithms for the instances in the DMU test-bed. 
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  Upper limit of k 

n m n/10 n/5 n/2 n-1 (NEW) 

20 15 8.165 3.833 0.291 0.225 

20 20 6.956 3.473 0.500 0.203 

30 15 11.503 4.137 0.465 0.544 

30 20 7.938 3.488 0.594 0.235 

40 15 13.850 5.017 0.917 0.515 

40 20 9.831 3.478 0.519 0.511 

50 15 14.022 5.428 0.602 0.535 

50 20 9.773 4.439 0.769 0.601 

      

  10.255 4.161 0.582 0.421 
 

Table 6. ARPD for several upper limits of k for the instances in the DMU test-bed (n-1 

corresponds to the original proposal). 

 

 

 

 

 

 

n m NEW inverse random 

20 15 0.390 0.469 1.605 

20 20 0.147 0.230 0.481 

30 15 0.341 0.622 1.807 

30 20 0.258 0.597 1.803 

40 15 0.977 1.023 3.225 

40 20 0.407 0.603 1.490 

50 15 1.110 0.949 3.573 

50 20 0.530 0.704 2.497 

     

Average: 0.520 0.650 2.060 

 

Table 7. ARPD for different mechanism for picking the components to be removed 

(DMU test-bed). 
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Step 1: Obtain one initial sequence using heuristic EADD and assign it to S and B.  

Step 2: Initialize SA parameters, i.e. T:=475; ACCEPT := 0; TOTAL:=0; FR_CNT:=0. 

Step 3: If (FR_CNT = 5) or (T ≤ 20) then go to Step 14. 

Step 4: Invoke perturbation routine RIPS to obtain S’.  

( ') ( )
100

( )

TARDINESS S TARDINESS S

TARDINESS S

−
∆ = ⋅  

If  ∆ > 0 then go to Step 8. 

Step 5: S:= S’; ACCEPT := ACCEPT + 1 

Step 6: If 
( ') ( )

100
( )

TARDINESS S TARDINESS B

TARDINESS B

−
⋅  > 0  then go to Step 10. 

Step 7: B := S’; FR_CNT := 0. Go to Step 10. 

Step 8:  If exp( )
T

∆
−  < Random[0;1], then go to Step 10. 

Step 9: S:= S’, and ACCEPT := ACCEPT + 1. 

Step 10: TOTAL:= TOTAL + 1. 

Step 11: If (TOTAL > 2 n) or (ACCEPT > n/2) go to Step 12; else go to Step 4. 

Step 12: If (ACCEPT· 100/TOTAL ≤ 15) then FR_CNT := FR_CNT + 1 

Step 13: Set T := T · 0.9; ACCEPT := 0; TOTAL := 0. Go to Step 3. 

Step 14: The algorithm is frozen. B contains the final solution.   

 

  

Figure 1. Pseudocode of PR 
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Step 1:  Obtain one initial sequence using EADD. Assign it to S and B.  

Step 2:  Apply JIBIS to S and B. 

Step 3:  Z = TARDINESS(S), ZB:= TARDINESS(B) 

Step 4:  Initialize SA parameters, i.e. T :=540, COUNT := 0; REPLACE :=0; FREEZE :=0. 

Step 5:  Generate and evaluate nine random sequences and store them (together with B) in an archive of 

the best ten sequences. 

Step 6: If (FREEZE = 5) or (T ≤ 20) then go to Step 21. 

Step 7:  Set Z’’ a large number. 

Step 8: Do the following steps twice: 

  Do the following steps n times: 

 Invoke JSB to obtain S’. Z’:= TARDINESS(S’). 

If Z’ is less than the maximum value of the objective function of a sequence amongst all 

sequences in the archive, then replace that sequence and its objective function by S’ and 

Z’. If Z’ < Z’’ then S’’:=S’ and Z’’:=Z’. 

Step 9: Do the following steps twice: 

 Invoke perturbation scheme PSS to obtain S’; Z’:=TARDINESS(S’) 

If Z’ is less than the maximum value of the objective function of a sequence amongst all 

sequences in the archive, then replace that sequence and its objective function by S’ and Z’. 

If Z’ < Z’’ then S’’:=S’ and Z’’:=Z’. 

Step 10: 
( ') ( )

100
( )

TARDINESS S TARDINESS S

TARDINESS S

−
∆ = ⋅  

Step 11: If  ∆ > 0 then go to Step 15. 

Step 12: S:= S’’; Z:=Z’’; REPLACE = REPLACE + 1. 

Step 13: If 
( '') ( )

100
( )

TARDINESS S TARDINESS B

TARDINESS B

−
⋅ > 0, then go to Step 17. 

Step 14: B:=S’’; ZB:= Z’’; FREEZE = 0. Go to Step 17. 

Step 15: If exp( )
T

∆
−  < Random[0;1], then go to Step 17. 

Step 16: S:= S’’; Z:=Z’’; REPLACE := REPLACE + 1. 

Step 17: COUNT := COUNT + 1. 

Step 18: If (COUNT ≤ 2 n) go to Step 7. 

Step 19: If REPLACE · 100/COUNT ≤ 15, then FREEZE := FREEZE + 1. 

Step 20: T = T · 0.9; COUNT :=  0; REPLACE := 0. Go to Step 6. 

Step 21: Implement JIBIS on all sequences stored in the archive. The best amongst them is returned as 

solution. 

 

Figure 2. Pseudocode of HR 
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Figure 3. Frequencies corresponding to the values of k for which a better solution is 

found 
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