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TOTAL VARIATION DIMINISHING RUNGE-KUTTA SCHEMES

SIGAL GOTTLIEB AND CHI-WANG SHU

Abstract. In this paper we further explore a class of high order TVD (total
variation diminishing) Runge-Kutta time discretization initialized in a paper
by Shu and Osher, suitable for solving hyperbolic conservation laws with stable
spatial discretizations. We illustrate with numerical examples that non-TVD
but linearly stable Runge-Kutta time discretization can generate oscillations
even for TVD (total variation diminishing) spatial discretization, verifying the
claim that TVD Runge-Kutta methods are important for such applications.
We then explore the issue of optimal TVD Runge-Kutta methods for second,
third and fourth order, and for low storage Runge-Kutta methods.

1. Introduction

In this paper we further explore a class of high order TVD (total variation
diminishing) Runge-Kutta time discretization initialized in [12]. For related work
of multi-step type see [11]. The method is used to solve a system of ODEs:

ut = L(u)(1.1)

with suitable initial conditions, resulting from a method of lines approximation to
a hyperbolic conservation law:

ut = −f(u)x(1.2)

where the spatial derivative f(u)x is approximated by a TVD finite difference or
finite element approximation (e.g. [4], [8], [13], [2]), denoted by −L(u), which has
the property that the total variation of the numerical solution:

TV (u) =
∑
j

|uj+1 − uj|(1.3)

does not increase

TV (un+1) ≤ TV (un)(1.4)

for a first order in time Euler forward stepping:

un+1 = un + ∆tL(un)(1.5)
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under suitable restriction on ∆t:

∆t ≤ ∆t1.(1.6)

The objective of the high order TVD Runge-Kutta time discretization, is to main-
tain the TVD property (1.4) while achieving higher order accuracy in time, perhaps
with a different time step restriction than (1.6):

∆t ≤ c∆t1,(1.7)

where c is termed the CFL coefficient for the high order time discretization.
The TVD high order time discretization is useful not only for TVD spatial dis-

cretizations, but also for TVB (total variation bounded) (e.g. [10]), or ENO (Essen-
tially Non-Oscillatory) (e.g. [5], [12]), or other types of spatial discretizations for
hyperbolic problems. It maintains stability in whatever norm, of the Euler forward
first order time stepping, for the high order time discretization, under the time step
restriction (1.7). For example, if it is used for multi-dimensional scalar conservation
laws, for which TVD is not possible but maximum norm stability can be maintained
for high order spatial discretizations plus forward Euler time stepping (e.g. [3]),
then the same maximum norm stability can be maintained if TVD high order time
discretization is used. As another example, if an entropy inequality can be proved
for the Euler forward, then the same entropy inequality is valid under a high order
TVD time discretization.

In [12], a general Runge-Kutta method for (1.1) is written in the form:

u(i) =
i−1∑
k=0

(
αiku

(k) + ∆tβikL(u(k))
)
, i = 1, ...,m,(1.8)

u(0) = un, u(m) = un+1.

Clearly, if all the coefficients are nonnegative αik ≥ 0, βik ≥ 0, then (1.8) is just a

convex combination of Euler forward operators, with ∆t replaced by βik
αik

∆t, since

by consistency
∑i−1

k=0 αik = 1. We thus have

Lemma 1.1 ([12]). The Runge-Kutta method (1.8) is TVD under the CFL coeffi-
cient (1.7):

c = min
i,k

αik
βik

,(1.9)

provided that αik ≥ 0, βik ≥ 0.

In [12], schemes up to third order were found to satisfy the conditions in Lemma
1.1 with CFL coefficient equal to 1.

If we only have αik ≥ 0 but βik might be negative, we need to introduce an
adjoint operator L̃. The requirement for L̃ is that it approximates the same spatial
derivative(s) as L, but is TVD (or stable in another relevant norm) for first order
Euler, backward in time:

un+1 = un −∆tL̃(un).(1.10)

This can be achieved, for hyperbolic conservation laws, by solving the backward in
time version of (1.2):

ut = f(u)x.(1.11)
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Numerically, the only difference is the change of upwind direction. Clearly, L̃ can be
computed with the same cost as that of computing L. We then have the following
lemma:

Lemma 1.2 ([12]). The Runge-Kutta method (1.8) is TVD under the CFL coeffi-
cient (1.7):

c = min
i,k

αik
|βik| ,(1.12)

provided that αik ≥ 0, and L is replaced by L̃ for negative βik.

Notice that, if for the same k, both L(u(k)) and L̃(u(k)) must be computed, the
cost as well as storage requirement for this k is doubled. For this reason, we would
like to avoid negative βik as much as possible. In [12], two L̃’s were used to give a
fourth order TVD Runge-Kutta method with a CFL coefficient c = 0.87. We will
improve it in this paper, however unfortunately we also prove that all four stage,
fourth order Runge-Kutta methods with positive CFL coefficient c in (1.12) must
have at least one negative βik.

For large scale scientific computing in three space dimensions, storage is usually
a paramount consideration. There are therefore the discussions about low stor-
age Runge-Kutta methods [15], [1], which only require 2 storage units per ODE
equation. We will consider in this paper TVD properties among such low storage
Runge-Kutta methods.

In the next section, we will give numerical evidence to show that, even with a
very nice second order TVD spatial discretization, if the time discretization is by a
non-TVD but linearly stable Runge-Kutta method, the result may be oscillatory.
Thus it would always be safer to use TVD Runge-Kutta methods for hyperbolic
problems.

The investigation of TVD time discretization can also be carried out for the
generalized Runge-Kutta methods (which have more than one step) in, e.g., [6]
and [7]. We have performed this study but failed to find good (in terms of CFL

coefficients and whether L̃ appears) TVD methods in this class. The result will not
be discussed in this paper.

2. The necessity to use a TVD time stepping: A numerical example

In this section we will show a numerical example, using the standard minmod
based MUSCL second order spatial discretization [14]. We will compare the results
of TVD versus non-TVD second order Runge-Kutta time discretizations. The PDE
is the simple Burgers equation

ut +

(
1

2
u2

)
x

= 0(2.1)

with Riemann initial data:

u(x, 0) =

{
1, if x ≤ 0,

−0.5, if x > 0,
(2.2)

(
1
2u

2
)
x

in (2.1) is approximated by the conservative difference

1

∆x

(
f̂j+ 1

2
− f̂j− 1

2

)
,
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where the numerical flux f̂j+ 1
2

is defined by

f̂j+ 1
2

= h
(
u−
j+ 1

2

, u+
j+ 1

2

)
with

u−
j+ 1

2

= uj +
1

2
minmod(uj+1 − uj , uj − uj−1),

u+
j+ 1

2

= uj+1 − 1

2
minmod(uj+2 − uj+1, uj+1 − uj).

The monotone flux h is the Godunov flux

h(u−, u+) =

 minu−≤u≤u+

(
u2

2

)
, if u− ≤ u+,

maxu−≥u≥u+

(
u2

2

)
, if u− > u+,

and the now standard minmod function is given by

minmod(a, b) =
sign(a) + sign(b)

2
min(|a|, |b|).

It is easy to prove, by using Harten’s Lemma [4], that the Euler forward time
discretization with this second order MUSCL spatial operator is TVD under the
CFL condition (1.6):

∆t ≤ ∆x

2 maxj |unj |
.(2.3)

Thus ∆t = ∆x
2maxj |unj | will be used in all our calculations.

The TVD second order Runge-Kutta method we consider is the one given in
[12]:

u(1) = un + ∆tL(un),(2.4)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆tL(u(1)),

the non-TVD method we use is

u(1) = un − 20∆tL(un),(2.5)

un+1 = un +
41

40
∆tL(un)− 1

40
∆tL(u(1)).

It is easy to verify that both methods are second order accurate in time. The second
one (2.5) is however clearly non-TVD, since it has negative βs in both stages (i.e.
it partially simulates backward in time with wrong upwinding).

If the operator L is linear (for example the first order upwind scheme applied
to a linear PDE), then both Runge-Kutta methods (actually all the two stage,
second order Runge-Kutta methods) yield identical results (the two stage, second
order Runge-Kutta method for a linear ODE is unique). However, since our L
is nonlinear, we may and do observe different results when the two Runge-Kutta
methods are used.

In Figure 1 we show the result of the TVD Runge-Kutta method (2.4) and the
non-TVD method (2.5), after the shock moves about 50 grids (400 time steps for
the TVD method, 528 time steps for the non-TVD method). We can clearly see
that the non-TVD result is oscillatory (there is an overshoot).

Such oscillations are also observed when the non-TVD Runge-Kutta method
coupled with a second order TVD MUSCL spatial discretization is applied to a
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Figure 1. Second order TVD MUSCL spatial discretization. So-
lution after 500 time steps. Top: TVD time discretization (2.4);
Bottom: non-TVD time discretization (2.5).

linear PDE (ut + ux = 0). Moreover, for some Runge-Kutta methods, if one looks
at the intermediate stages, i.e. u(i) for 1 ≤ i < m in (1.8), one observes even bigger
oscillations. Such oscillations may render difficulties when physical problems are
solved, such as the appearance of negative density and pressure for Euler equations
of gas dynamics. On the other hand, the TVD Runge-Kutta method guarantees
that each middle stage solution is also TVD.

This simple numerical test convinces us that it is much safer to use a TVD
Runge-Kutta method for solving hyperbolic problems.
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3. The optimal TVD Runge-Kutta methods of second, third and

fourth order

In this section we will try to identify the optimal (in the sense of CFL coefficient

and the cost incurred by L̃ if it appears) TVD Runge-Kutta methods of m-stage,
m-th order, for m = 2, 3, 4, written in the form (1.8).

For second order m = 2, we can choose β10 and α21 as free parameters. The
other coefficients are then given as [12]:

α10 = 1,
α20 = 1− α21,
β20 = 1− 1

2β10
− α21β10,

β21 = 1
2β10

.

(3.1)

Proposition 3.1. If we require αik ≥ 0 and βik ≥ 0, then the optimal second order
TVD Runge-Kutta method (1.8) is given by

u(1) = un + ∆tL(un),(3.2)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆tL(u(1)),

with a CFL coefficient c = 1 in (1.9).

Proof. If we would like a CFL coefficient c > 1, then α10 = 1 implies β10 < 1,
which in turn implies 1

2β10
> 1

2 . Also, α21 > β21 = 1
2β10

, which implies α21β10 >
1
2 .

We thus have

β20 = 1− 1

2β10
− α21β10 < 1− 1

2
− 1

2
= 0,

which is a contradiction.

For the third order case m = 3, the general Runge-Kutta method consists of a
two parameter family as well as two special cases of one parameter families [9]. We
can similarly prove the following proposition:

Proposition 3.2. If we require αik ≥ 0 and βik ≥ 0, then the optimal third order
TVD Runge-Kutta method (1.8) is given by

u(1) = un + ∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),(3.3)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)),

with a CFL coefficient c = 1 in (1.9).

Proof. The proof is more technical, and is given in the Appendix.

For the fourth order case m = 4, the general Runge-Kutta method again consists
of a two parameter family as well as three special cases of one parameter families
[9]. Unfortunately, this time we cannot avoid the appearance of negative βik:
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Proposition 3.3. The four stage, fourth order Runge-Kutta scheme (1.8) with a
nonzero CFL coefficient c in (1.12) must have at least one negative βik.

Proof. The proof is technical, and is given in the Appendix.

We thus must settle for finding an efficient solution containing L̃, which maxi-
mizes c

4+i , where c is the CFL coefficient (1.12) and i is the number of L̃s. This
way we are looking for a TVD method which reaches a fixed time T with a minimal
number of residue evaluations for L or L̃. We use a computer program and the help
of optimization routines to achieve this goal. The following is the best method we
can find:

u(1) = un +
1

2
∆tL(un),

u(2) =
649

1600
u(0) − 10890423

25193600
∆tL̃(un) +

951

1600
u(1) +

5000

7873
∆tL(u(1)),

u(3) =
53989

2500000
un − 102261

5000000
∆tL̃(un) +

4806213

20000000
u(1)

− 5121

20000
∆tL̃(u(1)) +

23619

32000
u(2) +

7873

10000
∆tL(u(2)),

un+1 =
1

5
un +

1

10
∆tL(un) +

6127

30000
u(1) +

1

6
∆tL(u(1)) +

7873

30000
u(2)

+
1

3
u(3) +

1

6
∆tL(u(3))

(3.4)

with a CFL coefficient c = 0.936 in (1.12). Notice that two L̃s must be computed.

The effective CFL coefficient, comparing with an ideal case without L̃s, is 0.936×
4
6 = 0.624. Since it is difficult to solve the global optimization problem, we do not
claim that (3.4) is the optimal 4 stage, 4th order TVD Runge-Kutta method.

4. The low storage TVD Runge-Kutta methods

For large scale scientific computing in three space dimensions, storage is usually
a paramount consideration. There are therefore the discussions about low storage
Runge-Kutta methods [15], [1], which only require 2 storage units per ODE variable.
We will consider in this section TVD properties among such low storage Runge-
Kutta methods.

The general low storage Runge-Kutta schemes can be written in the form [15],
[1]:

du(i) = Aidu
(i−1) + ∆tL(u(i−1)),

u(i) = u(i−1) +Bidu
(i), i = 1, ...,m,(4.1)

u(0) = un, u(m) = un+1, A0 = 0.

Only u and du must be stored, resulting in two storage units for each variable.
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Carpenter and Kennedy [1] have classified all the three stage, third order (m = 3)
low storage Runge-Kutta methods, obtaining the following one parameter family:

z1 =
√

36c42 + 36c32 − 135c22 + 84c2 − 12,

z2 = 2c22 + c2 − 2,

z3 = 12c42 − 18c32 + 18c22 − 11c2 + 2,

z4 = 36c42 − 36c32 + 13c22 − 8c2 + 4,

z5 = 69c32 − 62c22 + 28c2 − 8,

z6 = 34c42 − 46c32 + 34c22 − 13c2 + 2,

B1 = c2,(4.2)

B2 =
12c2(c2 − 1)(3z2 − z1)− (3z2 − z1)

2

144c2(3c2 − 2)(c2 − 1)2
,

B3 =
−24(3c2 − 2)(c2 − 1)2

(3z2 − z1)2 − 12c2(c2 − 1)(3z2 − z1)
,

A2 =
−z1(6c22 − 4c2 + 1) + 3z3

(2c2 + 1)z1 − 3(c2 + 2)(2c2 − 1)2
,

A3 =
−z4z1 + 108(2c2 − 1)c52 − 3(2c2 − 1)z5

24z1c2(c2 − 1)4 + 72c2z6 + 72c62(2c2 − 13)
.

We convert this form into the form (1.8), by introducing three new parame-
ters. Then we search for values of these parameters that would maximize the CFL
restriction, again by a computer program. The result seems to indicate that

c2 = 0.924574(4.3)

gives an almost best choice, with CFL coefficient c = 0.32 in (1.9). This is of course
less optimal than (3.3) in terms of CFL coefficients, however the low storage form
is useful for large scale calculations.

Carpenter and Kennedy [1] have also given classes of 5 stage, 4th order low
storage Runge-Kutta methods. We have been unable to find TVD methods in that
class with positive αik and βik. Notice that L̃ cannot be used without destroying
the low storage property, hence negative βik cannot be used here.

5. Concluding remarks

We have given a simple but illustrating numerical example to show that it is in
general much safer to use a TVD Runge-Kutta method for hyperbolic problems.
We then explore the optimal second, third and fourth order TVD Runge-Kutta
methods. While for second and third order optimal methods are found with a CFL
coefficient equal to one, for fourth order we simply give the best method we can
find. A TVD third order low storage Runge-Kutta method is found, which uses only
two storage units per equation and has a CFL coefficient equal to 0.32. Finally, we
prove that general four stage fourth order Runge-Kutta methods cannot be TVD
without introducing an adjoint operator L̃.
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Appendix

In this appendix we prove Proposition 3.2 and Proposition 3.3.
We write the general 4 stage, 4th order Runge-Kutta method in the following

standard form [9]:

u(1) = un + c10L(un),

u(2) = un + c20∆tL(un) + c21∆tL(u(1)),

u(3) = un + c30∆tL(un) + c31∆tL(u(1)) + c32∆tL(u(2)),(5.1)

un+1 = un + c40∆tL(un) + c41∆tL(u(1)) + c42∆tL(u(2)) + c43∆tL(u(3)).

The relationship between the coefficients cik here and αik and βik in (1.8) is:

c10 = β10,

c20 = β20 + α21β10,

c21 = β21,

c30 = α32α21β10 + α31β10 + α32β20 + β30,

c31 = α32β21 + β31,(5.2)

c32 = β32,

c40 = α43α32α21β10 + α43α32β20 + α43α31β10 + α42α21β10,

+α41β10 + α42β20 + α43β30 + β40,

c41 = α43α32β21 + α42β21 + α43β31 + β41,

c42 = α43β32 + β42,

c43 = β43.

For a third order Runge-Kutta method, the general form (5.1) is similar without
the last line (and with u(3) replaced by un+1). The relationship (5.2) also is similar
without the last four lines for c40, c41, c42 and c43.

Proof of Proposition 3.2. The general third order, three stage Runge-Kutta method
in the form (5.1) is given by a two parameter family as well as by two special cases
of one parameter families [9].

• General Case: If α3 6= α2, α3 6= 0, α2 6= 0 and α2 6= 2
3 :

c10 = α2,

c20 =
3α2α3(1− α2)− α2

3

α2(2 − 3α2)
,

c21 =
α3(α3 − α2)

α2(2− 3α2)
,

c30 = 1 +
2− 3(α2 + α3)

6α2α3
,

c31 =
3α3 − 2

6α2(α3 − α2)
,

c32 =
2− 3α2

6α3(α3 − α2)
.

Notice that 6α2c21c32 = 1 and c20 + c21 = α3. If we want to have a CFL
coefficient c > 1 in (1.9), we would need αik > βik ≥ 0 unless both of
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them are zeroes. This also implies that cik ≥ 0 by (5.2). Also, notice that
ci,i−1 = βi,i−1 > 0, for otherwise that stage is not necessary.

Now, c10 = β10 < α10 = 1 and c10 > 0 imply 0 < α2 < 1.
1. α3 > α2.

c21 ≥ 0 implies α2 <
2
3 , and c31 ≥ 0 requires α3 ≥ 2

3 .
β20 ≥ 0 and α21 > β21 imply c20 ≥ α21β10 > β21β10, which is α3 − c21 >
c21α2, or α3

1+α2
> c21. So we must have

α3 <
3α2 − 2α2

2

1 + α2
.

On the other hand, β31 ≥ 0 requires c31 ≥ α32β21 > c32c21 = 1
6α2

, which
is 3α3 − 2 > α3 − α2, or

α3 > 1− 1

2
α2.

Combining these two inequalities, we get 1 − 1
2α2 <

3α2−2α2
2

1+α2
, or

(2 − 3α2)(1 − α2) < 0, which is a contradiction, since 2 − 3α2 > 0 and
1− α2 > 0.

2. α2 > α3.
α3 = c20 + c21 > 0 requires α3 > 0.
c32 > 0 requires α2 >

2
3 , and c31 ≥ 0 requires α3 ≤ 2

3 .

c31 ≥ α32β21 > c32c21 = 1
6α2

, which is

α3 < 1− 1

2
α2,

c20 ≥ α21β10 > β21β10 requires

α3 >
α2(3 − 2α2)

1 + α2
.

Putting these two inequalities together, we have α2(3−2α2)
1+α2

< 1 − 1
2α2,

which means (2− 3α2)(1−α2) > 0, a contradiction since 1−α2 > 0 and
2− 3α2 < 0.

• Special Case I: α2 = α3 = 2
3 . In this case

c10 =
2

3
,

c20 =
2

3
− 1

4ω3
,

c21 =
1

4ω3
,

c30 =
1

4
,

c31 =
3

4
− ω3,

c32 = ω3.

β31 ≥ 0 and α32 > β32 = c32 requires c31 ≥ α32β21 > c32β21 = 1
4 which

implies ω3 <
1
2 .

β20 ≥ 0 and α21 > β21 = c21 requires c20 ≥ α21β10 > 2
3c21, which means

2
3 − 1

4ω3
> 2

3
1

4ω3
, for which we must have ω3 >

5
8 . A contradiction.



TOTAL VARIATION DIMINISHING RUNGE-KUTTA SCHEMES 83

• Special Case II: α3 = 0. In this case the equations read

c10 =
2

3
,

c20 =
1

4ω3
,

c21 = − 1

4ω3
,

c30 =
1

4
− ω3,

c31 =
3

4
,

c32 = ω3.

Clearly c20 and c21 cannot be simultaneously nonnegative.
• Special Case III: α2 = 0. In this case the method is not third order.

Proof of Proposition 3.3. Recall that all the αik’s must be nonnegative to satisfy
our TVD criteria. From the relationship (5.2) between the coefficients of (5.1) and
of (1.8), we can see that nonnegative βik’s imply nonnegative cik’s. We now show
that we cannot have all nonnegative cik’s.

• General Case. If two parameters α2 and α3 are such that: α2 6= α3, α2 6= 1,
α2 6= 0, α2 6= 1

2 , α3 6= 1, α3 6= 0, α3 6= 1
2 , and 6α2α3 − 4(α2 + α3) + 3 6= 0.

Then the coefficients cik are [9]:

c10 = α2, c20 = α3 − c21, c21 = α3(α3−α2)
2α2(1−2α2) ,

c30 = 1− c31 − c32, c31 = (1−α2)[α2+α3−1−(2α3−1)2]
2α2(α3−α2)[6α2α3−4(α2+α3)+3] ,

c32 = (1−2α2)(1−α2)(1−α3)
α3(α3−α2)[6α2α3−4(α2+α3)+3] ,

c40 = 1
2 + 1−2(α2+α3)

12α2α3
, c41 = 2α3−1

12α2(α3−α2)(1−α2)
, c42 = (1−2α2)

12α3(α3−α2)(1−α3) ,

c43 = 1
2 + 2(α2+α3)−3

12(1−α2)(1−α3)
.

There are five possibilities to consider:
1. α2 < 0 implies c10 < 0.
2. α3 > α2 > 0 and 0 < α2 <

1
2 :

c41 ≥ 0 requires α3 > 1
2 . c20 ≥ 0 requires α3 ≤ 3α2 − 4α2

2 ≤ 9
16 .

c32 ≥ 0 and c31 ≥ 0 require that α2 ≥ 2 − 5α3 + 4α2
3. Since this is a

decreasing function of α3 when α3 ≤ 9
16 , we obtain α2 ≥ 2−5(3α2−4α2

2)

+ 4(3α2 − 4α2
2)

2. Rearranging, we find that 0 ≥ 2((2α2 − 1)2 + 4α2
2) ·

(2α2 − 1)2, which is impossible.
3. α3 < α2 and α2 >

1
2 :

c42 ≥ 0 requires 0 < α3 < 1.
We can only have c32 ≥ 0 in one of two ways:
(a) If 1− α2 > 0, and 6α2α3 − 4(α2 + α3) + 3 > 0.

c41 ≥ 0 requires α3 < 1
2 . Simple calculation yields c30 = 1 − c31 −

c32 =
(2−6α2+4α2

2)+(−5+15α2−12α2
2)α3+(4−12α2+12α2

2)α2
3

2α2α3(6α2α3−4(α2+α3)+3) , hence c30 ≥ 0

requires

A+Bα3+Cα2
3 ≡ (2−6α2+4α2

2)+(−5+15α2−12α2
2)α3 +(4−12α2+12α2

2)α
2
3 ≥ 0.
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It is easy to show that, when 1
2 < α2 < 1, we have A < 0, B < 0 and

C > 0. Thus, for 0 < α3 <
1
2 , we have

A +Bα3 + Cα2
3 < max

(
A,A +

1

2
B +

1

4
C

)
= max

(
A,

1

2
(1 − 2α2)(1 − α2)

)
< 0,

which is a contradiction.
(b) α2 > 1, and 6α2α3 − 4(α2 + α3) + 3 < 0.

c31 ≥ 0 requires α2 + α3 − 1− (2α3 − 1)2 ≤ 0, which implies

(1− 4α3)(1 − α3) = 4α2
3 − 5α3 + 1 ≥ α2 − 1 > 0.

Clearly, this is true only if α3 <
1
4 .

Now, c40≥ 0 requires that 0≤ 6α2α3−2(α2 + α3) +1=2α3(3α2−1)
+ (1 − 2α2) ≤ 1

2 (3α2 − 1) + (1 − 2α2) = 1
2 (1 − α2), an apparent

contradiction.
4. 0 < α2 < 1

2 and α3 < α2: in this case we can see immediately that
c42 < 0.

5. If 1
2 < α2 < α3, c21 < 0.

• If 6α2α3 − 4(α2 + α3) + 3 = 0, or if α2 = 0 or if α3 = 1, then this method is
not fourth order [9].

• Special Case I. If α2 = α3 the method can be fourth order only if α2 = α3 =
1
2 . In this case [9] c10 = 1

2 , c20 = 1
2 − 1

6w3
, c21 = 1

6w3
, c30 = 0, c31 = 1− 3w3,

c32 = 3w3, c40 = 1
6 , c41 = 2

3 − w3, c42 = w3, c43 = 1
6 .

Clearly we need to have c42 = w3 ≥ 0. To have c31 = 1 − 3w3 ≥ 0 and
c20 = 1

2 − 1
6w3

≥ 0, we require w3 = 1
3 . This leads to the classical fourth order

Runge-Kutta method. Clearly, then, α21 = c20−β20

β10
= −2β20. This is only

acceptable if α21 = β20 = 0. But β21 = 1
2 , so in the case where all βik’s are

nonnegative, the CFL coefficient (1.12) is equal to zero.
• Special Case II. If α2 = 1, the method can be fourth order only if α3 = 1

2 .

Then [9] c10 = 1, c20 = 3
8 , c21 = 1

8 , c30 = 1−c31−c32, c31 = − 1
12w4

, c32 = 1
3w4

,

c40 = 1
6 , c41 = 1

6 − w4, c42 = 2
3 , c43 = w4.

In this case we want c31 = − 1
12w4

≥ 0 which means w4 < 0. But then
c43 = w4 < 0. So this case does not allow all nonnegative βik’s.

• Special Case III. If α3 = 0 the method can be fourth order only if α2 = 1
2 .

Then [9] c10 = 1
2 , c20 = − 1

12w3
, c21 = 1

12w3
, c30 = 1 − c31 − c32, c31 = 3

2 ,

c32 = 6w3, c40 = 1
6 − w3, c41 = 2

3 , c42 = w3, c43 = 1
6 .

Clearly, c20 = − 1
12w3

= −c21, one of these must be negative. Thus, this
case does not allow all nonnegative βik’s, either.
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