
iversity,

PHYSICAL REVIEW E 68, 021910 ~2003!
Totally asymmetric exclusion process with extended objects: A model for protein synthesis
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The process of protein synthesis in biological systems resembles a one dimensional driven lattice gas in
which the particles have spatial extent, covering more than one lattice site. We expand the well studied totally
asymmetric exclusion process, in which particles typically cover a single lattice site, to include cases with
extended objects. Exact solutions can be determined for a uniform closed system. We analyze the uniform open
system through two approaches. First, a continuum limit produces a modified diffusion equation for particle
density profiles. Second, an extremal principle based on domain wall theory accurately predicts the phase
diagram and currents in each phase. Finally, we briefly consider approximate approaches to a nonuniform open
system with quenched disorder in the particle hopping rates and compare these approaches with Monte Carlo
simulations.
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INTRODUCTION

The process of protein synthesis, important in biologi
systems, has been the focus of intensive study over the
few decades. We concentrate on protein synthesis in prok
otes, particularlyEscherichia coli, because it is relatively
simple and well studied. The mechanism consists of ri
somes ‘‘reading’’ the codons of messenger RNA~mRNA! as
the ribosomes move along an mRNA chain, and the recr
ment and assembly of amino acids~appropriate to the codon
being read! to form a protein.~See, e.g., Ref.@1#, for more
details.! Known as ‘‘translation,’’ this process is often de
scribed as three steps: initiation, where ribosomes at
themselves, one at a time, at the ‘‘start’’ end of the mRN
elongation, where the ribosomes move down the chain
series of steps; and termination, where they detach at
‘‘stop’’ codon. Since ribosomes cannot overlap, their dyna
ics is subject to the ‘‘excluded volume constraint.’’ Apa
from being impeded by another ribosome~steric hinderance!,
a ribosome cannot move until the arrival of an appropri
transfer RNA, carrying the appropriate amino acid~a combi-
nation known as aminoacyl-tRNA, or aa-tRNA!. Thus, the
relative abundances of the approximately 60 types@2# of aa-
tRNA have significant effects on the elongation rate. Assu
ing reactant availabilities in a cell are in their steady sta
with a time-independent concentration of ribosomes and
tRNA, there would be an approximately steady~average!
current of ribosomes moving along the mRNA, resulting in
specific production rate of this particular protein. Our goa
the prediction of the protein production rates for vario
mRNA’s, as a function of the concentration of ribosomes a
aa-tRNA’s.

The process of translation is well suited to modeling us
a driven lattice gas in one dimension. In most relevant st
ies of one dimensional driven lattice gases, particles are
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jected at some rate on one end of a chain of discrete la
sites, then hop down the chain one site at a time with ano
rate, and finally exit the chain at the other end with a th
rate. These three rates correspond to the rates of initia
elongation, and termination. The excluded volume constr
is implemented by ensuring that each site can accommo
at most one particle. Because the dynamics is stocha
even this ‘‘simple’’ model, though solvable exactly@3,4#, is
already not trivial. However, we believe two essential a
pects of translation are missing from this model. First, if w
model a codon by a lattice site, the ribosome would cov
typically, a dozen sites@5,6#. Second, there is nonuniformit
in the hopping~elongation! rates along the chain, because
ribosome has to ‘‘wait’’ for the appropriate aa-tRNA befo
continuing, and the relative abundance of the different
tRNA’s is far from unity. Remarkably, the first issue wa
explored as early as 1968@7,8#, though only at the determin
istic, ‘‘mean field’’ level.

In this paper, we present studies that address both of th
issues, extending the work on the ‘‘simple model’’ known
TASEP ~namely, single-site coverage, totally asymmet
simple exclusion processes with open boundaries! @9#. Our
methods involve both Monte Carlo simulations and mod
analysis techniques, including domain wall theory@10#. We
have confirmed all key results from earlier studies@7,8#, and
several new insights have emerged. The paper is organ
as follows. The details of the model are delineated fi
along with brief summaries of known results. Section II
devoted to aclosed~i.e., periodic! system with particles of
arbitrary size. Though not a direct model for translatio
TASEP on a ‘‘ring’’ provides simple solutions as well a
useful insights in the form ofexact relations for relevant
parameters, such as current-density relations. In Sec. III,
turn to the central topic: TASEP with extended objects a
open boundaries. Section IV is devoted to nonuniform h
ping ~elongation! rates. We close with a brief summary an
speculate on the relevance of our model as a mechanism
©2003 The American Physical Society10-1
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the nonlinear relationship between mRNA and protein lev
observed in biological experiments@11,12#.

I. THE DRIVEN LATTICE GAS AS A MODEL FOR
PROTEIN SYNTHESIS

A. Model specifications

We model an mRNA withN codons as a chain of sites
each of which is labeled byi. The first and last sites,i
51,N, are associated with the start and stop codons, res
tively. At any time, attached to the mRNA areM ribosomes
~also referred to as ‘‘particles’’!, which we label bya (a
51, . . . ,M ). Being a large complex of molecules, each
bosome will cover, sites ~codons!, with ,512 typically
@5,6#. By contrast, nearly all studies of the asymmet
simple exclusion processes~ASEP! are devoted to,51.
Any site may be covered by a single ribosome or none
case of the latter, we will refer to the site as ‘‘empty’’ o
‘‘occupied by a hole.’’ For convenience, we defineM̃ as the
number of holes on the chain, so that

M̃1,M5N. ~1!

For open systems, a ribosome at the end can be atta
without covering all, codons, so that this equality is onl
approximately true. To locate the ribosome, we arbitra
choose thelowestsite covered. For example, if the first,
sites are empty, a ribosome can bind in an initiation step,
then it is said to be ‘‘on sitei 51.’’ Therefore, a complete
specification of the configuration~state, or microstate! of the
mRNA is the set of locations:$ i a%. One disadvantage of thi
labeling is that, with each initiation event, thea of every
ribosome will change~increase by unity!. Alternatively, we
can usesite occupationnumbers

ni5H 1 if site i is covered by any part of a ribosome,

0 if site i is empty.

With these conventions, we define several density par
eters:~1! r r[M /N is the ribosome~or particle! density;~2!
r[M,/N5( ini /N is the coverage density;~3! rh512r is
the hole density; and~4! rs[r r1rh is defined for conve-
nience.

All of these quantities are time dependent, because in
tion and termination occurindependently. For mathematical
reasons, we will first consider aclosedsystem~with periodic
boundary conditions, i.e., the ends of the chain tied to form
ring!, for which these densities are fixed and Eq.~1! holds
strictly. As will be clear later, it is also convenient to lab
configurations by specifying the number of holes betwe
successive ribosomes:$ha%, whereha is the number of holes
in front of the ath ribosome. In the terminology of traffic
models,ha is also known as the ‘‘headway’’ of this particle
Though not absolutely necessary, we could defineh0 as the
number of holes behind the first ribosome.

Next, we specify the dynamics of our model. An attach
ribosome located at sitei will move to the next site (i 11)
with a rateki , providedsite i 1, is empty. For Monte Carlo
simulations, it is convenient to update configurations in d
crete time units. Then, it is better to use probabilitiespi (0
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<pi<1), so that a ribosome on sitei will be moved or not
with probability pi or 12pi , respectively. We purposefully
associate these hopping probabilities with a site becau
site is associated with a particular codon. Thus, the jump
from that site may depend on the relative abundance of
appropriate aa-tRNA. Apart from these probabilities, anot
aspect of our stochastics is random sequential updating:
during each Monte Carlo step~MCS!, M11 particles are
chosen at random, in sequence, to attempt moves. They
selected from a pool that includes theM particles on the
lattice plus another unbound particle that can initiate if th
are , holes at the beginning of the chain. Let us illustra
with a few examples. First,p0 is associated with the star
codon and,if the first , sites are empty, a particle will be
placed on thei 51 site with this probability. Next, a random
particle~say at sitei ) is chosen and, provided it has a hole
front (ni 1,50), will be moved with probabilitypi . Natu-
rally, it will not be necessary to check for headway for t
‘‘last’’ ribosome (a5M ). Finally, the stop codon will be
associated withpN . For simulations of the closed system
there will be no ‘‘beginning’’ or ‘‘end,’’ so that there are no
special steps for initiation or termination.

In our computational studies, 100 identical systems oN
sites are simulated in parallel to obtain good statistics. Sim
lations of closed systems begin with particles evenly distr
uted around the ring and run for 3600 MCS to ensure t
steady state is reached. Open systems begin empty an
run for 12,000 MCS~for N,500) or 100N MCS ~for N
>500) to reach steady state. After steady state is attai
data including the current and density distribution can
collected. Density data are typically collected every 1
MCS. We often use continuous time Monte Carlo@13# be-
cause it runs far more quickly than and provides the sa
results as standard Monte Carlo.

B. Brief survey of known results

Extensive investigations of the simple totally asymmet
exclusion process~TASEP, defined as point particles hoppin
with unit rate along a line! with open boundaries can b
found in the literature. Simulations have been perform
@14#, and exact analytic results for the steady state exist@3,4#.
Depending on the initiation~or injection! and termination~or
depletion! rates, the system will settle into one of thre
phases. Introduced above asp0 and pN , respectively, the
initiation and termination probabilities are mostly referred
as simplya and b in the literature. From their dominan
characteristics, the three phases are known as low den
high density, and maximal current. A phase diagram in t
a-b plane has been determined, showing second order t
sitions between the maximal current phase and the other
well as a first order transition between the high- and lo
density regions. Subtle correlations further divide the l
two into subregions. When disorder is introduced, i.e., not
the pi ’s are equal, then methods for exact analytic a
proaches fail~except in the extremely dilute limit, wher
only the motion of a single particle is of concern@15#!. In-
deed, even a single slow rate in aclosedsystem poses seriou
difficulties @16–18#. However, Kolomeisky@19# obtained ap-
0-2
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proximate steady state solutions and phase diagrams fo
open system with a single nonuniform rate in the bulk b
splitting the system into two smaller systems connected
the nonuniform rate. Tripathy and Barma@20# considered a
closed system, but with a finite fraction of identical slo
sites. Based on a combination of Monte Carlo simulatio
and numerical solutions of mean field equations, they fou
current-density relations. Though not a model for elongati
a related problem is ‘‘particlewise disorder,’’ in which th
unequal hopping rates are associated with the particles ra
than the sites@21#. Further references on TASEP with diso
der may be found in a recent review@22#. Also indirectly
related to our one dimensional models are driven lat
gases with quenched disorder inhigher dimensions@23,24#.
Finally, we mention that there are many studies on the AS
in which a particle has a finite probability of stepping bac
wards@25#. Back steps are not generally believed to occur
elongation, and we will not consider such processes. Al
these studies are restricted to,51.

Systems with extended objects (,.1) have been rarely
investigated, despite their introduction over three deca
ago as a model for biopolymerization@7#. Using a mean field
approach, MacDonaldet al. set up mean field equations fo
the average site occupation^ni& and considered both close
@7# and open@8# systems. In the former case, exact solutio
were found, leading them to a current versus density relat
For the latter, the authors resorted to numerical solution
find the phase diagram for a variety of initiation and term
nation rates. A phase diagram similar to the simple TAS
as well as nontrivial density profiles and the associated
rents, was obtained. More recently, there is renewed inte
in this problem. Naming this system ‘‘,-TASEP,’’ Sasamoto
and Wadati@26# focused on the time dependence ofM par-
ticles in an infinite lattice and, using the Bethe ansatz, fou
exact results for the conditional probability that the partic
are found at certain sites given an initial configuration. T
main conclusion is that the dynamics of,-TASEP lies in the
same universality class as ordinary TASEP. This line of
quiry has been further generalized to a system containin
distributionof particle sizes@27,28#. Though these investiga
tions produced interesting results, they are not applicabl
our situation, namely, finite systems with open boundaries
particular, for finite lattices, these studies are restricted
closedsystems, for which the stationary states are trivial,
we will recapitulate in Sec. II. Finally, a recent work b
Lakatos and Chou@29# considered uniform open system
with extended objects. Using a discrete Tonks gas parti
function, they derived the current versus density relation fi
presented by MacDonaldet al. @7#. Via a refined mean field
theory, they extended this result to predict currents and b
densities for the open system, which they confirmed
Monte Carlo simulations. The phase diagram and its pro
ties are consistent with those initially obtained by Ma
Donald and Gibbs@8#. We are not aware of published resu
on open systems with both extended objects and quen
disorder.

II. TASEP OF EXTENDED OBJECTS ON A RING

For simplicity and mathematical reasons, it is conveni
to discuss a uniform closed system with periodic bound
02191
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conditions. Here,M identical particles of size, move on a
ring of N sites. Due to the excluded volume constraint, th
areM̃5N2,M uncovered sites~holes!. The system evolves
by discrete time steps, with random sequential updates. S
cifically, during each MCS,M particles are chosen at rando
in sequence, and each is moved forward one site provi
there is headway. Since we have a stochastic dynamics
complete description of this system isP(C,t), the probabil-
ity that it is found in configurationC after t steps~starting
from some initialC0). To label a configuration, we choos
an arbitrary particle to be the first (a51) and supply$ha%,
the set of number of holes in front of theath particle~with
a51, . . . ,M ). Clearly, we may also think of a configuratio
as a series ofM ‘‘gaps’’ ~between the particles! with ha being
the number of holes in theath gap. So,P(h1 ,h2 , . . . ,hM ;t)
is an explicit form forP(C,t). Note that, since the system
closed, there is a constraint onha , i.e.,

(
a

ha5M̃

is a constant in time.
Random sequential updating can be translated into

equation that governs the time evolution ofP(C,t), namely,
a master equation. Starting with the initialP(C,0)
5d(C,C0) ~whered is the Kronecker delta!, P(C,t) is ex-
pected to settle into a unique,time-independentdistribution,
P* (C), which we will refer to as the ‘‘steady state.’’ If this
system were evolving towards thermal equilibrium, the d
namics would satisfy detailed balance@30#, and P* (C)
would be given by the well-known Boltzmann factor. How
ever, the dynamics of our system definitely violates detai
balance, so that, associated with anonequilibrium steady
state, P* (C) is not known in general. Fortunately, th
closed system belongs to a class for which a simple solu
is known@31#; namely, every configuration occurs with equ
probability @32#. Thus,P* (C) is precisely the reciprocal o
the total number of configurations consistent with the giv
parameters (N,M ,,). With such a simple distribution, we
can compute many quantities of interest, such as the p
ability distribution of the current~and hence the average cu
rent! and the headway.

Apart from overall factors, the total number of configur
tions is justZ(M̃ ,M ), the total number of lists$ha% subject
to Eq.~1!. Because this is a well-known combinatorial pro
lem ~appearing in, e.g., the Bose gas!, we simply quote the
result,

Z~M̃ ,M !5
~M̃1M21!!

M̃ ! ~M21!!
[S M̃1M21

M̃
D .

The actual number of distinct configurations
(N/M )Z(M̃ ,M ), because there areN lattice sites on which
the first particle can be placed but theM particles are iden-
tical. Thus,
0-3
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P* ~C!5
M̃ ! M !

N~M̃1M21!!

independentof C.
To compute the probability distribution of the current a

its average, we need more detailed information on the ab
‘‘partition.’’ Defining the currentJ as the number of particle
that moved in one step~normalized by the system sizeN),
we see that we will needH, the number of gaps with one o
more holes. The reason is that, for each such gap, the r
some behind it can move and contributes one ‘‘unit’’ to t
current, so that

J5
H

N
.

Since all configurations are equally probable, the statist
weight associated with thisJ is just the total number of con
figurations with a givenH. This quantity, denoted by
Z(H;M̃ ,M ) in analog toZ(M̃ ,M ), may be found from its
definition:

Z~H;M̃ ,M !5 (
$ha%

FdS M̃ ,(
a

haD dS H,(
a

@12d~ha,0!# D G ,
where the sum is over all possible lists$ha% and the Kro-
neckerd ’s select only those that satisfy Eq.~1! and haveH
gaps withha.0. OnceZ(H;M̃ ,M ) is known, the full dis-
tribution for the current is

p~J;M̃ ,M !5
Z~H;M̃ ,M !

Z~M̃ ,M !
.

Now, the explicit form ofZ(H;M̃ ,M ) can be obtained eithe
through the generating function

WM~z,h![ (
M̃ ,H

Z~H;M̃ ,M !z M̃hH5F11
zh

12zGM

or by standard combinatorial techniques,

Z~H;M̃ ,M !5S M

H D S M̃21

H21
D .

Thus, the explicit current distribution is

p~J!5S M

H D S M̃21

H21
D Y S M̃1M21

M̃
D , ~2!

whereH on the right stands forJN. An alternate form, show-
ing the dependence of this distribution on the control para
eters (M̃ ,M ,N5M̃1,M ) is

p~JuM̃ ,M ,N!

5
1

MM̃ ~M̃1M21!!

JN

~M̃2JN!! ~M2JN!!
FM ! M̃ !

~JN!!
G2

.
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To illustrate this distribution, we show in Fig. 1 both th
prediction and simulation data for the case ofN5200, M
515, and,512. Clearly, there is excellent agreement b
tween theory and simulation.

Containing less information, but easier to grasp, is
average currentJ̄[(Jp(J). Its computation is somewha
easier, since it is(H51

M HZ(H;M̃ ,M )/NZ(M̃ ,M ), with the
numerator easily gleaned from]hWM(z,h)uh51. The result
is

J̄5
M

N

M̃

M̃1M21
. ~3!

As we will see, the dependence of this average current on
density of particles plays a central role. Expressing t
quantity in terms ofr r[M /N, we have J̄5r r(12,r r)/
@12(,21)r r21/N#. An appealing form, which displays
both the intensive nature ofJ and its underlying particle-hole
symmetry, is

J̄5
r rrh

rs21/N
. ~4!

A third form, frequently referred to in the literature as th
‘‘current-density relationship,’’ is writingJ̄ as a function of
r, the coverage density (rP@0,1#),

J̄~r!5
r

,

12r

12r1r/,21/N
. ~5!

In the limit N→`, this result was first presented by Ma
Donaldet al. @7#. A generalization of the well-known expres
sion for,51 @i.e., J̄5r(12r)], this J̄(r) is no longer sym-
metric aboutr51/2. Instead, the optimal density increas
from 1/2 toA,/(11A,), while the maximum current is low-
ered from 1/4 to (11A,)22. As these quantities will appea
frequently, we will denote them by

FIG. 1. Distribution of currentsp(J) for N5200, M515, and
,512. Squares~connected by dashed lines! are values predicted by
Eq. ~2!, and triangles are values observed in Monte Carlo simu
tions. A single lattice was simulated to steady state, and insta
neous current (H/N) was determined every 100 MCS thereafter f
1.23106 MCS.
0-4
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r̂[
A,

11A,
and Ĵ[~11A, !22. ~6!

To appreciate this shift graphically, we present, in Fig.
both analytic and simulation results. In addition, to show
effects of the finite size corrections~due to the 1/N term!, we
include a curve of the limiting form@7,29#

J̄→ r rrh

rs
~7!

for the N540 case.
In connection with these expressions, a conclusion

conditional probabilities can be drawn. SinceJ̄ is precisely
the joint probability of finding a ‘‘covered’’-hole pair, we se
that r r /rs is the probability that sitei is covered, given tha
site i 11 is empty and, similarly,rh /rs is the probability that
site i 11 is empty, given that sitei is covered. These condi
tional probabilities will play a role in our understanding
the behavior of open systems.

In addition to the average current, we can also compute
fluctuations exactly,

DJ2[( J2p~J!2 J̄25
J̄2

rsN
.

Typical of noncritical thermodynamic systems, in whic
the ~fractional! deviations areO(N21/2), the full distribu-
tion p(J) approaches the standard Gaussian fo
exp@2(N/2)rs(J/ J̄21)2#. Indeed, this is the form we see i
the example shown in Fig. 1.

Finally, we turn to another quantity of interest: the stat
tics of ‘‘headway.’’ Since there areM gaps in each configu
ration and there areZ(M̃ ,M ) configurations, we have a tota
of MZ(M̃ ,M ) gaps. Out of these, we wish to compute t

FIG. 2. CurrentJ vs coverage densityr5M,/N for closed sys-
tems. Symbols are Monte Carlo results, solid curves are predi
values from Eq.~3!, and the broken curve is the prediction from E
~7!. Triangles are for,52, N540, 3 ’s for ,55, N580, and
squares for,512, N5150. J was determined by averaging ove
1.23105 MCS and 100 identical systems after steady state
reached.
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number of gaps that contain preciselym holes, which we
denote byZ(m;M̃ ,M ). From its definition

Z~m;M̃ ,M ![(
$ha%

dS M̃ ,(
a

haD S (
a

d~m,ha! D ,

we find the associated generating function

W~z,h![ (
M̃ ,m

Z~m;M̃ ,M !z M̃hm5M S 1

12zh D S 1

12z D M21

,

leading to the distribution of head spacings

p~m;M̃ ,M ![
Z~m;M̃ ,M !

MZ~M̃ ,M !

5S M̃1M2m22

M̃2m
D S M̃1M21

M̃
D . ~8!

In the limit of largeN, this expression simplifies to

p~m!→ r r

rs
S rh

rs
D m

.

This distribution is reproduced faithfully in Monte Carl
simulations, as shown by an example in Fig. 3. It is easy
understand this result intuitively if we regardrh /rs as the
probability of having a single hole in the headway. Wi
independent hole statistics, we havep(m)}(rh /rs)

m. The
average number of holes in the headway and the assoc
standard deviation can be computed easily:rh /r r and
A(rh /r r)

21rh /r r , respectively.
Though the system considered in this section, partic

traveling on a ring, bears little resemblance to the transla
process, it is sufficiently simple for us to derive a number
exact results. Apart from their own interest, these results p
vide crucial insights, such as the current-density relations

ed

s

FIG. 3. Distribution of head spacingsp(m) for N5100, M
56, and ,512. The curve is the prediction from Eq.~8!, and
squares are simulation values. 100 lattices were simulated to st
state, and head spacingm for any particles on the first lattice site
was determined every 100 MCS thereafter for 1.23105 MCS.
0-5
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for postulating appropriate equations in a coarse grain
mean field approach to the physical problem at hand.

III. EXTENDED OBJECTS IN OPEN SYSTEMS

In this section, we attempt the next step towards a reali
model for protein synthesis by considering systems w
open boundaries. The section is organized as follows.
describe the problem and introduce some terminology. N
we study the effects of the open boundaries alone, by a
lyzing the continuum limit of asymmetricexclusion process
Finally, we consider the asymmetric exclusion process w
open boundaries. We present the phase diagram found
simulations and an extremal principle analysis, and we sh
the ability of the continuum limit to predict steady state de
sity profiles.

In the open system, the first site (i 51) is no longer ‘‘in
front of’’ the i 5N site. Instead, a particle~of extent,) will
be placed ati 51 with probabilitya ~previously labeled by
p0), providedall the first, sites are empty. This models th
initiation process. As for elongation, we continue to restr
ourselves to uniform rates here. In the language of TAS
every ~randomly! chosen particlewill moveby one site~in-
creasingi by unity! if it has some headway. For particles o
the last, sites, there is no hinderance, so they will alwa
move if chosen. Finally, to simulate termination, a particle
the Nth site will be removed from the system with rateb
~previously labeled bypN). To repeat, in a Monte Carlo ste
~MCS!, M11 particles are chosen randomly~in sequence! to
attempt a move. They are selected from a pool including
M particles on the lattice plus an unbound particle that m
initiate.

Since this system is no longer closed,M andM̃ are fluc-
tuating quantities. Of course, their average values will
controlled by the ratesa and b. Our goal is to find the
average densities and the average current of such a mod
functions of (a,b). In the ,51 case, it is known that the
system exhibits three different ‘‘phases’’ asa andb are var-
ied, only one of which resembles the closed system above~in
the sense that the current approachesĴ for largeN). Beyond
overall averages, we seek the density profile, which will
only be nontrivial, but which also displays drastically diffe
ent properties as we move about in thea-b plane. The main
goal of this paper is to study the effects of,.1 on both the
phase diagram and these density profiles. Unfortuna
P* (C) for a system with open boundaries is not known
general. Even for the,51 case, only a limited set of quan
tities may be computed exactly. To make progress, we re
here to a more phenomenological approach, in the spiri
hydrodynamics or Lanudau-Ginzburg free-energy functi
als. Considering coarse-grained densities and the contin
limit, we postulate equations of motion, based on some
the properties of the closed system. In principle, such eq
tions can be ‘‘derived’’ from the master equation forP(C,t),
using the mean-field approximation~i.e., ignoring all corre-
lations!. In a sense, this is also the approach of MacDon
et al. @7#, except that they focused onni

(L)(t) andni
(0)(t), the

probabilities for sitei to be occupied by a ribosome and
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hole, respectively, at timet. By keeping the spatial coordi
nate discrete, they faced difference equations and succe
in finding solutions only numerically. In contrast, by using
continuous spatial coordinate, we have ordinary differen
equations instead, giving usanalyticsolutions. However, lost
in the notion of ‘‘coarse-graining’’ are the period, structures
that feature prominently behind ‘‘blockages.’’ Neverthele
our approach appears to capture the essential~gross! features
of these systems.

In our heuristic approach, we imagineN to be large
enough to justify taking the continuum limit, i.e., replacin
the discrete site labeli by a continuous coordinate:x. For
simplicity, define

x[ i /N

so thatx lies within the unit interval.~If physical units of
length are desired, we may introducea as the lattice spacing
corresponding to the length of a codon, i.e., three base
the mRNA. ThenLmRNA[Na would be the length of the
mRNA in question.! Similarly, continuouslocal densities
will take the place of the discrete occupation variables. F
example, the coverage densityr(x) will be used instead of
ni . Since the maximum occupancy is unity, the hole dens
is just

rh~x!512r~x!.

Following our considerations above, we also define the ri
some density by

r r~x!5r~x!/,.

Note that, despite the continuum limit, these equations
play the meaning of,, which serves as a measure of th
‘‘size’’ ~or ‘‘extent’’ ! of ribosome. Of course, we are als
interested in their time dependence, so that we must cons
r(x,t) in general. Now, ribosomes rarely detach from t
mRNA during elongation, so that we are justified in rega
ing these densities asconservedfields. Thus, the appropriat
equation of motion is the continuity equation, i.e.,

]

]t
r r~x,t !52¹W •JW r52

]

]x
Jr~x,t !, ~9!

whereJr(x,t) is the local~ribosome! current. Our first task is
to find how this current depends on the~local! density
r r(x,t), i.e., to find the functional form forJr@r r #. Then we
will arrive at an acceptable equation forr r . To find the
steady state profiler r* (x), which satisfies] tr r* 50, we see
that this state is associated with a constant (x,t-independent!
currentJr* . Therefore, our problem consists of finding th
solution to

Jr@r r* #5const,

subject to the appropriate boundary conditions. To keep
notation simple, from here on we will drop the subscripr
and writeJ or J(x,t) for the local current~as well asJ* for
the constant current in the stationary state!.
0-6
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TOTALLY ASYMMETRIC EXCLUSION PROCESS WITH . . . PHYSICAL REVIEW E68, 021910 ~2003!
A. The case of free diffusion and an effective density variable
for extended objects

To show how we build an appropriate equation for t
TASEP, let us begin with a study of the effects of op
boundariesalone. In other words, let us consider asymmetric
exclusion process for extended objects, i.e., a system of l
particles diffusing freely on a line, subjected to the exclud
volume constraint and the controlsa,b. For simulations, a
randomly chosen particle is moved one site forward or ba
ward with equal probability (0.5), provided it does not ru
into its neighbor. The only exception is the first partic
which is prohibited from jumping backwards into th
‘‘source.’’

For the,51 case (r5r r), the steady state profile is trivi
ally linear,

r* ~x!5~12x!r* ~0!1~x!r* ~1!

with current

J* 5
1

N
@r* ~0!2r* ~1!#.

~Note that, since the current is controlled by the gradien
the local density only, it vanishes necessarily in theN→`
limit. So, we must keep theN explicitly here.! Meanwhile,
the boundary densities are fixed by matching the injecti
depletion rates to the internal current:

arh* ~0!5a@12r* ~0!#5J* 5br* ~1!,

and our problem is completely solved. These well kno
results can be traced to the fact that Eq.~9! assumes the form
of the simple diffusion equation] tr}]x

2r, since J@r#}
2¹r. Though there are many ways to arrive at this resul
is less clear how to generalize it to the case of exten
objects. In particular, as displayed in Fig. 4, the profile fro
simulations~for N5200,,512,a5b51) is far from linear.

FIG. 4. Density profile for free diffusion in a system withN
5200 and,512 from r51 to r50. Symbols are Monte Carlo
data. 100 identical systems were simulated in parallel for 105 MCS
to reach steady state, and then density profiles were collected e
100 MCS for an additional 1.23104 MCS. The curve is the pre
dicted density profile. The inset shows the effective particle den
profile x, constructed from the simulation data. The current o
served in simulations wasJ* 50.00252, which is close with the
expected value of 0.00255D@x(0)2x(1)# for D51/2N.
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Here, we will show that there is a natural generalization
the ~particle! density in the case of extended objects and t
its profile is again linear.

We proceed by returning to the basics, starting with
currentJr being proportional to both the conductivity~mo-
bility ! and the drive. For the former, we take the result fro
the preceding section. There, the drive is constant, so tha
right hand side of Eq.~7!, r rrh /rs , can be interpreted as th
conductivity or mobility ~neglecting the finite-size effec
term from the closed system!. Meanwhile, the drive for free
diffusion should be the gradient of a pressureP, so that

Jr@r#5DFr rrh

rs
G@2¹P#, ~10!

whereD is a constant, to be fitted to data. Since we ha
scaled the system size to unity, we should keep in mind
D is a quantity ofO(1/N), to be consistent with the con
tinuum limit. For the pressureP, we follow the standard
route of statistical mechanics and write

P5
dH
dr r

,

where H is a free energy functional~e.g., the Landau-
Ginzburg ‘‘Hamiltonian’’ in case of the ordinary lattice gas!.
Here, we have a noninteracting system, so that a reason
form for H is just the entropy@35#:

H5E dx@r r lnr r1rhlnrh2rslnrs#.

Using

rh512,r r , rs512~,21!r r

and carrying out the steps, we arrive at amodifieddiffusion
equation:

] tr r5D]x@rs
22]xr r #. ~11!

Note that, for ,.1, the effective ‘‘diffusion constant,’’
D/r s

2 , is density dependent. Thus, the steady state profil
will not be linear inx. Instead, it satisfies

D

~rs* !2

]r r*

]x
52J* , ~12!

which will definitely lead to nonlinear profiles.
Although we have derived this diffusion equation via ph

nomenological techniques, we speculate that it could be
tained through a more rigorous derivation. Specifically, i
matrix product description of the,.1 system becomes
available, the methods of Derridaet al. @36# may extend to
calculate a large deviation functional, which would play t
role of a nonequilibrium free energy for this system. Shou
such a functional exist, we expect that our diffusion equat
would result from a variation of this functional.

To find r r* explicitly, notice that, due tors512(,
21)r r , the left hand side is just a simple derivative

ery

ty
-
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SHAW, ZIA, AND LEE PHYSICAL REVIEW E 68, 021910 ~2003!
1/rs* . Thus, the profile 1/rs* (x) will be linear. However,rs

does not reduce to a sensible variable as,→1, leading us to
define

x[
1

,21 F 1

rs*
21G5

r*

,2~,21!r*
.

Not only doesx lie in the unit interval; it reduces to the usu
particle densityr* in the limit ,→1. Most importantly, it is
uniquely related tor* for all ,. First introduced in Ref.@28#,
x is the ‘‘natural’’ generalization of the particle density fo
extended objects. We will refer to it as the effective parti
density~EPD!. Meanwhile, a hole remains a single-site e
tity, so its density needs no modification. In terms of t
EPD, the various densities are

rs* 5
1

11~,21!x
,

r r* 5
x

11~,21!x
,

rh* 5
12x

11~,21!x
,

so thatx is just

x[r r* /rs* . ~13!

The current-density relationship@Eq. ~7!# for the steady state
in the ring is again a simple product,

J̄ring5xrh . ~14!

Note that this product will serve as themobility in our mean
field approach here and can be expressed in terms ofx alone,

xrh5
x~12x!

11~,21!x
.

The main advantage of using the EPD is the reemergenc
the familiar combinationx(12x) in the numerator. Finally,
corresponding to the optimal density@Eq. ~6!#, we have

x̂5
1

11A,
,

a quantity that plays a significant role in systems with op
boundaries. Note that the corresponding hole density
2 r̂) also assumes the same value, so thatĴ is just x̂2. The
underlying ‘‘particle-hole’’ symmetry generalizes to one u
der exchange ofx⇔rh , or

x⇔ ~12x!

11~,21!x
,

or, in terms of the more physicalr,
02191
-

of

n
1

r⇔ 12r

12r1r/,
.

We now find that Eq.~12! simplifies to the familiar equa-
tion from ordinary diffusion,

D
]x

]x
52J* .

As a result, the profile in terms ofx is again linear inx @37#.
For completeness, we write the solution

x~x!5~12x!x~0!1~x!x~1!

with

x~0!2x~1!5J* /D.

The explicit solution ensues once the constraints of injecti
depletion rates are imposed. Note that, in general, we wo
haveJ* }D, so that the current inherits theO(1/N) from D,
in contrast to theO(1) behavior for systems with nonzer
drive.

To close, we illustrate how well the theory agrees w
data by showing the analytic, nonlinear profile ofr* (x) with
boundary conditionsr(0)51, r(1)50:

r* ~x!5
12x

12~121/, !x
,

as a curve in Fig. 4.

B. TASEP in open systems

We now turn to the other extreme case, where backw
jumps are completely excluded~TASEP!, generalizing the
model of Ref.@3# to extended objects. With open boundarie
this model incorporates another essential feature of tran
tion. Our interest is again the average current and den
profile, as a function ofa andb, the rates of initiation and
termination.

1. Phase diagram from extremal principle and simulations

Although we are unable to generalize the methods
Refs. @3,4# to arrive at exact solutions for an open syste
with particles covering,.1 sites, we find that the phas
diagram determined by the mean field techniques of R
@8,29# can be understood also by extending the extrem
principle, an hypothesis first proposed by Popkov and Sch¨tz
@38# and later exploited successfully by others~e.g., Refs.
@39,40#!. In this approach, the open boundaries are regar
as connections to reservoirs with appropriate densities
that by keeping the same jump rates as in the bulk,a andb
are realized. Definingr2 andr1 as the reservoir densities a
the initiation and termination boundaries, respectively,
extremal principle relates the current in the open system
the J@r# for a closed, periodic system with the same bu
dynamics@41#:
0-8
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TOTALLY ASYMMETRIC EXCLUSION PROCESS WITH . . . PHYSICAL REVIEW E68, 021910 ~2003!
J5H maxJ@r# for r1,r,r2

minJ@r# for r2,r,r1 .

Unfortunately, there is no prescription for findingr2 ,r1

from a,b in general. Exploiting results from the exact
solvable,51 case~wherer25a andr1512b) and from
previous studies of the,.1 case@8,29#, we argue in favor of

r2~a!5
,a

11a~,21!
and r1~b!512b. ~15!

These reservoir densities can be understood as follows.
call that, for a closed system, the probability for sitei 21 to
be filled, given that sitei is empty, isr r /rs5(r/,)/(12r
1r/,). We now argue that when the first site of an op
system is empty and will be filled with probabilitya, it can
be thought of as being coupled to a reservoir of the app
priate density, i.e., r2 such that a5(r2 /,)/(12r2

1r2 /,). Solving for r2 leads to the expression above f
r2(a). The expression forr1(b) is not readily explained
by similar arguments, so discussion of its origin will be d
ferred until the following section. An important feature ass
ciated with this choice is that the current is symmetric un
a⇔b, as observed in simulations. Most importantly, the
choices lead to phase diagrams in good agreement
Monte Carlo data.

By combining these choices with the extremal princip
we find that, although the result is qualitatively similar to t
,51 system, there are quantitative changes for the,.1
case. First, there is a shift in the location of transition lin
from 1/2 to x̂51/(11A,) ~as shown in Fig. 5!. Then, the
current and bulk densities are also modified:

J̄~a,b!55
a~12a!

11a~,21!
for a,b,x̂ ~ low density!,

b~12b!

11b~,21!
for b<a,x̂ ~high density!,

Ĵ for a,b>x̂ ~max current!
~16!

and

FIG. 5. Phase diagram predicted by the extremal principle.
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r̄~a,b!5H r2 for a,b,x̂ ~ low density!,

r1 for b,a,x̂ ~high density!,

r̂ for a,b>x̂ ~max current!.

~17!

As examples of how well these predictions fit simulati
data, we show plots ofJ̄(1,b) ~Fig. 6! andr̄(a,0.1) ~Fig. 7!.
As expected, whena was rate limiting~low density phase!, a
bulk coverage density ofr2(a) was induced, and whenb
was rate limiting, a bulk coverage density ofr1(b) was
induced. Given the success of the extremal principle an
sis, it would be appropriate to search for more fundamen
theories from which the extremal principle could be derive

The transition between low and high density phases
clearly first order, displayed as a jump in the bulk dens
plot ~Fig. 7!. As in the,51 case@10#, domain wall theory
can be used to understand our results. In particular, foa

5b,x̂, we have observed a shock front~between the low

FIG. 6. Dependence of current onb for a51, ,512, andN
51000. Symbols are simulation results~determined from 100 sys
tems simulated in parallel for 1.23104 MCS after steady state wa
reached! and the curve is the prediction from Eq.~16!.

FIG. 7. Dependence of average coverage densityr̄ on a for b
50.1, ,512, andN51000. Symbols are simulation results~deter-
mined from 100 systems simulated in parallel and sampled ev
100 MCS for 1.23104 MCS after steady state was reached! and
curve is the prediction fromr2(a) andr1(b) in Eq. ~17!.
0-9
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SHAW, ZIA, AND LEE PHYSICAL REVIEW E 68, 021910 ~2003!
and high density regions! diffusing freely along the lattice
As a result, theaverageprofile is linear, as shown in Fig. 8
To appreciate the shock, we display in the inset a typ
configuration~showing a shock! where each ribosome is rep
resented by a dot. In addition, we exhibit another aspec
this coexistence by sampling the average~coverage! density
in the central 10% of a large (N51000) lattice. Compiling a
histogram~closed diamonds in Fig. 9!, we find a bimodal
distribution typical of systems at a first order transitio
Peaks are expected to correspond to the densitiesr2(a) and
r1(b). To connect with local fluctuations in the ‘‘pure’’ sys
tems, we compile similar histograms for a closed syst
~i.e., 10% of a ring with 1000 sites! with overall density set
at r2(a) and r1(b). For comparison, we show a simp
linear combination of such distributions in Fig. 9~open
squares!. We expect correspondence between densities in
window in the open system, which alternate between
proximately r2(a) and r1(b), and an appropriately
weighted average of window densities in the two closed s
tems. The deviations can be understood as the contributio
configurations with the shock in the sampling windo
Roughly, this may occur about 10% of the time, which
also the order of magnitude of the deviation from the sim
average of pure systems.

While most of the features presented here were know
MacDonaldet al. @7,8# and have also been obtained by Lak
tos and Chou@29#, our efforts are to go beyond mean fie
approaches, showing the different perspective offered by
main wall theory and the extremal principle. Shock effe
on the coexistence line are particularly well described by
approach.

2. Steady state profiles from the continuum approach

Following an understanding of the phase diagram, we t
to more details of the system, namely, steady state den

FIG. 8. Steady state density profile fora50.05, b50.05, N
5500, ,512. The profile was obtained from simulations of 10
systems run to steady state and then sampled every 100 MC
1.23104 MCS. ~Nonlinearities near the termination boundary res
from ribosomes tending to ‘‘pile up’’ ati 5N,N2,,N22,, etc.,
due tob,1 but with decreasing correlations asi decreases.! The
inset shows a typical configuration of this system, with the sh
front near the center.~Each ribosome is represented by a dot.!
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profiles. Our continuum approach again leads us to differ
tial equations. As considerable insight can be gained
studying simple differential equations, we believe it is wort
while to devote a section to the continuum approach.

Starting with the case of free diffusion, we extend E
~11! to the driven system by simply adding an ‘‘Ohmic’’ term
to the current:J5sE, where the drive is associated wit
strengthE and the conductivity will be the density depende
factor found before@first used in Eq.~10!#. Thus, our starting
equation is

]r r

]t
52

]

]x
J~x!5

]

]x F D

rs
2

]r r

]x
2

r rrh

rs
EG . ~18!

As before, we suggest that this driven diffusion equat
might be obtained from a variation of an appropriate lar
deviation functional, the,51 version of which has been
derived previously@42,43#.

As a reminder, ourx is actually thefractional length along
the mRNA, so that it is dimensionless. Similarly, the den
ties are also unitless~e.g., rhP@0,1#), so thatD/E carries
the information of the real length of the chain. An estimate
this ratio can be obtained by taking the naive continu
limit of a discrete hopping model, with the result 1/2N. In
the Appendix, we will show how this arises from taking su
a limit of the MacDonaldet al. @7# current equation. For
here, we may regardD/E as a phenomenological paramete
Further, since we are focusing only ontotally asymmetric

for
t

k

FIG. 9. Probability distribution of densities in the central 10%
a system witha50.1, b50.1, N51000, and,512. The actual
probability distribution~solid diamonds with solid curve! was ob-
tained by simulating 100 systems to steady state, sampling the
tral densities every 100 MCS for 53104 MCS, and compiling a
frequency histogram. Peaks correspond to the densitiesr2(a) and
r1(b). For comparison, a composite density distribution~open
squares with dashed curve! was assembled from similar frequenc
histograms for two closed systems with average densitiesr2(0.1)
andr1(0.1). ~Again,N51000,,512, and 10% of the system wa
sampled.! The composite distribution required a linear combinati
of 53% low density and 47% high density to minimize the absol
difference from the actual probability distribution. See text f
details.
0-10
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TOTALLY ASYMMETRIC EXCLUSION PROCESS WITH . . . PHYSICAL REVIEW E68, 021910 ~2003!
processes, we could just as well setE to unity @as in Eq.~7!#,
and measureJ andD ‘‘in units of E.’’

Taking these considerations into account, we seek
steady state profiler r* (x), as in Eq. ~12!, by setting the
square bracketed terms in Eq.~18! to the steady state curren

D~rs* !22
]r r*

]x
2r r* rh* ~rs* !2152J* .

In terms of our ‘‘natural’’ variablex @Eq. ~13!#, this equation
reduces to

x8[
]x

]x
5

21

D@11~,21!x#
@ J̃x1J* 2x~12x!#, ~19!

whereJ̃[J* (,21). Thus, we see that this,.1 generaliza-
tion is quite similar to the,51 equation:r85@r(12r)
2J* #/D.

Now, the zeros ofx8 will play an important role, occur-
ring at

x.[
12 J̃1R

2
and x,[

12 J̃2R

2
, ~20!

where

R[A~12 J̃!224J* .

It is not surprising that the maximal currentĴ ~i.e., (1
1A,)22 in our system of units! is a key player, so thatR can
be written in the following form:

R5~,21!A~J* 2 Ĵ!~J* 2 J̌!.

Here, J̌ [(12A,)22 appears as a natural counterpart toĴ.
Another advantage of this form is its relationship to the e
tremal current principle. As we will see, for finite system
J* will be slightly @O(1/N2)# larger thanĴ for the maximal
current phase, giving us complex roots and profiles with
flections. On the other hand, for the other two phases,J*
, Ĵ, leading to fixed points in theN→` limit.

Equation~19! can be integrated to find an implicit func
tion for the density profile in each phase. For explicit so
tions, we must specify the boundary conditions,

J* 5a@12r~0!#,

J* 5
b

11b~,21!
r~N!, ~21!

so that

x~0!5
r~0!/,

12r~0!1r~0!/,
5

a2J*

a1~,21!J*
~22!

and

x~1!5
r~N!/,

12r~N!1r~N!/,
5

@11b~,21!#J*

,b2~,21!@11b~,21!#J*
.

~23!
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The boundary conditions can be understood as follo
From r2(a) in Eq. ~15!, we can show that the effectiv
reservoir at the initiation boundary has an EPD ofx2(a)
5a. Equation~14! then implies the initiation boundary con
dition in Eq. ~21!. Particles on the final, lattice sites expe-
rience no steric hindrance, so the current through the fina,
sites is just

J* 5r r~ i ! for i 5N2,11, . . . ,N21,

J* 5br r~N!.

These relations can be used to expressr(N)
5( i 5N2,11

N r r( i ) in terms ofJ* , leading to the termination
boundary condition in Eq.~21!. The boundary conditions fo
x will serve to fix the constant of integration as well asJ* ,
which is still an unknown in Eq.~19!. @The current thus
determined is expected to match closely the current predi
by Eq. ~16.!# We discuss the various phases separately.

For smaller values ofJ* ~i.e., J* , Ĵ), x(x) has fixed
points at x. and x, . Boundary conditions determin
whether the steady state profile approachesx, ~low density!
or x.~high density!. Each solution corresponds to part of th
phase diagram shown in Fig. 5. There is a ‘‘kink’’ solutio
when x(0),x(1)P(x, ,x.) with x(0)*x, and x(1)
&x. that corresponds to the first order transition line.

In the high density phase (b,a) wherex.x. , the den-
sity profile is given implicitly by

@11~,21!x.# lnS x2x.

x02x.
D2@11~,21!x,# lnS x2x,

x02x,
D

52
Rx

D

@wherex0[x(0) is the EPD at initiation#. It may be noted
that asN→`, the bulk density and termination bounda
density both approachx. . Settingx(1)5x. and eliminat-
ing J* from the termination boundary condition@Eq. ~23!#
and the definition ofx. @En. ~20!# yields a bulkx of (1
2b)/@11b(,21)#. We expect the bulk density in the hig
density phase to match the termination reservoir density.
deed, the bulkx value calculated here is consistent with t
reservoir densityr1512b given above@Eq. 15!#.

Though it is impossible to write a closed form forx(x) in
general, a convenient expression is

x5x.1~x02x.!exp@2m1x#S x2x,

x02x,
D g

, ~24!

where

m1[
R

D@11~,21!x.#

and

g5
11~,21!x,

11~,21!x.
.

Note that R, x, , and x. can be conveniently estimate
using theJ* value given by Eq.~16!. The advantage here i
0-11



SHAW, ZIA, AND LEE PHYSICAL REVIEW E 68, 021910 ~2003!
FIG. 10. Rapid convergence of the iterative method tox(x) for smallx. ~Largerx values are omitted because all iterations ofx are nearly
identical.! x (1), x (2), andx (3) are represented by squares, triangles, and3 ’s, respectively. The system considered here isa51, b50.13,
N51000, ,512. D was set to 1/3N to obtain a good fit. The inset compares the actual steady statex from simulations~bold curve! with
the predictedx (3) ~lighter curve!. In the profile from simulations, particle depletion near the termination end can be seen.
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that the unknown factor (x2x, /x02x,)g displays only
limited variation, sincex lies outside the interval@x, ,x.#.
Thus, we expect to find better and better approximations
exploiting aniterative scheme. Starting with the first itera
tion

x (1)5x.1~x02x.!exp@2m1x#,

this procedure involves substituting repeatedly for thex in
the unknown factor of Eq.~24!, namely,

x (k)5x.1~x02x.!exp@2m1x#S x (k21)2x,

x02x,
D g

.

In Fig. 10, we show an example of three such iteratio
converging rapidly to the realx(x), and in the inset a com
parison with thex(x) observed in simulations. Near the te
mination end of the system, the EPD from simulations sho
a depletion below the bulk density. This reduction is char
teristic of the high density phase and was originally obser
in the numerical results of Ref.@8#. The continuum limit does
not capture this feature.

A similar analysis may be carried out for the low dens
phase whenx,x, . In this case, the boundary layer occu
at the termination end, so it is convenient to apply thex(1)
boundary condition explicitly and use thex(0) boundary
condition to determineJ* . This method also works for high
and low density phase profiles whenx(0),x(1)
P(x, ,x.), as long asa and b are not too similar. The
analysis fails close to the first order transition line, as
would expect since Eq.~19! predicts a ‘‘kink’’ rather than a
linear density profile on the transition line.

For the maximal current phase, we know thatJ* . Ĵ, so
that R is purely imaginary. Sincex8 is negative definite, we
have a downward sloping profile, which is the generalizat
of the tan(2x/j) @or cot(x/j)] profiles in the ordinary driven
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lattice gas@44#. In the largeN limit, a macroscopically large
region of the profile will be almost flat~corresponding to
x8.0), where the density assumes the optimal valuer̂ ~or
x.x̂). Meanwhile,J* will approach the maximal currentĴ
from above withO(1/N2) terms. The details are somewh
involved, so that we will show the solution and discuss
properties only for largeN.

Defining the real quantityR̃52 iR, Eq. ~19! can be inte-
grated to show that the steady state density profile is gi
by

lnF x22~12 J̃!x1J*

x0
22~12 J̃!x01J* G1

412~,21!~12 J̃!

R̃~,21!
~u2u0!

52
2x

D~,21!
, ~25!

where

u~x![arctan
R̃

12 J̃22x

and x05x(0) is given by Eq.~22!. Evaluating Eq.~25! at
the termination end@x51,x5x(1)# and using Eq.~23!, we
arrive at an equation for determiningJ* in terms of the con-
trol parametersa,b. Needless to say, this equation is to
complex to solve analytically. Nevertheless, we can g
some insight by considering the largeN limit. Defining e
[1/N for convenience, recall thatD is O(e). Next, let us
assume thatJ* 5 Ĵ1O(e2) and show that it is justified later
This leads us toR̃ beingO(e) and (12 J̃)/25x̂1O(e2), so
that x.,,5x̂1O(e2)6 iO(e). Thus, the quadratic form in
the argument of the ln in Eq.~25! never becomes smalle
than R̃2/45O(e2), so that this term never exceedsO(lnN).
0-12
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TOTALLY ASYMMETRIC EXCLUSION PROCESS WITH . . . PHYSICAL REVIEW E68, 021910 ~2003!
Since the other terms are generallyO(N) ~from D and R̃),
we can write an approximate equation by neglecting the
term, leaving an expression foru, and taking the cotangen
of both sides:

x2x̂5
1

2
R̃cot@x/j1const.#1O~e2!, ~26!

wherej>2DA,/R̃ is of O(1). Note that the constant her
can be written as arccot@2(x02x̂)/R̃#, which vanishes as
R̃/(x02x̂) in the limit e→0. Thus, for typical values ofx,
we see thatx5x̂1O(e). For the termination end,J* must
be carefully fixed so that the argument of the co-tangen
Eq. ~26! approachesp in an appropriate way for the righ
hand side to equalx(1)2x̂. This requirement is consisten
with the original assumption thatJ* 5 Ĵ1O(e2).

Returning to the finiteN case, althoughx(x) cannot be
determined explicitly, we find that an iterative method
again helpful and converges rapidly. This time, success
iterations ofx are substituted into the term ln$@x22(12J̃)x
1J* #/@x0

22(12J̃)x01J* #% of Eq. ~25!. As Fig. 11 shows,
there is good agreement between the steady state pro
from simulation data and this mean field theory.

IV. DISORDERED HOPPING RATES IN THE OPEN
SYSTEM

We finally turn to the difficult problem of the TASEP wit
extended objects and quenched disorder. At each codo
the mRNA, a ribosome translating the mRNA must wait f
an appropriate aa-tRNA to decode that codon. aa-tR
availability ranges over about an order of magnitude@45#,
and it is thought that the elongation~hopping! rates may also
range over an order of magnitude, with the slowest o
comparable to the initiation and termination rates@46#.

Since previous studies of the TASEP with quenched d
order involve,51, their relevance to the process of tran

FIG. 11. Actual and predicted steady state density profiles in
maximal current phase. The system considered here isa50.5, b
50.5, N5800, ,512. D was set to 4/5N to obtain a good fit.J*
was set toĴ13.2431025 to satisfy the termination boundary con
dition. Profiles are the actual steady statex from simulations~bold
curve! and the predictedx (7) ~lighter curve!.
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lation may be questioned. Indeed, we believe that the sys
will display essential differences when these point partic
are replaced by extended objects. First, as we have see
the uniform elongation studies above, generalizing to th,
.1 case led to significant changes. Now, with nonunifo
rates, steric hinderance should play an even larger role, s
extended particles can block multiple sites with potentia
different rates. Thus, we will devote this section to a limit
study of the effects of,.1 on open systems with nonun
form elongation rates:~a! systems with a single slow site,~b!
bounds on the current in general open systems, and~c! as an
illustration of systems with full disorder, simulation resul
for a real mRNA sequence.

A. Simple model of a single internal blockage

We begin with the simplest form of quenched disord
namely, having a singleinternal site i with a reduced elon-
gation rate:r ,1. If this blockage were moved to the term
nation site, thenr would carry the labelb to conform with
the notation above. In most of the simulation studies for t
section, we focus ona5b51 with the blockage at the cen
ter of the mRNA~i.e., i 5100 with N5200). Though the
naive expectation is that the blockage should limit the c
rent in the same way, regardless of its location, we obse
that the current is noticeably reduced if the slow site is
ternal. This reduction can be understood as follows. Onc
particle moves past the slow site, the particle behind it is
necessarily free to move to the slow site. Instead, becaus
the random sequential updating, the particle behind ha
nonzero chance of being blocked by the particle ahead. W
just two particles in the system, this effect can be accoun
for exactly. Beyond the scope of this paper, the details w
be published elsewhere. Here, let us present some sim
heuristic arguments that lead us to results that agree
with simulation data.

Extrapolating from the current in the uniform system@Eq.
~16!#, we speculate that

J5rsource

Pf ree

T
, ~27!

where rsource is the average coverage density behind
slow site andPf ree is the approximate probability for a par
ticle just beyond the slow site to advance. Lastly,T is the
average time to travel through the slow site and the,21
sites that precede it. For example, in the termination-limi
case,rsource512b, T5,2111/b, andPf ree51 ~no steric
hindrance beyond the termination site!, giving J5b(1
2b)/@11b(,21)#. We estimatersource from the bulk den-
sity induced if the lattice were truncated immediately af
the slow site.Pf ree can be estimated from the densit
dependent head spacing in a closed system@Eq. ~8!#, using
the bulk density that would be induced if the lattice beg
with the slow site.

To determineT approximately, we consider the behavi
of two particles in an infinite system with a single slow s
~located at the origin!. Denoting the position of the leadin
and following particles byz andh, respectively, the evolu-
tion of this system can be regarded as a random walk in

e

0-13
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SHAW, ZIA, AND LEE PHYSICAL REVIEW E 68, 021910 ~2003!
z-h plane, confined toz2h>,. During each time step, th
walker moves, with equal probability, either ‘‘upwards’’ (h
→h11) or ‘‘to the right’’ (z→z11). When it arrives at the
z5h1, line, the walker remains stationary with probabili
1
2 ~and moves ‘‘to the right’’ otherwise!. Assuming that there
are m11 holes between the particles immediately after
leading one leaves the slow site, so that the walker is ‘‘i
tially’’ located at (z,h)5(1,2,2m), we computed numeri-
cally tm , the average time for the walker to arrive at theh
50 line ~i.e., for the second particle to reach the slow sit!.
Note that theset ’s take into account the steric hindrance d
to the leading particle, which we assume is always free
move. To extractT, we make the assumption that the le
particle advances its firstm11 steps in timem11, leaving
,21 more steps to reach the slow site. Now, the probab
p(m) for finding a gap ofm holes before the leading particl
passes the slow site can be estimated by inserting the
density before the slow site (rsource) in Eq. ~8!. Taking the
average over these initial starting positions and accoun
for the time to move over the slow site (1/r ), we obtainT
5(m@tm2(m11)#p(m)11/r . Predictions for the curren
from Eq.~27!, compared with the actual current from Mon
Carlo simulations, are shown in Table I for several values
the slow rater. Despite the approximations involved in th
approach, the agreement is surprisingly good.

B. Bounds for the current

To model a real mRNA, we must allow for arbitrary tran
lation rates associated with each codon. Let us denote
rate at codoni by ki . Due to the excluded volume constrain
however, it is meaningful to consider alsoK,,i , the maxi-
mum rate for a ribosome to translate a stretch of, sites
beginning with sitei:

K,,i[S (
q5 i

i 1,21
1

kq
D 21

.

Now, consider a ‘‘window’’ of any stretch of, consecutive
sites in the lattice. If one particle is moving within this win
dow, the following particle must wait until the first on
passes through entirely before it can begin translating the,
sites. Thus the characteristic time associated with the cur

TABLE I. Actual and predicted reductions in current due to
internal slow site with rater. Currents with the slow site at one en
are listed for comparison. All currents are multiplied by 100. Sim
lations were performed withN5200,a5b51 with the blockage at
the center. These results are statistically the same if the blocka
placed at site 20 or 180.

J for slow
r Tmax site at end ActualJ PredictedJ

0.01 13.5 0.89 0.86 0.87
0.1 12.9 4.29 3.87 3.90
0.2 12.3 5.00 4.68 4.57
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must be at least the time required to translate the slow
stretch of, codons. In this way, we find an upper bound
the current, i.e.,

J< min
i P$1, . . . ,N2,11%

K,,i . ~28!

One might imagine the slowest segment of, codons acting
as a ‘‘gatekeeper’’ and preventing the current from exceed
the value in Eq.~28!.

To arrive at a lower bound, we need only replace t
elongation rates at each site by the slowest elongation r
From Eq.~16! above, we have the current of a system w
uniform rate unity. Thus, the minimum current for the diso
dered system is simply

J>~ min
i P$1, . . . ,N21%

ki !J̄~a,b!, ~29!

wherea is the ratio of the initiation rate to the slowest elo
gation rate, and similarly forb. Though the gap betwee
these bounds for a real system may be too large to be
significant predictive value, they can provide some guide
our understanding of the current.

C. Simulation of a real gene sequence

To illustrate the full problem of disorder, we have sim
lated translation of several real mRNA sequences fromEs-
cherichia colistrain MG1655, obtained from Ref.@47#. Elon-
gation rates at each codon were estimated using comm
accepted values for the availability of tRNA inE. coli @45#.
The rate at each codon was assumed proportional~with an
arbitrary proportionality constant! to the availability of the
tRNA decoding that codon, as in Ref.@48#. Corresponding
data were not available for estimating initiation and termin
tion rates, so a range of initiation and termination rates w
studied. We assumed that ribosomes cover,512 codons
@5,6#.

Figure 12 shows the steady state coverage density pr
for the reasonably well studied geneompAwhen the elonga-

-

is

FIG. 12. Steady state coverage densityr ~upper curve! and
maximum translation rateK12 in each window of,512 codons
~lower curve! for the ompA gene ofE. coli when the elongation
rates are limiting. Elongation rates at each codon were assu
proportional to availabilities of corresponding tRNA.
0-14
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TOTALLY ASYMMETRIC EXCLUSION PROCESS WITH . . . PHYSICAL REVIEW E68, 021910 ~2003!
tion rates are limiting. The lower curve in the figure sho
the maximum translation rateK12 for each window of,
512 codons, calculated from

K12,i5S (
q5 i

i 111
1

kq
D 21

for each sitei. The minimum of theK12 values is 4.51 in
arbitrary units, thus giving an upper bound for the curre
@Eq. ~28!#. This value is significantly higher than the actu
current of 3.52.@For comparison, Eq.~29! gives a lower
bound of 0.99 for the current in this system.# It should be
noted that the minimumK12 occurs at codon 71, which i
approximately the location behind which the ribosome d
sity is very high, due to ribosomes ‘‘piled up’’ behind th
slow region. In general, lower values for the rateK12 corre-
spond to higher ribosome densities, and higherK12 to lower
ribosome densities, leading to an approximate symmetry
tweenK12 and r. Thus theK12 values are useful in under
standing the ribosome density profiles observed.

CONCLUSIONS

This work generalizes the well-studied,51 TASEP
model to particles with extended sizes. Since there is a
ference between particle densityr r and density of occupied
sitesr, the familiar particle-hole symmetry (r⇔12r) takes
the formr r⇔12r here. Exact results for TASEP on a un
form ring, including probability distributions for the curren
and for particle headway, were found. Particularly useful
the latter part of this study is the new current-density re
tionship, which is interpreted as a density dependent mob
factor ~or ‘‘diffusion constant’’!.

An extremal principle@38# based on domain wall theor
allowed the closed system current-density relation to pre
currents and bulk densities in the uniform open system
functions of the initiation and termination ratesa andb. The
phase diagram for the open system was thus determined
ing the extremal principle. Domain wall theory also provid
an explanation for the linear density profiles and oth
unique characteristics observed at the first order transi
between the high and low density phases. Given the ab
of this theory to describe particles with length,.1, it might
be exploited further to determine fluctuations in number
bound particles in the steady state and behavior in the p
eady state regime, as has been done for the,51 system
@49#.

Based on the new mobility factor, a simple continuu
limit led to a differential equation for the density profile
open systems. Though nonlinear in general, this equation
be transformed, in the case of asymmetricexclusion process
to the familiarlinear diffusion equation for an effective par
ticle densityx. As a result, the stationary density profil
expressed in terms ofx, is again linear. For theasymmetric
exclusion process, the differential equation is more comp
due to an extra term to account for the drive. Analytic e
pressions, albeit implicit, for the stationary profiles were o
tained and solved numerically through a rapidly convergi
iterative procedure. The results matched simulation d
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closely. However, the predictive power of this approach
limited, since the ‘‘coarse-grained’’ parameterD cannot be
derived from the microscopic jump rates. Naive estimates
it are of the right order of magnitude but quantitatively ina
curate, reflecting the importance of particle correlations. R
gardingD as a phenomenological quantity, we simply fit it
data. At a more detailed level, open questions about den
profiles remain. In particular, our continuum limit cannot e
plain the particle depletion and period-, structure near the
termination end of high density systems. Profiles of the p
ticle densityr r are also of interest, though beyond the sco
of this simple continuum theory. Absent from the,51
TASEP, peaks with spacing, extend far behind a blockage
with a decay length well beyond typical microscopic sca
~data not shown!. Evidently, when extended objects are i
cluded, even a simple uniform TASEP tantalizes us with
rich variety of behavior.

Finally, systems with quenched disorder in the parti
hopping rates were briefly considered. Effects of a sin
internal slow site on the current were estimated with f
accuracy by considering the average delay a particle nea
slow site experiences due to a particle ahead of it. Al
bounds on the current were determined for general dis
dered systems. A real gene sequence was simulated, lea
to a complicated density profile. The parameterK,,i , the
maximum rate to translate a stretch of, sites beginning with
site i, proved helpful in understanding the shape of the d
sity profile, but the disordered system remains far fro
solved.

We close with some speculation about the relevance
this work to an understanding of translation. The advent
functional genomics technologies to measure simultaneo
mRNA and protein expression profiles from many thousa
of genes provides special opportunities to begin to und
stand gene expression regulation. Our results for curre
~i.e., protein production rates! and ribosome densities fo
uniform systems cannot be directly compared with such
perimental data from typical bacterial cells because tran
tion is not approximated well enough by a uniform syste
However, it is possible to use the uniform system results
interpret data from an mRNA artificially constructed to b
uniform. Although there are no reports in the literature
systems that are approximately uniform, the use of anin vitro
translation system@50# provides an opportunity to make suc
experimental observations.

It is known that the relationship between mRNA and pr
tein levels in typical cells is nonlinear@11,12#. Specifically,
when cells are grown under two different sets of conditio
the amount of protein corresponding to a particular gene m
be down-regulated while its corresponding mRNA is u
regulated, and the opposite may be true for other genes m
sured from the same samples. We expect that in biolog
systems, the initiation ratea should be an increasing func
tion of the availability of ribosomes within the cell. The pro
tein production rate@currentJ, Eq. ~16!# is, in turn, a nonde-
creasing function ofa. This analysis thus suggests that t
observed nonlinear relationship can arise from changes in
availability of ribosomes given the nonlinear relationship b
tweenJ anda. However, this situation would cause all pro
0-15
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SHAW, ZIA, AND LEE PHYSICAL REVIEW E 68, 021910 ~2003!
tein production rates to change in the same direction, tha
which the ribosome availability changes. It would not perm
some proteins to be up-regulated while others are do
regulated—which is the situation observed experimenta
Further nonlinearity would arise if mRNA’s were to compe
for available aa-tRNA as well as for ribosomes. Detail
modeling of this effect will require a better understanding
systems with quenched disorder, in which the elongat
rates result from aa-tRNA availability.
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APPENDIX: DERIVATION OF MODIFIED DIFFUSION
EQUATION FROM DISCRETE VERSION

A modified diffusion equation qualitatively equivalent t
Eq. ~19! can be obtained by taking the naive continuum lim
of the discrete mean field equations of MacDonaldet al. We
begin with Eq.~7! of @7# for the current from lattice sitej to
j 11:

qj5
nj

(L)nj 11
(0)

nj 11
(0) 1nj 1L

(L)

and make the following correspondences with our continu
notation:

nj
(0)→rh~x!,

nj
(L)→r r~x!,

L→,,

q→J,

wherex lies in @0,N# here. Thus we have

J~ j→ j 11!5
r r~x!rh~x11!

rh~x11!1r r~x1, !
. ~A1!

Performing a series expansion of Eq.~A1! and keeping terms
up to second order, we find that
J~ j→ j 11!5

r r~x!Frh~x!1~1!
]rh~x!

]x
1

1

2!

]2rh~x!

]x2
1•••G

Frh~x!1~1!
]rh~x!

]x
1

1

2!

]2rh~x!

]x2
1•••G1Fr r~x!1,

]r r~x!

]x
1

,2

2!

]2r r~x!

]x2
1•••G

5
r rrh

rs
1

r rrh8

rs
1

1

2

r r

rs
2 @r rrh92,2rhr r9#
of

ple
ints

s.
he
by usingrh(x)512,r r(x). Similarly,

J~ j 21→ j !5
r rrh

rs
2

r r8rh

rs
1

r rrh

rs
2

rs81
r rrh

2rs
F2S rs8

rs
D 2

22
r r8

r r

rs8

rs
1

r r9

r r
2~,21!2

r r9

rs
G .

It can then be shown that

]J

]x
5J~ j→ j 11!2J~ j 21→ j !

5
]

]x F 21

2rs
2 @,~12, !r r

211#
]r r

]x G1
]

]x S r rrh

rs
D .

This leads to the modified diffusion equation
J5DS 11,~12, !r r
2

rs
2 D S 2

]r r

]x D1E
r rrh

rs
, ~A2!

where we have definedD51/2 andE51.
Finally, we rewrite Eq.~A2! in terms of the effective par-

ticle densityx. Thus we find that the mean field equations
Ref. @7# predict

]x

]x
52

11~,21!x

11~,21!x2~,21!x2
@ J̃x1J2x~12x!#.

~A3!

We expect Eq.~A3! to be comparable to Eq.~19!, the steady
state density profile equation derived previously from sim
arguments. Indeed, both equations give the same fixed po
for x, thus producing qualitatively identical density profile
Further, their quantitative differences have little effect on t
shape of the density profile~data not shown!.
0-16
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