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Total Variation (TV) regularization has evolved from an image denoising method for images corrupted with Gaussian noise into a
more general technique for inverse problems such as deblurring, blind deconvolution, and inpainting, which also encompasses the
Impulse, Poisson, Speckle, and mixed noise models. �is paper focuses on giving a summary of the most relevant TV numerical
algorithms for solving the restoration problem for grayscale/color images corrupted with several noise models, that is, Gaussian,
Salt & Pepper, Poisson, and Speckle (Gamma) noise models as well as for the mixed noise scenarios, such the mixed Gaussian and
impulsemodel.We also include the description of themaximum a posteriori (MAP) estimator for eachmodel as well as a summary
of general optimization procedures that are typically used to solve the TV problem.

1. Introduction

Acquired digital images are subject to di�erent kinds of noise
[1, Chapter 7] depending on the hardware used for their
acquisition which may involve additional degradations due
to transmission errors or other external factors. �e more
common image noise models include the Gaussian, Impulse
(e.g., Salt & Pepper), Poisson, and Speckle (e.g., Gamma) and
the mixed Gaussian and impulse noise models.

While there are several algorithms that can be considered
state of the art for a particular noise model, typically the
adaptation of such specialized algorithms to handle other
noise models has been proven to be either severely dicult
or just plain impossible. It is in this regard that regularization
methods stand atop due to their �exibility to use any given
noise model; while there are several examples of such meth-
ods (Tikhonov regularization, Wavelet image restoration,
sparsity based denoising and inversion, etc.), here we focus
on the Total Variation (TV) regularization [2] method. �e
original TV regularization method targeted image denoising
under Gaussian noise [2]; nevertheless it has evolved into a
more general technique for inverse problems (see [3] formore
speci�c details) while retaining its edge preserving property
([4] gives an extended analysis of TV’s properties).

�e TV regularized solution of the inverse problem
involving data b and observation operator � (the identity in
the case of denoising) is the minimum of the functional

� (u) = � (b | �u) + �‖∇u‖1, (1)

where � is the data �delity term, which depends on the noise
model (for instance see (40), (42), (43), and (44)), the scalar� is the regularization parameter, ‖∇u‖1 represents the total
variation of solution u, and the ℓ1 norm of vector k = ∇u is
denoted by ‖k‖1 = ∑� |V�|. Moreover, depending on the noise
model a nonnegativity constraint may be imposed to (1).

While in Section 4 we will give a complete list of several
types of numerical algorithms to solve (1), here we mention
that such algorithms can be classi�ed on those that need to
solve a linear system of equations and those that do not.
Usually the formers can handle the denoising as well as the
deconvolution problems, whereas the latter can only handle
the denoising problem. Moreover for the cases in which a
nonnegativity constraint needs to be imposed to (1), such for
the Poisson and Speckle noise models, numerical algorithms
di�er on how they handle the non-negativity constraint,
which may add additional computational costs.

�e outline of the paper is as follows: in Section 2 we
describe the more common image noise models, where we
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also include a brief description on how to �nd the best
estimator of an observed data corrupted with a known noise
model using the criterion based on the MAP (maximum
a posteriori) estimator. Next in Section 3, we provide a
general review of optimization procedures, with a particular
focus on the TV problem, where we also include a more
detailed description of some general algorithms that usually
do not appear on well-known textbooks. In Section 4 we
summarize several TV numerical algorithms for each noise
model (Gaussian, Impulse, Poisson, Gamma, and mixed
Gaussian plus Impulse) considered in the present paper; we
also include some details that di�erentiate the Total Vari-
ation formulation for grayscale from color (vector-valued)
images. Numerical simulations and examples are presented
throughout Section 5. Finally, concluding remarks are listed
in Section 6.

2. Image Noise Models

In this section we will describe the more common image
noise models including the Gaussian, Impulse, Poisson,
Speckle (Gamma), and themixedGaussian and impulse noise
models; nevertheless we will start by succinctly describing
the basics on how to �nd the best estimator of an observed
data corrupted with a known noise model using the criterion
based on the MAP (maximum a posteriori) estimator (for a
more detailed introduction to this topic, we recommend [5]
and the many references therein).

We will assume that u∗, b, and u are a 1-dimensional
(column) or 1D vector that represents the original, observed,
and reconstructed 2D grayscale or color images, respectively,
obtained via any ordering (although the most reasonable
choices are row major or column major), that is, for the
grayscale case, b = {
1, 
2, . . . , 
�}, whereas for the case of
a 2D color image it will be represented by the 1D (column)

vector b = [(b1)�(b2)�(b3)�]�, where each b� with � ∈ = {1, 2, 3} represents a grayscale image. Additionally, we
will also consider an observation operator � (see (1)) to be
a � × � matrix, which we will assume to be either the
identity or to represent an observation operator (e.g., blur);
furthermore for the case of color images, the observation
operator� is assumed to be decoupled; that is,� is a diagonal
block matrix with elements ��; if � is coupled (interchannel
blur) due to channel crosstalk, it is possible to reduced it to a
diagonal block matrix via a similarity transformation [6].

�e MAP estimator assumes that prior noise model (in
the observed image b) is known; then the joint probability
distribution function for pixel �, given by �(
� | �∗� ), will
be described by the particular noise model that degrades the
observed image; furthermore, if we assume that the noise
a�ecting the (observed) image is independent, then we can
write

�B|U∗ (b | u∗) = �∏
�=1

� (
� | �∗� ) . (2)

Since the aim of any restoration procedure is to estimate
u ≈ u

∗ conditioned on the knowledge of the observed data b,

Bayes’ law directly leads to the description of the a posteriori
conditional joint probability distribution function

�U|B (u | b) = �B|U (b | u) ⋅ � (u)
� (b) , (3)

where the maximization of (3) will lead us to the classical
MAP estimator; moreover, this maximization is equivalent
to the minimization of − ln(�U|B(u | b)). If we additionally
assume that �(u) ≈ �(u∗) and �(b) are constant, then the
MAP estimator can be found by minimizing − ln(�B|U(b |
u)).

In the next subsections we will use the previous descrip-
tion for each particular noise model to �nd its MAP estima-
tor, which will be incorporated as the �delity term in (1).

2.1. �e Gaussian Noise Model. �e additive Gaussian noise
model, is the most frequently occurring noise model used to
model thermal noise as well as the limiting behavior of other
noise models (for details see the Central Limit theorem, [7,
Chapter 8.4]); the model is given by

b = �u∗ + �, (4)

where the forward linear operator � models an observation
operator which we will assume to be either the identity or
to represent a blur operator and � = {�1, �2, . . . , ��} is
a sample of a random vector of � independent Gaussian
variables, each with probability density function given by

(1/√2��2)e− (��−�)2/2	2 .
Assuming that u ≈ u

∗ and � = 0, it is straightforward to
check that

�B|U (b | u) = ( 1√2��2)
� ⋅ e−‖�u−�‖22/2	2 . (5)

Using the MAP criterion (and since � is a constant), then

the estimator will be found byminimizing − ln(e−‖�u−�‖22/2	2).
Typically thisMAP estimator is referred as the solution of the
optimization problem given by

min
u

12‖�u − b‖22. (6)

�is result is the classical and well-known direct approach for
inverse �ltering under additive Gaussian noise (see [8]).

We �nish this subsection with a concisely list of gen-
eral denoising methods under the additive Gaussian noise
model, highlighting that [9] is a very good introduction
to the classical methods for image restoration. Well-known
restoration algorithms include the bilateral �lter [10], Total
Variation denoising [2], the SUSAN �lter [11], Wavelet based
denoising [12], nonlocal means [13], and so forth; several of
the above mentioned algorithms are reviewed and compared
in [13]. Finally we mention that patch based approaches,
which group 2-D images fragments (or patches) with similar
characteristics, are widely considered to be the current
leaders in terms of reconstruction quality for the denoising
problem; for instance [14] (and derived variants), known as
the BM3D algorithm, is a good example of such approaches.
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2.2.�e Impulse Noise Model. Degradations due to (wireless)
transmission errors appearing during the acquisition of
digital images are usually modeled as Impulse noise, which
can be expressed as

b = B ⋅ (�u∗) + (1 −B) ⋅ r, (7)

where arithmetic operations are to be considered as element-
wise, B is a sample drawn from an i.i.d. multivariate
Bernoulli distribution with success probability 1 − �, 1
represents a vectorwith all elements equal to one (bothB and
1 have the approppiate dimension), r is either Salt & Pepper
noise or random-valued impulse noise; for the former case,�� = cmin or �� = cmax with probability�1 and�2, respectively,
(� = �1 + �2), and for the latter case �� is drawn from an
uniform distribution in [cmin, cmax].

Since Impulse noise (and Salt & Pepper noise in particu-
lar) is an example of heavy tailed noise (its probability density
function or pdf approaches to zero slower than the Gaussian
pdf) it is usually modeled as additive white Laplacian noise
(in [15] it was noticed that Laplace noise has the heavy tail
behavior associatedwith impulsive noise); in other words, the
model described by (7) is approximated by b = �u∗ + �,
where � = { 1,  2, . . .  �} is a sample of a random vector
of � independent Laplacian variables, each with probability

density function given by (1/2�)e−|�−�|/	; as in the previous
sub-section, by assuming that u ≈ u

∗ and � = 0, then it is
easy to verify that

�B|U (b | u) = ( 12�)
� ⋅ e−‖�u−�‖1/	. (8)

Using the MAP criterion, the estimator can be found by
solving the optimization problem given by

min
u

‖�u − b‖1. (9)

�e use of the ℓ1-norm (as in (9)) has attracted attention
in the past decades [15–20] due to a number of advantages,
including superior performance with impulse noise in sce-
narios ranging from detection to variational models.

�ere are several (nonvariational) approaches to denoise
images corrupted with Salt & Pepper noise (as well as for
the more general case of Impulse noise), here we succinctly
mention the classical 2D median �lter [21] and its variants,
such the rank-order-based adaptive median �lter [22] for the
Salt & Pepper case (which uses two-phase approach: �rst
detects the pixels corrupted with Salt & Pepper noise and
then �lters only those pixels), or the center-weighted median
�lter [23] for the random-valued impulse noise case. We also
mention other methods that also use a two-phase approach:
the progressive switching median �lter [24], the �lter based
on the ranked over absolute di�erence statistics [25], the
fuzzy impulse noise detection and reduction method [26],
and the directional weightedmedian �lter [27] among others.

2.3. �e Poisson Noise Model. Fundamentally, almost every
device for image acquisition is a photon counter: Positron
Emission Tomography (PET), computed tomography (CT),

radiography, CCD cameras, and so forth. When the count
level is low, the resulting image is noisy; such noise is usually
modeled via the nonhomogeneous Poisson (NHP) model,
with the resulting noise being nonadditive and pixel-intensity
dependent. Given u

∗, the noise-free image, we consider each
� (pixel of b, observed image) to be an independent Poisson
random variable such E{
� | �∗� } = �∗� ≥ 0 and P(
� |�∗� ) = �∗� ��e−�∗� /
�!; formally, the Poisson noise is de�ned
as %� = 
� − E{
� | �∗� }, with E{%� | �∗� } = 0 and
var{%� | �∗� } = �∗� , which stresses the fact that Poisson
noise is signal dependent; furthermore, this characteristic
of the Poisson noise (that Poisson noise’s variance is signal
dependent, and particularly for images, that its variance is
pixel or spatial dependent) prevents from directly treating it
as Gaussian noise (by invoking the Central Limit theorem,
see [7, Chapter 8.4]) even when �∗� (value that represents the
“count”) is not low, since the variance of such approximation
would be spatially dependent, and thus be in contradiction
with the standard Gaussian noise model (which assumes a
constant variance).

Following a similar approach as in the previous sub-
sections, we will assume that each pixel of the observed image
b = {
1, 
2, . . . , 
�} is a sample of a random vector of �
independent Poisson variables, with a joint pdf given by

P (b | �) = �∏
�=1

����e−��
�! , (10)

where � = �u∗ ≥ 0, � models an observation operator
(identity or blur), and u

∗ is the unknown noise-free image,
which is usually assumed to be nonnegative.

Using the MAP criterion, the estimator can found by
solving the optimization problem given by

min
u

∑(�u)� − b� ⋅ log ((�u)�)
s.t. u ≥ 0, (11)

where (�u)� represents the �th element of�u (i.e., if k = �u,
then V� = (�u)�).�eminimization problem summarized by
(11) was �rst presented in [28, 29], where the (now classical)
Richardson-Lucy algorithm was introduced.

It must be noted that the functional (Poisson likelihood)�(u) = ∑ (�u)� − b� ⋅ log((�u)�) is not Lipschitz continuous
when (�u)� (for any �) is close to zero: that is, it is no

possible to �nd a constant 0 < ' < ∞ such that |�(u(1)) −�(u(0))|/|u(1) − u
(0)| ≤ ' if either any element of �u(0) or�u(1) is (close to) zero; therefore, any given algorithm that

optimizes a cost functional that includes that the Poisson
likelihood must take this consideration into account.

Finally, we mention that there are several methods to
restore (denoise/deconvolve) non-negative images corrupted
with Poisson noise (a comprehensive review is given in
[30]) which includes the Richardson-Lucy algorithm and its
regularized variants as well as Wavelet methods, Bayesian
methods, and so forth. Additionally we also notice that
there are methods [31–33] based on Variance-Stabilizing
Transformations or VST (the Anscombe [34] or Freeman-
Tukey [35] VST for this particular case): given a set or
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sequence of nonhomoskedastic random variables (random
variables with di�erent �nite variances), with the same
underlying distribution family, a VST is a speci�c distribution
transformation that renders that set or sequence of random
variables into an homoskedastic one (random variables with
the same �nite variance); moreover such transformation is
chosen so the transformed random variables are Gaussian
with unit variance. �ese methods ([31–33]) attain very
high quality reconstruction results by using state-of-the-art
denoising methods for the Gaussian noise model and then
applying the inverse VST.

2.4. �e Speckle (Gamma) Noise Model. For images acquired
via ultrasound, SAR (synthetic aperture radar) or coherent
light imaging systems (e.g., Fabry-Perot interferometer, etc.),
Speckle noise is a critical factor that limits their visual percep-
tion and processing (see [36, 37] among others). Typically, the
multiplicative model

b = (�u∗) ⋅ �, (12)

is considered, where (as in previous sub-sections) � is the
observation operator, u∗ is the noise-free data, and � is the
noise; also, it is assumed that b, u∗ > 0. Moreover, in the
Speckle noise model, it is considered that � = {41, 42, . . . , 4�}
is a sample of a random vector of � independent Gamma

variables, each with pdf given by ��(4) = ('�/Γ('))4�−1e−��,
with E{4�} = 1 and var{4�} = 1/', where Γ(') = (' − 1)! for a
positive value of '.

�e derivation of the MAP estimator is not as straight-
forward as for the previous noise models; on what follows
we summarized the derivation of the MAP estimator as
originally presented in [38], which leads to a nonconvex
optimization problem.

We �rst reproduce Proposition 3.1 from [38] (for the
proof, see the mentioned reference): assume that u and � are
independent random variables with independent continuous
pdfs �U and �Z; then for b = u ⋅ � and u > 0

�Z (b

u
) ⋅ 1

u
= �B|U (b | u) , (13)

where arithmetic operations are to be understood as element-
wise; using this result, then MAP estimator can be computed
by maximizing

�B|U (b | u) = ( '�Γ ('))
� �∏
�=1

( 
�(�u)�)
�−1 1(�u)� e

−�(��/(�u)�);
(14)

such maximization derives in the following non-convex
optimization problem

min
u

∑
�

b�(�u)� + log ((�u)�)
s.t. u ≥ 0.

(15)

As for the Poisson noise model, it must be noted that the
functional (Gamma likelihood) �(u�) = ∑�(b�/(�u)�) +
log((�u)�) is not Lipschitz continuouswhen (�u)� (for any �)
is close to zero, and thus any given algorithm that optimizes
a cost functional that includes the Gamma likelihood must
take this consideration into account. In [38] the authors give
a detailed proof of the existence and the uniqueness for this
MAP estimator (15) when used within a variational model.

While in [37] an extensive list of despeckle �ltering
algorithms is provided, which includes methods based on
linear �ltering (�rst-order statistics, local statistics, etc.),
nonlinear �ltering (median, linear scaling, etc.), di�usion
�ltering (anisotropic di�usion, etc.), and wavelet �ltering, we
also mention that methods following a VST-like approach
[39] can be also an e�ective alternative.

2.5.�eMixedGaussian-Impulse NoiseModel. Asmentioned
before, acquired digital images are frequently subject to
additive Gaussian noise; if we then add the degradation due
to transmission errors, the observed image will be corrupted
by Gaussian with salt-and-pepper (constant-valued impulse)
noise or random-valued impulse noise. �e mixed Gaussian
and impulse noise model is summarized by

b = B ⋅ (�u∗ + �) + (1 −B) ⋅ r, (16)

where we have the same considerations as for the Impulse
noise model (see Section 2.2, in particular the considera-
tions for (7)), and additionally � = {�1, �2, . . . , ��} is a
sample of the random vector of � independent Gaussian
variables, each with probability density function given by

(1/√2��2)e−(��−�)2/2	2 .
�e key idea of the methods that target this mixed noise

model scenario is to use a two-phase approach: detect the
outlier pixels before proceeding with the �ltering phase,
where the detected outliers (pixels corrupted with Impulse
noise) and the rest of the pixels are �ltered using a suitable
(and sometimes independent) method for the particular
noise model. For example (in the case of non-TV based
methods), [25] introduced an universal noise removal �lter
that �rst detects the impulse corrupted pixels and estimates
its local statistics and incorporate them into the bilateral �lter
[10], resulting in the trilateral �lter. In [40] somewhat similar
ideaswere used to develop a similarity principlewhich in turn
drives the weights of the “mixed noise �lter”; the reconstruc-
tion performance (as reported in [40]) outperformed that of
the trilateral �lter.

Although all the methods that target (16) assume thatN,
the set of outliers (pixels corrupted with impulse noise), is
known; the fact is thatNmust be estimated; for this purpose
there are several options (for a performance comparison
between several of the listed methods we refer the reader
to [41]): the rank-order-based adaptive median �lter [22],
the progressive switching median �lter [24], the �lter based
on the ranked over absolute di�erence statistics [25], the
fuzzy impulse noise detection and reduction method [26],
the center weighted median �lter [23], and the directional
weighted median �lter [27] among others.
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3. Optimization Algorithms: A Review from
the Total Variation’s Perspective

Optimization theory dealswithmethods to �nd the argument
of a cost function that minimizes (maximizes) it, where the
cost function is a quantitative measure of the performance
of a given system. In this Section we focus on listing general
optimization procedures that are usually used to solve the
TV problem, giving references to well-known textbooks or
succinctly describing such general optimization procedures.
For a general introduction to the topic of optimization theory
we recommend [42, 43] among other textbooks.

We �rst start this Section by reminding of the general TV
problem (as described in (1))

� (u) = � (b | �u) + �‖∇u‖1, (17)

and by stressing that a non-negativity constraint (u ≥ 0)
may be imposed to (17); also, throughout this paper we will
consider that the discrete version of ‖∇u‖1 is given by

88888888888√∑
�∈�

(:�u�)2 + (:�u�)2
888888888881, (18)

where � ∈  = {1} (grayscale images case) or � ∈  ={1, 2, 3} (or “red,” “green”, and “blue,” for the color images
case; also note that  could represent an arbitrary number
of channels), the horizontal and vertical discrete derivative
operators are denoted by :� and :�, respectively, and that
the scalar operations are considered to be applied element-

wise, so that, for example, u = √k ⇒ �[�] = √V[�]. We
also note that (18) is the generalization of TV regularization to
color images (for other choices see [44, Chapter 4.8.2]) with
coupled channels (see [45, Section 9]), typically used within
the color or vector-valued TV framework (�rst introduced
in [46]), which coincides with the discrete version of ‖∇u‖1
for grayscale images (� ∈  = {1} in (18)), that is

‖√(:�u)2 + (:�u)2‖1.
Due to the nondi�erentiability of ‖∇u‖1, it is sometimes

replaced by the smooth approximation

12∑� F� (V�) , (19)

where k2 = ∑�∈� (:�u�)2+(:�u�)2 and some sensible choice

of function F�(⋅) such F�(V�) = 2√V
2
� + G2 or such the Huber

function [47]

F� (V�) = {G−1V2� if
IIIIV�IIII ≤ G22 IIIIV�IIII − G if
IIIIV�IIII > G2. (20)

We also mention that in other cases an anisotropic separable
approximation of ‖∇u‖1 is preferred, that is |∇u| ≈ |:�u| +|:�u| (for instance, see [48]).

Since its original formulation [2], the development of
numerical algorithms for solving (17), as well as its non-
negativity version, has attracted considerable interest; while
in Section 4 we will give a complete list of such algorithms,

here we focus on brie�y describing or listing (whenever
already described in well-known textbooks) general opti-
mization procedures that are usually used to solve (17). For
instance in [49, Chapter 8] a complete description of several
general optimization procedures for TV are given, such as the
Steepest Descent (also referred as the arti�cial timemarching
approach, see [44, Chapter 4.5.5]), the Newton method, the
lagged �xed point iteration (originally described in [50, 51]),
and the Primal-dual Newton method (originally described

in [52]). Although all of these algorithms focus on the ℓ2-
TV case (Gaussian noise model), several of them have been
used for other noise models (see Section 4). Similarly in
[44], several numerical algorithms for TV are described; of
particular interest is the dual formulation of the TV problem
described in [44, Chapter 4.5.6], which is a di�erent approach
than the Primal-dual Newton method (and was used in [53]
to derive an e�ective algorithm).

�e enforcement of a nonnegativity constraint, that is,:
u ≥ 0, for the solution of (17) is not only physically mean-
ingful in most of the cases: images acquired by digital
cameras, CT, and so forth; it also improves the quality
of the reconstruction (see [54]). Nevertheless, the non-
negativity constraint is seldom considered in the practice
(unless explicitly needed by the noise model), since it makes
a hard problem even harder. �ere are several well-known
methods to attack this problem: for instance in [49, Chapter
9] very gooddescriptions are given for the gradient projection
method (which can be understood as a generalization of
the Steepest Descent method) and for the Projected Newton
method (as well as its variants).

We �nalize this Section by succinctly describing three
general optimization procedures that have been used to solve
the TV problem: the Iterative Reweighted Least Squares
(IRLS), the Alternating Direction method of multipliers
(ADMM) or Split-Bregman (SB), and the Nonnegative
Quadratic Programming (NQP) method.

3.1. Iterative Reweighted Least Squares (IRLS). Since its intro-
duction [55] the IRLS method has been applied to a vari-
ety of optimization problems. Originally, the IRLS method
was used to solve the ℓ� minimization problem �(u) =(1/�)‖�u − b‖�� by iteratively approximating it by a weighted

ℓ2 norm. At iteration � the solution u
(�+1) is the minimizer

of (1/2)‖L(�)1/2(�u − b)‖22, with weighting matrix L(�) =
diag(|�u(�) − b|�−2). For 2 ≤ � ≤ 3 this algorithm converges
to the global minimizer [56], while for 1 ≤ � < 2 the

de�nition of the weighting matrix L(�) must be modi�ed to
avoid numerical instability due to division by zero or by a very
small value. A standard approach is to threshold elements

of �u(�) − b in constructing the corresponding elements ofL(�), but other choices are also possible [57, 58]. For 0 <� < 1 it has been shown [58], within a sparse representation
framework, that the IRLS algorithm not only converges but
increases its convergence rate as � goes to zero.

Without loss of generality, we will focus on the ℓ2-TV
[2] case for grayscale images: �(u) = (1/2)‖�u − b‖22 +
�‖√(:�u)2 + (:�u)2‖1, where � is the forward operator, b
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is the observed noisy data, � is a weighting factor controlling
the relative importance of the data �delity and regularization
terms, and u is the restored image data.

�e key idea [59] is to express the regularization term by

the quadratic approximation M(�)
� (u) = (1/2)‖L(�)

�
1/2:u‖22,

where

L(�)
� = N2 ⊗ Ω(�)

� , : = [:�
�:�

�]�,
Ω(�)
� = diag(((:�u

(�))2 + (:�u
(�))2)−0.5) , (21)

and N� isa � × � identity matrix, and ⊗ is the Kronecker
product.�e resulting iterations can be expressed in the form
of the standard IRLS problem:

�(�) (u) = 12
8888888888[
1 00 L(�)

�
]1/2 [ �√�:] u − [
0]

8888888888
2

2
. (22)

For a given current solution u
(�), the weighting matrixL(�)

� can be easily computed, and the threshold (to avoid
numerical instability due to division by zero or by a very small
value) may be automatically adapted to the input image [59,
Section 4.7]. Finally, the resulting algorithm has to iteratively
solve the linear system

(��� + �:�L(�)
� :) u(�+1) = ��

b, (23)

which is its most computationally demanding part.�e same
strategy can be used to solve all other noisemodels within the
TV framework, including the vector-valued (color) TV.

Moreover, for the particular case of denoising (� = N in
(22)) the solution of the linear system described by (23) is
given by

(N + :�L̂(�)
� :) u(�+1) = b, (24)

where L̂(�)
� = �L(�)

� ; if we now apply the (well-known)
matrix inversion lemma to (24), we get

u
(�+1) = b − :�((L̂(�)

� )−1 + ::�)−1:b. (25)

It is important to notice that (L̂(�)
� )−1 can be computed

directly (no division by zero); furthermore, by solving

((L̂(�)
� )−1 + ::�) z(�) = :b. (26)

We can compute u(�+1) via

u
(�+1) = b − :�

z
(�). (27)

�is approach ((26) and (27)) was �rst proposed, within
the Total Variation framework (particularly for the ℓ2-TV
denoising case), in [60].

3.2. Alternating Direction Method of Multipliers (ADMMs) or
Split Bregman (SB). Alternating minimization methods have
become popular in the past few years due to their ability to

solve ℓ1 regularized problems, that is, �(b | �u) + �X(u),
where X is the regularization term (being (17) a particular
examplewithX(u) = ‖∇u‖1), in a simple and computationally
ecient fashion. Although there are several incarnations of
these methods [61], we focus on the Split-Bregman (SB) [62,
63] algorithm, while noting that it is now recognized that the
SB algorithm is equivalent to the older Alternating Direction
Method of Multipliers (ADMM) [64, 65] algorithm.

�e key idea of the SB method [62, 63] is to introduce
an auxiliary variable to modify the original cost functional
(17) so that it can be iteratively minimized using simple steps
per iteration; this is done by �rst considering the following
constrain optimization problem

� (b | �u) + �X (z) s.t. z = u; (28)

the standard Lagrangian of (28) will lead us to '(u, z,w) =�(b | �u) + �X(z) + w
�(u − z); nevertheless the augmented

Lagrangian '�(u, z,w),
� (b | �u) + �X (z) + w

� (u − z) + Y2 ‖u − z‖22, (29)

is preferred since it gives a more robust framework (see [61,
Section 2.3]). Furthermore, by setting r = u − z and noting

that w�
r + (Y/2)‖r‖22 = (Y/2)‖k + r‖22 + (Y/2)‖k‖22, with w =

k/Y, we can write (29) as

� (b | �u) + �X (z) + Y2 ‖k + u − z‖22 + Y2 ‖k‖22, (30)

which can be iteratively solved by considering the following
alternating optimization problems:

u
(�+1) : argmin

u

� (b | �u) + Y2 88888k(�) + u − z
(�)8888822, (31)

z
(�+1) : argmin

z

�X (z) + Y2 88888k(�) + u
(�+1) − z

8888822, (32)

k
(�+1) = k

(�) + u
(�+1) − z

(�+1). (33)

It is important to highlight some observations regarding the
previous optimization problems: assuming that �(b | �u) is
quadratic then (31) is a generalized Tikhonov problem step,

which is simple to solve; if X(z) can be expressed as the ℓ1
norm of z, then (32) can be solved via shrinkage (in some
cases the generalized shrinkage is needed, see [61, Section
4.1]).

It is also important to note that the SB (or ADMM)
method can also be used to solve the non-negative quadratic
optimization (see (35)) or to solve the optimization problems
derived from the Poisson and Speckle noise models (see
Sections 2.3 and 2.4) using a similar approach (as described in
the previous paragraphs); for a complete description we refer
the reader to [61, Section 5.2], [66, 67], respectively.

�e general SB (or ADMM) algorithm can be easily
adapted to handle isotropic TV (X(u) = ‖∇u‖1, that should
be replaced by its appropriate discrete version for grayscale
and vector-valued images); as an example we succinctly

focus on the ℓ2-TV [2] case for grayscale images: �(u) =
(1/2)‖�u − b‖22+�‖√(:�u)2 + (:�u)2‖1, where the auxiliary
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variable z = [z�, z�]� is used along with the constrains
z� = :�u and z� = :�u; among other operations, such
as generalized shrinkage (see [63, Section 4.1]) and auxiliary
vector updates (which are not computationally demanding)
use to solve the particular optimization problems (related to
the general ones, i.e., (32) and (33)), the SB-TV algorithm has
to solve the linear system

(��� − Y:�:) u(�+1) = ��
b + Y:�:(z(�) − k

(�)) . (34)

Note that the le�-hand side (LHS) of (34) is constant across
di�erent iterations while its right-hand side (RHS) changes
at each iteration; the opposite is true for the resulting linear
system in (23). Furthermore, since LHS of (34) is constant
across iterations (and strictly diagonally dominant in the
practice), it seems natural (as suggested in [63]) to use the
Gauss-Seidel method to solve (34); furthermore, when � = N
or � is a circulant (diagonalizable by the Fourier transform)
matrix, (34) may also be solved in the Fourier or DCT
domain.

One key computational di�erence between the SB-TV
and the IRLS based algorithm is that even though the number
of �oating-point operations for each SB-TV iteration is
slightly smaller than that of each IRLS-TV iteration, typically
the number of global iterations to attain good reconstruction
results for the latter algorithm is less than for the former (see
[68] for a detailed analysis).

3.3. Nonnegative Quadratic Programming (NQP). Recently
[69] an interesting and quite simple algorithm has been
proposed to solve the NQP problem:

min
u

12u�Φu + c
�
u

s.t. 0 ≤ u ≤ �max, (35)

where the matrixΦ is assumed to be symmetric and positive
de�ned, and �max is some positive constant.�emultiplica-
tive updates for the NQP are summarized as follows (see [69]
for details on derivation and convergence):

Φ+
�� = {Φ�� if Φ�� > 00 otherwise

, Φ−
�� = {IIIIΦ��

IIII if Φ�� < 00 otherwise,
(36)

u
(�+1) = min{u(�) [−c + √c2 + �(�)^(�)2�(�) ] , �max} , (37)

where �(�) = Φ+
u
(�), ^(�) = Φ−

u
(�), and all algebraic

operations in (37) are to be carried out element-wise. One
key observation to consider is that this algorithm cannot be
initialized with zeros. Interestingly, once an element has been
zeroed by the multiplicative updates it remains zero under
successive updates; this property is specially appealing when
this algorithm is applied to sparse representation problems.
Furthermore, the NQP is quite ecient and has been used to
solve interesting problems such as statistical learning [69] and
compressive sensing [70] among others.

We �nalize this sub-section by noting that the constraint
problem,

� (u) = 1�‖�u − b‖�� s.t. 0 ≤ u ≤ �max, (38)

could be iteratively solved using an IRLS type approach that
bene�ts from theNQP algorithm, by approximating (38) with

� (u) = 12
888888L(�)1/2 (�u − b)888888

2

2
s.t. 0 ≤ u ≤ �max, (39)

and by settingΦ = ��L(�)� and c = −��L(�)1/2
b in (37).

4. Numerical Algorithms for TV

In the following sub-sections we will summarize a complete
list of TV numerical algorithms for each noise model; we will
also include the particular cost functional that is targeted in
each case, highlighting particular cases such themethods that
adapt the regularization parameter, either in a global or local
fashion.

4.1. TV Numerical Algorithms for the Gaussian Noise Model.
�eminimization of the cost functional,

� (u) = 12‖�u − b‖22 + �‖∇u‖1, (40)

is usually referred to as the ℓ2-TV solution. Since its original
formulation [2] a large number of algorithms have been
proposed to speci�cally solve (40); generally speaking these
algorithms can be classi�ed based on the necessity (or not) to
solve a linear system of equations.

For instance algorithms based on a dual formulation
of (40) do not need to solve a linear system of equations
and are usually computational ecient, although they lack
the ability to handle a nontrivial forward (observation)

operator � in (40); the Chambolle [53] and the Aujol’s ℓ2-
TV approximation (or A2BC model) [71] algorithms are
examples of these type of methods.

On the other hand, methods that are based on the Euler-
Lagrange equations (derived from the direct optimization
of (40)) usually use a smooth approximation of ‖∇u‖1 (see
Section 3) and need to solve a linear system of equations,
which is usually carried out via conjugate gradient (CG),
the preconditioned CG (PCG), or via the Fourier transform
(to solve the linear system when the forward operator �
is equivalent to a circular convolution). For example, we
mention that in [2] the authors used the steepest descent
(arti�cial time marching) algorithm along with a line-search
to solve (40) (the computational performance of the resulting
method is very slow compare to all others); more elaborated
algorithms include the primal-dual method [52] (which
although uses a dual formulations, it does need to solve a
set of linear equations), the lagged di�usivity algorithm [50,
51], the majorization-minimization or MM method [72, 73]
(which can be considered a generalization of the Expectation-
Maximization, or EM algorithm [74]), as well as its variant
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[60] for the denoising case that uses the matrix inversion
lemma (see (26) and (27)), the TwIST method [75] (which
is similar to MM method, previously mentioned and uses
a predetermined PCG splitting method), and the Iteratively
Reweighted Norm (IRN) [59] (which can be understood
as an IRLS method). We also mention the FTVd method
[62, 76] (which is a FFT based algorithm) and the linear
programming via interior point method [77] (for which the
linear system to be solved has twice as many variables as the
original problem) and the Newton’s method [49].

4.1.1. Vector-Valued ℓ2-TV Algorithms. �e TVminimization
scheme for deblurring color images was �rst introduced in
[46], and since then several alternatives have been proposed:
in [78] the authors proposed an algorithm that considered
the HSV color model, in [79] an algorithm based on a
dual formulation (similar to Chambolle’s [53]) was proposed
(only the denoising case was considered), [80] presented
an extension to [79] with a dual/alternate algorithm, in
[81] the IRN algorithm [59] was modi�ed to handle vector-
valued images (this algorithm is related to the IRLS algorithm
for vector-valued datasets, see [6]), and in [82] the FTVd
algorithm [62, 76] was extended to handle vector-valued
images. Finally we also mention that a direct extension of
[50], called vectorial lagged di�usivity, was used in [83] for
comparison purposes.

4.1.2. Nonnegative ℓ2-TV Algorithms. For scalar (grayscale)
images, only a handful of numerical algorithms, for example,
[49, Chapter 9] and more recently [84] (non-negativity is
handled via the NQP algorithm, see Section 3.3), [54] (non-
negativity is handled via a variant of the Primal-dual Newton
method, [49, 52, Chapter 8]), [85] (non-negativity is handled
via combination of a gradient based approach along with an
iterative shrinkage/thresholding algorithm), and [86] (non-
negativity is handled via the SB algorithm, see Section 3.2),
include a non-negativity constraint on the solution of theℓ2-TV problem (40), and to the best of our knowledge, for
vector-valued (color) images only [87] (non-negativity is
handled via the NQP algorithm, see Section 3.3) explicitly

includes the non-negativity constraint within the ℓ2-TV
framework.

4.1.3. Adaptation of the Regularization Parameter for ℓ2-TV.
Several methods have been proposed to adapt the regular-

ization parameter for ℓ2-TV; they di�er on how the amount
of noise is estimated and on the nature of the regularization
parameter which can be a scalar (global) value or a spatially
dependent (diagonalmatrix) set of regularization parameters.
For the latter case, the regularization parameter is moved
from the regularization term into the �delity term; moreover
if we consider Λ = diag(1/�), then (40) can be written (for
the denoising case) as

� (u) = 1288888Λ1/2 (u − b) 8888822 + ‖∇u‖1, (41)

where Λ will be updated for each pixel (independently) in an
iteratively fashion.

Succinctly wemention that for the ℓ2-TV case in [88] two
adaptive regularization schemes were presented to spatially
update the regularization parameters. Also in [89] the Stein’s
Unbiased Risk Estimate (SURE) was used to estimate the
mean square error between the observed image and the
denoised one; a global regularization parameter was used. In
[90] an extension to the Unbiased Predictive Risk Estimator
(UPRE)was used to estimate the global regularization param-
eter as well.

4.2. TV Numerical Algorithms for the Salt & Pepper Noise
Model. TV for the Salt & Pepper noise model is usually

referred as ℓ1-TV; in this case the minimizer of the cost
functional,

� (u) = ‖�u − b‖1 + �‖∇u‖1, (42)

is the solution of the ℓ1-TV problem. �e use of the ℓ1
for the �delity term in (42) was a signi�cant development
[16, 17, 19, 20] for TVbased restorationmethods and attracted
attention due to a number of advantages, including superior
performance with impulse noise [91].

�e numerical algorithms that solve (42) are based on
a variety of methods (although they can also be loosely
classi�ed between methods that need to solve a linear system
andmethods that need not): for instance in [20, 91] a smooth
approximation of the ℓ1 norm was used, along with the
steepest descent algorithm (the computational performance
of this algorithm is slow compared to all other options);
in [92] a Markov random �eld model was used, where
the resulting algorithm, that used the anisotropic separable
approximation, operated over integer-valued images and did
not need to solve a linear system of equations; moreover,
similar ideas were used in [93–95] (which are related to an
earlier algorithm [96]) which yielded to a computational
ecient algorithm (specially [93, 94]), [71] also uses the
anisotropic separable approximation, and does not need to
solve a linear system of equations nevertheless; it introduces
an auxiliary variable (similar to the core idea of ADDM/SB,
see Section 3.2) resulting in an alternating algorithm; a
second-order cone programming approach was proposed
in [97], although it had high memory requirements and

needed to solve a linear system of equations; in [77] the ℓ1-
TV problem was solved using (linear programming) interior
point method; �nally we mention that the IRN algorithm

[59] (IRLS based) can also handle the ℓ1-TV problem (both
denoising and deconvolution) and was a computational
ecient alternative to methods based on theMarkov random
�eld model for the denoising case.

4.2.1. Adaptation of the Regularization Parameter for ℓ1-TV.
�e original ℓ1-TV problem (42) features a single regular-
ization parameter (�), which in�uences the entire pixel set,
and has a direct impact on the quality of the reconstructed
data. Ideally, for the salt-and-pepper noise model, noise-
free pixels should preserve their values in the reconstructed
(denoised) image. However, the use of a global parameter
forces the entire pixel set to be penalized, which results in
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an inaccurate reconstruction. To the best of our knowledge,
[41, 98–100] are the only published papers that tackle the

above-mentioned shortcomings for the ℓ1-TV problem.
All the above-mentioned algorithms (in away or another)

minimize the cost functional �(u) = ‖Λ(u − b)‖1 + ‖∇u‖1,
whereΛ represents a diagonalmatrix, whose entries are set to
zero if the pixel is declared noise-free. Nevertheless, whereas
in [98] a set of corrupted pixel candidates were estimated (via
[22]) to then proceed to solve the ℓ1-TV problem only for
the corrupted candidates, being the regularization parameter
hand-picked, in [99] and in [41, 100] a scheme was proposed
to spatially adapt the regularization parameter; for the former,
such adaptation was based only on local statistics and on
the estimation of the noise level (although all pixels are
still regularized); for the latter, which also estimated the set
of corrupted pixel candidates via [22], the adaptation was
initially based on similar ideas [100], however it was then
proved [41] that the scheme that obtains the best results
(reconstruction quality) is such that the nonzero entries ofΛ should be increased at each iteration.

4.3. TV Numerical Algorithms for the Poisson Noise Model.
�e minimization of the TV regularized Poisson log-
likelihood cost functional [66, 101–108], summarized by
min �(u) s.t. u ≥ 0, where

� (u) = ∑
�
(�u)� − b� ⋅ log ((�u)�) + �‖∇u‖1, (43)

has been successfully employed to restore non-negative
images corrupted with Poisson noise from a number of
applications, such as PET images [101], confocal microscopy
images [102], and others.

Within the TV framework, numerical algorithms that
solve (43) can be loosely classi�ed as those that use a second-
order Taylor approximation of the data �delity term �(u)
to make (43) a tractable problem and those that use other
alternative approaches.

For the latter case, we mention that in [101] an EM
algorithm along with a smooth approximation of ‖∇u‖1
was proposed to solve the Poisson-TV problem; in [102] a
multiplicative gradient based algorithm (equivalent to the
penalized EM algorithm) was used; a multilevel algorithm
was used in [103] to solve a modi�ed version of (43); in
[66] the authors used the ℓ1 regularized loss minimization
(a particular case of the ADMM algorithm, see [61, Section
6.3]) to minimize (43); in [107] two alternative variational
methods were used (called L2-L2Log and TV-log) which can
be understood as a change of variable (c� = log((�u)�)) in
(43).

Algorithms that do use a second-order Taylor approxima-
tion of the data �delity term �(u) need to explicitly address
the problem of it (�(u)) being not Lipschitz continuous
when any element of u is (close to) zero (see Section 2.3).
�is issue is typically addressed by using a modi�ed version
of the second order Taylor approximation or by adding
a constant to the observed data, and although the exact
original problem is not solved (due to the approximations
involved) the reconstruction (numerical) results have proven
to be competitive. Moreover, this type of algorithms need

solve a linear system of equations and typically di�er in the
constrained optimization algorithm used to carry out the
actual minimization and in whether the true Hessian of �(u)
or an approximation is used. For instance, in [109] a linear
approximation of the Hessian is used along with a quasi-
Newton optimization method, in [104] the minimization
was carried out via a nonnegatively constrained, projected

quasi-Newton minimization algorithm; ∇2�(u) was used. In
[106] a constrained TV algorithm, described in [85], plus

the approximation ∇2�(u) ≈ ��N, �� > 0 was used. In
[105] a Expectation-Maximization TV approach was used
and only the denoising problem was addressed. In [108] the
NQP algorithm was used to optimize (43) for both grayscale

and color images; ∇2�(u) was used.
4.4. TV Numerical Algorithms for the Speckle (Gamma)
Noise Model. �e minimization of the non-convex TV
multiplicative model (introduced in [38]) summarized by
min �(u) s.t. u ≥ 0, where

� (u) = ∑
�

b�(�u)� + log ((�u)�) + �‖∇u‖1, (44)

is not the only alternative within the TV framework to restore
images corrupted with Speckle noise; here we mention that
[110] (the �rst method within the TV framework), used
a constrained optimization approach with two Lagrange
multipliers; the denoising and deconvolution problems were
addressed; additionally in [39] the multiplicative model
was converted into an additive one and used a multigrid
algorithm to solve the resulting Euler-Lagrange equation;
Also in [111] the multiplicative model was converted into
an additive one and used the SB (or ADMM) algorithm to
solve the optimization problem; only the denoising prob-
lem was addressed. Moreover, a framework based on MRF
with levelable priors for restoration of images corrupted by
Gaussian or Speckle (Rayleigh) was proposed in [112] where
only the denoising problem was addressed, and in [113] a
hard thresholding of the curvelet transform of the log-image

followed by a ℓ1-TV in the log-image domain was used; only
the denoising problem was addressed.

Regarding the methods that use (44) within the TV
framework, we �rst mention that [38] introduced such data
�delity term, which was derived using the MAP criterion;
moreover, a detailed mathematical study of (44) was also
carried in [38, Section 4] to address several issues, including
the problem of (44) being not Lipschitz continuous (see
Section 2.4): the unique solution to (44) is such that all its
elements are strictly greater than zero.�is result was reached
without any assumption on the underlying optimization
procedure to solve (44); furthermore, as to give numerical
evidence on such result, in [38] an arti�cial time marching
approach (steepest descent) was used to numerically solve the
resulting Euler-Lagrange equation from (44); the denoising
and deconvolution problems were addressed. A general TV
formulation was proposed in [114] which included several
models ([38, 110, 112]) as special cases; it also replaced the
regularizer TV(�) by TV(log �); only the denoising problem
was addressed. In [115] the non-convex model introduced
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in [38] was augmented with the Weberized TV (a term of
the form ‖∇u‖1/u, see also [116]) as an extra regularizer
and solved the Euler-Lagrange equation via a �xed-point
iteration; only the denoising problem was addressed. In [117]
a second order Taylor approximation of the data �delity term�(u) in (44) was used along with the NQP algorithm.

4.5. TVNumerical Algorithms for theMixedGaussian-Impulse
Noise Model. A number of algorithms have recently been
proposed for denoising of images subject to the mixed noise
model (16), reproduced here for convenience

b = B ⋅ (�u∗ + �) + (1 −B) ⋅ r; (45)

we also recall that the key idea of the non-TV based methods
is to use a two-phase approach: detect the outlier pixels before
proceeding with the �ltering phase.

Within the TV framework, most of the algorithms also
start with an outlier detection pre-processing phase followed
by a denoising phase. �e approach in [119] was based on
two augmented cost functionals ([119, equations (15)-(16)])
which had to be chosen depending on the noise character-
istics; the reconstruction performance was competitive for
grayscale images, but its computational performance was
extremely poor. In [120] the computational performance of
[119] was improved, although it still was highly dependent on

the noise level, specially for high noise levels; In [121] an ℓ1- ℓ0
minimization approach was proposed for grayscale and color
images, resulting in a three-phase algorithm; reconstruction
quality results and computational performance were quite
good when compared with published works (and could be
considered state-of-the-art), but the proposed cost functional
([121, Equation (5)]) is complicated and has several regular-
ization parameters which have to be hand-picked, and the
use of a dictionary learning second phase a�ects the overall
computational performance. In [118] a spatially adaptive algo-
rithm was proposed, along with the cost functional �(u) =‖Λ� ⋅ (u − b)‖1+(1/2)‖Λ� ⋅ (u − b)‖22+‖∇u‖1 (minimized via
an IRLS based algorithm) to address the denoising problem;
the computational performance of this algorithm greatly
exceeded that of [120, 121] while its reconstruction quality
results can be place somewhere in between those reported by
[120, 121].

5. Numerical Simulations and Examples

�e aim of this Section is to provide practical examples of
restoration results that can be obtained with TV for di�erent
noise models, for which we have used several (grayscale and
color) images from [122] as test images, which are scaled
between 0 and 1 before blurring (by a 7 × 7 out-of-focus
kernel); a�erwards, they are corrupted with noise (models
described in Section 2). To assess the reconstruction quality
of the restored images the SNR (all cases) and SSIM (only for
grayscale images) [123] metrics are reported.

Results presented throughout this Section may be repro-
duced using the [124], a Matlab-only implementation of IRLS
based algorithms for TV with di�erent �delity terms. Since
it is not the aim of this paper to present a computational

performance comparison between the many TV numerical
algorithms (for all the considered di�erent noisemodels) here
we will only report the time (computational) performance of
[124] for completeness’ sake and to o�er the reader a rough
idea of the processing time for each case (elapsed for Matlab,
version R2011a, running on a 2.20GHz Intel core i7 CPU
laptop, with 6144K of L2 memory and 6G of RAM). For the
readers interested in a thoroughly performance comparison
between the many TV numerical algorithms we recommend
to review the performance reports listed in the bibliography
referenced throughout Section 4.

For the ℓ2-TV case we choose to present simulations
where we compare the reconstruction performance results of
the (standard) ℓ2-TV (Section 4.1) with the nonnegative ℓ2-
TV (Section 4.1.2) for the deconvolution case (see Figure 1).
Reconstruction SNR values and computation times are com-
pared in Table 1; �e nonnegative ℓ2-TV method has a better
results, in terms of visual quality although SNR/SSIMmetrics

are about the same, than the (standard) ℓ2-TV method,
although the computational performance for the latter is
about 2 to 3 times faster.

For the ℓ1-TV case we choose to present simulations
where we compare the reconstruction performance results
of the (standard) ℓ1-TV (Section 4.2) with the adaptive ℓ1-
TV (Section 4.2.1) for the denoising case (see Figure 2).
Reconstruction SNR and SSIM values and computation times
are compared in Table 2; �e adaptive ℓ1-TV method has
signi�cantly better reconstruction results, both in terms of

SNR, SSIM and visual quality than the (standard) ℓ1-TV;
there is, however, a trade-o� to be made for the superior
reconstruction quality: the �rst step of the adaptive ℓ1-TV,
that is the estimation of the set of pixels corrupted with Salt
& Pepper noise, is very slow compared to the processing

time needed to solve the ℓ1-TV problem. Here we want
to highlight that although we only report the performance
for the grayscale “Boats” and color “Barbara” images, these
results are representative for all other test images.

For the Poisson-TV (Section 4.3) method, we choose
to present simulations for the denoising and deconvolution
cases.Weuse the grayscale “Cameraman” and color “Peppers”
images (both 512 × 512) which were �rst scaled to a
maximum valuee ∈ {5, 30, 100, 255} (the lower the value ofe is, the noisier the image will be perceived), and then were
blurred (“Peppers” only), and �nally the Poisson noise was
added (this matches typical experimental setups, such [66,
Section 6.3] and [108, Section 4]). InTable 3 (see also Figure 3)
we summarize the restoration results for the Poisson-TV
method.

Similarly, for the Gamma-TV (Section 4.4) method, we
choose to present simulations for the denoising and decon-
volution cases. We use the grayscale “Tank” and color “Lena”
images (both 512 × 512) which were corrupted with Speckle
noise, generated according to (12) with ' = 5, 10, 33 (note
that the lower the value of ' is, the noisier the image will
be perceived, only “Lena” was blurred). �is matches typical
experimental setups, such as [111, 115, 117]. In Table 4 (see
also Figure 4) we summarize the restoration results for the
Gamma-TV method.
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(a) Blurred grayscale “Goldhill” image
corrupted with 	 = 0.2 Gaussian noise

(b) ℓ2-TV reconstruction with regulariza-
tion parameter � = 0.1 (SNR: 11.59 dB)

(c) Nonnegative ℓ2-TV deconvolution
with regularization parameter � = 0.1
(SNR: 12.12 dB)

(d) Blurred color “Lena” image corrupted
with 	 = 0.2 Gaussian noise

(e) ℓ2-TV reconstruction with regulariza-
tion parameter � = 0.1 (SNR: 13.02 dB)

(f) Nonnegative ℓ2-TV deconvolution
with regularization parameter � = 0.1
(SNR: 13.15 dB)

Figure 1: Deconvolution with the ℓ2-TV and the nonnegative ℓ2-TV (via [81, 87] resp.) methods for the grayscale “Goldhill” (720 × 576)
image and the color “Lena” (512 × 512) image.

(a) Grayscale “Boats” image corrupted
with 50% Salt & Pepper noise

(b) ℓ1-TV denoising with regularization
parameter � = 1.4 (SNR: 9.01 dB, SSIM:
0.66)

(c) Adaptive ℓ1-TV denoising (SNR:
15.81 dB, SSIM: 0.89)

(d) Color “Barbara” image corrupted with
80% Salt & Pepper noise

(e) ℓ1-TV denoising with regularization
parameter � = 1.5 (SNR: 4.52 dB)

(f) Adaptive ℓ1-TV denoising (SNR:
10.89 dB)

Figure 2: Denoising with the ℓ1-TV and the adaptive ℓ1-TV methods (via [81] and via [41, 100], resp.) for the grayscale “Boats” (512 × 512)
image and the color “Barbara” (720 × 576) image.
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(a) Grayscale “Cameraman” image cor-
rupted with Poisson noise (� = 30). SNR:
5.8 dB., SSIM: 0.31

(b) Blurred grayscale “Cameraman” image
corrupted with Poisson noise (� = 30).
SNR: 5.4 dB., SSIM: 0.24

(c) Blurred color “Peppers” image cor-
rupted with Poisson noise (�= 30). SNR:
10.4 dB

(d) Poisson-TV denoising. SNR: 15.26 dB,
SSIM: 0.66

(e) Poisson-TV deconvolution. SNR:
14.88 dB, SSIM: 0.61

(f) Poisson-TV deconvolution. SNR:
15.46 dB

Figure 3: Denoising and deconvolution with the Poisson TV via [108] (a spatially adaptive algorithm).

Table 1: Deconvolution performance results for the standard ℓ2-TV and for the nonnegative ℓ2-TV methods for the grayscale “Goldhill”
(720 × 576) image and the color “Lena” (512 × 512) image.

Image Noise (�2) SNR (dB) SSIM Time (s)ℓ2-TV Nonneg. ℓ2-TV Nonneg. ℓ2-TV Nonneg.

Goldhill (gray)
10−2 13.39 13.89 0.59 0.60 6.69 11.994 ⋅ 10−2 11.59 12.12 0.55 0.54 7.61 12.05

Lena (color)
10−2 14.98 15.17 — — 11.21 23.344 ⋅ 10−2 13.02 13.15 — — 12.50 23.19

Table 2: Denoising performance results for the ℓ1-TV and the adaptive ℓ1-TV methods for the grayscale “Boats” (512 × 512) image and the
color “Barbara” (720 × 576) image. Time in parenthesis (adaptive case) corresponds to time elapsed to estimate the pixels corrupted with Salt
& Pepper noise.

Image Noise
SNR (dB) SSIM Time (s)ℓ1-TV Adaptive ℓ1-TV Adaptive ℓ1-TV Adaptive

Boats (gray)

30% 11.41 18.40 0.76 0.93 2.07 0.44 (5.11)

50% 9.01 15.81 0.66 0.89 2.30 0.40 (5.11)

80% 4.02 10.81 0.44 0.74 2.41 0.52 (8.57)

Barbara (color)

30% 12.23 17.08 — — 11.40 2.89 (23.08)

50% 10.22 14.71 — — 12.46 2.46 (26.01)

80% 4.52 10.89 — — 13.66 2.84 (40.25)
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(a) Grayscale “Tank” image corrupted
with Gamma noise (� = 10). SNR:
−4.0 dB., SSIM: 0.189

(b) Blurred grayscale “Tank” image cor-
rupted with Gamma noise (� = 10). SNR:
−4.1 dB., SSIM: 0.101

(c) Blurred color “Lena” image corrupted
with Gamma noise (� = 10). SNR: 2.3 dB

(d) Gamma-TV denoising. SNR: 8.87 dB,
SSIM: 0.57

(e) Gamma-TV deconvolution. SNR:
8.05 dB, SSIM: 0.50

(f) Gamma-TV deconvolution. SNR:
14.66 dB

Figure 4: Denoising and deconvolution with the Gamma TV via [117].

Table 3: Denoising and deconvolution performance results for the Poisson-TV method for the grayscale “Cameraman” (512 × 512) image
and the color “Peppers” (512 × 512) image.

Image e SNR (dB) SSIM Time (s)

Denoising Deconv. Denoising Deconv. Denoising Deconv.

Cameraman (gray)

5 7.48 6.89 0.34 0.35 3.19 3.78

30 15.26 14.88 0.66 0.61 3.10 3.77

100 18.91 16.47 0.80 0.84 3.13 3.75

255 19.55 17.70 0.78 0.86 3.10 3.98

Peppers (color)

5 13.59 12.44 — — 10.85 12.53

30 16.31 15.46 — — 10.47 12.49

100 17.40 16.46 — — 10.89 12.36

255 17.72 17.15 — — 10.54 12.43

Table 4: Denoising and deconvolution performance results for the Gamma-TV method for the grayscale “Tank” (512 × 512) image and the
color “Lena” (512 × 512) image.

Image e SNR (dB) SSIM Time (s)

Denoising Deconv. Denoising Deconv. Denoising Deconv.

Tank (gray)

5 7.36 7.50 0.519 0.490 27.13 32.18

10 8.87 8.05 0.573 0.502 27.02 32.27

33 10.39 8.50 0.624 0.517 26.60 32.42

Lena (color)

5 12.93 13.41 — — 85.88 96.36

10 15.72 14.66 — — 86.47 89.82

33 18.16 15.54 — — 56.83 77.87
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(a) Grayscale “Peppers” image corrupted
with Gaussian plus random impulse noise
(	 = 15/255 and  = 0.3). SNR: 0.98 dB,
SSIM: 0.10

(b) Color “Lena” image corrupted with
with Gaussian plus Salt & Pepper noise
(	 = 15/255 and  = 0.7)). SNR: −6.0 dB

(c) Color “Lena” image corrupted with
with Gaussian plus random impulse noise
(	 = 10/255 and  = 0.2). SNR: 2.72 dB

(d) TV denoising. SNR: 15.09 dB, SSIM:
0.73

(e) TV denoising. SNR: 15.11 dB (f) TV denoising. SNR: 13.70 dB

Figure 5: TV denoising for the mixed Gaussian-Impulse noise model via [118] (a spatially adaptive algorithm).

Table 5: Denoising performance results for the mixed Gaussian Impulse TVmethod for the grayscale “Peppers” and the color “Lena” images
(both 512 × 512). �e Gaussian plus Salt & Pepper noise case is marked as “G + S & P”, whereas the Gaussian plus random-valued impulse
noise case is marked as “G + R.”

Image
Noise SNR (dB) SSIM Time (s)� �S&P �R G + S & P G + R G + S & P G + R G + S & P G + R

Peppers (gray)

5/255 0.3 0.1 19.88 18.80 0.87 0.83 10.43 12.05

0.5 0.2 18.15 16.43 0.85 0.76 10.85 11.03

0.7 0.3 15.99 14.62 0.82 0.70 11.95 10.81

10/255 0.3 0.1 18.28 18.13 0.82 0.81 11.28 12.22

0.5 0.2 16.97 16.68 0.81 0.78 11.52 12.49

0.7 0.3 14.89 15.33 0.78 0.75 12.94 11.89

15/255 0.3 0.1 17.02 17.37 0.79 0.78 11.45 12.52

0.5 0.2 15.98 16.26 0.78 0.76 11.81 12.52

0.7 0.3 13.98 15.09 0.75 0.73 13.17 12.04

Lena (color)

5/255 0.3 0.1 21.16 17.38 — — 38.09 30.62

0.5 0.2 19.76 15.13 — — 37.57 29.06

0.7 0.3 17.51 13.48 — — 42.24 29.31

10/255 0.3 0.1 18.93 15.04 — — 38.18 30.50

0.5 0.2 17.85 13.70 — — 40.10 31.10

0.7 0.3 16.02 12.68 — — 44.05 29.46

15/255 0.3 0.1 17.76 12.78 — — 39.08 30.19

0.5 0.2 16.77 12.15 — — 40.82 29.18

0.7 0.3 15.11 11.41 — — 45.10 32.65
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Finally, for the mixed model TV (Section 4.5) method,
we choose to present simulations for three denoising cases,
where in one case the grayscale “Peppers” image (512 × 512)
was corrupted with Gaussian plus random-valued impulse
noise generated according to (45) with � = 15/255 andf = 0.3, and in the other two, color “Lena” image (512 × 512)
was corrupted with Gaussian plus Sal & Pepper noise as well
as with Gaussian plus random-valued impulse noise with � =15/255 andf = 0.7, and � = 10/255 andf = 0.2, respectively
(according to (45)), see Figure 5. Additionally, in Table 5
we summarize the restoration results for the mixed model
TV method for a broader combination of levels of Gaussian
and Impulse noises that matches typical experimental setups
[118, 120, 121].

6. Conclusions

To the best of our knowledge, we have provided a complete
summary of recent TV algorithms for di�erent noise models,
that is, Gaussian, Impulse (e.g., Salt & Pepper), Poisson, and
Speckle (e.g., Gamma) and the mixed Gaussian and impulse
noise models. Although for some noise models, there are
particular algorithms that have better reconstruction perfor-
mance (e.g., patch-based approaches for the Gaussian noise
model) we expect that in the coming years TVwill improve its
current reconstruction performance (and hopefully become
competitive with state-of-the-art alternative denoising meth-
ods); moreover, we believe that the development of new TV
algorithms that spatially adapt the regularization parameter
is a possible answer (see the computational results for the
adaptive ℓ1-TV case) to current reconstruction performance
shortcomings when compared to patch-based approaches.

Finally, it is important to highlight the �exibility of the
TV method, that allows it to be relevant to applications that
come from a variety of �elds, ranging from astronomical to
SAR based systems, including medical applications such as
Ultrasound, PET, and others.
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[118] P. Rodŕıguez, R. Rojas, and B. Wohlberg, “Mixed gaussian-
impulse noise image restoration via total variation,” in Proceed-
ings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP ’12), pp. 1077–1080, Kyoto, Japan,
March 2012.

[119] J. Cai, R. Chan, and M. Nikolova, “Two-phase methods for
deblurring corrupted by impulse plus Gaussian noise,” Inverse
Problems and Imaging, vol. 2, no. 2, pp. 187–204, 2008.

[120] J. Cai, R. Chan, andM.Nikolova, “Fast two-phase image deblur-
ring under impulse noise,” Journal ofMathematical Imaging and
Vision, vol. 36, no. 1, pp. 46–53, 2010.

[121] Y. Xiao, T. Zeng, J. Yu, and M. K. Ng, “Restoration of images
corrupted bymixed Gaussian-impulse noise via l1-l0 minimiza-
tion,” Pattern Recognition, vol. 44, no. 8, pp. 1708–1720, 2011.

[122] Signal and I. P. I. of the University of Southern California, “�e
USCSIPI image database,” http://sipi.usc.edu/database/.

[123] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–
612, 2004.

[124] P. Rodriguez, “IRLS based TV algorithms for di�erent noise
models, Matlab central �le,” http://www.mathworks.com/mat-
labcentral/.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


