
 Open access  Proceedings Article  DOI:10.1109/ICIP.2008.4711836

Total variation super resolution using a variational approach — Source link 

S.D. Babacan, Rafael Molina, Aggelos K. Katsaggelos

Institutions: Northwestern University

Published on: 12 Dec 2008 - International Conference on Image Processing

Topics: Image resolution, Bayesian inference, Posterior probability and Estimation theory

Related papers:

 Image Super-Resolution Via Sparse Representation

 Nonlinear total variation based noise removal algorithms

 Super-resolution image reconstruction: a technical overview

 Example-based super-resolution

 Image quality assessment: from error visibility to structural similarity

Share this paper:    

View more about this paper here: https://typeset.io/papers/total-variation-super-resolution-using-a-variational-
1498urpxmj

https://typeset.io/
https://www.doi.org/10.1109/ICIP.2008.4711836
https://typeset.io/papers/total-variation-super-resolution-using-a-variational-1498urpxmj
https://typeset.io/authors/s-d-babacan-zy3nsr48t2
https://typeset.io/authors/rafael-molina-192wm52ybx
https://typeset.io/authors/aggelos-k-katsaggelos-50409pj1sy
https://typeset.io/institutions/northwestern-university-7jein5u2
https://typeset.io/conferences/international-conference-on-image-processing-3rziy9le
https://typeset.io/topics/image-resolution-moe2fi93
https://typeset.io/topics/bayesian-inference-2isrsghu
https://typeset.io/topics/posterior-probability-vwwfuhiy
https://typeset.io/topics/estimation-theory-1y51jkmd
https://typeset.io/papers/image-super-resolution-via-sparse-representation-18yd1f09t4
https://typeset.io/papers/nonlinear-total-variation-based-noise-removal-algorithms-29arg423jk
https://typeset.io/papers/super-resolution-image-reconstruction-a-technical-overview-5bwtypbyjz
https://typeset.io/papers/example-based-super-resolution-3nf17iliy7
https://typeset.io/papers/image-quality-assessment-from-error-visibility-to-structural-1rlwcqe34t
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/total-variation-super-resolution-using-a-variational-1498urpxmj
https://twitter.com/intent/tweet?text=Total%20variation%20super%20resolution%20using%20a%20variational%20approach&url=https://typeset.io/papers/total-variation-super-resolution-using-a-variational-1498urpxmj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/total-variation-super-resolution-using-a-variational-1498urpxmj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/total-variation-super-resolution-using-a-variational-1498urpxmj
https://typeset.io/papers/total-variation-super-resolution-using-a-variational-1498urpxmj


TOTAL VARIATION SUPER RESOLUTION USING A VARIATIONAL APPROACH

S. Derin Babacan1, Rafael Molina2, Aggelos K. Katsaggelos1

1Department of Electrical Engineering 2Departamento de Ciencias
and Computer Science de la Computación e I.A.

Northwestern University, Evanston, IL 60208, USA Universidad de Granada, 18071 Granada, Spain
sdb@northwestern.edu, aggk@eecs.northwestern.edu rms@decsai.ugr.es

ABSTRACT

In this paper we propose a novel algorithm for super resolution

based on total variation prior and variational distribution approxi-

mations. We formulate the problem using a hierarchical Bayesian

model where the reconstructed high resolution image and the model

parameters are estimated simultaneously from the low resolution

observations. The algorithm resulting from this formulation utilizes

variational inference and provides approximations to the posterior

distributions of the latent variables. Due to the simultaneous pa-

rameter estimation, the algorithm is fully automated so parameter

tuning is not required. Experimental results show that the proposed

approach outperforms some of the state-of-the-art super resolution

algorithms.

Index Terms— Super resolution, total variation, variational

methods, parameter estimation, Bayesian methods.

1. INTRODUCTION

High resolution (HR) images can in some cases be obtained directly

from high-resolution acquisition devices. However, due to theoreti-

cal and practical limitations, in most cases the resolution of the ac-

quired images are lower than desired. These limitations include the

increased cost, data transfer rate and the amount of shot noise due

to the size of the digital sensor. Recently signal processing tech-

niques have been utilized as an alternative to increase the resolution

of digital images.

Super resolution describes the process of reconstructing an HR

image from a set of low resolution (LR) observations. The LR im-

ages typically are undersampled, degraded and shifted versions of

the HR image with subpixel displacements. The recovery of the HR

image is possible through the use of the subpixel displacements be-

tween the observations.

Although the super resolution literature is rich (see [1] for an ex-

tensive review) it is still an open and widely investigated topic. Re-

cently, motivated by its success in image recovery problems, the use

of the total variation (TV) function and its variants has become popu-

lar in super resolution. Both regularization-based [2,3] and Bayesian

[4] formulations have been proposed which utilize TV functions to

characterize the HR images. However, both of these approaches in-

volve certain model parameters to be set by the user, which is in

general a difficult task. To our knowledge no work has been reported

on simultaneously estimating the algorithm parameters and the HR

image.

This work has been partially supported by the Spanish research pro-
gramme Consolider Ingenio 2010: MIPRCV (CSD2007-00018) and the Min-
isterio de Educacion y Ciencia under contract TIN2007-65533.

In this paper we propose a hierarchical Bayesian methodology

for super resolution where the LR observations and the unknown HR

image, as well as their associated hyperparameters (observation and

acquisition noise, and the variance of the HR image) are modeled in

two stages. We apply variational inference methods to this model

and propose an algorithm which simultaneously provides estimates

to the unknowns.

The rest of this paper is organized as follows. In Sec. 2 we for-

mulate the LR image acquisition system by a linear time invariant

model. The unknown variables in this model are cast into a hierar-

chical Bayesian framework as presented in Sec. 3. The variational

inference to estimate the unknowns and the proposed algorithm are

presented in Sec. 4. Experimental results are presented in Sec. 5 and

conclusions are drawn in Sec. 6.

2. PROBLEM FORMULATION

Consider a set of L low resolution (LR) images y = {y1, ..,yL},

where yi, i = 1, . . . , L represents the ith low resolution (LR) im-

age. The goal is to reconstruct the high resolution (HR) image x

that would be observed under ideal conditions. The HR image is of

size P1N × P2M and each of the LR images is of size N × M , so

that the horizontal and vertical magnification factors are P1 and P2,

respectively. Each image can be transformed to a column vector by

lexicographically ordering the pixels, so that the (P1N ×P2M)× 1
vector x represents the HR image, and the NM×1 vector represents

the ith LR image.

We denote by the P1P2NM×P1P2NM matrix Ci the warping

matrix that maps the HR image x to the high-resolution version xi

of the LR image yi. The NM × P1P2NM matrix A is the down-

sampling matrix and the P1P2NM × P1P2NM matrices Hi are

the PSFs of the blurs. Then the LR image acquisition process can be

modeled mathematically as follows

yi = AHiCix + ni = Bix + ni, (1)

where ni is the combination of the registration and acquisition noise.

In this work the matrices Hi and A are assumed known. Their esti-

mation using variational methods is left as future work.

3. HIERARCHICAL BAYESIAN MODEL

Utilizing a Bayesian analysis, the unknown x and the observed LR

images yi, i = 1, . . . , L are treated as stochastic quantities and prior

probability distributions on them are defined. Since these distribu-

tions will also have their model parameters, called hyperparameters,

we adopt a hierarchical Bayesian model with two stages. In the first

stage, the HR image and the observation noise are modeled using
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some unknown hyperparameters, and the hyperprior distributions of

the hyperparameters are modeled in the second stage.

3.1. First Stage: LR Image Acquisition Model

Using the model in Eq. (1) and assuming that ni is a zero-mean

white Gaussian noise with the variance β−1
i , the likelihood of the

LR image yi can be written as

p(yi|x, βi) ∝ β
NM/2
i exp

[

−βi

2
‖ yi − Bix ‖2

]

. (2)

Assuming statistical independence of the noise between LR images,

the probability distribution of the set of LR images y given x can be

expressed as

p(y|x, β) =
∏

i

p(yi|x, βi) (3)

=

[

∏

i

β
NM/2
i

]

exp

(

−1

2

∑

i

βi ‖ yi − Bix ‖2

)

,

where β = (β1, . . . , βL).

3.2. First Stage: HR Image Model

As the prior model for the HR image x we utilize the quadratic ap-

proximation of the TV prior

p(x|α) ∝ αP1P2NM/2 exp

[

−1

2
αTV(x)

]

, (4)

where

TV(x) =
∑

j

√

(∆h
j (x))2 + (∆v

j (x))2. (5)

The operators ∆h
j (x) and ∆v

j (x) correspond to, respectively, hori-

zontal and vertical first order differences, at pixel j, that is, ∆h
j (x) =

xj −xl(j) and ∆v
j (x) = xj −xa(j), where l(j) and a(j) denote the

nearest neighbors of j, to the left and above, respectively.

3.3. Second Stage: Hyperpriors on the Hyperparameters

In the second stage of the Bayesian model, we use flat improper

hyperpriors on α and βi, that is, we utilize

p(α) ∝ const, p(βi) ∝ const, i = 1, . . . , L. (6)

Note that with this choice of the hyperpriors the hyperparameters α
and βi are solely estimated from the LR observations y.

Finally, combining the first and second stage of the problem

modeling in Eqs. (3), (4) and (6) we find the joint probability dis-

tribution p(α, β,x,y) = p(α, β)p(x|α)p(y|x, β).

4. VARIATIONAL INFERENCE

The Bayesian paradigm dictates that inference on (α, β,x) should

be based on

p(α, β,x | y) =
p(α, β,x,y)

p(y)
, (7)

However, the posterior p(α, β,x | y) can not be found in closed

form. We therefore apply variational methods to approximate this

distribution by the distribution q(α, β,x) and utilize a mean field

approximation so that q(α, β,x) = q(α, β)q(x). Additionally, we

assume that q(x) is a degenerate distribution, that is, a distribution

which takes one value, xk with probability one and the rest with

probability zero, which can be expressed mathematically as

qk(x) = δ(x − x
k). (8)

The variational criterion used to find this approximation is to

minimize the Kullback-Leibler (KL) distance between q(α, β,x)
and the posterior p(α, β,x | y), which is given by

CKL(q(α, β,x) ‖ p(α, β,x|y))

=

∫ ∫ ∫

q(α, β,x) log

(

q(α, β,x)

p(α, β,x|y)

)

dαdβdx

=

∫ ∫ ∫

q(α, β,x) log

(

q(α, β,x)

p(α, β,x,y)

)

dαdβdx + const,

(9)

which is always non negative and equal to zero only when q(α, β,x) =
p(α, β,x|y).

The use of the TV prior makes the integral in Eq. (9) dif-

ficult to evaluate so a minorization of the TV prior is utilized.

By defining the following functional M(α,x,u), for α, x, and a

P1P2NM−dimensional vector u ∈ (R+)P1P2NM

M(α,x,u) = const × αP1P2NM/2

× exp

[

−α

2

∑

j

(∆h
j (x))2 + (∆v

j (x))2 + ui√
uj

]

, (10)

and using the following inequality, also used in [5,6], for w ≥ 0 and

z > 0 √
wz ≤ w + z

2
⇒

√
w ≤ w + z

2
√

z
. (11)

we obtain a lower bound for the image prior (c a constant)

p(x|α) ≥ c · M(α,x,u), (12)

and the following lower bound for the joint probability distribution

p(α, β,x,y) ≥ p(α)p(β)M(α,x,u)p(y|x, β)

= F(α, β,x,u,y). (13)

Utilizing Eq. (13) we obtain the following upper bound for the

KL distance

∫ ∫ ∫

q(α, β,x) log

(

q(α, β,x)

p(α, β,x,y)

)

dαdβdx

≤ min
u

∫ ∫ ∫

q(α, β,x) log

(

q(α, β,x)

F(α, β,x,u,y)

)

dαdβdx

= M(q(x, α, β)) . (14)

Therefore, instead of minimizing the KL distance, we minimize the

upper bound M(q(x, α, β)) by finding a sequence of distributions

{qk(α, β,x)}. We adopt an alternating minimization approach

where at each step this upper bound is minimized with respect to

one of the variables
{

x, α, β
}

while holding others as constant,

which leads to an iterative procedure shown in Algorithm 1.

Let us now develop the solutions for each of the steps within

the while loop of Algorithm 1. The minimization is carried out
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Algorithm 1 Variational TV Super Resolution

Given u1 ∈ (R+)P1P2NM and q1(α, β)
while Convergence criterion is not met do

1. Estimate HR image x using (15).

2. Estimate u using (18).

3. Estimate hyperparameters α, β using (21)-(22).

first with respect to the HR image x. By taking the derivative of

M(q(x, α, β)) and setting it equal to zero we obtain at iteration k

Q(α, β)xk =
∑

i

βiB
t
iyi, (15)

Q(α, β) =
∑

i

βiB
t
iBi + α∆

t

[

W (uk) 0

0 W (uk)

]

∆, (16)

with ∆ =
[

(∆h)t (∆v)t
]t

and W (uk) a P1P2NM × P1P2NM
diagonal matrix of the form

W (uk) = diag

(

[

uk
j

]

−

1
2

)

, j = 1, . . . , P1P2NM. (17)

The vector uk+1 is found in the second step as

uk+1
j =

[

∆h
j (xk)

]2

+
[

∆v
j (xk)

]2

, j = 1, . . . , P1P2NM. (18)

It is clear from this equation that the vector uk+1 represents the local

spatial activity in the HR image xk. Therefore, matrix W (uk) in

Eq. (17) can be interpreted as the spatial adaptivity matrix since it

controls the amount of smoothing at each pixel location depending

on the strength of the intensity variation at that pixel, as expressed

by the horizontal and vertical intensity gradients.

The direct solution of the HR image estimate in Eq. (15) is prac-

tically hard to compute because of the inversion of the huge matrix

Q(α, β). Therefore we use a conjugate gradient algorithm to find it

numerically.

Finally, in the last step of the algorithm, the distributions of the

hyperparameters qk+1(α) and qk+1(βi) are found by differentiating

M(q(x, α, β)) with respect to q(α, βi) and setting it equal to zero.

These distributions are Gamma distributions given by

qk+1(α) ∝ αP1P2NM/2 exp

[

−α
∑

j

√

uk+1
j

]

(19)

and

qk+1(βi) ∝ β
NM/2
i exp

[

−βi
‖ yi − Bix

k ‖2

2

]

(20)

The means of these distributions are given by

αk+1 = Eqk+1(α)[α] =
P1P2NM/2 + 1

∑

j

√

uk+1
j

, (21)

βk+1
i = Eqk+1(βi)

[βi] =
NM + 2

‖ yi − Bixk ‖2
, (22)

The algorithm is summarized above in Algorithm 1.

(a) (b)

(c) (d)

Fig. 1. Super resolution results (4x resolution increase) by (a) bicu-

bic interpolation, (b) MS, (c) FRS, and (d) proposed algorithm.

5. EXPERIMENTAL RESULTS

In this section we compare the performance of the proposed algo-

rithm with bicubic interpolation, the method proposed in [7], de-

noted by MS, and the fast super resolution method based on bilateral

TV in [4], which is denoted by FRS. The parameters of the FRS al-

gorithm are chosen according to [4] which resulted in the visually

best results. For all experiments, the criterion ‖ xk − xk−1 ‖2 /
‖ xk−1 ‖2< 10−4 is used to terminate the proposed algorithm, and

the CG threshold is set equal to 10−4.

In the first experiment, we run the algorithms on the EIA dataset

obtained from [4]. In this data set, the original HR frame is shifted

by 16 different motion vectors, blurred, and downsampled by 4 to

obtain 16 LR observations. The methods are used to obtain an HR

image with a factor of 4 resolution increase in each direction. The

restoration results are shown in Fig. (1). As expected, all super res-

olution algorithms result in better reconstructions than bicubic in-

terpolation. Comparing the results in Fig. 1(b)-(d), it is clear that

the reconstruction of the proposed algorithm gives the most visu-

ally enhanced result. This is justified by looking at Fig. (2) where

the middle sections of the reconstructions are shown in detail. Note

that the numbers and the intersection of the lines with the circle are

sharper in the image obtained by the proposed algorithm than by the

other algorithms.

We present another experiment with the 20 real LR images taken

from the disk dataset from [4]. The motion is estimated using the

pyramidal Lucas-Kanade optical flow algorithm, and the blur is as-

sumed to be a 6x6 Gaussian with variance 1. The reconstructed HR

images have a factor of two resolution enhancement and are shown

in Fig. (3). Although motion estimation errors are present, the pro-

posed algorithm produces a sharp HR image with less ringing arti-

facts than the other approaches. This can be observed more clearly

in the detailed areas shown in Fig. (4).
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(a) (b)

(c) (d)

Fig. 2. Detailed areas of Fig. (1). (a) Bicubic interpolation, (b) MS,

(c) FRS, and (d) proposed algorithm.

6. CONCLUSIONS

In this paper we presented a Bayesian super resolution method based

on total variation image priors. Within a hierarchical Bayesian

framework, the reconstructed HR image, the acquisition and mo-

tion estimation noise for each LR image is estimated simultaneously.

Variational inference is applied to estimate the posterior distributions

of the unknowns. The main novelty of the proposed algorithm is that

the model parameters are estimated during the reconstruction so that

the algorithm is fully automated whereas existing approaches require

data-specific parameter tuning. Experimental results demonstrate

that the proposed algorithm results in better HR reconstructions than

existing approaches with both synthetic and real data.
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