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ABSTRACT 

Purpose: Iterative projection reconstruction algorithms are currently the preferred reconstruction 

method in proton computed tomography (pCT). However, due to inconsistencies in the measured 

data arising from proton energy straggling and multiple Coulomb scattering, noise in the 

reconstructed image increases with successive iterations. In the current work, we investigated the 20 

use of total variation superiorization (TVS) schemes that can be applied as an algorithmic add-on to 

perturbation-resilient iterative projection algorithms for pCT image reconstruction.  

Methods: The block-iterative diagonally relaxed orthogonal projections (DROP) algorithm was 

used for reconstructing Geant4 Monte Carlo simulated pCT data sets. Two TVS schemes added on 

to DROP were investigated; the first carried out the superiorization steps once per cycle and the 25 

second once per block. Simplifications of these schemes, involving the elimination of the 

computationally expensive feasibility proximity checking step of the TVS framework, were also 

investigated. The modulation transfer function and contrast discrimination function were used to 

quantify spatial and density resolution, respectively. 

Results: With both TVS schemes, superior spatial and density resolution was achieved compared to 30 

the standard DROP algorithm. Eliminating the feasibility proximity check improved the image 

quality, in particular image noise, in the once-per-block superiorization, while also halving image 

reconstruction time. Overall, the greatest image quality was observed when carrying out the 

superiorization once-per-block and eliminating the feasibility proximity check.  

Conclusions: The low contrast imaging made possible with TVS holds a promise for its 35 

incorporation into our future pCT studies. 

Keywords: proton computed tomography, iterative projection methods, superiorization, total 

variation. 
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I. INTRODUCTION 

Proton computed tomography (pCT) has been suggested as a means for reducing the range 40 

uncertainty in proton radiation therapy1. As demonstrated in previous work2,3, iterative algebraic 

techniques incorporating a most likely path formalism4 are required to improve spatial resolution 

and quantitative accuracy of pCT image reconstruction. Analysis of image quality measures when 

reconstructing simulated pCT data with iterative techniques has demonstrated that both spatial 

resolution and mean reconstructed relative stopping power (RSP) values improve with an increasing 45 

number of iterations. However, amplification of image noise through the iterative procedure limits 

the monotonic increase in image quality with iteration number. 

The iterative algorithmic schemes presented in previous pCT image reconstruction work2,3,5 

belong to the general class of feasibility seeking methods6,7. That is, the algorithm searches for a 

solution, and there may be many solutions, to the convex feasibility problem (CFP) of finding a 50 

point in the intersection of a finite family of convex sets. This is different from optimization, which 

seeks a solution to the problem statement by minimizing a given cost (merit) function over the 

constraints sets of the CFP. 

While optimization has certain advantages in many imaging applications, it could have 

drawbacks in applications such as pCT. The optimal solution, in a mathematical sense as dictated by 55 

the cost function, may not always be the solution that best reproduces the true object data of 

interest, because of inconsistencies in the acquired data or due to the choice of the cost function. 

This choice is affected by justifying arguments that are sometimes inadequate or by the ability or 

inability to computationally handle the resulting optimization problem. Therefore, in this work we 

investigated the potential value of the superiorization method, which is also attractive both in terms 60 

of required memory and computational time. 
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In the current work, we investigate the superiorization of total variation (TV). While TV-

minimization has been used extensively as a denoising tool in the field of image processing8,9,10, 

TV-superiorization (TVS) is a new methodology in image reconstruction. The concept was 

introduced by Butnariu et al.11 (although the term TV-reducing is used there and not superiorization 65 

as used here). There, the authors proved the perturbation resilience, i.e. stability, of string-averaging 

projection (SAP) methods under summable perturbations, and proposed how to use this resilience to 

steer a feasibility seeking iterative process toward iterates with reduced TV values. The usefulness 

of this method when applied to X-ray CT reconstruction from a limited number of projections was 

demonstrated by Herman and Davidi12. Perturbation resilience of block-iterative projection (BIP) 70 

methods was later presented by Censor, Davidi, and Herman13. 

The premise is that the problem at hand (image reconstruction in pCT in our case) is modeled 

by a CFP, but that we desire (i) to use an efficient feasibility seeking projection method, and (ii) to 

find a feasible solution that will have a reduced value of a given merit function (TV in our case). 

Superiorization refers to such a process of finding a superior solution with respect to some merit 75 

function, which is also a feasible solution of the CFP sets. A superior solution is a feasible solution 

of the CFP for which the value of the merit function, with respect to which one superiorizes, is 

smaller (but not necessarily minimal) than the value of this function at the feasible point that would 

have been reached if the superiorization process would not have been applied. The ability to perturb 

the original projection algorithm, without losing convergence to a feasible point, allows us to steer 80 

the algorithm toward a feasible point that is superior, according to the merit function, to the one we 

would arrive at without the perturbations. 

Superiorization is fundamentally different from constrained minimization.  The novelty lies 

in the attempt to strike another balance between feasibility and minimality. The term superiorization 

reflects the main idea of the new approach, which is not the finding of any feasible point (solving 85 
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the feasibility problem) and not the quest for a constrained minimum point. Instead, the target of 

superiorization is to seek a feasible point that is also “better”, i.e., superior in a defined 

mathematical sense, over other reachable feasible points with respect to the objective function. Such 

a point does not need to be a minimum point of the objective function in the feasible set but its 

superiority means that it is, in some rigorously well-defined sense, “more than” just a feasible point. 90 

We first give a general formulation of a prototypical algorithmic framework which is based 

on, but not identical with, the general framework for superiorization given in Ref. 14. Then, we use 

Monte Carlo simulated data and a quantitative analysis of image quality, to investigate the 

application of two TVS schemes to pCT image reconstruction. Both TVS schemes are constructed 

by modifying the block-iterative diagonally relaxed orthogonal projections (DROP) algorithm15 as 95 

the core reconstruction algorithm. The first scheme employs the superiorization steps once per 

cycle, where a cycle is a complete processing of all data blocks. The second TVS scheme employs 

the superiorization steps once per block. Simplifications of these schemes were also investigated in 

which the computationally expensive feasibility proximity checking step of the TVS framework 

was eliminated. 100 

Our main conclusion is that superiorization is a useful reconstruction scheme for pCT that 

can be applied as an algorithmic add-on to perturbation-resilient iterative projection algorithms 

seeking feasibility. In addition, there are significant advantages of the TVS schemes in detecting 

small contrast differences in pCT images. 

II. METHODS 105 

A. The superiorization methodology 

The superiorization principle has its roots in Ref. 11 and was recently formalized in Ref. 14.  
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It relies on the notion of bounded perturbation resilience of algorithms. An algorithm P is said to be 

resilient to bounded perturbations if the following is the case: if the sequence ( )( )
0

k

k
x

∞

=
P  (obtained 

by sequential repeated applications of P, starting from x) converges to a solution of problem Q for 110 

all ,Rx n∈  then any sequence ( )
0

k

k
x

∞

=
 of points in Rn also converges to a solution of Q provided 

that, for all 0,k ≥  

( )1 ,k k k
Q kx x vβ+ = +P         (1) 

where βkvk are bounded perturbations, meaning that βk are real nonnegative numbers such that 

0 kk
β∞

=
< ∞∑  and the sequence of vectors ( )

0

k

k
v

∞

=
 is bounded. 115 

The aim of the superiorization methodology is to handle models represented by a constrained 

minimization problem differently. Instead of trying to solve a constrained minimization problem, it 

proposes to perturb some powerful feasibility seeking algorithms so that, without losing their 

convergence toward feasibility, they will yield a point (or points) with reduced objective function 

value(s). To develop and apply a superiorization approach to some problem we need to secure 120 

perturbation resilience of the “powerful” algorithm at hand and then interlace into its steps 

admissible perturbations that will in some way reflect and help reduce the objective function values. 

Specific instances of algorithms resilient to bounded perturbations for solving the convex 

feasibility problem from the classes of string-averaging projections (SAP) and block-iterative 

projections (BIP) methods were presented in Ref. 14. Relying on the mathematically validated 125 

notion of bounded perturbations resilience, the superiorization theory is currently a heuristic, but 

practical demonstrations of its usefulness, see Refs. 11,12,13 and 14, are reinforced by our present 

investigation. 
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The superiorized algorithms, which are described below, are close to the ones in Refs. 11, 12 

and 13, but are different from the specific superiorized algorithm investigated in Ref. 14. The 130 

different superiorized algorithms are characterized by the frequency of the perturbation within a 

cycle over the collected data, and by where exactly in the algorithmic flow the merit function value 

check and the feasibility proximity check are done. Also, we have investigated the effect of 

eliminating the computationally expensive feasibility proximity check altogether. Full details about 

our specific implementations appear in the following section. These implementations are 135 

concentrated solely around the use of superiorized algorithms for total variation reduction in pCT. 

But a general description of the superiorized algorithm is general enough to apply to other inverse 

problems in which a reduction (which is not necessarily a minimization) of a given merit function, 

subject to convex feasibility constraints, is required. 

B. Total variation superiorization applied to proton CT 140 

In our application of the superiorization scheme to pCT image reconstruction, we have 

adopted the diagonally relaxed orthogonal projections (DROP) algorithmic scheme15 for the 

projection operator P, which we have used in previous work3. We first give an overview of the 

iterative reconstruction problem encountered in pCT.  

Let I = {1, 2, ..., m}, and let {Hi | i ∈ I} be a finite family of hyperplanes in Rn. In pCT 145 

reconstruction, the sets Hi, on which the vectors xk are projected during the iterative process, are 

defined by the i-th row of the m × n linear system Ax = b, namely, 

{ }, , for 1, 2,..., .n i
i iH x R a x b i m= ∈ = =     (2) 

Here ai is the i-th column vector, of AT (the transpose of A), i.e., its components occupy the i-th row 

of A. The right-hand side vector is ( ) 1
.m

i i
b b

=
=  In pCT, the i

ja  correspond to the length of 150 

intersection of the i-th proton history with the j-th voxel, x is the unknown image vector of relative 
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stopping power (RSP) values, and bi is the integral RSP along the most likely path (MLP) of the i-th 

proton calculated from its measured energy loss. See Penfold et al.5 for a detailed explanation of the 

MLP chord length calculation process. The elements bi are calculated with 

 ( ),
ES

dE=b
in

out

E

E water
i ∫         (3) 155 

where Ein and Eout are the known entry energy and measured exit energy, respectively, and Swater is 

the proton stopping power of water given by 

 
( )

( )
( ) ( )

22 2 2
2

2 2

4 2ln .
1

e e water e
water

water

Er m c m cS E
E I E

βπ η β
β β

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

    (4) 

Here, re is the classical electron radius, me is the mass of the electron, ηwater and Iwater are the 

electron density and mean ionization of potential of water respectively, and β is the velocity of the 160 

proton relative to the speed of light c. 

A block-iterative version of DROP with fixed blocks was used by partitioning the indices of I 

as I = I1 ∪ I2 ∪ … IM into M blocks. Block-iterative DROP is a variant of the general block-iterative 

projection method16, that employs a component-dependent weighting scheme. Block-iterations for 

the linear case were first studied in Ref. 17. The block-iterative DROP algorithm is given as 165 

follows. 

Algorithm 1: Diagonally Relaxed Orthogonal Projections (DROP) 

Initialization: x0 ∈ Rn is arbitrary. 

Iterative Step: Given xk, compute the next iterate xk+1 with, 

( ) ( ) ( )
( )

1
2

, i

t k

i k
ik k k

kt k t k ii I

b a x
x x x U a

a
λ+

∈

−
= = + ∑P    (5) 170 
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Here, the diagonal matrix ( ) ( )( )diag min 1 1 t
jt kU = , / h  with t

jh  being the number of proton histories 

in the t-th block that intersect the j-th pixel, and ( )∞
0k=kλ  is a sequence of user-determined relaxation 

parameters. In the current work, λ was kept at a value of 1.9, based on experience from our previous 

reconstruction work (unpublished). The blocks are taken up by the algorithm according to the 

control sequence ( )( )∞
0k=kt  which is in our work a cyclic control, i.e., ( ) . M+=k kt 1mod  The pCT 175 

data set was partitioned into 12 blocks of equal size and composed of an equal number of proton 

histories from each projection angle. We will refer to this generic DROP, i.e., without 

superiorization steps added to it, as “standard DROP”. 

The merit function φ and feasibility proximity function Pr used in the current work to steer 

the superiorization reconstruction scheme were motivated by the work of Butnariu et al.11. The 180 

feasibility proximity function was associated with the residual of measured integral RSP values and 

those obtained with the current image estimate. The purpose of feasibility proximity checking was 

to ensure that superiorization with respect to an additional task represented by the merit function φ 

did not steer the solution away from an agreement with the measured data. The feasibility proximity 

of the current image estimate xk to the measured data was calculated as 185 

( )
2

1

i km
ik

i
i

b a ,x
Pr x = .

a=

⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑       (6) 

where m is the number of proton histories in the set of interest. 

The superiorization paradigm has not yet been investigated for situations where the 

underlying “feasible set” (of the intersection of the constraints) is empty. But even in such a 

situation, reducing the proximity function of Eq. (6) is leading to a point which “violates the 190 
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constraints less”, and thus is useful, even if the proximity function does not reach (and cannot 

reach) the value zero. 

The merit function φ, which we aim to reduce during the reconstruction process, was 

associated with the total variation of the reconstructed image estimate, such that 

 ( ) ( ) ( )
1 1 2 2

1 1
1 1

,
J J

k k k k k
g+ ,l g,l g,l+ g,l

g l

p = p p + p pφ
− −

= =

− −∑∑    (7) 195 

where pk is the 2D JJ ×  representation of the n-dimensional image vector xk.  

Finally, the perturbation vectors vk, steering the iterative sequence of image estimates toward 

reduced total variation of the image estimate, were calculated with the method proposed in Ref. 11. 

Specifically, the perturbation vector was calculated as the negative of the normalized subgradient of 

the total variation at xk, i.e., 200 

if 0,

0, otherwise

k k
k

k

s sv = ,
s

.

⎧ ≠−⎪
⎨
⎪
⎩

       (8) 

The subgradient of total variation, s, was calculated with the method outlined in Ref. 8. 

Two variants of the DROP based superiorization scheme, TVS1-DROP (Algorithm 2) and 

TVS2-DROP (Algorithm 3), were employed in the current work, essentially differing in the number 

of times the projection operator P was applied before continuing to the feasibility proximity check. 205 

In both variants, the initial image estimate of the iterative procedure was acquired by performing a 

filtered backprojection (FBP) reconstruction from the data. The FBP was carried out by rebinning 

individual proton histories, to conform with a conventional sinogram grid3,18. 

The TVS1-DROP scheme, which was similar to the TVS algorithms used in previous 

studies11,12,13, applied the projection operator cyclically until all blocks of the data set had been 210 
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processed. Following this, the feasibility proximity was checked including all histories in the data 

set. 

Algorithm 2: Cyclic total-variation superiorization with DROP (TVS1-DROP) 

1. set k = 0 

2. set FBPx=xk the initial FBP reconstruction, and βk = 1 215 

3. repeat for 10 cycles 

4. set s to a subgradient of φ at xk 

5. if 0s >  set /kv = s s−  

6. else set kv = s  

7. set continue = true 220 

8. while continue 

9. set k
k

kk vβ+x=y  

10. calculate the merit function (total variation) with Eq. (7), and if 

( ) ( )k ky xφ φ≤  

11. apply sequentially M times the projection operator Pt(k) to yk 225 

(Eq.(5)) 

12. calculate the feasibility proximity with Eq. (6) using histories 

from all M blocks, and if ( ) ( )k
M xPr<yPr P  

13. set y=x M
+k P1  

14. set continue = false 230 

15. else set 2/kk β=β  

16. else set 2/kk β=β  
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17. set k = k + 1 

The TVS2-DROP scheme applied the projection operator to a single block only, before 

continuing to the feasibility proximity check, which was performed only with histories from the 235 

subsequent block. This was justified since each block was composed of an equal number of 

histories from each projection angle and was thus representative of the data set as a whole. 

Algorithm 3: Block total-variation superiorization with DROP (TVS2-DROP) 

1. set k = 0 

2. set FBPx=xk the initial FBP reconstruction, and βk = 1 240 

3. repeat for each block over 10 cycles 

4. set s to a subgradient of φ at xk 

5. if 0s >  set /kv = s s−  

6. else set kv = s  

7. set continue = true 245 

8. while continue 

9. set k
k

kk vβ+x=y  

10. calculate the merit function (total variation) with Eq. (7), and if 

( ) ( )k ky xφ φ≤  

11. apply the projection operator Pt(k) to y (Eq. (5)) 250 

12. calculate the feasibility proximity with Eq. (6) using histories 

from the current block, and if ( )( ) ( )k
kt xPr<yPr P  

13. set y=x M
+k P1  

14. set continue = false 
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15. else set 2/kk β=β  255 

16. else set 2/kk β=β  

17. set k = k + 1 

In an effort to reduce image reconstruction time, the TVS1- and TVS2-DROP schemes were 

further modified by eliminating the computationally expensive feasibility proximity check in step 

12. The modified schemes without the feasibility proximity checking are referred to as TVS1-260 

DROP* and TVS2-DROP* in the remainder of the paper. 

C. Proton CT Monte Carlo simulations 

The Geant419 Monte Carlo pCT simulation geometry described in previous work5 was used 

as the basis for the current work. The detector system consisted of four proton tracking planes and a 

crystal calorimeter (Fig. 1). The 30 × 30 × 0.04 cm 2D sensitive silicon tracking planes were 265 

assigned a spatial resolution of 100 μm. The calorimeter detector was a cesium iodide 32 × 32 × 10 

cm rectangular prism with perfect energy resolution, i.e., sources of detector noise were neglected. 

The virtual phantoms used to quantify spatial and density resolution are shown in Fig. 2(a) 

and 2(b), respectively. Both phantoms had a diameter of 16 cm and contained two materials, 

equivalent in chemical composition and electron density to brain and cranial bone as defined by the 270 

International Commission on Radiological Protection (ICRP)20. The spatial resolution phantom 

contained an additional central rectangular prism structure, having a cross-section of (0.82 × 0.82) 

mm2, equal to the reconstruction pixel size. The electron density of this structure was 20 times 

greater than the surrounding brain material but retained the same chemical composition. 

The incident, monoenergetic protons had an energy of 200 MeV and formed a two-275 

dimensional (2D) parallel-beam geometry. One hundred and eighty projections with 2-degree 
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intervals were simulated for each phantom. For each projection angle, the position in each tracking 

plane and energy deposited in the calorimeter were recorded for 20,000 protons. 

The Geant4 standard model of hadronic ionization was implemented. This model employed 

the Bethe-Bloch relationship for proton energies above 2 MeV, which covered our energy range of 280 

interest for protons traversing the phantom. For ionization energy loss, the standard Geant4 

configuration involves calculation of the mean value in 100 steps evenly spaced logarithmically in 

kinetic energies from 1 keV to 100 TeV. However, studies have shown that this default 

configuration is not accurate enough for pCT applications21. Based on the suggestion of Heimann et 

al.21 the binning was calculated from 1 keV to 500 MeV in 2000 steps. Low energy elastic and 285 

inelastic nuclear collision models were enabled. 

Based on the simulated proton data (entry and exit coordinates and energy deposited in the 

calorimeter) a 2D image of each phantom was reconstructed with the algorithms described above. 

These calculations were carried out on a general purpose graphical processing unit (GPGPU) 

workstation. The workstation consisted of a quad-core central processing unit (CPU) and two 290 

NVIDIA® Tesla C1060 GPUs (NVIDIA Corporation, Santa Clara, CA, USA). The GPGPU code 

was written with the “C for CUDA” toolkit, the drivers for which are freely available from 

NVIDIA®. To enable parallel execution on a dual GPGPU system, multi-threaded coding was 

implemented on the host CPU. This was done using the OpenMP application programming 

interface22. Only inherently parallel parts of the iterative reconstruction were executed on the 295 

GPGPUs. Projections within a block (the sum in Eq. (5)) suit the parallelization criteria well, as 

individual projections within a block are independent of the result of the other projections. Thus, 

following the completion of a block projection on the GPGPU, the summed array was returned to 

the CPU for processing and the sequential portion of the block-iterative algorithm carried out. 

D. Performance analysis 300 
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The performance of the different variants of reconstruction algorithms was compared by 

obtaining quantities for spatial resolution, density resolution, and relative RSP accuracy as 

described below. 

Spatial resolution of the reconstructed images was quantified with the 2D modulation transfer 

function (MTF). The MTF is a measure of the signal transmission properties of the imaging system 305 

as a function of spatial frequency. For this measure, the point spread function (PSF) of the image of 

the central dense rectangular prism in Fig. 2(a) was used. Following reconstruction, a 2D FFT of a 

16 × 16 pixel region of interest centered on the PSF was carried out. Making use of the axial 

symmetry of the phantom, the MTF was obtained in the region of interest by averaging the 

magnitude of the x and y axial components of the resulting spatial frequency representation of the 310 

image. 

Low-contrast density resolution was assessed with the contrast discrimination function 

(CDF). This is an objective statistical analysis method for determining the minimum contrast 

required to discriminate an object of a given size from the surrounding tissue23. The CDF was 

calculated by dividing the reconstructed image of the uniform phantom into a grid of objects, 315 

ranging from 1 × 1 to 10 × 10 pixels in size. The standard deviation of the distribution of mean 

pixel values within the grid elements were used to determine the minimum contrast detectable with 

a given confidence level. For a 95% confidence level, the detectable density difference between the 

object of selected grid size and the background was defined as 3.29 standard deviations of the mean 

pixel value distribution. 320 

The quantitative accuracy of reconstructed RSP values was determined using histogram 

analysis and defining the relative RSP error as 

,/ '' ∑∑ −=
j

j
j

n
jjn xxxε        (9) 
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where '
jx  is the RSP in pixel j of the phantom and n

jx  is the reconstructed RSP in pixel j after n 

cycles. 325 

III. RESULTS 

A. Qualitative comparison 

Images of the two virtual phantoms reconstructed with standard DROP, TVS1-DROP* and 

TVS2-DROP* are shown in Fig. 3. The images reconstructed with these variants of the TVS 

scheme without the feasibility proximity checking had a smaller or equivalent minimum relative 330 

error when compared to images reconstructed with the feasibility proximity check (see next section 

and Fig. 4). It should be noted that the images shown in Fig. 3 correspond to the image obtained at 

the cycle of minimum relative error, which was cycle 3 for standard DROP, and cycle 10 for TVS1-

DROP* and TVS2-DROP*. Qualitatively, it can be seen that the TVS2-DROP* scheme had the 

lowest noise level, probably due to the extra perturbation steps. 335 

B. Quantitative accuracy 

Fig. 4 displays the relative error as a function of cycle number for all reconstruction schemes. 

The images reconstructed with the TVS1-DROP and TVS1-DROP* schemes, i.e., with and without 

the feasibility proximity check, were equivalent in terms of quantitative RSP accuracy, and the 

relative error followed a monotonically decreasing trend. The removal of the feasibility proximity 340 

check made no difference as the check condition was never violated in this case. On the other hand, 

the removal of the feasibility proximity check made a difference for the TVS2-DROP scheme. Fig. 

4 demonstrates that including the feasibility proximity check led to a progressive increase of the 

relative error after reaching a minimum similar to the standard DROP algorithm. This can be 

explained by the fact that the reduced β dampens the noise-reducing effect of the perturbation step. 345 

Thus, as the standard DROP algorithm diverges from a low relative error, so does the more 
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stringent TVS approach. This occurs with TVS2-DROP but not TVS1-DROP because violations of 

the feasibility proximity condition were only observed with the former. Without the feasibility 

proximity check, the relative error of the TVS2-DROP* scheme followed a monotonically 

decreasing trend within the 10 cycles. The minimum relative error within the first 10 cycles was 350 

2.64% with standard DROP, 1.96% with TVS1-DROP and TVS1-DROP*, 1.64% with TVS2-

DROP, and 1.55% with TVS2-DROP*. These differences are a direct result of the various degrees 

of noise in the images reconstructed with the different schemes.  

The results presented were obtained with the data subdivided into 12 blocks. The 

reconstruction algorithms were also run with 180 blocks, but the results were very similar and are, 355 

therefore, not shown. 

Histograms of the images presented in the top row of Fig. 2 were created to analyze the mean 

reconstructed value of the brain and bone-equivalent regions. Gaussian distributions were fitted to 

the peaks to model reconstruction noise. All schemes reconstructed the same mean RSP value for 

the brain and bone-equivalent regions, within peak-fitting uncertainty. Thus, the TVS perturbation 360 

schemes did not adversely affect the accuracy of the reconstructed values of these materials. 

C. Spatial resolution 

Due to their superior noise performance and reduced reconstruction time, further analysis 

was only performed for the TVS1-DROP* and TVS2-DROP* schemes, which were compared to 

the standard DROP reconstruction scheme. The MTFs associated with each algorithm are plotted in 365 

Fig. 5. For any spatial frequency, the TVS1-DROP* scheme had larger MTF values and thus 

superior spatial resolution than the standard DROP scheme. The TVS1-DROP* and the TVS2-

DROP* schemes performed similarly in terms of spatial resolution, with the TVS1-DROP scheme 

being marginally better. The improved spatial resolution with the TVS reconstruction schemes can 

be attributed to the greater number of cycles being performed before reaching the lowest relative 370 
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error. It has been observed previously that pCT spatial resolution improves with cycle number when 

employing an MLP formalism in conjunction with an iterative algorithm3. This is an important 

result since reconstruction algorithms that improve density resolution (see below) often display 

inferior spatial resolution. 

D. Density resolution 375 

The CDFs associated with the standard DROP and the reduced TVS-DROP* schemes are 

plotted in Fig. 6. While the TVS1-DROP* scheme performed only slightly better than the standard 

DROP scheme, the TVS2-DROP* scheme performed much better than the other two algorithms. 

For objects as small as 1 mm2, the TVS2-DROP* algorithm allowed contrast discrimination 

between 1% and 1.5%. The superior contrast discrimination of the TVS2-DROP* scheme can be 380 

attributed to the combination of reduced image noise and improved spatial resolution. 

IV. DISCUSSION 

The new concept of superiorization, as outlined in Ref. 14, can be applied to inverse 

problems in which a reduction, which is not necessarily a minimization, of a given merit function 

subject to convex feasibility constraints is required. In this work, we have focused on the 385 

application of the general superiorization scheme to pCT reconstructions and made certain 

modifications to suit the task at hand. Central to the superiorization concept applied to pCT or other 

iterative image reconstruction methods is the act of perturbing the calculated image estimates 

between the iterative steps of a feasibility seeking projection method. By choosing the method of 

perturbation appropriately, significant beneficial alterations to the sequence of reconstructed images 390 

were achieved. 

In this study two superiorization schemes, TVS1-DROP and TVS2-DROP, based on a 

reduction of the TV of the pCT image reconstructed with the DROP algorithm were investigated. 
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The two schemes differed in the frequency of perturbation per reconstruction cycle. TVS1-DROP 

performed only one perturbation in each cycle, while TVS2-DROP made use of a perturbation at 395 

each block iteration (12 per cycle in this case). Both TVS-DROP schemes were found to improve 

image quality relative to standard DROP. In particular, the additional perturbation steps utilized in 

TVS2-DROP resulted in the greatest reduction of image noise and superior density resolution. 

Attention must be paid to the extra computation time when incorporating TVS schemes into 

pCT reconstruction algorithms. The calculation of the TV merit function (Eq. (7)) and the 400 

perturbation vector v
k
 could increase image reconstruction time when the dimension of the image is 

large, but the main cause for the excess reconstruction time in both TVS-DROP schemes was the 

calculation of the feasibility proximity function (Eq. (6)). In the best case scenario, in which the 

feasibility proximity check is never violated, a minimum of two projection cycles must be carried 

out for each conventional DROP cycle. To counteract the increased computation time, the two 405 

TVS-DROP schemes were also executed without the feasibility proximity checking step, denoted 

by TVS1-DROP* and TVS2-DROP*. This innovation halved the reconstruction time of both TVS-

DROP schemes and further reduced the image noise of TVS2-DROP, while having no detrimental 

effect on the other performance parameters when compared with TVS1-DROP. 

The purpose of the feasibility proximity function, is to ensure that superiorization with 410 

respect to TV does not force the reconstructed image away from the measured data. However, due 

to inaccuracies in the forward and backprojection operator in the iterative DROP algorithm, which 

arise from multiple Coulomb scattering and energy straggling of protons when traversing the object, 

the residual is not an accurate guide to image quality. The results presented here suggest that the 

TVS2-DROP scheme suppresses the inconsistencies present in the measured data. This means that 415 
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the high spatial resolution inherent in iterative algorithms employing the MLP formalism can be 

successfully combined with the low-contrast sensitivity due to TV superiorization. 

Another key finding of our investigation is the improvement in spatial resolution measured 

with both TVS-DROP reconstruction schemes relative to the standard DROP approach. While the 

TVS1-DROP* scheme displayed a marginally superior spatial resolution than TVS2-DROP*, the 420 

latter still resulted in superior spatial resolution relative to the image reconstructed with the standard 

DROP reconstruction despite its better noise reduction. We have noticed that previous attempts to 

improve density resolution by “smoothing” the reconstructed image, in general, resulted in a 

degradation of spatial resolution. This is not the case with both TVS-DROP schemes, where the 

spatial resolution was maintained or improved. 425 

In this work we have done a first investigation of the performance of TV-superiorization 

methods in terms of quantitative accuracy, spatial resolution and low contrast density resolution, 

with pCT data acquired from largely uniform virtual phantoms. TV-based methods are known to 

work well for such piecewise constant objects. Our work in progress with an experimental pCT 

system will provide additional opportunities to study the usefulness of TVS schemes in pCT image 430 

reconstruction of realistic anthropomorphic phantoms 

Superiorization is a promising new paradigm that has already been successfully applied to X-

ray CT (see Refs 11, 12, 13, and 14), particularly in conjunction with the TV cost function. Our 

current report is a “feasibility study” intended to show that the combination of TV and 

superiorization can be successfully translated from X-ray CT to pCT; two fundamentally different 435 

imaging techniques. This “opens the door” for testing of other functions in the superiorization 

methodology that have already been used as cost functions in the context of denoising via 

optimization, which may prove to be more powerful than TV. 
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V. CONCLUSION 

Superiorization is a general mathematical concept that was applied to pCT image 440 

reconstruction in this work. Two TVS schemes were applied as an add-on to the standard DROP 

reconstruction algorithm, which we had previously used in pCT image reconstruction. It was found 

that both spatial and density resolution were improved by both TVS-DROP schemes, while 

quantitative accuracy was maintained. To reduce reconstruction time, a costly step of feasibility 

proximity checking was removed from the TVS-DROP schemes. This resulted in halving the 445 

computation time and in further improved image quality. Considering the significant low-contrast 

advantages of the TVS2-DROP* scheme, we plan to implement this scheme in our future pCT 

image reconstruction of pCT images obtained with an experimental pCT system. 
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FIGURES 

 
FIG. 1.  Illustration of the Geant4 simulation geometry. 460 

 

FIG. 2.  Cross-sections of the cylindrical phantoms used in the Geant4 pCT simulations. (a) Phantom with central dense 

structure (indicated by arrow) to quantify spatial resolution. (b) Phantom with uniform interior. The white regions were 

assigned density and composition of bone and the gray regions density and composition of brain. 
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 465 

FIG. 3.  Images reconstructed with (a) standard DROP, (b) TVS1-DROP*, and (c) TVS2-DROP*. Images in the top 

row are reconstructions of the uniform phantom and in the bottom are reconstructions of the spatial resolution phantom. 

The viewing window includes RSP values between 0.8 and 1.2. 

 

FIG. 4.  Relative error as a function of cycle number for the various schemes. The relative error at cycle 0 corresponds 470 

to the relative error produced by the FBP algorithm, which was used to generate the initial point for the iterative TV-

superiorization. 
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FIG. 5.  MTF of the standard DROP and the reduced TVS-DROP* reconstruction schemes. The greater MTF value for 

any give spatial frequency reflects the superior spatial resolution of the TVS schemes. 475 

 

FIG. 6.  CDF derived from the standard DROP and the reduced TVS-DROP* reconstruction schemes. The CDF 

specifies the percentage contrast required to discriminate an object of a give size from background with a 95% 

confidence level. 


