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Abstract: The reconstruction problem in in-line X-ray Phase-Contrast

Tomography is usually approached by solving two independent linearized

sub-problems: phase retrieval and tomographic reconstruction. Both prob-

lems are often ill-posed and require the use of regularization techniques

that lead to artifacts in the reconstructed image. We present a novel recon-

struction approach that solves two coupled linear problems algebraically.

Our approach is based on the assumption that the frequency space of the

tomogram can be divided into bands that are accurately recovered and

bands that are undefined by the observations. This results in an underdeter-

mined linear system of equations. We investigate how this system can be

solved using three different algebraic reconstruction algorithms based on

Total Variation minimization. These algorithms are compared using both

simulated and experimental data. Our results demonstrate that in many

cases the proposed algebraic algorithms yield a significantly improved

accuracy over the conventional L2-regularized closed-form solution. This

work demonstrates that algebraic algorithms may become an important tool

in applications where the acquisition time and the delivered radiation dose

must be minimized.

© 2013 Optical Society of America

OCIS codes: (110.7440) X-ray imaging; (100.5070) Phase retrieval; (100.6950) Tomographic

image processing.
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1. Introduction

Quantitative X-ray Phase-Contrast Tomography (X-ray PCT) requires three-dimensional image

reconstruction from a series of two-dimensional in-line phase-contrast images acquired under

various angles. Within the linear approximation, the problem of image reconstruction in X-ray

PCT is typically treated as two separate linear subproblems which are solved sequentially [1].

Namely, the phase retrieval problem, where the projected refraction index (i.e. linear phase and

attenuation) of the specimen is retrieved independently for each recorded phase-contrast image

and the problem of tomographic reconstruction, where the three-dimensional distribution of the

refraction index is computed from the collection of retrieved projections.

Most often linear phase retrieval of an individual tomographic projection is associated with

inversion of an ill-posed linear system. In such cases regularization (e.q. L2 or L1 regulariza-

tion) permits computation of an approximate inverse solution [2]. However, it will often cause

artifacts that are subsequently propagated into the tomographic reconstruction of the object.

We believe that a more accurate reconstruction approach can be designed by combining

phase retrieval and tomographic reconstruction into a single underdetermined linear problem.

This assumption is based on the fact that tomographic projections of the object are in general

not independent from each other. According to the so called Helgason-Ludwig consistency con-

ditions [3], individual projections of the object must be interrelated leading to a certain degree

of redundancy within the tomographic data. The theory of Compressed Sensing [4] suggests an

even stronger correlation between the individual tomographic projections for objects that have

a sparse representation in a certain domain. For sparse solutions, the projection data shows a
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low rate of innovation, which implies that a limited number of projections suffices for exact

reconstruction [5]. These facts lead us to a conclusion that the accuracy of phase retrieval of a

single tomographic projection can benefit from the redundancy contained in the complete to-

mographic dataset. Regularization techniques based on the assumption of sparsity were shown

to improve the quality of image reconstruction in cases when the reconstructed image is not

strictly sparse [6]. We will demonstrate how such redundancy can be exploited using an itera-

tive algebraic reconstruction approach for in-line X-ray PCT.

2. Materials and methods

2.1. Single-distance phase retrieval

Let us consider a single-distance phase-retrieval model based on the Contrast Transfer Function

(CTF) approach [7]. In this model the projected phase image of the specimen φ(s) is assumed

to be proportional to the projected attenuation image µ(s). The proportionality ratio σ = φ/µ
can be calculated as the ratio between the real and imaginary parts of the refractive index of

the specimen. This allows us to express the Fourier transform of the phase-contrast image Ĩ(w)
as the Fourier transform of the projected attenuation image µ̃(w) multiplied with the CTF that

corresponds to the object-to-detector distance D and the X-ray wavelength λ :

Ĩ(w) = δ (w)−
(

2cos(πλDw2)−2σ sin(πλDw2)
)

· µ̃(w). (1)

Here w stands for the spatial frequency and δ (w) denotes the delta function at the origin of

spatial frequency coordinates. A parallel monochromatic X-ray beam with a uniform illumi-

nation and intensity I0 = 1 was assumed for simplicity. This model is valid for chemically

homogeneous or quasi-homogeneous objects (i.e. φ/µ ≈ const) with weak attenuation and

slow-varying phase or for objects that are composed from light elements in a limited range

of X-ray energies [8, 9]. Obviously, it is impossible to recover the projected attenuation im-

age µ̃(w) from the observed phase-contrast image Ĩ(w) at frequencies w that correspond to the

zero-crossings of the CTF (see Fig. 1). Also, in the vicinity of each zero-crossing of the CTF

the inverse problem based on Eq. (1) will be ill-posed due to measurement noise in addition to

systematic linearization errors. At these frequencies µ̃(w) has to be computed using additional

constraints that favor a particular solution based on a-priori knowledge.

Let us assume that the vectors µ and I are defined in the spatial domain on a uniform grid

of k values that belong to µ(s) and (I(s)−1) respectively. A linear operator F will represent

the uniform discrete Fourier transform. Element-wise multiplication with the CTF function is

denoted by the linear operator P . Then Eq. (1) can be discretized in the following form:

FI = PFµ. (2)

When the matrix notation is considered, P can be represented by a square k × k diagonal

matrix:

P = diag(P(w1),P(w2), ...,P(wk)), (3)

where P(w) = 2σ sin(πλDw2)− 2cos(πλDw2). A more detailed explanation of the matrix

notation is given in our paper on two-dimensional phase retrieval [2]. Now the approximate

solution to Eq. (1) can be found by solving the corresponding least squares problem:

µ= argmin
µ

‖PFµ−FI‖2
2. (4)

Here ‖...‖2
2 represents the L2 norm of the corresponding functional. To avoid amplification of

errors by the terms that correspond to small P(w), we will exclude these terms from the system
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of equations. To do so we assume that the image µ is irrecoverable within the frequency bands

|w−w0| < ε , where w0 is the nearest zero-crossing of the CTF and ε is a small constant that

depends on the signal-to-noise ratio. Now an additional linear operator can be introduced:

Z = diag(Z(w1),Z(w2), ...,Z(wk)). (5)

Operator Z can be represented by a binary matrix and is applied to both sides of Eq. (2),

making sure that terms corresponding to the small P(w) are set to zero:

Z FI = Z PFµ. (6)

The system that we have obtained is underdetermined (it does not allow to determine (Fµ)
for |w−w0| < ε) and does not have a unique solution unless additional constraints are added.

Hofmann [10] proposed to use a simple constraint (Fµ) = 0 for |w−w0|< ε in order to solve

the phase-retrieval problem. However, we expect that applying sparsity constraints to the joint

phase-contrast-tomographic reconstruction will yield a better accuracy. A frequency dependent

ε can be defined when it is possible to estimate the power spectrum of the noise and the power

spectrum of the reconstructed image modulated with the CTF a-priori. Otherwise a constant

factor ε can be chosen, for instance, after evaluating the quality of the direct reconstruction

proposed in [10].

2.2. Tomography

In this subsection we will use coordinate s to describe the transverse coordinate an observed

image of the object and w as its counterpart in the Fourier domain. A new coordinate θ will

be introduced for the angle at which the image is recorded during the tomographic acquisition.

Coordinates (x,y) will be used to describe a 2D tomographic image of the object (see Fig. 1).

Consider a two-dimensional image f (x,y) which is defined on R
2 →C as a square integrable

function with bounded support. A linear projection of f (x,y) in the direction θ will be defined

along the coordinate s as:

p(θ ,s) =
∫ ∞

−∞
f (t sinθ + scosθ ,−t cosθ + ssinθ)dt. (7)

According to the central slice theorem, if a two-dimensional Fourier transform of the image

f (x,y) is computed

f̃ (u,v) =
∫ ∞

−∞

∫ ∞

−∞
f (x,y) · e−2πi(xu+yv)dxdy, (8)

values of f̃ (u,v) that lie on a radial line passing through the center of coordinates under an

angle θ (central slice) will correspond to the one-dimensional Fourier transform taken along

the s coordinate of the projection p(θ ,s):

f̃ (wcosθ ,wsinθ) =
∫ ∞

−∞
p(θ ,s) · e−2πiswds. (9)

The central slice theorem demonstrates an important relation between the Radon transform and

the Fourier transform of the two-dimensional image f (x,y). It follows from Eq. (9) that the

function f (x,y) can be sampled in 2D Fourier space using 1D Fourier transforms of its own

projections p(θ ,s). This facilitates direct reconstruction based on the inverse Fourier transform

of f̃ (u,v) which has to be computed using interpolation. Moreover, it was shown in [4] that

by using appropriate additional constraints, a piece-wise constant object (i.e. an object that

has sparse gradient magnitude) can be accurately reconstructed from a severely undersampled

Fourier representation f̃ (u,v), i.e. using very few projections. The latter has important conse-

quences for regularization of the phase-retrieval problem described in the following subsection.
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Fig. 1. Central slice theorem for single-distance X-ray Phase Retrieval Tomography. Spa-

tial domain representation: observations I(θ ,s) can be modeled as the projection of the un-

known image f (x,y) followed by the convolution with a linear propagator. Fourier domain

representation: Fourier transform of the observed image Ĩ(θ ,w) can be modeled as the slice

of the unknown image f̃ (wcosθ ,wsinθ)) multiplied with P(w). The Fourier representa-

tion of the unknown image f (u,v) is irrecoverable at the frequency bands corresponding to

zero-crossings of P(w).

2.3. Phase-contrast tomography

By combining (1) and (9) we can rewrite the central slice theorem for what we call Phase

Retrieval Tomography (PRT), i.e. phase retrieval combined with tomographic reconstruction:

f̃ (wcosθ ,wsinθ) =
Ĩ(θ ,w)−δ (w)

2σ sin(πλDw2)−2cos(πλDw2)
. (10)

Here Ĩ(θ ,w) is the one-dimensional Fourier transform of the phase-contrast sinogram. Accord-

ing to Eq. (10), f̃ (u,v) is undetermined for frequencies that correspond to zero-crossings of the

CTF. And since the accuracy of the linear approximation and the observations Ĩ(θ ,w) is finite,

f̃ (u,v) can only be computed outside of the circular bands that correspond to |w−w0|< ε (Fig.

1). Thus, the described problem of the tomographic reconstruction based on single-distance

phase-contrast data is underdetermined.

Let us introduce a discrete space-domain representation of the tomography problem. Assume

that the vector f is composed from m samples of f (x,y) defined on a Cartesian grid. Projections

p(θ ,s) are sampled on a regular grid of n elements stored in a vector p. Using the Radon

transform operator R we can write a discrete representation of Eq. (7):

p= Rf . (11)

Here R can be represented by an n×m matrix. This system can be solved using either an

approximation of the R−1 (e.g. filtered back-projection) or in least-squares sense using one of

the algebraic reconstruction algorithms (e.g. EM, ART, SIRT) [11].

For PRT, the tomography model represented by Eq. (11) can be combined with the linear

phase-contrast model of Eq. (6) into a single linear inverse problem:

Z FI = Z PFRf . (12)
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Here, the linear operators Z , P and F are applied to vectors of n elements that contain all

projections generated by Rf instead of a single projection of k elements as it is in Eq. (6).

Their matrix representations can be easily constructed by stacking the corresponding “single

projection” matrices into a block diagonal matrix of n×n elements.

2.4. Preconditioning

Before introducing algebraic methods suitable for solving Eq. (12), we would like to introduce

two other representations of the PCT problem that, under certain conditions, may be preferable

due to faster convergence.

We will assume that for the frequencies |w−w0| > ε , Eq. (1) can be accurately computed

using direct inversion. Then Eq. (12) can be rewritten as follows:

Z Fµ= Z FRf , (13)

where µ is a vector representation of the projected attenuation of the object, which can be calcu-

lated from the phase-contrast sinogram I using direct phase retrieval. Algebraic methods based

on Eq. (13) are likely to converge faster than the ones based on Eq. (12), since the inversion of

the P operator is already solved during the phase retrieval step. However, unlike the approach,

where the tomographic reconstruction is computed subsequently after phase retrieval, Eq. (13)

allows us to take into account that the information about the attenuation of the object is lost

at spatial frequencies |w−w0| < ε . Such an approach can also be used when the number of

tomographic projections is limited.

Yet another version of the linear system can be derived from the central slice theorem given

by Eq. (10). Now for the case that an accurate inverse Radon transform of the sinogram can be

calculated. After changing from polar coordinates to Cartesian coordinates in Eq. (10), we can

write down the following discretized system:

F̂R
−1I = P̂F̂f , (14)

where R−1 is the approximated discrete inverse Radon transform (e.g. filtered back-projection),

F̂ is the two-dimensional discrete Fourier transform and P̂ represents an elementwise mul-

tiplication with the discrete version of the two-dimensional CTF = 2σ sin
(

πλD(u2 + v2)
)

−

2cos
(

πλD(u2 + v2)
)

. Equation (14) permits application of algebraic algorithms with addi-

tional constraints to the phase retrieval problem while the problem of tomographic reconstruc-

tion is solved in a non-iterative manner. This approach can also be faster than calculation based

on Eq. (12), since it does not require recalculation of the back and forward Radon transform for

each iteration.

2.5. Algebraic methods

An approximate solution of Eq. (12) can be found using least-squares minimization:

argmin
f

: ‖A f − Ĩ‖2, (15)

where A =Z PFR and Ĩ =Z FI . Using gradient descent, f is computed according to the

following iterative scheme:

f j+1 = f j −2αA
T (A f j − Î), (16)

where j is the iteration number, A T is the transpose of A , so A T = RT F T PT Z T . The

constant α represents the step size in the opposite gradient direction. In order to guarantee
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Fig. 2. Simulated phase-contrast tomography of the Shepp-Logan phantom. (a) Ground

truth; (b) projected attenuation; (c) observed phase-contrast sinogram; (d) sinogram after

phase-retrieval; (e) ’direct’ filtered-back projection; (f) filtered-back projection after phase

retrieval.

convergence, the constant α has to be sufficiently small and can either be calculated using an

additional line-search step or from the eigenvalues of (A T A ) [12]. It is worth noting that the

Fourier transform operator F is orthogonal, so F T = F−1; operators Z and P are repre-

sented by diagonal matrices, so Z T = Z , PT = P , and RT represents the unfiltered back-

projection operator.

We have mentioned previously that in conventional tomography a piecewise constant im-

age f can often be computed accurately from severely underdetermined tomographic system

using methods with additional constraints, such as TV minimization. In the TV minimization

approach an additional term is added to the objective function:

argmin
f

: ‖A f − Î‖2 +λTV‖f‖TV , (17)

where ‖f‖TV = ∑
√

(∇hf)2 +(∇vf)2, ∇h and ∇v are the horizontal and vertical finite dif-

ference operators and λTV denotes the weight of the regularization term. Depending on the

magnitude of λTV the solution will be promoted either towards greater conformity with the

observed data or towards greater sparsity of the gradient magnitude. Equation (17) represents

a non-smooth convex minimization problem which can be solved using one of the iterative

TV minimization methods [13,14]. In the current investigation we will demonstrate results ob-

tained using so called FISTA-based TV minimization which is described in detail in [15]. The

same algorithm was applied by us to several different phase-retrieval problems in [2]. Further

on we call the solutions based on minimization of Eq. (12) - full algebraic reconstruction, the

ones based on Eq. (13) - algebraic tomographic reconstruction and Eq. (14) - algebraic phase

retrieval.
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Fig. 3. Reconstructions of the simulated data (error magnitude). Columns correspond to

the reconstruction methods: sequential, unconstrained algebraic, full algebraic, algebraic

tomographic reconstruction and algebraic phase retrieval. Rows correspond to the different

simulations: weak phase, few projections, blur, strong phase, noise, realistic.

3. Simulations

In order to compare the accuracy of tomographic reconstructions based on the proposed recon-

struction approaches, we simulated phase-contrast tomographic data using Fresnel propagation.

A discretized Shepp-Logan phantom (256 x 256 pixels) was used as a ground truth image to

generate the density image f (x,y) (Fig. 2(a)). The wave function of the object T (θ ,s) was
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computed for each tomographic angle θ using the following expression:

T (θ ,s) = exp

(

−
2π

λ
· (β + iδ ) ·R f (x,y)

)

, (18)

were δ denotes the decrement of the complex refractive index, β stands for the attenuation

index and f (x,y) denotes a dimensionless normalized attenuation of the digital phantom. Sub-

sequently, the intensity images were generated using the following expression:

I(θ ,s) = F
−1

(

OT F ·F |F−1(Pλ ·FT (θ ,s))|2
)

+noise, (19)

where the Fresnel propagator is represented by Pλ = eiπλDw2
and the Optical Transfer Function

(OTF) of the imaging system is modeled by a Gaussian function OT F = e−
w2a2

2 with standard

deviation a (Fig. 2(c)). Figure 2(e) shows the result of direct application of filtered-back pro-

jection to the raw phase-contrast images. The result of the sequential reconstruction is shown

on Fig. 2(d) and Fig. 2(f). The retrieved phase images (Fig. 2(d)) suffers from typical artifacts –

low frequency noise and fringes around large variations of intensity. These artifacts correspond

to spatial frequencies at which the CTF has low amplitude and the reconstruction errors are

high. They are propagated into the subsequent tomographic reconstruction (Fig. 2(f)).

All images were generated for monochromatic homogeneous illumination with a wavelength

λ = 0.31Å (energy 40 KeV), propagation length D = 1 m and a pixel size of 1 µm. Noise was

added to the sinogram after modeling the complete imaging chain. Since the intensity is varying

only moderately across the sinogram, an additive Gaussian noise term was assumed to be a good

model. Parameters used in various simulations are shown in Table 1.

Table 1. Simulation parameter sets

Simulation Projection number δ ,×10−8 β ,×10−10 OTF a, µm Noise STD

name: (per 180◦ scan)

weak phase 360 0.5 0.5 0 0

few projections 72 0.5 0.5 0 0

blur 360 0.5 0.5 3 0

noise 360 0.5 0.5 0 2e-3

strong phase 360 5 5 0 0

realistic 180 5 5 1 1e-2

Simulated data was treated by five different reconstruction techniques: sequential approach

(phase retrieval followed by the filtered back-projection), unconstrained algebraic reconstruc-

tion based on Eq. (12) and three algorithms based on TV minimization: full algebraic recon-

struction - Eq. (12), algebraic tomographic reconstruction - Eq. (13), algebraic phase retrieval

- Eq. (14). A known Gaussian OTF was included in all algebraic reconstruction models in or-

der to achieve a sharper reconstruction. Reconstructions were performed on a 512 x 512 pixels

grid in order to avoid boundary effects. The same stopping condition was used for all algebraic

methods:
‖f j+1 −f j‖

2

‖f j‖2
< 10−5. (20)

The weight of the regularization term λTV had to be adjusted depending on the underlying linear

system and the variance of the simulated data. Automated methods for determining the regu-

larization parameters produce a wide spread of results depending on the method [16]. In this
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work the regularization parameters were selected empirically so, for a given combination of the

linear model and the simulation conditions, a solution with a small RMSE would be obtained.

For full algebraic reconstruction λTV varied in the range from 10−7 (for the “blur” simulation)

to 10−5 (for the “strong phase” and “realistic” simulations). For algebraic tomographic recon-

struction λTV was in the range from 10−10 to 10−8. And for algebraic phase retrieval we used

λTV ranging from 10−4 to 10−2. The constant parameter ε was set to 104 m−1 for simulations

with small errors (“weak phase”, “few projections” and “blur”) and 105 m−1 for simulations

with large errors (“strong phase”, “noise” and “realistic”). Figure 3 illustrates the error mag-

nitude associated to the resulting reconstructions. The corresponding Root Mean Square Error

(RMSE) can be found in Table 2.

Table 2. RMSE for six different simulations (rows) and five reconstruction algorithms

(columns).

Resonstruction: TV minimization

sequential algrebraic algebraic algebraic algebraic

Simulation: recon. unconstr. recon. full recon. tomography phase retr.

weak phase 0.043 0.031 0.003 0.021 0.043

few projections 0.113 0.113 0.010 0.027 0.109

blur 0.076 0.072 0.051 0.082 0.063

noise 0.112 0.084 0.043 0.040 0.047

strong phase 0.057 0.070 0.029 0.045 0.046

realistic 0.072 0.085 0.048 0.050 0.061

4. Experiments

In this section we are presenting some preliminary results of the full algebraic reconstruc-

tion and the algebraic phase retrieval methods applied to an experimental X-ray PCT dataset.

The data was collected at the beamline ID11 of the European Synchrotron Radiation Facility

(Grenoble, France). The tomographic scan was acquired in-situ for spherical polycrystalline

copper (Makin Metal Powders (UK) Ltd., diameter 50 µm) during sintering at 1050◦C. The

specimen was placed in a quartz capillary with a 500 µm internal diameter. During the exper-

iment gas shielding (argon: 98% and hydrogen: 2%) was applied. The scan was performed in

a continuous 180◦ mode with 650 projections. Phase-contrast images were acquired using an

X-ray beam with a mean energy E = 40 KeV (ΔE/E = 10−3), a source to object distance of 96

m and a propagation distance of 25 cm. The size of each image was 512 x 256 pixels with a

pixel size of 1.4×1.4µm2.

We compared the standard sequential reconstruction employing L2-regularization with the

proposed algebraic methods based on TV-minimization. Figure 4 shows the results obtained

using three different reconstruction techniques: sequential approach, full algebraic reconstruc-

tion, and algebraic phase retrieval. All reconstruction techniques were applied to the complete

dataset of 650 projections and a subset of only 65 projections. The red line on Fig. 4 shows

the position of the attenuation profiles that are depicted in Fig. 5. In the sequential approach

L2-regularization was used during the phase-retrieval, while the algebraic phase retrieval and

the full algebraic reconstruction were performed using a three-dimensional FISTA-based TV

minimization with non-negativity constraint. A Gaussian OTF was added to the CTF model

in order to account for blurring with FWHM of 4.95 µm. We varied the number of iterations

depending on the rough estimate of the convergence speed of a particular algorithm. In full
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Fig. 4. X-ray PCT reconstruction of the glass capillary filled with copper spheres (slice

from the middle of the volume). Reconstructions based on 650 projections: (a) - sequen-

tial approach based on L2-regularized phase retrieval, (c) - full algebraic reconstruction,

(e) - algebraic phase retrieval. Reconstructions based on 65 projections: (b) - sequential

approach, (d) - full algebraic reconstruction, (f) - algebraic phase retrieval. Red line shows

position of the profiles depicted on the next figure.

algebraic reconstruction we used 2000 iterations. In algebraic phase retrieval based on 650 to-

mographic projections 300 iterations were used. Two times more iterations were used in both

approaches when applied to 65 tomographic projections.

5. Conclusion

The results of reconstructions for the simulated data (Fig. 3) demonstrate that a TV minimiza-

tion approach can yield a nearly flawless tomographic reconstruction based on a single distance

X-ray PCT data (full algebraic reconstruction applied to the weak phase case). In most of the

demonstrated examples the full algebraic reconstruction approach outperforms the other two

approaches: the algebraic tomographic reconstruction and the algebraic phase retrieval.

However, there are certain cases where the technique will not work so well. The algebraic

tomographic reconstruction method clearly fails in the case with strong blur applied to the

simulated data. That is an expected outcome since the blur is not included in the linear sys-

tem that is solved algebraically. The algebraic phase retrieval method is failing in the case

that the dataset contained only a few projections. It is also expected since the back-projection

sub-problem is not solved by the algebraic algorithm but calculated once using filtered back-

projection. However, given the advantages of the full algebraic reconstruction, it also suffers

from certain disadvantages - it is the most computation-intensive of the methods proposed in

this article. It also is likely to converge slower than the other two in terms of the number of

iterations.

All reconstructions in this paper were applied to the data (recorded as well as simulated)

of objects that comply with the assumption of sparsity, i.e. objects with a piece-wise constant

attenuation. Other studies show that TV minimization can improve the accuracy of the recon-
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Fig. 5. Attenuation profiles of the copper sphere and the quartz wall for different recon-

struction algorithms. (a) Reconstruction based on 650 projections; (b) reconstruction based

on 65 projections.

struction of images that are not strictly sparse [6]. Further investigation should be carried out in

order to test the applicability of the Phase Retrieval Tomography based on TV minimization to

non-sparse objects, such as those encountered in soft-tissue imaging.

In the current study we investigated a simple case of tomographic reconstruction for parallel

beam geometry combined with a single-distance CTF phase-retrieval model. This combination

represents a linear inversion problem, so algebraic reconstruction algorithms can be applied to

solve it with minimal adjustments. However, there are a large number of variations to the pro-

posed technique that can be considered during further investigation. A generalized description

of the central slice theorem for fan-beam or cone-beam geometries [17, 18] should allow ex-

tension of the current approach to these geometries. Some of the phase retrieval models other

than the CTF model can be easily incorporated into an algebraic reconstruction similar to the

two-dimensional phase retrieval in [2]. Specifically, the problem of tomographic reconstruc-

tion based on a multi-distance CTF model [19] remains linear, whereas incorporation of the so

called mixed phase retrieval [20] will require solving a non-linear problem.

The experimental data was recorded during an in-situ sintering experiment during which

acquisition at shorter propagation distance or in attenuation-contrast mode was not possible.

Taking into account that the specimen yields strong attenuation and rapid phase variations, this

imaging regime leads to significant artifacts when linear phase retrieval or no phase retrieval is

used for tomographic reconstruction. However, it seems that the use of TV minimization with

a non-negativity constraint leads to a solution with visibly higher contrast and sharper bound-

aries. A further development of algebraic techniques may facilitate more accurate tomographic

reconstructions based on experimental data acquired under similar (suboptimal) conditions.

Another important result is the full algebraic reconstruction based on fewer projections. It

can be seen, that this method allows to reduce the artifacts significantly in reconstruction based

on a limited number of projections. Both results can justify the high computational cost of the

proposed algebraic algorithms in applications where the acquisition time and the radiation dose

are highly restricted.
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