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Totally asymmetric exclusion process with extended objects: A model for protein synthesis
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The process of protein synthesis in biological systems resembles a one dimensional driven lattice gas in
which the particles have spatial extent, covering more than one lattice site. We expand the well studied totally
asymmetric exclusion process, in which particles typically cover a single lattice site, to include cases with
extended objects. Exact solutions can be determined for a uniform closed system. We analyze the uniform open
system through two approaches. First, a continuum limit produces a modified diffusion equation for particle
density profiles. Second, an extremal principle based on domain wall theory accurately predicts the phase
diagram and currents in each phase. Finally, we briefly consider approximate approaches to a nonuniform open
system with quenched disorder in the particle hopping rates and compare these approaches with Monte Carlo

simulations.
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INTRODUCTION jected at some rate on one end of a chain of discrete lattice

sites, then hop down the chain one site at a time with another

The process of protein synthesis, important in biologicalrate, and finally exit the chain at the other end with a third
systems, has been the focus of intensive study over the lasite. These three rates correspond to the rates of initiation,
few decades. We concentrate on protein synthesis in prokarglongation, and termination. The excluded volume constraint
otes, particularlyEscherichia coli because it is relatively is implemented by ensuring that each site can accommodate
simple and well studied. The mechanism consists of riboat most one particle. Because the dynamics is stochastic,
somes “reading” the codons of messenger RMARNA) as  even this “simple” model, though solvable exacfl$,4], is
the ribosomes move along an mRNA chain, and the recruitalready not trivial. However, we believe two essential as-
ment and assembly of amino aci@ppropriate to the codons pects of translation are missing from this model. First, if we
being reag to form a protein(See, e.g., Ref.1], for more  model a codon by a lattice site, the ribosome would cover,
details) Known as *“translation,” this process is often de- ynically, a dozen sitef5,6]. Second, there is nonuniformity
scribed as three steps: |n|t|at|on,“ Whe"re ribosomes attachy ihe hopping(elongation rates along the chain, because a
themselves, one at a time, at the "start” end of the MRNA; 5o me has to “wait” for the appropriate aa-tRNA before

elongatlon, whgre the “bO.SO”?eS move down the chain in %ontinuing, and the relative abundance of the different aa-
series of steps; and_termlnatlon, where they detgch at tW‘?{NA’s is far from unity. Remarkably, the first issue was
“stop” codon. Since ribosomes cannot overlap, their dynam- | '

ics is subject to the “excluded volume constraint.” Apart explored as early as 1948,8], though only at the determin-

from being impeded by another riboso ric hinderan Istic, "”.‘ea” field” level. .
a riboson?e cgnnot m)éve until the arr?ﬁ of an apprt?griate In this paper, we present studles: that address E)oth of these
transfer RNA, carrying the appropriate amino agiccombi-  1SSU€s, extending the WOI’!( on the “simple model” known as
nation known as aminoacyl-tRNA, or aa-tRNAThus, the TASEP (namely, single-site coverage, totally asymmetric
relative abundances of the approximately 60 tyfBwf aa-  Simple exclusion processes with open boundarfigs Our
tRNA have Signiﬁcant eﬁects on the e|ongati0n rate. Assummethods involve both Monte Carlo simulations and modern
ing reactant availabilities in a cell are in their steady state@nalysis techniques, including domain wall theptp]. We
with a time-independent concentration of ribosomes and agdhave confirmed all key results from earlier studiés], and
tRNA, there would be an approximately steathverage  several new insights have emerged. The paper is organized
current of ribosomes moving along the mRNA, resulting in aas follows. The details of the model are delineated first,
specific production rate of this particular protein. Our goal isalong with brief summaries of known results. Section Il is
the prediction of the protein production rates for variousdevoted to aclosed(i.e., periodi¢ system with particles of
mMRNAs, as a function of the concentration of ribosomes andarbitrary size. Though not a direct model for translation,
aa-tRNA’s. TASEP on a “ring” provides simple solutions as well as
The process of translation is well suited to modeling usinguseful insights in the form ofxactrelations for relevant
a driven lattice gas in one dimension. In most relevant studparameters, such as current-density relations. In Sec. IIl, we
ies of one dimensional driven lattice gases, particles are inturn to the central topic: TASEP with extended objects and
open boundaries. Section 1V is devoted to nonuniform hop-
ping (elongation rates. We close with a brief summary and
*Electronic address: Ibs22@cornell.edu speculate on the relevance of our model as a mechanism for
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the nonlinear relationship between mRNA and protein levelssp,<1), so that a ribosome on sitewill be moved or not

observed in biological experimenjts1,12. with probability p; or 1—p;, respectively. We purposefully
associate these hopping probabilities with a site because a
I. THE DRIVEN LATTICE GAS AS A MODEL FOR site is associated with a particular codon. Thus, the jump rate
PROTEIN SYNTHESIS from that site may depend on the relative abundance of the

appropriate aa-tRNA. Apart from these probabilities, another
aspect of our stochastics is random sequential updating: i.e.,
We model an mRNA withN codons as a chain of sites, during each Monte Carlo stefMCS), M+1 particles are

each of which is labeled by. The first and last sites,  chosen at random, in sequence, to attempt moves. They are
=1N, are associated with the start and stop codons, respegelected from a pool that includes thé particles on the
tively. At any time, attached to the mRNA aké ribosomes  |attice plus another unbound particle that can initiate if there
(also referred to as “particleg; which we label bye (@ are ¢ holes at the beginning of the chain. Let us illustrate
=1,... M). Being a large complex of molecules, each ri- with a few examples. Firstp, is associated with the start
bosome will cover¢ sites (codong, with ¢=12 typically  codon andjf the first¢ sites are empty, a particle will be
[5,6]. By contrast, nearly all studies of the asymmetricpjaced on thé=1 site with this probability. Next, a random
simple exclusion processe¢&ASEP) are devoted tof =1.  particle(say at sitd) is chosen and, provided it has a hole in
Any site may be covered by a single ribosome or none. Ifront (n,,,=0), will be moved with probabilityp; . Natu-
case of the latter, we will refer to the site as “empty” or rally, it will not be necessary to check for headway for the
“occupied by a hole.” For convenience, we defitkas the  “last” ribosome (¢=M). Finally, the stop codon will be
number of holes on the chain, so that associated witlpy. For simulations of the closed system,

~ there will be no “beginning” or “end,” so that there are no

M+{M=N. &y special steps for initiation or termination.

For open systems, a ribosome at the end can be attached In our computational studies, 100 identical system$of
without covering all¢ codons, so that this equality is only Sites are simulated in parallel to ok_)tain gt_)od statistics. _Simu-
approximately true. To locate the ribosome, we arbitrarily'aﬂons of closed s_ystems begin with particles evenly distrib-
choose thdowestsite covered. For example, if the firét ~ uteéd around the ring and run for 3600 MCS to ensure that
sites are empty, a ribosome can bind in an initiation step, angteady state is reached. Open systems begin empty and are
then it is said to be “on sité=1." Therefore, a complete un for 12,000 MCS(for N<500) or 100 MCS (for N
specification of the configuratiofstate, or microstajeof the ~ =500) to reach steady state. After steady state is attained,
MRNA is the set of locationgi,}. One disadvantage of this data including the current and density distribution can be
labeling is that, with each initiation event, the of every ~ collected. Density data are typically collected every 100

ribosome will changdincrease by unity Alternatively, we ~MCS. We often use continuous time Monte Cairk8] be-
can usesite occupatiomumbers cause it runs far more quickly than and provides the same

results as standard Monte Carlo.

A. Model specifications

1 ifsitei is covered by any part of a ribosome,

" |0 ifsitei is empty. B. Brief survey of known results

With these conventions, we define several density param- Extensive investigations of the simple totally asymmetric
eters:(1) p,=M/N is the ribosomeor particlg density;(2)  exclusion proces§TASEP, defined as point particles hopping
p=M{/N=X;n;/N is the coverage density3) p,=1—pis  with unit rate along a linewith open boundaries can be
the hole density; and4) ps=p,+ py, is defined for conve- found in the literature. Simulations have been performed
nience. [14], and exact analytic results for the steady state ¢Ridi.

All of these quantities are time dependent, because initiabepending on the initiatiofor injection) and terminatior{or
tion and termination occundependentlyFor mathematical depletion) rates, the system will settle into one of three
reasons, we will first consider@dosedsystem(with periodic  phases. Introduced above pg and py, respectively, the
boundary conditions, i.e., the ends of the chain tied to form anitiation and termination probabilities are mostly referred to
ring), for which these densities are fixed and Ef). holds  as simplya and g in the literature. From their dominant
strictly. As will be clear later, it is also convenient to label characteristics, the three phases are known as low density,
configurations by specifying the number of holes betweerhigh density, and maximal current. A phase diagram in this
successive ribosomegh,,}, whereh,, is the number of holes  «-3 plane has been determined, showing second order tran-
in front of the ath ribosome. In the terminology of traffic sitions between the maximal current phase and the others, as
models,h,, is also known as the “headway” of this particle. well as a first order transition between the high- and low-
Though not absolutely necessary, we could defipas the density regions. Subtle correlations further divide the last
number of holes behind the first ribosome. two into subregions. When disorder is introduced, i.e., not all

Next, we specify the dynamics of our model. An attachedthe p;’s are equal, then methods for exact analytic ap-
ribosome located at sitewill move to the next sitei(+1) proaches fail(except in the extremely dilute limit, where
with a ratek; , providedsitei + ¢ is empty. For Monte Carlo only the motion of a single particle is of concdrtb]). In-
simulations, it is convenient to update configurations in dis-deed, even a single slow rate irtlasedsystem poses serious
crete time units. Then, it is better to use probabilifigg0  difficulties[16-18. However, Kolomeisky19] obtained ap-
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proximate steady state solutions and phase diagrams for anditions. HereM identical particles of sizé€ move on a
opensystem with a single nonuniform rate in the bulk by ring of N sites. Due to the excluded volume constraint, there
splitting the system into two smaller systems connected by a1 =N—-¢M uncovered site¢holes. The system evolves
trlle ngnunlform r;;lte. 'Ifr;]pathfy _andf Barrfiz0] fcpdn5|d_ere|d Ia by discrete time steps, with random sequential updates. Spe-
closed system, but with a finite fraction of identical SIOW qigeq)1y quring each MCSM particles are chosen at random
sites. Based on a combination of Monte Carlo simulation sequence, and each is moved forward one site provided
and numerical solutions of mean field equations, they foun . ' : . .

. : ' —there is headway. Since we have a stochastic dynamics, the
current-density relations. Though not a model for elongatlontomplete description of this systemR¥C. 1), the probabil-

a related problem is “particlewise disorder,” in which the . hat it is found i fi iorC af .
unequal hopping rates are associated with the particles rathlly that it is found in configuratiorC aftert steps(starting

than the site§21]. Further references on TASEP with disor- 10M some initialC,). To label a configuration, we choose
der may be found in a recent reviei@2]. Also indirectly ~ an arbitrary particle to be the first=1) and supply{h,},
related to our one dimensional models are driven latticdhe set of number of holes in front of theth particle (with
gases with quenched disorderhigher dimensiong23,24.  a=1,... M). Clearly, we may also think of a configuration
Finally, we mention that there are many studies on the ASERS a series dl “gaps” (between the particlgsvith h,, being
in which a particle has a finite probability of stepping back-the number of holes in theth gap. SoP(hy,h,, ... hy;t)
wards[25]. Back steps are not generally believed to occur inis an explicit form forP(C,t). Note that, since the system is
elongation, and we will not consider such processes. All otlosed, there is a constraint @y, i.e.,
these studies are restrictedte-1.

Systems with extended object6>1) have been rarely
investigated, despite their introduction over three decades 2 h =M
ago as a model for biopolymerizatip]. Using a mean field i
approach, MacDonaldt al. set up mean field equations for
the average site occupatign;) and considered both closed o
[7] and oper{8] systems. In the former case, exact solutions's & constant in time.
were found, leading them to a current versus density relation. Random sequential updating can be translated into an
For the latter, the authors resorted to numerical solutions tequation that governs the time evolutionRfC,t), namely,
find the phase diagram for a variety of initiation and termi-a master equation. Starting with the initiaP(C,0)
nation rates. A phase diagram similar to the simple TASEP= §(C,C,) (where§ is the Kronecker delya P(C,t) is ex-
as well as nontrivial density profiles and the associated cuipected to settle into a uniqutine-independerdistribution,
rents, was obtained. More recently, there is renewed interest* (C), which we will refer to as the “steady state.” If this
in this problem. Naming this systen¥*TASEP,” Sasamoto  system were evolving towards thermal equilibrium, the dy-
and Wadati{26] focused on the time dependenceMfpar-  amics would satisfy detailed balan¢80], and P*(C)
ticles in an infinite lattice and, using the Bethe ansatz, foundy,,,1d be given by the well-known Boltzmann factor. How-
exact results for the conditional probability that the particlesever, the dynamics of our system definitely violates detailed
are found at certain sites given an initial configuration. Theoalance, so that, associated withnanequilibrium steady
main con_clu5|or_1 is that the dyn_amlcsK)ﬂ'ASEP I|_es_|n the _ state, P*(C) is not known in general. Fortunately, this
same universality class as ordinary TASEP. This line of in-josed system belongs to a class for which a simple solution
quiry has been further generalized to a system containing g known[31]; namely, every configuration occurs with equal
cystrlbutlon of pqucIe S|;e$27,28. Though these investiga- probability [32]. Thus, P*(C) is precisely the reciprocal of
tions produced interesting results, they are not applicable tq total number of configurations consistent with the given
our situation, namely, finite systems with open boundaries. Iy, .2 meters N,M,¢). With such a simple distribution, we
particular, for finite lattices, these studies are restricted t%an compute many quantities of interest, such as the prob-

closedsystems, for which the stationary states are trivial, @ity distribution of the currentand hence the average cur-
we will recapitulate in Sec. Il. Finally, a recent work by rent and the headway.

bvz?tﬁa;iieﬁgcei dcgt;gst? (L:J(?sri]rfiqdg?j?s:rgfgr%nigega:ys;?g:izn Apart from overall factors, the total number of configura-
function, they derived the current versus density relation firs{'orllzS |sljuséZ(M,M),hFhe_z total r:lulr(nber of I'Stﬁha} SL.'b{eCt b
presented by MacDonalet al. [7]. Via a refined mean field 0 Eq.(1). ecause this Itsha vae “Kknown com Imatorl{a ﬁ:o )
theory, they extended this result to predict currents and bulﬂ<em (appearing in, €.g., the Bose gawe simply quote the
densities for the open system, which they confirmed bJeSUIt'

Monte Carlo simulations. The phase diagram and its proper-

ties are consistent with those initially obtained by Mac- (M+M—1)! M+M=—1
Donald and Gibb$8]. We are not aware of published results ZMM)= —— "= ~

on open systems with both extended objects and quenched M!(M—1)! M
disorder.

The actual number of distinct configurations is

(N/M)Z(M,M), because there afé lattice sites on which
For simplicity and mathematical reasons, it is convenienthe first particle can be placed but theparticles are iden-
to discuss a uniform closed system with periodic boundarical. Thus,

Il. TASEP OF EXTENDED OBJECTS ON A RING
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Mim1 0.3
P*(C)= — 4
N(M+M—1)! 0.25 1 !' \
independenbf C. 0.2 ;A
To compute the probability distribution of the current and S 015 - :
its average, we need more detailed information on the above A '
“partition.” Defining the current] as the number of particles 0.1 1 a
that moved in one stefnormalized by the system si2¢), 0.05 | :
we see that we will neeHl, the number of gaps with one or : a A
more holes. The reason is that, for each such gap, the ribo- ol aanni : ‘s n
some behind it can move and contributes one “unit” to the 0 0.02 0.04 0.06 0.08
current, so that
J
J= E FIG. 1. Distribution of currentp(J) for N=200, M =15, and
N €=12. Squaregconnected by dashed linesre values predicted by

. . . . . EQ.(2), and triangles are values observed in Monte Carlo simula-
Since all configurations are equally probable, the S’t":lt's’['catlions. A single lattice was simulated to steady state, and instanta-

weight associated with thiis just the total number of con-  negys currentt/N) was determined every 100 MCS thereafter for
figurations with a givenH. This quantity, denoted by 1 ox10f MCS.

Z(H;M,M) in analog toZ(M,M), may be found from its

definition: To illustrate this distribution, we show in Fig. 1 both this
prediction and simulation data for the caseNf 200, M
¥y _ Y =15, and¢=12. Clearly, there is excellent agreement be-
Z(H;M,M)= 8| M, 2, h, |8l H, 1-6(h,, 0], . .
( ) {hEa} ( % ) ( ; [ ( )]H tween theory and simulation.

_ _ _ Containing less information, but easier to grasp, is the
whekre g?e Slljmt's olvetrh all pt?]silblet_lle{ﬂsé} anddthhe Ker:- average curren=3Jp(J). Its computation is somewhat
neckerd's select only those that satisfy B() and hav easier, since it i€M_ HZ(H:M,M)/NZ(M,M), with the

gaps withh,>0. OnceZ(H;M,M) is known, the full dis- numerator easilv aleaned from W, The result
tribution for the current is nu 9 my, M(§,77)|77:1- u

is
_ Z(H;M,M) Y
pIMM)=——. M _M ©)
Z(M,M) N@+m—1
Now, the explicit form ofZ(H;M,M) can be obtained either As we will see, the dependence of this average current on the
through the generating function density of particles plays a central role. Expressing this
B B (M quantity in terms ofp,=M/N, we haveJd=p,(1—¥€p,)/
Wy (¢, 7)= 2 Z(H;M,M)MypH= 1+ [1-(£—1)p,—1/N]. An appealing form, which displays
M. H -4 both the intensive nature dfand its underlying particle-hole
or by standard combinatorial techniques, symmetry, Is
~ —  PrPn
- M\ M-1 = . (4)
: _ —1/N
Z(H;M,M) H) H—1)' Ps
H h lci distribution i A third form, frequently referred to in the literature as the
Thus, the explicit current distribution is “current-density relationship,” is writingl as a function of
| (M) -1 / MaM—1 , p, the coverage densitypE[0,1]),
PO={ /o1 Mmoo @ 1-p

Jy=P 7P
)= e T v ple— N ®)

whereH on the right stands fa¥N. An alternate form, show-
ing the dependence of this distribution on the control paramin the limit N—, this result was first presented by Mac-

eters ,M,N=M+¢M) is Donaldet al.[7]. A generalization of the well-known expres-
- sion for€=1Ti.e.,J=p(1—p)], this J(p) is no longer sym-
P(JIM,M,N) metric aboutp=1/2. Instead, the optimal density increases
1 IN NIVIE from 1/2 to€/(1+ \/¢), while the maximum current is low-
= [ : } ered from 1/4 to (¥ \/¢) “2. As these quantities will appear
MM(M+M—=1)! (M—=JIN)I(M—=JIN)! [ (IN)! frequently, we will denote them by
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—
= 0.10 - \E_o_oa ]
Q
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m
FIG. 2. Current) vs coverage density=M<{€/N for closed sys- FIG. 3. Distribution of head spacings(m) for N=100, M

tems. Symbols are Monte Carlo results, solid curves are predicted 6, and ¢=12. The curve is the prediction from E¢g), and
values from Eq(3), and the broken curve is the prediction from Eq. squares are simulation values. 100 lattices were simulated to steady
(7). Triangles are for=2, N=40, X's for {=5, N=80, and  gtate, and head spacimgfor any particles on the first lattice sites

squares forf =12, N=150. J was determined by averaging over \as determined every 100 MCS thereafter for18° MCS.
1.2x10° MCS and 100 identical systems after steady state was

reached. number of gaps that contain precisety holes, which we
N denote byZ(m;M,M). From its definition

—— and J=(1+0)2 (6)
Z(m;M,M)E{hE} 5<|T/|,2 ha)(E 5(m,ha)),

P 1+¢

To appreciate this shift graphically, we present, in Fig. 2,
both analytic and simulation results. In addition, to show thewe find the associated generating function
effects of the finite size correctioridue to the IN term), we

. L ~ _ 1 1 M-1
include a curve of the limiting form7,29] W(f,ﬂ)EZ Z(m: ¥, M) 77m=|\/|< - )(T ,
m 1-{n/\1-¢
J_~> PrPh 7)
Ps leading to the distribution of head spacings

for the N=40 case. _ Z(m;M,M)

In connection with these expressions, a conclusion for p(m:M,M)Em
conditional probabilities can be drawn. Sindeis precisely (M.M)
the joint probability of finding a “covered”-hole pair, we see M+M-m=2\M+M—-1
thatp, /ps is the probability that sité is covered, given that = - - . (8
sitei +1 is empty and, similarlyp,,/ps is the probability that M-—m M

sitei +1 is empty, given that siteis covered. These condi-

tional probabilities will play a role in our understanding of I the limit of largeN, this expression simplifies to

the behavior of open systems. m
. ; Pr | Pn
In addition to the average current, we can also compute its p(m)— —| —
fluctuations exactly, Ps\ Ps

This distribution is reproduced faithfully in Monte Carlo
simulations, as shown by an example in Fig. 3. It is easy to
understand this result intuitively if we regafg,/ps as the

; . ; ; .. probability of having a single hole in the headway. With
Typical of noncritical thermodynamic systems, in which independent hole statistics, we hagém)= (pp/p)™. The

. . . _l/ . . _
:ir;)i (frg(cfll)()n?pg?ggﬂzgs ?rrlZO(gtan;)éréhegf:tsilgrr:buformavefage number of holes in the headway and the associated

ext] — (NI2)p(3/3—1)2]. Indeed. this is the form we see in —onoard, deviation can be computed easi/p, and
7 V(pnlp) %+ pnlp,, respectively.

the (_axample shown in Fig. 1. . . ) . Though the system considered in this section, particles
. Fma‘l‘ly, we turrl tq another quantity of |_nterest. the ?tat's'traveling on aring, bears little resemblance to the translation
t|c§ of *headway. Slrlce there ng gqps in each configu- process, it is sufficiently simple for us to derive a number of
ration and there arg(M,M) configurations, we have a total exact results. Apart from their own interest, these results pro-
of MZ(M,M) gaps. Out of these, we wish to compute thevide crucial insights, such as the current-density relationship,

-
AFP=2, Ip(d)—JI*=—r1.
3 Pp)-I=—
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for postulating appropriate equations in a coarse grainedjole, respectively, at time By keeping the spatial coordi-
mean field approach to the physical problem at hand. nate discrete, they faced difference equations and succeeded
in finding solutions only numerically. In contrast, by using a
continuous spatial coordinate, we have ordinary differential
[ll. EXTENDED OBJECTS IN OPEN SYSTEMS equations instead, giving @malytic solutions. However, lost
. . ._..In the notion of “coarse-graining” are the periddstructures
In this section, we attempt the next s_tep_towards a real's_t'?hat feature prominently behind “blockages.” Nevertheless,
model for protein synthesis by considering systems W|thour approach appears to capture the esselgiiabs features

open boundaries. The section is organized as follows. WB¢ these systems

describe the problem and introduce some terminology. Next, In our heuristic approach, we imagirié to be large

we study the effects of the open boundaries alone, by angs,q qh to justify taking the continuum limit, i.e., replacing

Iy_zing the contin_uum limit of &ymm_etricexclL_lsion PrOCESS.  the discrete site label by a continuous coordinatec For
Finally, we consider the asymmetric exclusion process W'thsimplicity define

open boundaries. We present the phase diagram found from
simulations and an extremal principle analysis, and we show x=i/N
the ability of the continuum limit to predict steady state den-
sity profiles. so thatx lies within the unit interval(If physical units of

In the open system, the first site<1) is no longer “in  length are desired, we may introdug@s the lattice spacing,
front of” the i =N site. Instead, a particlef extentt) will corresponding to the length of a codon, i.e., three bases of
be placed at=1 with probability « (previously labeled by the mRNA. ThenL,rns=Na would be the length of the
Po), providedall the first¢ sites are empty. This models the mRNA in question. Similarly, continuouslocal densities
initiation process. As for elongation, we continue to restrictwill take the place of the discrete occupation variables. For
ourselves to uniform rates here. In the language of TASERexample, the coverage densjiyx) will be used instead of
every (randomly chosen particlavill move by one site(in-  n;. Since the maximum occupancy is unity, the hole density
creasing by unity) if it has some headway. For particles on is just
the last¢ sites, there is no hinderance, so they will always
move if chosen. Finally, to simulate termination, a particle on pr(X)=1—p(X).
the N site will be removed from the system with rage _ _ _ _ _
(previously labeled byy). To repeat, in a Monte Carlo step Following our considerations above, we also define the ribo-
(MCS), M +1 particles are chosen randontiy sequenceto ~ SOme density by
attempt a move. They are selected from a pool including the
M particles on the lattice plus an unbound particle that may pr(X)=p(X)/€.

|n|t|a.te. ) ) - Note that, despite the continuum limit, these equations dis-
Since this system is no longer closéd,andM are fluc-  play the meaning of, which serves as a measure of the
tuating quantities. Of course, their average values will be:gjze” (or “extent”) of ribosome. Of course, we are also
controlled by the ratesr and 8. Our goal is to find the jnterested in their time dependence, so that we must consider
average densities and the average current of such a model,g@(,t) in general. Now, ribosomes rarely detach from the
functions of (@,B). In the {=1 case, it is known that the mRNA during elongation, so that we are justified in regard-
system exhibits three different “phases” asandg are var-  jng these densities aonservedields. Thus, the appropriate
ied, only one of which resembles the closed system aliave equation of motion is the continuity equation, i.e.,
the sense that the current approac]hésr largeN). Beyond
overall averages, we seek the density profile, which will not d - d
only be nontrivial, but which also displays drastically differ- S P (XD ==V-Jr=——J(x1), €)
ent properties as we move about in #a€3 plane. The main
goal of this paper is to study the effectst®f 1 on both the whereJ,(x,t) is the local(ribosome current. Our first task is
phase diagram and these density profiles. Unfortunatelyp find how this current depends on thkcal) density
P*(C) for a system with open boundaries is not known inp,(x,t), i.e., to find the functional form fod,[ p,]. Then we
general. Even for thé =1 case, only a limited set of quan- will arrive at an acceptable equation fpr. To find the
tities may be computed exactly. To make progress, we resogteady state profile; (x), which satisfiesi,p} =0, we see
here to a more phenomenological approach, in the spirit ofhat this state is associated with a constant-{ndependent

hydrodynamics or Lanudau-Ginzburg free-energy functioncurrentJ¥ . Therefore, our problem consists of finding the
als. Considering coarse-grained densities and the continuugp|ytion to

limit, we postulate equations of motion, based on some of

the properties of the closed system. In principle, such equa- J:[pF]=const,

tions can be “derived” from the master equation ¢C,t),

using the mean-field approximatigne., ignoring all corre-  subject to the appropriate boundary conditions. To keep the
lations. In a sense, this is also the approach of MacDonalchotation simple, from here on we will drop the subscript

et al.[7], except that they focused o) (t) andn{%(t), the  and writeJ or J(x,t) for the local currentas well asJ* for
probabilities for sitei to be occupied by a ribosome and a the constant current in the stationary state
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1

Here, we will show that there is a natural generalization for
the (particle density in the case of extended objects and that
its profile is again linear.

We proceed by returning to the basics, starting with the
currentJ, being proportional to both the conductivityno-
bility) and the drive. For the former, we take the result from
the preceding section. There, the drive is constant, so that the
right hand side of Eq.7), p,pn/ps, Ccan be interpreted as the
0 | conductivity or mobility (neglecting the finite-size effect

0 1 term from the closed systemMeanwhile, the drive for free

X diffusion should be the gradient of a press@eso that

FIG. 4. Density profile for free diffusion in a system with
=200 and¢=12 from p=1 to p=0. Symbols are Monte Carlo J[p]=D
data. 100 identical systems were simulated in parallel f6rMCS

to reach steady state, and then density profiles were collected ever . . .
100 MCS for an additional 1:210° MCS. The curve is the pre- WhereD is a constant, to be fitted to data. Since we have

dicted density profile. The inset shows the effective particle densit)fce,lled the System Size to unity, we Sh_OUId keep in mind that
profile y, constructed from the simulation data. The current ob-D 1S & quantity ofO(1/N), to be consistent with the con-
served in simulations wad* =0.00252, which is close with the tinuum limit. For the pressuré®, we follow the standard

PrPnh

S

[—VP], (10

expected value of 0.0025D[ x(0)— x(1)] for D=1/2N. route of statistical mechanics and write
A. The case of free diffusion and an effective density variable P= ﬁ
for extended objects op,’

To show how we build an appropriate equation for theyhere 7/ is a free energy functionale.g., the Landau-
TASEP, let us begin with a study of the effects of opengijnzpurg “Hamiltonian” in case of the ordinary lattice gas

boundarieslone In other words, let us considersgmmetric  Here we have a noninteracting system, so that a reasonable
exclusion process for extended objects, i.e., a system of largg,m for 7 is just the entropy35]:

particles diffusing freely on a line, subjected to the excluded

volume constraint and the contrads 8. For simulations, a

randomly chosen particle is moved one site forward or back- H= f dX[ p¢Inp; + pplnpy— pelnpg].

ward with equal probability (0.5), provided it does not run

into its neighbor. The only exception is the first particle, Using

which is prohibited from jumping backwards into the

“source.” prh=1-€p;, ps=1—=({—=1)p;
For the¢ =1 case p=p,), the steady state profile is trivi-

ally linear and carrying out the steps, we arrive amadifieddiffusion

equation:
p*(X)=(1=x)p* (0)+(x)p* (1)

with current

atpr:Dax[p;Zaxpr]- (13)

Note that, for ¢>1, the effective “diffusion constant,”

1 D/pg, is density dependenfThus, the steady state profile
Jr=glp* (0 =p*(D)]. will not be linear inx. Instead, it satisfies
*
(Note that, since the current is controlled by the gradient of D dp —_J* (12)
the local density only, it vanishes necessarily in Nesoo (p:)z X ’

limit. So, we must keep th&l explicitly here) Meanwhile,
the boundary densities are fixed by matching the injectionivhich will definitely lead to nonlinear profiles.

depletion rates to the internal current: Although we have derived this diffusion equation via phe-
nomenological techniques, we speculate that it could be ob-
apr (0)=a[1l—p*(0)]=J3*=Bp*(1), tained through a more rigorous derivation. Specifically, if a

matrix product description of thé>1 system becomes
and our problem is completely solved. These well knownavailable, the methods of Derrida al. [36] may extend to
results can be traced to the fact that E3).assumes the form calculate a large deviation functional, which would play the
of the simple diffusion equatiom,p=a2p, since J[p]o role of a nonequilibrium free energy for this system. Should
—Vp. Though there are many ways to arrive at this result, itsuch a functional exist, we expect that our diffusion equation
is less clear how to generalize it to the case of extendewould result from a variation of this functional.
objects. In particular, as displayed in Fig. 4, the profile from To find pf explicitly, notice that, due tops=1—(¢
simulations(for N=200f¢ =12,a=B8=1) is far from linear. —1)p,, the left hand side is just a simple derivative of
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1/p% . Thus, the profile I (x) will be linear. However,ps 1-p
does not reduce to a sensible variablg asl, leading us to pe 1-p+plt’
define
We now find that Eq(12) simplifies to the familiar equa-
1 ]1 1 p* tion from ordinary diffusion,
X=77|—7T— =
=1 pt €= (—1)p* 5
D X_ J*.
Not only doesy lie in the unit interval; it reduces to the usual (28

particle densityp* in the limit £ —1. Most importantly, it is

uniquely related tg* for all €. First introduced in Ref28], ~ As a result, the profile in terms qf is again linear in [37].
x is the “natural” generalization of the particle density for For completeness, we write the solution

extended objects. We will refer to it as the effective particle

density (EPD). Meanwhile, a hole remains a single-site en- X(X)=(1=x)x(0)+(x) x(1)
tity, so its density needs no modification. In terms of the
EPD, the various densities are with

1 ¥(0)— x(1)=J*/D.

*
Ps =15 (e—1)x°
The explicit solution ensues once the constraints of injection/
depletion rates are imposed. Note that, in general, we would
haveJ* «D, so that the current inherits t@(1/N) from D,
in contrast to theD(1) behavior for systems with nonzero

s X
Pro1r =1y

drive.
ot :1_—)(’ To close, we illustrate how well the theory agrees with
1+(€-1)x data by showing the analytic, nonlinear profilegdf(x) with

o boundary conditiong(0)=1, p(1)=0:
so thaty is just

1-x
=p¥/p¥. 13 () —
xX=pr/ps (13 p*(X) ==X’
The current-density relationshjiq. (7)] for the steady state o
in thering is again a simple product, as a curve in Fig. 4.
J_ring:XPh- (14 B. TASEP in open systems

We now turn to the other extreme case, where backward
jumps are completely exclude@ASEP), generalizing the
model of Ref[3] to extended objects. With open boundaries,

x(1—x) this mode! incorpo_rates gnother essential feature of trans_la-
XPh= T i 1) tion. Our interest is again the average current and density
( )X profile, as a function ofx and B, the rates of initiation and
(t)?rmination.

Note that this product will serve as tineobility in our mean
field approach here and can be expressed in termysatdne,

The main advantage of using the EPD is the reemergence
the familiar combinationy(1— x) in the numerator. Finally,

) \ 1. Phase diagram from extremal principle and simulations
corresponding to the optimal densiiiqg. (6)], we have

Although we are unable to generalize the methods of

A 1 Refs.[3,4] to arrive at exact solutions for an open system
X=——, with particles coveringl>1 sites, we find that the phase
1+ diagram determined by the mean field techniques of Refs.

i o ) ) [8,29] can be understood also by extending the extremal
a quantity that plays a significant role in systems with ope rinciple, an hypothesis first proposed by Popkov and &chu
boAundaries. Note that the correspondiAng hoIeA density ( 38] and later exploited successfully by othdesg., Refs.
—p) also assumes the same value, so this just y°. The  [39,40). In this approach, the open boundaries are regarded
underlying “particle-hole” symmetry generalizes to one un- as connections to reservoirs with appropriate densities, so

der exchange of<py,, or that by keeping the same jump rates as in the balland 8
are realized. Defining _ andp , as the reservoir densities at
(1-x) the initiation and termination boundaries, respectively, the
X< 1+(€—-1)x’ extremal principle relates the current in the open system to
the J[p] for a closed, periodic system with the same bulk
or, in terms of the more physical, dynamics[41]:
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1 0.06
0.05
low
density maximal 0.04 1
'3 current ~ 0.03
0.02 -
1/(1+ VD) 0.01
high density 0
| co-existence line 0 0i1 O: 2 Oi3 0.4
0 1a+V 1 B
o
_ ) o FIG. 6. Dependence of current ghfor a=1, =12, andN
FIG. 5. Phase diagram predicted by the extremal principle.  —1000. Symbols are simulation resuftietermined from 100 sys-
tems simulated in parallel for 1:210* MCS after steady state was
maxJ[p] for p,<p<p_ reachegl and the curve is the prediction from E@.6).

[ mind[p] for p_<p<p,. i
) o o p- for a<pB<y (low density,
Unfortunately, there is no prescription for finding ,p, _ ~ _ _
from «,B in general. Exploiting results from the exactly pla,B)=9 p+ for p<a<xy (highdensity, (17)
solvablet =1 casewherep_=a andp,=1—£) and from A _7
previous studies of thé>1 casd8,29|, we argue in favor of p  for a,f=x (maxcurrent

{a As examples of how well these predictions fit simulation
p-(a)= 1+a(£—1) and p.(B)=1=4. (19 data, we show plots af(1,8) (Fig. 6) andp(«,0.1) (Fig. 7).
As expected, when was rate limiting(low density phase a

These reservoir densities can be understood as follows. Reulk coverage density of_(«) was induced, and wheg
call that, for a closed system, the probability for sitel to  \as rate limiting, a bulk coverage density pf (8) was
be filled, giventhat sitei is empty, isp,/ps=(p/€)/(1—=p  induced. Given the success of the extremal principle analy-
+p/¢). We now argue that when the first site of an opensis, it would be appropriate to search for more fundamental
system is empty and will be filled with probability, it can  theories from which the extremal principle could be derived.
be thought of as being coupled to a reservoir of the appro- The transition between low and high density phases is
priate density, i.e.,p_ such that a=(p_/€)/(1—p_  clearly first order, displayed as a jump in the bulk density
+p_1¢€). Solving forp_ leads to the expression above for plot (Fig. 7). As in the£=1 case[10], domain wall theory
p—(a). The expression fop,(B) is not readily explained can be used to understand our results. In particularafor

by similar arguments, so discussion of its origin will be de'=,3<§( we have observed a shock fraftetween the low
ferred until the following section. An important feature asso- ’

ciated with this choice is that the current is symmetric under
a< B3, as observed in simulations. Most importantly, these
choices lead to phase diagrams in good agreement with
Monte Carlo data.

By combining these choices with the extremal principle,
we find that, although the result is qualitatively similar to the 0.6 1 o
€=1 system, there are quantitative changes for &hel '
case. First, there is a shift in the location of transition lines, 0.4 1

from 1/2 to y=1/(1+\/€) (as shown in Fig. b Then, the
current and bulk densities are also modified: 0.2 1

0.8 1

a(l—a)
1+a(€—1)

j(a,,B)I B(1-p)

1+p(e-1) FIG. 7. Dependence of average coverage density « for 8
j for @,f=x (max current =0.1,¢=12, andN=1000. Symbols are simulation resu{tieter-
(16) mined from 100 systems simulated in parallel and sampled every
100 MCS for 1.x 10" MCS after steady state was reachead
and curve is the prediction fromp_(«) andp, (B8) in Eq. (17).

0 r r . .

for a<pB<y (low density, 0 0.05 01 0.15 0.2 0.25

for B<a<y (high density, @
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FIG. 8. Steady state density profile far=0.05, 5=0.05, N e o 0
=500, ¢=12. The profile was obtained from simulations of 100 FIG. 9. Probability distribution of densities in the central 10% of

systems run to steady state and then sampled every 100 MCS f& SYStem witha=0.1, =0.1, N=1000, and¢=12. The actual
1.2x 10" MCS. (Nonlinearities near the termination boundary result probability distribution(solid diamonds with solid curyewas ob-
from ribosomes tending to “pile up” at=N,N—¢,N—2¢, etc tained by simulating 100 systems to steady state, sampling the cen-

due to <1 but with decreasing correlations aslecreases.The tral densities every 100 MCS for610° MCS, and compiling a

inset shows a typical configuration of this system, with the shocljrequency histogram. Peaks correspond to the dengiti¢s) and

front near the centetEach ribosome is represented by a Hot. p+(B)- qu comparison, a composite density Qis_tributi@]pen
squares with dashed cupveas assembled from similar frequency

and high density regiopgliffusing freely along the lattice. histograms for two closed systems with average densitig9.1)

As a result, theverageprofile is linear, as shown in Fig. 8. 2ndp+(0.1).(Again,N=1000, =12, and 10% of the system was
To appreciate the shock, we display in the inset a typicafampleo).The composﬂe dlstrlputlon requwedglllne.ar combination
configuration(showing a shockwhere each ribosome is rep- o_f 53% low density and 47% high dgmny_to minimize the absolute
resented by a dot. In addition, we exhibit another aspect Oglfference from the actual probability distribution. See text for
this coexistence by sampling the averdgeverage density etails.

in the central 10% of a largeN(=1000) lattice. Compiling a
histogram(closed diamonds in Fig.)9we find a bimodal
distribution typical of systems at a first order transition.
Peaks are expected to correspond to the dengiti¢s) and
p+(B). To connect with local fluctuations in the “pure” sys-
tems, we compile similar histograms for a closed syste
(i.e., 10% of a ring with 1000 site¢svith overall density set

profiles. Our continuum approach again leads us to differen-
tial equations. As considerable insight can be gained by
studying simple differential equations, we believe it is worth-
while to devote a section to the continuum approach.
Starting with the case of free diffusion, we extend Eq.
rT111) to the driven system by simply adding an “Ohmic” term
i . to the current:.J=cE, where the drive is associated with
at p_(@) andp.(B). For comparison, we show a simple strengthE and the conductivity will be the density dependent

linear combination of such distributions in Fig. (@per) factor found beforéfirst used in Eq(10)]. Thus, our starting
squares We expect correspondence between densities in thgquation is

window in the open system, which alternate between ap-
proximately p_(a) and p,.(B), and an appropriately
weighted average of window densities in the two closed sys- -
tems. The deviations can be understood as the contribution of Jt IX
configurations with the shock in the sampling window.

Roughly, this may occur about 10% of the time, which isaAs before, we suggest that this driven diffusion equation
also the order of magnitude of the deviation from the SImp'Q'mght be obtained from a variation of an appropriate |arge
average of pure systems. deviation functional, thef =1 version of which has been
While most of the features presented here were known t@erived previousif42,43.
MacDonaldet al.[7,8] and have also been obtained by Laka-  As a reminder, oux is actually thefractional length along
tos and Choy29], our efforts are to go beyond mean field the mRNA, so that it is dimensionless. Similarly, the densi-
approaches, showing the different perspective offered by dajes are also unitlese.g., p,e[0,1]), so thatD/E carries
main wall theory and the extremal principle. Shock effectsthe information of the real length of the chain. An estimate of
on the coexistence line are particularly well described by thishis ratio can be obtained by taking the naive continuum
approach. limit of a discrete hopping model, with the result W2In
the Appendix, we will show how this arises from taking such
a limit of the MacDonaldet al. [7] current equation. For
Following an understanding of the phase diagram, we turiiere, we may regarD/E as a phenomenological parameter.
to more details of the system, namely, steady state densifyurther, since we are focusing only dotally asymmetric

D dpr  prpn

ps X Ps

ap, a a

J(X)=— E|.

(18

2. Steady state profiles from the continuum approach
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processes, we could just as well &b unity[as in Eq.(7)],
and measurd andD “in units of E.”

PHYSICAL REVIEW B8, 021910 (2003

The boundary conditions can be understood as follows.
From p_(«) in Eq. (15, we can show that the effective

Taking these considerations into account, we seek theeservoir at the initiation boundary has an EPD yof(«)

steady state profile (x), as in Eqg.(12), by setting the
square bracketed terms in E@8) to the steady state current,

*

r *

—prph(pg) t=—J*.

D(p%)~? o

In terms of our “natural” variabley [Eqg. (13)], this equation
reduces to

x D[1+((—1)x]

=2

!

X'= [Ix+3*—x(1-x)], (19

D)

whereJ=J* (¢—1). Thus, we see that this>1 generaliza-
tion is quite similar to thef =1 equation:p’=[p(1—p)
—J*]/D.

Now, the zeros ofy’ will play an important role, occur-
ring at

1 R
and y.=———, (20

where
R=1/(1-J)2—4J*.

It is not surprising that the maximal curregt (i.e., (1
+/¢) =2 in our system of unitsis a key player, so that can
be written in the following form:

R=(€£—1)V(J*—J3)(J*-J).

Here,J =(1—/¢) 2 appears as a natural counterparfito

= . Equation(14) then implies the initiation boundary con-
dition in Eqg.(21). Particles on the finaf lattice sites expe-
rience no steric hindrance, so the current through the final
sites is just

J*=p. (i) for i=N—€¢+1,... N—1,

3*=Bp,(N).

These relations can be used to expresgN)
=EiN:N_€+1p,(i) in terms ofJ*, leading to the termination
boundary condition in Eg21). The boundary conditions for

x Wwill serve to fix the constant of integration as well &S,
which is still an unknown in Eq(19). [The current thus
determined is expected to match closely the current predicted
by Eg.(16,)] We discuss the various phases separately.

For smaller values of* (i.e., J*<J), x(x) has fixed
points at xy- and y.. Boundary conditions determine
whether the steady state profile approachedlow density
or y-(high density. Each solution corresponds to part of the
phase diagram shown in Fig. 5. There is a “kink” solution
when x(0),x(1)e(x<,x>) with x(0)=x- and x(1)
=< x- that corresponds to the first order transition line.

In the high density phase8K «) wherex> y- , the den-
sity profile is given implicitly by

X~ X> X~ X<

[1+(¢ 1)X>]|n<X0_X>) [1+(L 1)X<]|n<X0_X<)
B Rx
)

Another advantage of this form is its relationship to the ex-{where y,= x(0) is the EPD at initiatioh It may be noted
tremal current principle. As we will see, for finite systems, that asN—o, the bulk density and termination boundary

J* will be slightly [O(1/N?)] larger thanJ for the maximal

density both approack-. . Settingx(1)=x- and eliminat-

current phase, giving us complex roots and profiles with ining J* from the termination boundary conditidiq. (23)]

flections. On the other hand, for the other two phasés,
<3, leading to fixed points in thél— < limit.
Equation(19) can be integrated to find an implicit func-

and the definition ofy~ [En. (20)] yields a bulky of (1
—B)I[1+B(€£—1)]. We expect the bulk density in the high
density phase to match the termination reservoir density. In-

tion for the density profile in each phase. For explicit solu-de€d, the bulky value calculated here is consistent with the

tions, we must specify the boundary conditions,

*=a[1-p(0)],
. B
J —mp(N), (21)
so that
o pO
XO = 10+ (0 " are—ny 22
and

p(N)/€ [1+B(€—1)]3*

x(1)= 1—p(N)+p(N)/€ B—(£—1)[1+B(£—1)]3*
(23

reservoir density , =1— 8 given abovgd Eq. 15].
Though it is impossible to write a closed form f(x) in
general, a convenient expression is

X—X<\|”
X=X>1(xo—x>)exd —u X]| —— , (29
X0~ X<
where
B R
H DI+ (¢—1)x-]
and

14 (E-1)x-
Y1 (- D)x-

Note thatR, x., and y~ can be conveniently estimated
using theJ* value given by Eq(16). The advantage here is
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FIG. 10. Rapid convergence of the iterative methog ) for smallx. (Largerx values are omitted because all iterationg @ re nearly
identical) xV), x®, andx(® are represented by squares, triangles, &r&] respectively. The system considered hereisl, 8=0.13,
N=1000,¢=12. D was set to 1/R to obtain a good fit. The inset compares the actual steady gtitmm simulations(bold curve with
the predictedy® (lighter curvd. In the profile from simulations, particle depletion near the termination end can be seen.

that the unknown factor X— x-/xo— x<)” displays only lattice gag44]. In the largeN limit, a macroscopically large
limited variation, sincey lies outside the intervdly_. ,x-]. region of the profile will be almost flatcorresponding to
Thus, we expect to find better and better approximations by’ ~0), where the density assumes the optimal Va‘ﬂ(@r
exploiting aniterative scheme. Starting with the first itera- y=x). Meanwhile,J* will approach the maximal currest

tion from above withO(1/N?) terms. The details are somewhat
xP=x-+(xo—x=)exd — w.x], involved, so that we will show the solution and discuss its
_ _ o _ properties only for largé\.
this procedure involves substituting repeatedly for then Defining the real quantitiR= — iR, Eq.(19) can be inte-
the unknown factor of Eq24), namely, grated to show that the steady state density profile is given
(k—1) _ y by
X X<
(K) = — — 2=
xX=x>F (Xo— x=)exd — u X]( ) - ~ ~
- A U xo—x-< 2= (1=TJ)x+J* +4+2(€—1)(1—J)(6 .
In Fig. 10, we show an example of three such iterations, Xé—(l—j)XoJrJ* R(£—1) 0
converging rapidly to the real(x), and in the inset a com-
parison with they(x) observed in simulations. Near the ter- — 2X (25)
mination end of the system, the EPD from simulations shows D(£—1)’
a depletion below the bulk density. This reduction is charac- here
teristic of the high density phase and was originally observed’
in the numerical results of R€i8]. The continuum limit does R
not capture this feature. f(x)=arctaR————
A similar analysis may be carried out for the low density 1-J-2x

phase whery<x- . In this case, the boundary layer occurs 5,4, _ e i ;

A -° ) xo=x(0) is given by Eq.(22). Evaluating Eq.(25) at
at the termination end, so it is convenient to apply #&)  ihe termination enfix=1,y= y(1)] and using Eq(23), we
boundary condition explicitly and use the(0) boundary — 5pjve at an equation for determinid in terms of the con-
condition to determind”. This method also works for high ., parametersy, 3. Needless to say, this equation is too

and low density phase profiles wheny(0).x(1)  complex to solve analytically. Nevertheless, we can gain

€(x<.x=), as long asa and § are not too similar. The  gome jnsight by considering the larde limit. Defining e
analysis fails close to the first order transition line, as we_ 1N for convenience, recall thad is O(e). Next, let us

would expect since Ed.19) predicts a *kink” rather than assume thal* =J+ O(€?) and show that it is justified later.

linear density profile on the transition line. _ - - ) A

For the maximal current phase, we know tdat>3, so | S leads us t® bj'”qo(f) and (1~ J)/2=x+0(e), so
thatR is purely imaginary. Sincg’ is negative definite, we that x> -=x+0(e%)*i0(e). Thus, the quadratic form in
have a downward sloping profile, which is the generalizatiorfhe argument of the In in Eq25) never becomes smaller
of the tanx/ &) [or cot/&)] profiles in the ordinary driven thanR?/4=0(¢€?), so that this term never excee@%InN).
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0.5 lation may be questioned. Indeed, we believe that the system
will display essential differences when these point particles

04 are replaced by extended objects. First, as we have seen in
the uniform elongation studies above, generalizing tofthe

0.3 | >1 case led to significant changes. Now, with nonuniform

rates, steric hinderance should play an even larger role, since

Qoz | extended particles can block multiple sites with potentially
' different rates. Thus, we will devote this section to a limited
01 study of the effects of >1 on open systems with nonuni-

form elongation rateqa) systems with a single slow sitéh)
bounds on the current in general open systems,(@nas an
0 - - - - illustration of systems with full disorder, simulation results

0 0.2 0.4 0.6 0.8 1 for a real mMRNA sequence.
X

FIG. 11. Actual and predicted steady state density profiles in the
maximal current phase. The system considered here=i§.5, 8
=0.5, N=800, £=12. D was set to 4/8 to obtain a good fitJ* We begin with the simplest form of quenched disorder,
was set tal+3.24x 1075 to satisfy the termination boundary con- nNamely, having a singlenternal site i with a reduced elon-
dition. Profiles are the actual steady stgtérom simulations(bold ~ gation rater <1. If this blockage were moved to the termi-
curve and the predicteq” (lighter curve. nation site, them would carry the labe]3 to conform with

the notation above. In most of the simulation studies for this

Since the other terms are generayN) (from D andR),  Section, we focus om= =1 with the blockage at the cen-

we can write an approximate equation by neglecting the e of the mRNA(i_.e., 1=100 with N=200). Th_ou_gh the
term, leaving an expression f@ and taking the cotangent naive expectation is that the blockage should limit the cur-
of bo’th sides: ' rent in the same way, regardless of its location, we observe

that the current is noticeably reduced if the slow site is in-
~ 1 ) ternal. This reduction can be understood as follows. Once a
X—X= ERCO‘[X/§+CO”5"]+O(5 ), (260 particle moves past the slow site, the particle behind it is not
necessarily free to move to the slow site. Instead, because of

whereé=2D (/R is of O(1). Note that the constant here the random sequential updating, the particlle behind hag a
can be written as arcd@(yo— x)/R], which vanishes as nonzero cha_nce qf being blocked by the particle ahead. With
Bl (ve— 2 in the limit 0. Thus. for tvpical val of just two particles in the system, this effect can be accounted

(xo=Xx) in the limit 0. Thus, or typical va lies ' for exactly. Beyond the scope of this paper, the details will
we see thag = x+O(e). For the termination end* must  pe published elsewhere. Here, let us present some simple
be carefully fixed so that the argument of the co-tangent imeuristic arguments that lead us to results that agree well
Eq. (26) approachesr in an appropriate way for the right \ith simulation data.

hand side to equat(1)— y. This requirement is consistent Extrapolating from the current in the uniform systéby.

A. Simple model of a single internal blockage

with the original assumption that =J+ O(€?). (16)], we speculate that
Returning to the finiteN case, althoughy(x) cannot be Piree
determined explicitly, we find that an iterative method is J=psource?, (27)

again helpful and converges rapidly. This time, successive
iterations ofy are substituted into the term{ln°>—(1-J)x  Where psource IS the average coverage density behind the

+J*]/[Xg_(1_j)XO+J*]} of Eq. (25). As Fig. 11 shows, slow site andPs . is the approximate probability for a par-
there is good agreement between the steady state profiléi§le just beyond the slow site to advance. Lasilyis the
from simulation data and this mean field theory. average time to travel through the slow site and thel
sites that precede it. For example, in the termination-limited
casepsource= 1— B, T=¢—1+1/8, andP;,..=1 (no steric
hindrance beyond the termination $jtegiving J= (1
= B)[1+B(€—1)]. We estimateys,,cefrom the bulk den-
We finally turn to the difficult problem of the TASEP with sity induced if the lattice were truncated immediately after
extended objects and quenched disorder. At each codon tiie slow site. P Can be estimated from the density-
the mRNA, a ribosome translating the mRNA must wait for dependent head spacing in a closed sydtem (8)], using
an appropriate aa-tRNA to decode that codon. aa-tRNAhe bulk density that would be induced if the lattice began
availability ranges over about an order of magnitiidg],  with the slow site.

IV. DISORDERED HOPPING RATES IN THE OPEN
SYSTEM

and it is thought that the elongatighopping rates may also To determineT approximately, we consider the behavior
range over an order of magnitude, with the slowest onesf two particles in an infinite system with a single slow site
comparable to the initiation and termination rafds]. (located at the origin Denoting the position of the leading

Since previous studies of the TASEP with quenched disand following particles by and 7, respectively, the evolu-
order involve¢ =1, their relevance to the process of trans-tion of this system can be regarded as a random walk in the
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TABLE I. Actual and predicted reductions in current due to an 1 30
internal slow site with rate. Currents with the slow site at one end
are listed for comparison. All currents are multiplied by 100. Simu- 0.8 125
lations were performed witN =200, = 8= 1 with the blockage at
the center. These results are statistically the same if the blockage is 06 4 120
placed at site 20 or 180. ) o
Q. + 15 i
J for slow 0.4 1 140
r T max site at end Actual Predicted] 0.0 W%W
0.01 135 0.89 0.86 0.87 5
0.1 12.9 4.29 3.87 3.90 0 ’ ’ ’ 0
0.2 12.3 5.00 4.68 4.57 0 100 200 300

i

FIG. 12. Steady state coverage density(upper curve and
{-m plane, confined td— »=¢. During each time step, the maximum translation raté&,, in each window of=12 codons
walker moves, with equal probability, either “upwards¥h(  (lower curve for the ompAgene ofE. coli when the elongation
—n+1) or “to the right” ({—{+1). When it arrives at the rates are limiting. Elongation rates at each codon were assumed
{=n+¢ line, the walker remains stationary with probability proportional to availabilities of corresponding tRNA.
% (and moves “to the right” otherwise Assuming that there _ )
arem+1 holes between the particles immediately after theMust be at least the time required to translate the slowest
leading one leaves the slow site, so that the walker is “ini-Stretch of¢ codons. In this way, we find an upper bound to
tially” located at (¢, 7)=(1,— € —m), we computed numeri- the current, i.e.,
cally 7,, the average time for the walker to arrive at the J= min K, | (28)
=0 line (i.e., for the second particle to reach the slow)site fefl,. . N—(+1) '
Note that these’s take into account the steric hindrance due
to the leading particle, which we assume is always free t@ne might imagine the slowest segmentfo€odons acting
move. To extractT, we make the assumption that the left as a “gatekeeper” and preventing the current from exceeding
particle advances its firsh+1 steps in timem+1, leaving the value in Eq(28).
¢—1 more steps to reach the slow site. Now, the probability To arrive at a lower bound, we need only replace the
p(m) for finding a gap oim holes before the leading particle €longation rates at each site by the slowest elongation rate.
passes the slow site can be estimated by inserting the bufkrom Eq.(16) above, we have the current of a system with
density before the slow sitep{,,cd in EQ. (8). Taking the  uniform rate unity. Thus, the minimum current for the disor-
average over these initial starting positions and accountingered system is simply
for the time to move over the slow site (]/ we obtainT ) —
=3 [ 7m— (M+1)]p(m)+1/r. Predictions for the current J=( min  k)J(a,p), (29
from Eq.(27), compared with the actual current from Monte
Carlo simulations, are shown in Table | for several values ofyhere is the ratio of the initiation rate to the slowest elon-

the slow rater. Despite the approximations involved in this gation rate, and similarly fo3. Though the gap between
approach, the agreement is surprisingly good. these bounds for a real system may be too large to be of
significant predictive value, they can provide some guide to
our understanding of the current.
B. Bounds for the current

To model a real mMRNA, we must allow for arbitrary trans- C. Simulation of a real gene sequence
lation rates associated with each codon. Let us denote the

rate at codon by ki . Due to the excluded volume constraint, 10 illustrate the full problem of disorder, we have simu-
however, it is meaningful to consider al$g ;, the maxi- lated translation of several real mMRNA sequences fisn

mum rate for a ribosome to translate a stretchfofsites ~ Cherichia colistrain MG1655, obtained from R¢#7]. Elon-
beginning with site: gation rates at each codon were estimated using commonly
, accepted values for the availability of tRNA B coli [45].
i+€—-1 -1 L
1 The rate at each codon was assumed proportiomidh an
K¢ .E( qzzi k_) arbitrary proportionality constanto the availability of the
tRNA decoding that codon, as in Rg#8]. Corresponding
data were not available for estimating initiation and termina-
Now, consider a “window” of any stretch of consecutive tion rates, so a range of initiation and termination rates was
sites in the lattice. If one particle is moving within this win- studied. We assumed that ribosomes co¢erl2 codons
dow, the following particle must wait until the first one [5,6].
passes through entirely before it can begin translating these  Figure 12 shows the steady state coverage density profile
sites. Thus the characteristic time associated with the currefor the reasonably well studied genemmpAwhen the elonga-

q
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tion rates are limiting. The lower curve in the figure showsclosely. However, the predictive power of this approach is

the maximum translation rat&,, for each window of¢ limited, since the “coarse-grained” paramet@rcannot be
=12 codons, calculated from derived from the microscopic jump rates. Naive estimates for
i+11 -1 it are of the right order of magnitude but quantitatively inac-
1 X . . ;
Km:( 2 _) curate, reflecting the importance of particle correlations. Re-
a=i Kq gardingD as a phenomenological quantity, we simply fit it to

data. At a more detailed level, open questions about density
for each sitei. The minimum of theKy, values is 4.51 in  profiles remain. In particular, our continuum limit cannot ex-
arbitrary units, thus giving an upper bound for the currentplain the particle depletion and periddstructure near the
[Eq. (28)]. This value is significantly higher than the actual termination end of high density systems. Profiles of the par-
current of 3.52.[For comparison, Eq(29) gives a lower ticle densityp, are also of interest, though beyond the scope
bound of 0.99 for the current in this systdnit should be of this simple continuum theory. Absent from the=1
noted that the minimuni,, occurs at codon 71, which is TASEP, peaks with spacin€ extend far behind a blockage,
approximately the location behind which the ribosome denwith a decay length well beyond typical microscopic scales
sity is very high, due to ribosomes “piled up” behind the (data not shown Evidently, when extended objects are in-
slow region. In general, lower values for the rétg, corre-  cluded, even a simple uniform TASEP tantalizes us with a
spond to higher ribosome densities, and higkes to lower  rich variety of behavior.
ribosome densities, leading to an approximate symmetry be- Finally, systems with quenched disorder in the particle
tweenKy, and p. Thus theK, values are useful in under- hopping rates were briefly considered. Effects of a single

standing the ribosome density profiles observed. internal slow site on the current were estimated with fair
accuracy by considering the average delay a particle near the
CONCLUSIONS slow site experiences due to a particle ahead of it. Also,

bounds on the current were determined for general disor-

This work generalizes the well-studiefi=1 TASEP dered systems. A real gene sequence was simulated, leading
model to particles with extended sizes. Since there is a difto a complicated density profile. The parameker;, the
ference between particle densjty and density of occupied maximum rate to translate a stretchéosites beginning with
sitesp, the familiar particle-hole symmetryp 1—p) takes  sitei, proved helpful in understanding the shape of the den-
the formp,<1—p here. Exact results for TASEP on a uni- sity profile, but the disordered system remains far from
form ring, including probability distributions for the current solved.
and for particle headway, were found. Particularly useful in  We close with some speculation about the relevance of
the latter part of this study is the new current-density relathis work to an understanding of translation. The advent of
tionship, which is interpreted as a density dependent mobilitfunctional genomics technologies to measure simultaneously
factor (or “diffusion constant’). MRNA and protein expression profiles from many thousands

An extremal principlg[38] based on domain wall theory of genes provides special opportunities to begin to under-
allowed the closed system current-density relation to predicstand gene expression regulation. Our results for currents
currents and bulk densities in the uniform open system a€.e., protein production ratesand ribosome densities for
functions of the initiation and termination ratesand3. The  uniform systems cannot be directly compared with such ex-
phase diagram for the open system was thus determined ugerimental data from typical bacterial cells because transla-
ing the extremal principle. Domain wall theory also providedtion is not approximated well enough by a uniform system.
an explanation for the linear density profiles and otherHowever, it is possible to use the uniform system results to
unique characteristics observed at the first order transitiomterpret data from an mRNA artificially constructed to be
between the high and low density phases. Given the abilityniform. Although there are no reports in the literature of
of this theory to describe particles with lengtk» 1, it might  systems that are approximately uniform, the use dgharitro
be exploited further to determine fluctuations in number oftranslation syster60] provides an opportunity to make such
bound particles in the steady state and behavior in the preséxperimental observations.
eady state regime, as has been done for#hel system It is known that the relationship between mRNA and pro-
[49]. tein levels in typical cells is nonlinedf1,12. Specifically,

Based on the new mobility factor, a simple continuumwhen cells are grown under two different sets of conditions,
limit led to a differential equation for the density profile in the amount of protein corresponding to a particular gene may
open systems. Though nonlinear in general, this equation care down-regulated while its corresponding mRNA is up-
be transformed, in the case ofgmmetricexclusion process, regulated, and the opposite may be true for other genes mea-
to the familiarlinear diffusion equation for an effective par- sured from the same samples. We expect that in biological
ticle density y. As a result, the stationary density profile, systems, the initiation rate should be an increasing func-
expressed in terms gf, is again linear. For thasymmetric tion of the availability of ribosomes within the cell. The pro-
exclusion process, the differential equation is more complextein production rat¢currentJ, Eq.(16)] is, in turn, a nonde-
due to an extra term to account for the drive. Analytic ex-creasing function otx. This analysis thus suggests that the
pressions, albeit implicit, for the stationary profiles were ob-observed nonlinear relationship can arise from changes in the
tained and solved numerically through a rapidly convergingavailability of ribosomes given the nonlinear relationship be-
iterative procedure. The results matched simulation datawveenJ anda. However, this situation would cause all pro-
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tein production rates to change in the same direction, that in APPENDIX: DERIVATION OF MODIFIED DIFFUSION

which the ribosome availability changes. It would not permit EQUATION FROM DISCRETE VERSION

some proteins to be up-regulated while others are down- A modified diffusion equation qualitatively equivalent to

regulated—which is the situation observed experimentallyEq. (19) can be obtained by taking the naive continuum limit

Further nonlinearity would arise if MRNA's were to compete of the discrete mean field equations of MacDoneticl. We

for available aa-tRNA as well as for ribosomes. Detailedbegin with Eq.(7) of [7] for the current from lattice sitgto

modeling of this effect will require a better understanding ofj + 1:

systems with quenched disorder, in which the elongation n{n{%,

rates result from aa-tRNA availability. qi:m
j+1 j+L

and make the following correspondences with our continuum

notation:
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pe(X)| P(X) +(1) — —+ 57 "
Jj—j+1)=
dpn(x) 1 &*pn(x) ape(X) €% 3py(X)
ph(X)+(1) X +5 axz + + pr(X)+€ X +E ﬁxz + ..
pepn . Peph 1 opr
— 4 4+ n__ €2 ”
o " pe T2 pg[prph PPy ]
|
by usingpn(X)=1—<¢p,(x). Similarly, 1+0(1—€)p? P
, \]:D(#) —£)+Eprph, (A2)
. _pPn PiPh PePh , Pepnl| [P Ps Ps
Jj—1-))= - + 2 Ps 2 2| — .
Ps Ps Ps Ps Ps where we have define@ =1/2 andE=1.
P " Finally, we rewrite Eq(A2) in terms of the effective par-
_oPrPs p_r_(g_ 1)2p_r}_ ticle densityy. Thus we find that the mean field equations of
Pr Ps  Pr Ps Ref. [7] predict
It can then be shown that X _ 1+(€-1)x

[Ix+JI—x(1—x)].
(A3)

) &

3J
o U=+ =3 -1-]))
We expect Eq(A3) to be comparable to Eq19), the steady

ol =1 ap, 9 ( prpn state density profile equation derived previously from simple
=— —2[€(1—€)p,2+ 11—+ — ) arguments. Indeed, both equations give the same fixed points
IX| 2pg IX | Ix\ ps for x, thus producing qualitatively identical density profiles.
Further, their quantitative differences have little effect on the
This leads to the modified diffusion equation shape of the density profil@gata not shown
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