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Abstract

While total variation is among the most popular regu-

larizers for variational problems, its extension to functions

with values in a manifold is an open problem. In this pa-

per, we propose the first algorithm to solve such problems

which applies to arbitrary Riemannian manifolds. The key

idea is to reformulate the variational problem as a multil-

abel optimization problem with an infinite number of labels.

This leads to a hard optimization problem which can be ap-

proximately solved using convex relaxation techniques. The

framework can be easily adapted to different manifolds in-

cluding spheres and three-dimensional rotations, and al-

lows to obtain accurate solutions even with a relatively

coarse discretization. With numerous examples we demon-

strate that the proposed framework can be applied to varia-

tional models that incorporate chromaticity values, normal

fields, or camera trajectories.

1. Introduction

1.1. Total Variation for Manifold­Valued Functions

For functions u : Ω→ R
l, Ω ⊆ Rd, the total variation

TV (u) = sup
p∈C∞

c (Ω,Rl×d),‖p‖∞61

∫

Ω

〈u, Div p〉 dx, (1)

plays a central role in variational image processing because

of its numerous favorable properties: it preserves disconti-

nuities, as a sharp transition from 0 to 1 has the same cost

as a smooth monotone transition. It is also convex and thus

amenable to efficient and globally optimal solutions. More-

over, applied to the indicator function of a set it gives the

perimeter of that set, which makes it well suited for geo-

metric optimization problems.

In many applications of computer vision, however, the

functions of interest take on values which do not lie in a

Euclidean space such as Rl, but rather on a manifold – see

Figure 1. Smoothing a camera trajectory, for example, re-

quires to define regularizers for functions u : Ω → SE(3)

Figure 1. Denoising of a function with values in a manifold.

We propose an algorithm for total variation (TV)-regularization of

functions with values on arbitrary Riemannian manifolds. This ex-

ample shows the TV-denoising (blue) of a one-dimensional func-

tion (red) u : [0, 1] → M with values in the Moebius band M.

Characteristic of TV-denoising is the reduction of contrast, which

corresponds to the shrinking of the curve. The key idea is to rep-

resent the manifold by a set of grid points (labels) and to solve a

convex optimization problem that admits sub-label accuracy: in

the above example, the blue points may lie between grid-points.

with values in the special Euclidean group SE(3). Pro-

cessing the normal field of a geometric structure, such as

a surface or three-dimensional shape, leads to variational

problems in terms of functions that assume values on the

two-dimensional sphere S2.

Such problems with constraints on the range are consid-

erably harder than problems in which the domain Ω of the

function is a manifold. While the latter can usually be dealt

with by a suitable modification of the differential operators,

constraining the range of u to a manifold is generally a non-

convex constraint, which makes optimization much harder.

Another major challenge in extending the concept of to-

tal variation to such manifold-valued data is that we need

to assure algorithmically that discontinuities in the values

are properly handled. In particular, jumps in the values

should be measured with respect to the geodesic distance

on that manifold. For general manifolds the estimation of

the geodesic distance itself may also be a challenging com-

putational problem.
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1.2. Related Work

Giaquinta and Mucci [8, 9] studied the notion of total

variation for functions u : Ω → M with values in general

manifoldsM. They defined it as1

TVM(u) =

∫

Ω\Su

|∇u| dx +

∫

Su

dM(u−, u+) dHd−1. (2)

It provides a separation of the differentiable part and the

jump part where the jump set Su is penalized with the

geodesic distance dM(u−, u+) between the two values u−

and u+ on either side of the jump. The authors theoretically

study the functions with bounded total variation and prove

several properties such as lower-semicontinuity and struc-

ture theorems. However, they do not provide an algorithm

for implementing this regularizer in a variational setting.

In fact, their theoretical analysis is based on an embed-

ding of the given manifoldM in a higher-dimensional Eu-

clidean space which is infeasible to implement: Firstly, the

higher-dimensional embedding space increases the compu-

tational complexity. Secondly, one cannot numerically con-

strain the values of the estimated solution to the generally

non-convex manifoldM.

For the special case of the circle M = S1, Giaquinta

et al. [7] prove the existence of minimizers for certain en-

ergies in the space of functions with bounded total cyclic

variation, again using an embedding in the Euclidean plane.

For the case M = S1, Cremers and Strekalovskiy [5] re-

cently proposed an implementation of various models for

cyclic data, including total variation, quadratic, Huber-TV
and Mumford-Shah regularization. To this end, they un-

wrapped the values of u to the real axis R and proposed an

efficient algorithmic solution to account for the periodicity.

Unfortunately, this solution does not extend to general

Riemannian manifolds, as unwrapping the manifold to a

simple Euclidean one is typically not feasible. Moreover

their representation is based on identifying u with the sub-

level set {(x, t)|u(x) > t}, which is not available for

higher-dimensional manifolds.

Inspired by Ishikawa’s graph-theoretic solution to spa-

tially discrete multi-label optimization [12], Chambolle et

al. [3], Zach et al. [22], and Lellmann et al. [15, 17] pro-

posed relaxations of the labeling problem on continuous do-

mains that allow to find good – and often globally optimal –

solutions using convex optimization, see also [20, 1]. While

these approaches do consider a continuous domain, the set

of feasible labels remains a finite discrete set.

To address this problem and devise an algorithm which

admits an infinite number of labels representing a manifold,

we build on the formulation proposed in [17]: for a finite

1For simplicity, we assume that the Cantor part and vanishes constrain

our analysis to the special functions of bounded variation SBV(Ω;M).

label set J = {1, . . . , l}, a metric d : J 2 → R, and unary

costs s : Ω→ R
l, they solve

min
u′:Ω→∆l

sup
p:Ω→Rl×d

∫

Ω

〈u′, s〉dx + λ

∫

Ω

〈u′,Div p〉dx, (3)

s.t. ‖pi1(x)− pi2(x)‖2 6 d(i1, i2) ∀i1, i2 ∈ J ,∀x ∈ Ω.
(4)

where ∆l is the l-dimensional unit simplex, and Div p =
(div p1, . . . , div pl). This constitutes a convex relaxation of

the finite labeling problem similar to Linear Programming

(LP) relaxation [19, 21]: each of the values in J is asso-

ciated with one of the unit vectors e1, . . . , el ∈ Rl, but in-

termediate values are allowed in order to obtain a convex

problem. The regularizer in (3) can be seen as total varia-

tion for functions with values in the finite set J , where the

metric d controls the weighting of a jump from label i1 to

label i2. We note that recently extensions to the non-metric

case have also been proposed [20].

A straightforward approach to apply this idea to mani-

folds is to choose a finite set of points z1, . . . , zl ∈ M
and to set d(i, j) = dM(zi, zj). In fact, with these defi-

nitions J implements TVM if one restricts u to the values

{z1, . . . , zl} in (2).

This approach has two major drawbacks: Firstly, it gen-

erally requires a quadratic number of constraints, which

severely restricts the resolution with which the manifold can

be discretized. Secondly, it is in fact designed so that min-

imizers u′ are likely to only assume values in {e1, . . . , el},
effectively limiting the range of u to {z1, . . . , zl}.

While for finite labeling problems this is desirable, it sets

a hard limit for the accuracy that can be expected when

applying it to manifolds. This issue is inherent of the ap-

proach (3)–(4), as the latter provides no means to incorpo-

rate knowledge about the local structure of the manifold.

1.3. Contribution

In this paper, we present a framework and algorithmic

solution for regularization of signals with values in an arbi-

trary Riemannian manifold. The key idea is to consider the

problem as a multi-labeling problem as in (3), but to extend

this approach to an infinite number of labels.

This allows to derive an improved formulation of the

dual constraints (4) that specifically respects the local mani-

fold structure, and at the same time requires only a linear

number of constraints.

Together, these features ensure that the minimization

problem is computationally feasible, and allow to obtain

accurate solutions with values on the manifold that are not

restricted to a finite set.

We validate our method on a variety of inverse prob-

lems, including the denoising of chromaticity values, the

inpainting and denoising of normal fields and the denoising

of camera trajectories.
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Figure 2. Rudin-Osher-Fatemi (ROF) denoising (blue) of a vector-valued signal u : [0, 1] → R
2 (red), visualized as a curve in R2. Left

to right: pairwise approach (6) restricted to 4-neighborhood; 8-neighborhood; full model (6) with quadratic number of pairwise terms;

proposed gradient-based method (7). The grey points show the quantization of the range of u, i.e., [−1, 1]2. Apart from a directional bias

caused by restricting the number of pairwise interaction terms to a local neighborhood (left, second from left), the pairwise formulation

exhibits a strong bias towards grid points (second from right). The proposed method has greatly reduced bias and allows the minimizer to

assume values between grid points, which can be considered as a form of sub-label accuracy in the range of u (right). The slight shrinkage

again amounts to the typical contrast loss associated with ROF models.

2. Proposed Model

In order to extend (3) to the case where J consists of all

points on a (connected, Riemannian) s-dimensional mani-

fold M, s ≥ 1, we replace the unit simplex formulation

u′ : Ω→ ∆l by u′ : Ω→ P(M), whereP(M) denotes the

set of probability measures onM. The distance d is natu-

rally given by the geodesic distance dM :M2 → R onM.

The set J = M then consists of an infinite number of

points. We propose to use the following formulation:

min
u′:Ω→P(M)

sup
p:Ω×M→Rd

∫

Ω

〈u′, s〉dx + λ

∫

Ω

〈u′,Div p〉dx

(5)

s.t. ‖p(x, z1)− p(x, z2)‖2 6 dM(z1, z2), ∀z1, z2 ∈M.
(6)

In order to model (2), ideally one would like to mini-

mize (5), (6) over all u′ that correspond to actual functions

u : Ω → M in the sense that u′(x) ∈ P(M) is given by

u′(x) = δu(x), i.e., all u′(x) are Dirac measures. By per-

mitting arbitrary probability measures instead, we obtain a

convex and therefore more tractable problem, at the cost

of allowing “non-binary” solutions u′ where u′(x) is not a

point measure at one or multiple points. Finding rounding

strategies for generating u from such u′ without sacrificing

too much in terms of optimality can still be a difficult task,

we refer to [16] for recent results on the labeling problem.

The usefulness of formulation (5), (6) is still slightly lim-

ited, as solving the problem numerically requires to dis-

cretize the problem, i.e., choosing a finite set of labels J , in

which case (5) reduces to the finite labeling problem (3).

However, the Riemannian manifold structure allows to

reformulate the dual constraints (6) in a more elaborate

way. In particular, it allows to compute, for every point

x ∈ Ω and every point z ∈ M the gradient Dzp(x, ∙) =

(Dzp1(x, ∙), . . . ,Dzpd(x, ∙)) ∈ (TzM)d, where TzM is

the tangent space toM at the point z.

The key idea is to replace the pairwise constraints (6)

by a local condition on the gradient in terms of the spectral

norm ‖ ∙ ‖σ, ‖M‖σ := sup{‖Mv‖2/‖v‖2 | v ∈ TzM}:

‖Dzp(x, ∙) ‖σ 6 1, ∀z ∈M,∀x ∈ Ω. (7)

This amounts to replacing a Lipschitz condition with re-

spect to the geodesic distance dM by an equivalent con-

straint on the gradient. We provide a short proof of the

equivalency in the appendix, as it is instructive to verify that

in fact the spectral norm appears in the constraint, rather

than a numerically more convenient – and more commonly

used – matrix norm such as the Frobenius norm.

The gradient-based formulation (7) has two major bene-

fits:

• It can be accurately discretized using O(l) local terms

in contrast to O(l2) terms required for the full pairwise

formulation (6).

• It allows to incorporate knowledge about the local

manifold structure in terms of the differential opera-

tor Dz .

While it is possible to reduce the computational cost for the

pairwise constraints by restricting the interaction to local

neighborhoods, the approximation of the geodesic distance

dM is more accurate when using the local terms obtained

through the gradient-based formulation.

The effect can be seen in Fig. 2, where we compare the

result of Rudin-Osher-Fatemi (ROF) denoising of a func-

tion u : [0, 1] → [−1, 1]2 using a discretization of the set

[−1, 1]2 with l = 289 equally spaces points and gradients

evaluated at the center of each cell. For such a moderate

number of points the full pairwise model (6) already re-

quires 83521 constraints at each image point, and shows a



pronounced bias towards grid points. The proposed model

has much less bias, while only requiring 289 constraints.

An interesting observation is that for M = R
s our ap-

proach leads to a regularizer based on the nuclear norm, as

the dual to ‖ ∙ ‖σ. Such norms have been considered in a

slightly different context in [18] and more recently in [10].

3. Discretized Model and Optimization

In the following we outline a discretization for the prob-

lem (5), (7) that captures these favorable properties. We

assume that the manifold M is discretized using l ∈ N

points z1, . . . , zl ∈ M. The weights vector b ∈ Rl de-

fines the integration over the manifold, i.e., if f ∈ Rl dis-

cretizes a function f ′ on the manifold via fk = f ′(zk) then

〈b, f〉 :=
∑l

k=1 bkfk ≈
∫

M f(x)ds(x).

The image domain Ω ⊆ Rd is discretized using n ∈ N
points x1, . . . , xn ∈ Ω. The function u′ : Ω → P(M) is

represented as a vector u ∈ (PM)n with ui = u′(xi) =
(ui

1, . . . , u
i
l) ∈ PM for 1 ≤ i ≤ n, where PM is the dis-

cretized space of probability measures on the manifoldM:

PM := {y ∈ Rl | y > 0, 〈y, b〉 = 1}. (8)

The local costs 〈u′, s〉 are represented as the weighted inner

product 〈u, s〉b with the cost vector s ∈ Rn×l, where

〈u, s〉b :=

n
∑

i=1

l
∑

k=1

ui
k si

k bk. (9)

The linear differential operator D : Rn×l → R
n×l×d com-

putes the gradients in Ω using a staggered-grid scheme, and

can be implemented as a sparse matrix.

For computation of the gradients on the s-dimensional

manifoldM we allow to specify m ∈ N evaluation points

y1, . . . , ym ∈M at which the gradient constraint (7) should

be enforced; these could for example be the cell centers if

M = R
s and the zk form a regular mesh. For every such

point yj , a neighborhood Nj ⊆ {1, . . . , l} of r ∈ N points,

i.e., #Nj = r, is given, whose values will be used to com-

pute the gradient at yj .

3.1. Gradient Discretization on the Manifold

In every point yj ∈ M we compute, for all points zk ∈
M, k ∈ Nj in the neighborhood, the inverse exponential

map vj,k := exp−1
yj (zk) ∈ TyjM. We see that using this

definition, p(x, yj)+〈vj,k,Dyj p(x, ∙)〉 provides an estimate

of p(x, zk) through the Taylor expansion.

In order to approximate the gradient gi,j := Dyj p(xi, ∙)
at an image domain point xi ∈ Ω, 1 ≤ i ≤ n, and an eval-

uation point yj ∈ M, 1 ≤ j ≤ m, in a generic fashion, we

define it as the vector in the tangent space that best explains

the values of p through these estimates in an ℓ2-sense:

gi,j
t :=arg min

g∈T
yj M

min
c∈R

∑

k∈Nj

(c+〈vj,k, g〉−pt(x
i, zk))2, (10)

where t = 1, . . . , d. The extra variable c in the minimiza-

tion receives the estimate for the value pt(x
i, yj), which is

unknown as p is discretized only on the points zk.

By choosing a suitable parametrization of the tangent

space at each point yj , problem (10) can be written in terms

of matrices M j ∈ Rr×s (where s is the dimension of the

manifold and therefore of the tangent space) and a sparse

indexing matrix P j ∈ Rr×l (both independent of i) as

min
g∈Rs,c∈R

‖ce + M jg − P jpt‖
2
2, (11)

where e = (1, . . . , 1) ∈ Rr is the constant 1-vector. The

optimality condition of this joint minimization problem is
(

M j⊤

e⊤

)

(

M j e
)

(

g
c

)

=

(

M j⊤

e⊤

)

P jpt. (12)

Solving the system explicitly for c and substituting the re-

sult back into (12), we obtain the optimality condition for g,

M j⊤EM jg = M j⊤EP jpt, E := (I − r−1ee⊤). (13)

We can therefore represent everything required to compute

the gradient according to (10) in the compact form

Ajgi,j
t = BjP jpi

t, (14)

with the two matrices Aj := M j⊤EM j ∈ Rs×s and Bj :=
M j⊤E ∈ Rs×r, together with the neighborhood-defining

sparse matrices P j , and pi
t := (pt(x

i, zk))1≤k≤l ∈ Rl.

3.2. Discretized Model

With the above remarks, and identifying matrices with

their vector representation where necessary, the fully as-

sembled discretized problem takes the following form:

min
u∈Rn×l

max
p∈Rn×l×d, g∈Rn×m×s×d

〈u, s〉b + 〈Du, p〉b (15)

s.t. ui
> 0, 〈ui, b〉 = 1 ∀i, (16)

Ajgi,j
t = BjP jpi

t ∀i, j, t, (17)

‖gi,j‖σ 6 λ ∀i, j, (18)

where i = 1, . . . , n, j = 1, . . . ,m and t = 1, . . . , d. The

scaling by b can be removed by setting b = e, in which case

the problem remains the same except for an element-wise

scaling of ui by bi, and the constraints for u turn into the

unit simplex constraints ui ∈ ∆l. Note that each of the

gi,j is a matrix in Rs×d, where s is the dimension of the

manifold and d is the dimension of the image domain Ω.

To solve the problem numerically, we introduce suitably-

sized multipliers w and q for the equality constraints, with

wi,j
t ∈ R

s and qi ∈ R, and obtain

min
u,w

max
p,g,q
〈u, s〉+ 〈Du, p〉+

∑

i,j,t

〈wi,j
t , Ajgi,j

t −BjP jpi
t〉+

∑

i

〈qi, e⊤ui − 1〉 (19)

s.t. ui
> 0, ‖gi,j‖σ 6 λ. (20)



The problem can then be solved using a standard primal-

dual approach such as [4]. In order to deal with the non-

trivial spectral norm constraints we use an approach based

on [10], which allows to explicitly compute projections on

the constraint set for image domains Ω with dimension 1
and 2. Another possible way is to replace the spectral norm

by the Frobenius norm, in which case (19)–(20) becomes a

standard second-order cone program (SOCP).

Let us summarize why in our opinion the proposed

scheme is well suited as a generic model for optimization

problems with values on manifolds:

• The solver implementation is fully independent of the

actual structure of the manifold. Implementing a new

manifold only requires to supply a set of points zk,

k = 1, . . . , l, on the manifold, the weight vector b that

defines the integration, and the matrices Aj and Bj ,

j = 1, . . . ,m, that define the local manifold structure.

• All constraint sets have a simple separable structure

and can be easily projected upon. This makes the use

of iterative, inexact projections obsolete when using

first-order solvers such as [4], and eliminates related

convergence and infeasibility issues.

• By choosing the yj on the midpoints between pairs of

points in the mesh defined by the zk and choosing suit-

able Aj , Bj , and P j , the discretized model also covers

the pairwise formulation (6), as well as variants with a

reduced number of interaction terms.

The latter point allows to easily compare the performance

to that of the pairwise formulation. In our opinion, the most

prominent feature is the modularity: in fact, all examples

in the experimental section were computed using the same,

unmodified solver implementation.

3.3. Means on Manifolds

As (5) is essentially a convex relaxation approach, it is

possible – and actually desirable – to obtain probability

measures ui with several non-zero components. This raises

the question of how to map such probability measures into

single points onM.

To simplify notation, for a fixed point xi ∈ Ω we

write u for ui = u′(xi), and restrict ourselves to the case

b = (1, . . . , 1). Consequently u is constrained to the unit

simplex, u ∈ ∆l, and we denote u = (u1, . . . , ul).
The classical way to interpret non-binary u is to associate

it with the corresponding convex combination z′ of the zk,

z′ =
l

∑

k=1

ukzk. (21)

This approach fails for manifolds other than convex sub-

sets of Rs with the usual Euclidean distance, as otherwise z

may not be a point inM. Therefore we replace (21) by its

Fréchet mean (also known as Karcher mean) with respect

to the geodesic distance,

z′ = arg min
z′∈M

l
∑

k=1

ukdM(z′, zk)2. (22)

For M = R
s and dM(z′, z) = ‖z − z′‖2, this coincides

with (21). Note that there may be cases when (22) does not

have a unique minimizer, such as when M = S1 and u
assumes the value 1/2 on two opposing points on the circle.

While such border cases can be exercised by constructing

symmetric noise-free academic problems, we found that in

all our experiments on real-world data such a case never

occurred.

As (22) cannot directly be solved as a convex problem,

we use an iterative method [14]. The idea is to iteratively

consider an approximated version of (22) within the tan-

gent space of the current iterate, and with dM replaced by

the usual Euclidean norm. Each approximated problem can

then be solved in closed form (21). More precisely, starting

from an initial estimate z for z′, we iterate

z′k ← exp−1
z (zk) ∈ TzM, (23)

z̄′ ←
l

∑

k=1

ukz′k ∈ TzM, (24)

z ← expz(z̄
′). (25)

In (23) all points zk are mapped to the tangent space TzM
by the inverse exponential map, the mean z̄′ is then com-

puted in the tangent space in (24), and finally projected back

onto the manifold to update z in (25).

We observed that this process is generally very fast. On

the unit sphere S2 it consistently required 5− 10 iterations

to converge to almost machine precision, and 200 itera-

tions were sufficient to obtain reliable results even in cases

where u′ has a large number of non-zero components. As

the Fréchet mean only needs to be computed once after the

solver has finished, efficiency is also non-critical.

4. Experimental Results

4.1. Chromaticity­Brightness Denoising

Kang and March, and Bao et al. [13, 2] suggested a de-

noising model for RGB-valued color images I : Ω → R
3

that separates denoising of the brightness |I| : Ω→ R from

denoising of the chromaticity C = I/|I| : Ω → S2. The

former encodes mainly geometric information, while the

latter consists of vectors in the two-dimensional unit sphere

and captures the color information.

This separation of geometry and color was found to be

better suited for preserving details than simply treating I as

an R3 vector. While [13, 2] replace the constraint C ∈ S2



Figure 3. Denoising of a color image I : Ω → R
3 by separately

denoising its intensity |I| ∈ R by the usual ROF model, and chro-

maticity I/|I| ∈ S2 by the ROF model for values on S2 using

the proposed method. Left to right, top to bottom: input image;

added noise; denoised chromaticity; combined denoising result.

Figure 4. Artistic effects using separate smoothing of bright-

ness and chromaticity. Left to right: smoothed chromaticity;

smoothed brightness and chromaticity; smoothed brightness.

by a penalizing term (1−|C|)2 in the energy, our framework

allows to naturally include it into the optimization (Fig. 3).

Smoothing the brightness and chromaticity components dif-

ferently gives rise to interesting visual effects (Fig. 4).

4.2. Optical Flow

Another application of our framework is the computa-

tion of dense optical flow u : Ω → R
2 between two

images I1, I2 : Ω → R
3, where one seeks to minimize

|I1(x) − I2(x + u(x))| while keeping the velocity map u
regular. Although the range of u is discretized using a reg-

ular grid, the sub-label accuracy of our approach allows u
to assume values between grid points, giving a more nat-

ural, smooth result compared to treating the problem as a

labeling problem (Fig. 6).

4.3. Processing Normals Fields for Visualization

Normal fields often occur in computer graphics and com-

puter vision as direction fields or surface normals. Vari-

ational processing of such data requires optimization over

the two-dimensional unit sphere S2.

Figure 5 shows an application of our method to ROF de-

noising of the normal field for terrain data obtained from [6]

in order to compute a shaded model. Denoising the nor-

mal field considerably improves the visual quality, preserv-

ing sharp transitions in the normal field such as along the

mountain ridges due to the total variation-based regularizer.

Figure 6. Optical flow computation. The optical flow vectors are

represented as velocity vectors in R2 (cf. Fig. 2) Top: input im-

age pair. Bottom: color-coded velocity vector map. Solving the

problem as a labeling problem on a finite grid leads to an artificial

piecewise constant solution (bottom left). Our sub-label accurate

model generates a smoother, more realistic velocity map, as the

vectors are not constrained to the grid (bottom right).

Figure 7. Optimization with values in the unit sphere S2 applied to

the estimation of a surface normal field based on a sketched con-

tour line. Left to right: Input contours with outer normal field;

normal field estimated using a total variation regularizer with val-

ues on the unit sphere (x- and y-components of the normals color-

coded as hue); shaded object based on the reconstructed normals.

The sphere was discretized using l = 162 points obtained

by subdividing the edges of an icosahedron twice, and the

gradients evaluated at the centers of all (triangular) faces.

The same approach can be used to inpaint normal fields

based on given contour lines with outer normals by setting

the data term to zero outside of the contours. By applying a

shading model, pseudo three-dimensional views can be syn-

thesized from a sketched two-dimensional contour (Fig. 7,

we also refer to [11]).

4.4. Denoising of Rotation Data

Variational processing of rotation data is a highly non-

trivial task, as the rotation space SO(3) is difficult to

parametrize in a way that is amenable to optimization. The

proposed approach can be applied to this setting by rep-

resenting the rotations as unit quaternions. These can be

viewed as points on the three-dimensional unit sphere S3,

provided that antipodal points are identified, with the

geodesic distance d(a, b) = arccos(|〈a, b〉|).
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Figure 5. Optimization on the two-dimensional unit sphere applied to denoising of normals in S2 for three-dimensional visualization. Left

to right: Input normal field (two-dimensional top-projection) computed from noisy height map; result of Rudin-Osher-Fatemi denoising

in S2; height map with shading computed from unprocessed noisy normal field; height map with shading computed from denoised normal

field. Similar to the scalar-valued case, the ROF model minimizer preserves discontinuities, e.g., along the ridges of the mountains.

Figure 8. Optimization over the space SO(3) of three-dimensional rotations applied to denoising of camera orientations. Top: input orien-

tations. Bottom: denoised orientations. The rotations are discretized using a quaternion representation, and optimization is subsequently

carried out over the three-dimensional manifold of unit quaternions.

Figure 9. Discretization of the set of unit quaternions using 720
points as used in Fig. 8. Each quaternion is visualized as the ro-

tated triangle that is obtained when applying the quaternion rota-

tion to a fixed template triangle.

We generate the points zk from the vertices of the hex-

acosichoron, which is a regular polytope in R4 akin to the

icosahedron in R3, by subdividing the faces and eliminating

opposite points. The gradients are evaluated on the barycen-

ters of the faces. This yields a set of 720 regularly spaced

quaternions representing rotations in SO(3) (Fig. 9).

Using the same numerical solver as for the previous ex-

periments, this allows to apply Rudin-Osher-Fatemi denois-

ing to the task of smoothing the rotation component of a

camera trajectory (Fig. 8).

5. Conclusion

We proposed a framework for TV-regularization of func-

tions with values in an arbitrary Riemannian manifold. To

this end, we formulated the TV-regularization as a multi-

label optimization problem with an infinite number of la-

bels, and used a specialized discretization that allows to bet-

ter incorporate knowledge about the manifold structure.

Using this approach, it becomes possible to solve vari-

ational problems for manifold-valued functions that consist

of a possibly non-convex data term and a total variation reg-

ularizer. Suitable constraints on the dual variables ensure

that the TV-regularizer correctly penalizes jumps according

to the geodesic distance on the manifold.

We experimentally validated the proposed method on

a variety of inverse problems, including the denoising of

chromaticity values and camera trajectories, optical flow

computation, as well as inpainting and denoising of normal

fields. The proposed approach allows to obtain more accu-

rate solutions compared to treating the problem as a finite

labeling problem, while reducing the computational effort.

Many properties of minimizers of total variation-

regularized models in manifolds are still not fully under-

stood. The present work allows to gain numerical insight

into this question, and will hopefully lead to a better theo-

retical understanding of their behavior. A generalization to

other regularizers remains a subject of future work.
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Appendix

Proof of (6) ⇔ (7): Denote p = p(x, ∙) and assume

that the gradient constraint (7) holds. For any two points

z1, z2 ∈ M and any C1 curve c : [a, b] → M connecting

the points, we have c(a) = z1 and c(b) = z2. Then

p(c(b))−p(c(a)) =

∫ b

a

(p◦c)′(s)ds =

∫ b

a

Dc(s)p ∙c
′(s)ds

by the definition of the gradient Dc(s)p, and consequently

‖p(c(b))− p(c(a))‖2 6

∫ b

a

‖Dc(s)p ∙ c
′(s)‖2ds. (26)

As the gradient constraint (7) holds by assumption and

c′(s) ∈ Tc(s)M, we can further bound

‖p(c(b))− p(c(a))‖2 6

∫ b

a

‖c′(s)‖2ds. (27)

This estimate clearly requires to use the spectral norm in (7)

in order to not introduce any unnecessary constants. The

right-hand side is the length L(c) of c, and we obtain

‖p(z1)− p(z2)‖2 6 L(c) (28)

for all curves connecting z1 and z2, which implies (6).

On the other hand, assume that (6) holds. For any point

z ∈ M and tangent vector v ∈ TzM we can find a C1

curve c : [−ε, ε]→M with c(0) = z and c′(0) = v. Then

‖Dz(s)p ∙ v‖2 = ‖Dz(s)p ∙ c
′(0)‖2 = ‖(p ◦ c)′(0)‖2

= ‖ lim
δ→0

(p(c(δ))− p(c(0)))/δ‖2 (29)

= lim
δ→0
‖p(c(δ))− p(c(0))‖2/δ (30)

Using the assumption (6), we obtain

‖Dz(s)p ∙ v‖2 6 lim inf
δ→0

‖dM(c(0), c(δ))‖2/δ (31)

= lim inf
δ→0

‖

∫ δ

0

c′(s) ds‖2/δ = ‖c′(0)‖2 = ‖v‖2, (32)

using the continuity of c′. Thus ‖Dz(s)p ∙ v‖2/‖v‖2 6 1
for all v in TzM, which implies (7).
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