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1. Introduction

The one dimensional unsteady advection-diffusion problem is given as follows:
Find u(x, t) satisfying the governing equation

∂u

∂t
= D

∂2u

∂x2
− v

∂u

∂x
0 < x <∞, t > 0, (1)

subject to the boundary conditions:

u(0, t) = u0 t > 0 (2)

lim
x→∞

u(x, t) = 0 t > 0 (3)

and initial condition:

u(x, 0) = 0 0 < x <∞, (4)

where, u is the property being transported; v the prescribed transport velocity;
and D the diffusion coefficient.

The above advection-diffusion equation (ADE) is used to model the trans-
portation of chemical species beneath the earth surface. Such type of ADE
arises in atmospheric pollution caused by smoke, pollution of groundwater and
other environmental pollution problems. The diffusion of tracers, spread of
chemical solutes and contaminant discharge in porous media, the sea water in-
trusion and thermal pollution of river systems can also be modeled by above
mentioned equation. The raising demand in environmental issues motivate re-
searchers to study about advection-diffusion equation. Solution to ADE will
help to tackle challenges in many environmental issues. Therefore, theoretical
and numerical studies about ADE are very important.

The solution to above ADE equation is derived in many articles in the
literature. Analytical solution and numerical solution by finite difference and
finite element techniques are presented in the research articles for the past four
decades. van Genuchten [19] is one of the pioneers who investigated solution
to advection diffusion equation using transform technique. In general, analyt-
ical solution to advection-diffusion type equation is mainly based on Laplace,
Fourier and other integral transform techniques. The work done by Yates [21]
and Hunt [12] on one dimensional species transport in porous medium prob-
lems are the noteworthy contributions to analytical solution methods. These
transform techniques are discussed in semi-infinite or infinite domain. There-
fore, it leads to appearance of the error function or an exponential function or
an infinite series in its solution, which cannot be evaluated exactly. Instead
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of truncating the closed form solution, numerical method can be a desirable
alternate for good approximate solution which is also more appropriate for the
practically collected data set.

The numerical solution to ADE initially started with finite difference ap-
proximation which is well established at present. In the recent years, Halil
Karahan [11] discussed explicit and implicit finite difference methods with the
help of spreadsheets. Abolfazl Mohammadi et. al. [1] and Mehdi Dehghan
[15] presented weighted average technique to solve advection-diffusion equa-
tion. The next endeavor in the numerical methods for ADE is the finite el-
ement method. In 1988, Frind [10] used a finite element method (FEM) for
advection-diffusion equation with free exit boundary. Fruther, Daus et. al.

[6] made a comparative study in finite element formulation of ADE with finite
difference methods. Then, the comparison between mesh-free radial basis func-
tion method and mesh-dependent finite difference methods for linear advection
diffusion equation was established by Boztosun and Charafi [3]. Siegel et. al.

[17] and Anis Younes [2] developed the discontinuous Galerkin method to find
solution to ADE. A few other FEM methods are also discussed and analyzed by
researchers. For example, Nguyen and Reynew [16] applied space-time least-
square finite element method. Jim Douglas Jr et. al. [13] presented modified
method of characteristics. A time-splitting technique for the advection-diffusion
equation in groundwater is discussed by Mazzia et. al. [14].

Finite volume method (FVM), a modern numerical technique in which mass
conservation principle is preserved locally, become popular in recent years. The
other advantages of FVM are treatment to flux boundary conditions and easy
implementation mesh free techniques. Godlewski et. al. [8], Eymard et. al. [7]
LeVeque [9]made a big contribution in the development of finite volume method.
The affiliation of total variation diminishing technique to FVM strengthen the
numerical computation. Further, the introduction of flux limiters in TVD
scheme adds more meaning to practical problems, because it controls the nu-
merical diffusion. Bram van Leer [4] has introduced the limiter in his paper in
1974. Thereafter, researchers like van Albada , Sweby, Roe, Chatkravathy and
Osher are contributed to the development of various flux limiters and deriving
TVD region.

The total variation diminishing finite volume methods for advection diffu-
sion equation with flux limiter are discussed in this paper. Further, a detailed
analysis on stability, consistency and order of convergence for the central differ-
ence, upwind and TVD schemes are also discussed. The relation between flux
limiter and mesh parameters is established in this article.
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Analytical solution to species transport equation

R
∂u

∂t
+ u

∂u

∂x
−D

∂2u

∂x2
= −ku 0 < x <∞, t > 0 (5)

with conditions (2), (3) and (4) is given by (See,[5]):

u(x, t) =
u0
2
exp

( vx

2D

)

[

exp
(

−mx
2D

)

erfc

(

Rx−mt√
4DRt

)

+ exp
(mx

2D

)

erfc

(

Rx+mt√
4DRt

)]

, (6)

wherem =
√
v2 + 4kD. Solution to advection-diffusion equation (1) is obtained

by putting k = 0 and R = 1 in above.

2. Mathematical Description

In this section, a finite volume formulation is presented for the advection-
diffusion equation (1) mentioned in previous section. The vector form of (1) is
given by

∂u

∂t
= ∇.(∇Du)− v.∇(u). (7)

The computational domain is discretizied by non overlapping control volumes.
Following control volume (CV) is considered for the numerical schemes: Here,
the y and z dimensions are infinitesimal. Therefore, ∆V = ∆x. where ∆x is
the spatial discretization length. Further, m+1,m,m−1 are nodal indices and
m− 1

2 and m+ 1
2 are face indices of control volume.

The governing equation is integrated over the control volume locally. The
volume integral is then converted to a integral over a boundary surface by ap-
plying Gauss divergence theorem. Further, a suitable numerical approximation
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is used for advection and diffusion terms at the boundary surface. The central
difference scheme is applied for both advection and diffusion terms (See, [20]).
Let ∆t be be a small increment in time t. Integrating above over the control
volume in the time interval (t, t+△t), we obtain

∫ t+∆t

t

∫

CV

∂u

∂t
dV dt =

∫ t+∆t

t

∫

CV

∇.(∇Du)dV dt

−
∫ t+∆t

t

∫

CV

v.∇(u)dV dt.

Applying Gauss divergence theorem, we have that

∫

CV

(un+1 − un)dV =

∫ t+∆t

t

∫

S

−→n .∇(Du)dSdt

−
∫ t+∆t

t

∫

S

−→n .(uv)dSdt

where −→n is the unit normal to the surface S. One dimensional formulation of
above integral leads to

(Un+1
m − Un

m)∆x = D

[

(

∂u

∂x

)n

m+ 1

2

−
(

∂u

∂x

)n

m− 1

2

]

∆t

− v[un
m+ 1

2

− un
m− 1

2

]∆t.

where Un
m be the approximation of u(x, t) at the nodal point (xm, tn). Here D

and v are assumed to be constants. Using the central difference approximation
for the derivative term, we obtain

(Un+1
m − Un

m)∆x =
D∆t

∆x
[Un

m−1 − 2Un
m + Un

m+1]− v[un
m+ 1

2

− un
m− 1

2

]∆t. (8)

Let us discuss different numerical schemes according to suitable approximation
for the advection term namely, the central difference, upwind and TVD schemes.

Central Difference Scheme: Use the following linear interpolation to
advection term at the cell faces

un
m+ 1

2

=
Un
m+1 + Un

m

2
un
m− 1

2

=
Un
m + Un

m−1

2
, (9)
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to obtain the first numerical scheme from (8)

Un+1
m =

[

D∆t

∆x2
+
v∆t

2∆x

]

Un
m−1+

[

1− 2D∆t

∆x2

]

Un
m+

[

D∆t

∆x2
− v∆t

2∆x

]

Un
m+1. (10)

Upwind Scheme: The upwind scheme in a positive direction (v > 0) is
given by the following approximation to advection term in (8),

un
m+ 1

2

= Un
m un

m− 1

2

= Un
m−1. (11)

The second numerical scheme is given by

Un+1
m =

[

D∆t

∆x2
+
v∆t

∆x

]

Un
m−1 +

[

1− 2D∆t

∆x2
− v∆t

∆x

]

Un
m +

[

D∆t

∆x2

]

Un
m+1. (12)

Total Variation Diminishing Scheme: It is possible to get higher order
total variation diminishing schemes by reconstructing advection term um+ 1

2

and

um− 1

2

in equation (8) with anti-diffusion term. The anti-diffusion term controls

the numerical diffusion which is explained in truncation error for TVD scheme
in section 4. Expanding um+ 1

2

in Taylor’s series and truncating after second

term, we have

um+ 1

2

≈ um +
∆x

2
(
∂u

∂x
)m.

The flux term (∂u
∂x

) in above is called the anti-diffusion term. Introducing flux
limiter ψ(r) to control anti-diffusion and using forward difference approximation
for flux term, we obtain

um+ 1

2

≈ um +
ψ(rm)

2
(um+1 − um)

where rm =
um − um−1

um+1 − um
. Therefore,

um+ 1

2

≈ um +
ψ(rm)

2
(um+1 − um)

and

um− 1

2

≈ um−1 +
ψ(rm−1)

2
(um − um−1).

Using um+ 1

2

and um− 1

2

in equation (8), we obtain

Un+1
m =

[

D∆t

∆x2
+
v∆t

∆x
− v∆t

2∆x
ψ(rm−1)

]

Un
m−1
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+

[

1− 2D∆t

∆x2
− v∆t

∆x
+
v∆t

2∆x
[ψ(rm−1) + ψ(rm)]

]

Un
m

+

[

D∆t

∆x2
− v∆t

2∆x
ψ(rm)

]

Un
m+1. (13)

3. Stability

In this section, we shall discuss the stability of general form of the explicit
difference scheme and hence for central, upwind, and TVD scheme as particular
cases. From (10), (12) and (13), the general form of explicit scheme may be
written as

Un+1
m = aUn

m−1 + bUn
m + cUn

m+1, (14)

where a, b, c are appropriate coefficients for the relevant scheme.

Definition 1. A scheme Un+1
m = G(Un

m−k, ..., U
n
m, ...U

n
m+p) is said to be

monotone scheme if G is non-decreasing function of each of its argument. So,
∂G
∂ui

(U−k, ..., U0, ...Up) ≥ 0, i = −k, ..., p.
Theorem 2. Let Un+1

m = aUn
m−1 + bUn

m + cUn
m+1 be the general form

explicit finite difference scheme for the linear time-dependent partial differential
equation. If a ≥ 0, b ≥ 0, and c ≥ 0 with a + b + c = 1, then the scheme is
stable and monotone.

Proof. Let Un+1
m = aUn

m−1 + bUn
m + cUn

m+1 be the general form of explicit
finite difference numerical scheme. Let Un

m = Bξneimθ. The von Neumann
stability analysis for the above difference scheme implies,

ξ = ae−iθ + b+ ceiθ = b+ (a+ c)(cos θ) + i(c− a) sin θ.

The amplification factor ′ξ′ should meet the condition |ξ| ≤ 1 in order the
numerical scheme (14) to have a stable solution which is equivalently |ξ|2 ≤ 1
(Smith, [18]).We therefore have that,

b2 + (a+ c)2 cos2 θ + 2b(a+ c) cos θ + (c− a)2 sin2 θ ≤ 1

⇔ a2 + b2 + c2 + 2ac(cos2 θ − sin2 θ) + 2b(a+ c) cos θ ≤ 1

⇔ (a+ b+ c)2 − 2b(a+ c)(1 − cos θ)− 2ac(1 − cos 2θ) ≤ 1

⇔ (a+ b+ c)2 ≤ 1 + 4b(a + c) sin2
θ

2
+ 4ac sin2 θ

⇔ (a+ b+ c)2 ≤ 1 + 4b(a + c) sin2
θ

2
+ 16ac sin2

θ

2
cos2

θ

2



240 S. Prabhakaran, L.J.T. Doss

⇔ (a+ b+ c)2 + 16ac sin4
θ

2
≤ 1 + 4b(a+ c) sin2

θ

2
+ 16ac sin2

θ

2
.

Maximizing the trigonometric functions in above inequality with respect to
their argument θ, we obtain

(a+ b+ c)2 ≤ 1 + 4b(a+ c). (15)

Let us assume that a ≥ 0, b ≥ 0, c ≥ 0 and a+b+c = 1. Then the condition (15)
is satisfied. Therefore, the scheme (14) is stable. Let G(Un

m−1, U
n
m, U

n
m+1) =

aUn
m−1+bU

n
m+cUn

m+1 be the function. From (14), Un+1
m = G(Un

m−1, U
n
m, U

n
m+1).

By definition (1) ∂G
∂ui

(U−1, U0, U1) ≥ 0, i = −1, 0, 1 ,which implies that the
scheme is monotone.

Remark 3.1. The monotonicity guarantees that the solution obtained
from explicit finite difference scheme will not oscillate.

We shall discuss below the stability of central difference, upwind and TVD
scheme as a particular case of general explicit scheme.

Stability Condition for Central Difference Scheme: From equation
(10), we have

a =
D∆t

∆x2
+
v∆t

2∆x
b = 1− 2D∆t

∆x2
c =

D∆t

∆x2
− v∆t

2∆x

a+ b+ c = 1 4b(a+ c) = −16D2∆t2

∆x4
+

8D∆t

∆x2

stability condition (15) implies

D∆t

∆x2
≤ 1

2
. (16)

The above condition is nothing but the CFL condition for pure diffusion. It
should be noted that the above stability condition is independent of velocity
term v. Therefore, the stability behavior of central difference scheme can not
be judged for pure advection case.

It is already assumed that the coefficients of explicit schemes are positive.
The negative coefficients may produce oscillations in numerical solution. The
positivity (or monotonicity) of solution is very essential. Therefore, the co-
efficient c must be greater than or equal to zero (c ≥ 0) in order to obtain
monotone solution, which is eventually

D

∆x
− v

2
≥ 0.
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ie,
v∆x

D
≤ 2. (17)

The left side quantity in above is the famous Peclet Number, which means
that the central difference scheme is valid for Peclet number less than or equal
to 2. In other words, the central difference scheme is suitable for diffusion
dominated flow only. Alternatively, the discretization length ∆x can made be
very small (eventually ∆t also) for advection dominated problems. Therefore,
the conditions (16) and (17) are essential for the stability of central difference
scheme.

Stability Condition for Upwind Scheme: In this case, from (12)

a =
D∆t

∆x2
+
v∆t

∆x
b = 1− 2D∆t

∆x2
− v∆t

∆x
c =

D∆t

∆x2

using the above values of a, b, c in the stability condition (15), we obtain

∆t ≤ (2D + v∆x)∆x2

4D2 + 4Dv∆x+ v2∆x2
. (18)

The above equation satisfies the CFL condition for both pure diffusion and pure
advection by assigning v = 0 and D = 0 respectively.

Relation Between Flux Limiter and Mesh Parameters: From (13),

a =
D∆t

∆x2
+
v∆t

∆x
− v∆t

2∆x
ψ(rm−1), c =

D∆t

∆x2
− v∆t

2∆x
ψ(rm),

b = 1− 2D∆t

∆x2
− v∆t

∆x
+
v∆t

2∆x
[ψ(rm−1) + ψ(rm)].

We shall represent ψ(rm) and ψ(rm−1) in terms of general function ψ(r). Sub-
stituting a, b and c in (15) and using a+ b+ c = 1, we have

4

(

1− 2D∆t

∆x2
− v∆t

∆x
+
v∆t

∆x
(ψ(r)

)(

2D∆t

∆x2
+
v∆t

∆x
− v∆t

∆x
ψ(r)

)

≥ 0.

It is noted that b ≥ 0 to preserve the positivity of the solution. Therefore,

1− 2D∆t

∆x2
− v∆t

∆x
+
v∆t

∆x
(ψ(r) ≥ 0

and
2D∆t

∆x2
+
v∆t

∆x
− v∆t

∆x
ψ(r) ≥ 0
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TVD Region

Figure 1: TVD region

which implies

1 +
2D

v∆x
− ∆x

v∆t
≤ ψ(r) ≤ 1 +

2D

v∆x
. (19)

The above condition indicates the stability of TVD schemes which gives the
relationship between flux limiters and mesh parameters.

The TVD region of any limiter ψ(r) is given by [20]

0 ≤ ψ(r) ≤ 2. (20)

A TVD scheme will be stable if it satisfies both of the conditions (19) and (20).
Combining these two conditions we have that, any lower bound and upper
bound for the limiter should be less than or equal to 0 and greater than or
equal to 2 respectively. Therefore, we have

1 +
2D

v∆x
− ∆x

v∆t
≤ 0 ≤ ψ(r) ≤ 2 ≤ 1 +

2D

v∆x
(21)

1 +
2D

v∆x
− ∆x

v∆t
≤ 0 2 ≤ 1 +

2D

v∆x
.

which eventually leads to,

∆x ≤ 2D

v
∆t ≤ ∆x2

2D + v∆x
. (22)

The above condition on mesh parameters will give the stable TVD schemes.
The shaded portion in the Figure.1 is the TVD region. Any limiter falls in the
region guarantees the variation diminishing schemes. The limiter ψ(r) must be
bounded by 0 and 2 when r → ∞. If its not bounded by 0 and 2, we have to
restrict the limiter in order to satisfy TVD region.



TOTAL VARIATION DIMINISHING FINITE VOLUME... 243

4. Truncation Error and Consistency

In this section, local truncation error and consistency of various schemes are
discussed in detail.

Theorem 3. Let Un+1
m = aUn

m−1 + bUn
m + cUn

m+1 the general explicit
finite difference scheme for the linear partial differential equation (1). The
local truncation error of the scheme is given by

Tm,n =
1

∆t

[

∆t
∂u

∂t
+

∆t2

2

∂2u

∂t2
− (a+ b+ c− 1)u+ (a− c)∆x

∂u

∂x

− (a+ c)
∆x2

2

∂2u

∂x2

]

(xm,tn)

+ ...

The finite difference scheme is consistent with given partial differential equation
(1) if a+ b+ c = 1, a− c = v∆t

∆x
and a+ c = 2D∆t

∆x2 .

Proof. The truncation error Tm,n for the explicit scheme at interior nodal
point (xm, tn) is defined by [18]

Tm,n =
1

∆t

[

u(xm, tn+1)− Un+1
m

]

where u(xm, tn+1) and U
n+1
m are the values of exact and numerical solution at

(xm, tn+1) respectively. Let U
n+1
m = aUn

m−1 + bUn
m + cUn

m+1, we have that

∆tTm,n = u(xm, tn+1)− aUn
m−1 − bUn

m − cUn
m+1.

Following the usual procedure to obtain the truncation error, we replace nu-
merical solution by exact solution

∆tTm,n = u(xm, tn+1)− au(xm−1, tn)− bu(xm, tn)− cu(xm+1, tn)

= u(xm, tn +∆t)− au(xm −∆x, tn)− bu(xm, tn)

− cu(xm +∆x, tn).

Expanding using Taylor series , we have that

∆t Tm,n =

{[

u+∆t
∂u

∂t
+

∆t2

2

∂2u

∂t2
+ ...

]

− a

[

u−∆x
∂u

∂x

+
∆x2

2

∂2u

∂x2
+ ...

]

− bu− c

[

u+∆x
∂u

∂x
+

∆x2

2

∂2u

∂x2
+ ...

]}

(xm,tn)
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=

{

∆t
∂u

∂t
+

∆t2

2

∂2u

∂t2
− (a+ b+ c− 1)u+ (a− c)∆x

∂u

∂x

− (a+ c)
∆x2

2

∂2u

∂x2

}

(xm,tn)

+ ...

=

{

∆t
∂u

∂t
+

∆t2

2

∂2u

∂t2
+ (a− c)∆x

∂u

∂x
− (a+ c)

∆x2

2

∂2u

∂x2

+ (a− c)
∆x3

6

∂3u

∂x3
+ ...

}

(xm,tn)

using a+ b+ c = 1. (23)

This implies that the local truncation error may be consistent with the given

partial differential equation (1)
∂u

∂t
= D

∂2u

∂x2
− v

∂u

∂x
depending on a + c and

a− c. Let a − c = v∆t
∆x

and a+ c = 2D∆t
∆x2 . Then the scheme is consistent with

given partial differential equation (1).

Remark 4.1. We have that a + b + c = 1 for central difference, upwind
scheme and TVD schemes.

We shall discuss below the local truncation error and consistency for central
difference, upwind and TVD schemes.

Truncation Error for Central Difference Scheme: Using a− c = v∆t
∆x

and a+ c = 2D∆t
∆x2 from (10) in (23), we have

∆tTm,n =

[

∆t
∂u

∂t
+

∆t2

2

∂2u

∂t2
+ v∆t

∂u

∂x
−D∆t

∂2u

∂x2

+
v∆t∆x2

6

∂3u

∂x3
+ ...

]

(xm,tn)

Tm,n =

{[

∂u

∂t
+ v

∂u

∂x
−D

∂2u

∂x2

]

+

[

∆t

2

∂2u

∂t2
+
v∆x2

6

∂3u

∂x3

− D∆x2

12

∂4u

∂x4
+ ...

]}

(xm,tn)

(24)

The first term of right hand side is the given partial differential equation eval-
uated at the interior point (xm, tn). Therefore, we have that

Tm,n =

[

∆t

2

∂2u

∂t2
+
v∆x2

6

∂3u

∂x3
− D∆t∆x2

12

∂4u

∂x4

]

+ ...
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Hence, the order of truncation error is O(∆t + ∆x2). If ∆t = ∆x2, then the
truncation error will be of O(∆x2). We therefore have that ‖u−Uh‖∞ = O(h2)
where h = ∆x and Uh is numerical solution for the spatial discretization length
h. For different values of h2 and h2, we have that

‖u− Uh1
‖∞

‖u− Uh2
‖∞

≈
(

h1
h2

)2

ie,
log

(

‖u−Uh1
‖∞

‖u−Uh2
‖∞

)

log
(

h1

h2

) ≈ 2. (25)

Therefore, the order of convergence of central difference scheme is two. Letting
∆t → 0 and ∆x → 0, the truncation error (24) Tm,n → 0 and consistent with
the partial differential equation (1).

Truncation Error for Upwind Scheme: Substituting a − c = v∆t
∆x

and
a+ c = 2D∆t

∆x2 + v∆t
∆x

from (12)in (23), we get truncation error for upwind scheme

∆tTm,n =

[

∆t
∂u

∂t
+

∆t2

2

∂2u

∂t2
+ v∆t

∂u

∂x
−D∆t

∂2u

∂x2

− v∆t∆x

2

∂2u

∂x2
+ ...

]

(xm,tn)

Tm,n =

{[

∂u

∂t
+ v

∂u

∂x
−D

∂2u

∂x2

]

+

[

∆t

2

∂2u

∂t2
− v∆x

2

∂2u

∂x2

− D∆x2

12

∂4u

∂x4
+ ...

]}

(xm,tn)

(26)

Tm,n =
∆t

2
utt +

v∆x

2
uxx + ...

Here, the truncation error is of order O(∆t+∆x). If ∆t = ∆x, then the trun-
cation error will be of order O(∆x). In a similar manner to central difference
scheme, we have

log
(

‖u−Uh1
‖∞

‖u−Uh2
‖∞

)

log
(

h1

h2

) ≤ 1. (27)
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It means that upwind scheme is of first order convergence. Also, the truncation
error (26) Tm,n → 0 as ∆t → 0 and ∆x → 0 and consistent with the partial
differential equation (1).

Truncation Error for TVD Scheme: Substituting a+c = 2D∆t
∆x2 + v∆t

∆x
−

v∆t
∆x

ψ(r) and a− c = v∆t
∆x

from (13) in (23), we have

Tm,n =

{[

∂u

∂t
+ v

∂u

∂x
−D

∂2u

∂x2

]

+

[

[1− ψ(r)]
v∆x

2

∂2u

∂x2
+

∆t

2

∂2u

∂t2

+
v∆x2

6

∂3u

∂x3
+ ...

]}

(xm,tn)

(28)

Here, the order of truncation error is O(∆t + ∆x). The truncation error (28)
Tm,n → 0 as ∆t → 0 and ∆x → 0 and consistent with the partial differential
equation (1). If |1 − ψ(r)| ≤ 1 (ie, 0 ≤ ψ(r) ≤ 2), then the numerical diffusion
gets reduced. In this case, the truncation error approaches second order O(∆t+
∆x2).

5. Results and Discussion

The numerical simulations are carried out for various limiters like central dif-
ference, upwind, linear upwind, UMIST, van Leer, van Albada, Minmod, Su-
perbee, Sweby and Osher and then the results are compared with analytical
solution (6). The error associated in the numerical approximation with respect
to supremum norm is calculated for various schemes mentioned above.

The numerical concentration profile of chemical species simulated with ini-
tial concentration u0 = 100, diffusion coefficient D = 0.4 and transport velocity
v = 0.1 m h−1 obtained by various schemes for 225 hours. The constant β
in Sweby and Osher limiter is assigned with the value β = 1.5. Further their
Error of Convergence(EOC) are computed and shown in Table.3. The EOC is
computed using the following formula

EOC =
log

(

‖u−Uhi
‖∞

‖u−Uhi+ 1
‖∞

)

log
(

hi

hi+ 1

) for i = 1, 2, 3.

The Lax theorem states that a linear numerical scheme is convergent if and
only if it is stable and consistent. The central difference, upwind schemes and
TVD schemes are stable with the stability condition discussed in Section 3.
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Name Limiter ψ(r) Name Limiter ψ(r)
Upwind 0 Min-Mod Max[0,Min(r, 1)]
Central 1 Superbee Max[0,Min(2r, 1),Min(r, 2)]
van Leer (r + |r|)/(1 + r) Sweby Max[0,Min(βr, 1),Min(r, β)]
van Albada (r + r2)/(1 + r2) Osher Max[0,Min(r, β)] 1 ≤ β ≤ 2
Linear UD Min(r, 2) DownwindMin(2r, 1)
UMIST Max[0,Min(2r, (3 + r)/4, (1 + 3r)/4, 2)]

Table 1: Various flux limiters

It is proven that in Section 4, all the numerical schemes derived in Section 2
are consistent with the given partial differential equation (1). Therefore, the
central difference, upwind and TVD schemes are convergent and their numerical
solutions converge to exact solution. The theoretical results from Section 4
shows that the central difference scheme is of second order convergence where as
the upwind scheme of first order convergence. Further, The order of convergence
of TVD scheme lies between one to two. All the limiters of TVD schemes that
are considered in the numerical experiment fall into the TVD region, hence a
second order convergence is expected. The theoretical order of convergence of
central difference, upwind and TVD schemes are validated by numerical order
of convergence in Table.2. Further, it is evident from Table.2 that the order of
TVD schemes approaches to two.

The conclusion is that the central difference scheme and TVD schemes are
more accurate but it works for Peclet number less than two. The upwind
scheme has first order convergence. Therefore, the numerical solution obtained
by upwind scheme is not so closer to exact solution than that of obtained by
central difference scheme and TVD schemes. But the great advantage of upwind
scheme is that the stability condition is derived precisely from (18) and it can
work for large Peclet numbers.
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Central Difference Upwind
h and △t = h2 ‖u− Uh‖∞ EOC h and △t = h ‖u− Uh‖∞ EOC
1.0 and 1.0 0.298519 - 1.0 and 1.0 1.687546 -
1.5 and 2.25 0.621133 1.807089 1.5 and 1.5 2.476422 0.945915
2.5 and 6.25 1.575565 1.82219 2.5 and 2.5 3.935069 0.906597
3.0 and 9.0 2.22028 1.881404 3.0 and 3.0 4.634617 0.897456
van Albada van Leer
h and △t = h ‖u− Uh‖∞ EOC h and △t = h ‖u− Uh‖∞ EOC
1.0 and 1.0 0.388266 - 1.0 and 1.0 0.383583 -
1.5 and 1.5 0.769415 1.686803 1.5 and 1.5 0.761637 1.691672
2.5 and 2.5 1.783781 1.646079 2.5 and 2.5 1.764573 1.6447746
3.0 and 3.0 2.345416 1.501344 3.0 and 3.0 2.322536 1.506925
Linear upwind Minmod
h and △t = h ‖u− Uh‖∞ EOC h and △t = h ‖u− Uh‖∞ EOC
1.0 and 1.0 0.48505 - 1.0 and 1.0 0.423896 -
1.5 and 1.5 0.975618 1.7234997 1.5 and 1.5 0.829475 1.655641
2.5 and 2.5 2.272978 1.6557 2.5 and 2.5 1.861444 1.582368
3.0 and 3.0 3.020731 1.599924 3.0 and 3.0 2.413661 1.424911
Superbee Sweby
h and △t = h ‖u− Uh‖∞ EOC h and △t = h ‖u− Uh‖∞ EOC
1.0 and 1.0 0.332284 - 1.0 and 1.0 0.333472 -
1.5 and 1.5 0.656498 1.679377 1.5 and 1.5 0.656768 1.671591
2.5 and 2.5 1.533504 1.660821 2.5 and 2.5 1.609383 1.75456
3.0 and 3.0 2.077721 1.665827 3.0 and 3.0 2.174518 1.650688
UMIST Osher
h and △t = h ‖u− Uh‖∞ EOC h and △t = h ‖u− Uh‖∞ EOC
1.0 and 1.0 0.340151 - 1.0 and 1.0 0.486886 -
1.5 and 1.5 0.671218 1.673755 1.5 and 1.5 0.967759 1.6942344
2.5 and 2.5 1.530736 1.6138757 2.5 and 2.5 2.225618 1.6303134
3.0 and 3.0 1.998611 1.46282 3.0 and 3.0 2.935932 1.51924

Table 2: Order of convergence
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