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Totally Blind Channel Estimation for OFDM on

Fast Varying Mobile Radio Channels
Marc C. Necker and Gordon L. Stüber

Abstract— A new blind channel estimation scheme for OFDM-
systems is proposed based on the ML-principle. By avoiding the
use of second- and higher-order statistics, a very fast convergence
rate is achieved. A novel approach is also proposed for resolving
the phase ambiguity of the blind channel estimate without the
need for any reference symbols. The approach combines different
modulation schemes on adjacent subcarriers, such as 3-PSK and
QPSK, to resolve phase ambiguity. Simulations were performed
for mobile radio environments with high Doppler frequencies
and short-to-medium delay spreads. The achieved performance
is comparable to that of pilot-based channel estimation for the
case of QPSK-modulation.

Index Terms— OFDM, blind channel estimation, QPSK, 3-
PSK, 5-PSK

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is of

great interest for digital communication on mobile multi-path

fading channels. To perform coherent demodulation it is nec-

essary to have knowledge of the time-variant channel transfer

function. In an OFDM-system, the channel transfer function

can conveniently be estimated using a two-dimensional grid of

pilot symbols [1]. The Digital Video Broadcasting Terrestrial

(DVB-T) standard [2] is one such example. However, channel

capacity is wasted due to the transmission of the pilot symbols

in these systems. An alternative is to use differential phase-

shift keying (DPSK) and differentially coherent demodulation.

This has been implemented successfully in the Digital Au-

dio Broadcasting standard [3]. However, differential detection

leads to an Eb

�
No loss of about 2 dB for an AWGN chan-

nel and a larger loss for fading channels [4]. Hence, it is

desirable to use coherent demodulation while being able to

determine the channel transfer function without the need for

pilot symbols, a technique known as blind channel estimation.

Much research has focused on blind channel estimation, but

the performance has not been comparable to that of pilot-based

channel estimation.

Most existing blind channel estimation methods are based

on second or higher order statistics. Examples of statistical

blind channel estimation techniques include those using corre-

lation methods [5] and cumulant fitting schemes [6] and [7]. In

[8], the asymptotic performance and fundamental limitations

of blind estimators based on second order statistics has been
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investigated. While methods based on higher order statistics

can recover both the magnitude and phase of the channel

transfer function, those based on second order statistics can

only recover the magnitude. Afterwards, the phase can be

recovered if and only if the received signal is cyclostationarity.

Other blind channel estimation methods developed for OFDM

take advantage of the redundancy introduced by the cyclic

prefix, e.g., [9], [10]. In [11], blind channel estimation was

investigated for IEEE 802.11a. In their paper, the authors used

a finite alphabet approach and clustering of subcarriers. In any

case, the phase information is recovered but there is still a

phase ambiguity. To recover the phase information completely,

additional reference symbols can be inserted into the data

stream. Although only a few reference symbols are needed,

the charm of blind channel estimation is lost.

Statistical blind channel estimation approaches have a slow

convergence rate, making them unsuitable for mobile radio

channels. Moreover, they only work with continuous transmis-

sion and fail for burst transmission. In contrast to the statistical

methods, Chotikakamthorn and Suzuki applied a deterministic

approach based on the maximum likelihood (ML)-principle

to OFDM systems [12]. This method has the advantage of

producing a channel estimate from a single received OFDM

symbol. Thus, it performs well for mobile radio channels, and

is suitable for continuous and burst traffic alike. Its principal

drawback is the huge computational complexity needed to ex-

ecute the maximization operation embedded in the algorithm.

Also, the channel estimate still has a phase ambiguity.

In this paper we modify the basic ML-method from [12]

for the case of PSK signals. It is shown for the noise-free

case that blind channel estimation can be achieved by con-

sidering only two data symbols which are adjacent within one

received OFDM data symbol if the delay spread of the channel

impulse response stays within certain limits. This concept is

further extended to the noisy case. A suboptimal approach for

performing the maximization operation of the ML-method is

presented. A variation of the algorithm is developed that yields

a low-complexity blind channel estimator which can estimate

the channel from a single OFDM symbol. It is shown that the

estimator can be improved by using iterations and exploiting

the time-domain correlation of the channel transfer function.

We also present a novel approach for resolving the phase

ambiguity of the channel estimate. By combining two dif-

ferent modulation schemes on adjacent OFDM subcarriers, a

unique channel estimate can be obtained at the receiver. In

particular, we investigate the combination of QPSK and 3-PSK

resp. 5-PSK. Our approach completely recovers the complex

channel gain (amplitude and phase), without requiring any

reference symbols at all. Thus the proposed channel estimator
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performs a true blind channel estimation.

The remainder of the paper is as follows. Section II develops

our maximum likelihood blind channel estimator from first

principles. In section IV we introduce the concept of combined

PSK modulation schemes to resolve the phase ambiguity of the

channel estimate. Section III presents the suboptimal approach

for solving the maximization operation. Finally, Section V

presents applications and simulation results for the proposed

blind channel estimation method.

II. THE MAXIMUM LIKELIHOOD BLIND CHANNEL

ESTIMATOR

Consider an OFDM modulator with N subcarriers and q-

PSK-modulated data symbols. During an arbitrary OFDM

symbol period, the transmitted data symbol vector is

b̃ � ✁
b0 b1 ✂✄✂☎✂ bN ✆ 1 ✝✟✞✡✠ bn ✠ � 1 ☛ (1)

The OFDM modulator computes the inverse discrete Fourier-

transform (IDFT) of the frequency domain data vector b̃ to

yield the time domain vector

W � ✁
W0 W1 ✂☎✂☎✂ WN ✆ 1 ✝ (2)

where

Wk � N ✆ 1

∑
ν ☞ 0

bνe
j2πνk

N ☛ (3)

Ignoring the cyclic guard interval, the samples Wk are then

passed through a D/A converter to generate the transmitted

complex envelope s̃ ✌ t ✍ .
Let h ✌ t ✞ τ ✍ denote the time-variant channel impulse response.

Disregarding any non-linearities associated with RF process-

ing, the received complex envelope is

r ✌ t ✍✎�✑✏ ∞✆ ∞
h ✌ t ✞ y ✍ s̃ ✌ t ✒ y ✍ dy ✓ n ✌ t ✍✔☛ (4)

The waveform r ✌ t ✍ is sampled at epochs t � kTs to yield the

received vector

r � ✁
r0 r1 ✂☎✂☎✂ rN ✆ 1 ✝✡✞ (5)

where Ts is the duration of one data symbol bn. Assuming that

h ✌ t ✞ τ ✍ remains approximately constant for the OFDM symbol

duration, i.e., there is no inter-carrier interference (ICI), then

the discrete Fourier-transform (DFT) of r is

zk � Hk ✂ bk ✓ Nk ✞ (6)

where Nk is AWGN and Hk is the sampled channel transfer

function

Hk � H ✌ t ✞ k∆ω ✍ ✞ H ✌ t ✞ ω ✍✎� Fτ ✕ h ✌ t ✞ τ ✍✗✖ ✞ (7)

where ∆ω � 2π
�
NTs.

Let b � ✁
b0 b1 ✂✄✂☎✂ bM ✆ 1 ✝ be a vector with a selection of

M data symbols on subcarriers with a regular spacing of κ∆ω
radians, with κ being positive integer. The received frequency

domain signal vector z � ✁
z0 z1 ✂☎✂☎✂ zM ✆ 1 ✝ on these subcarriers

can be conveniently written in matrix notation. To do so, let

Ad be the DFT matrix, where

Ad � ✁
ad ✘ 0 ad ✘ 1 ✂☎✂☎✂ ad ✘ L ✆ 1 ✝✙✞

ad ✘m � ✁
1 e ✆ jm∆ωTs ✂☎✂☎✂ e ✆ jmκ∆ωTs ✚ M ✆ 1 ✛ ✝ T ☛ (8)

The received signal vector z can be written as

z � BAdh ✓ N � BH ✓ N ✞ (9)

where h is a length-L vector of taps for the discrete-time

channel impulse response, H � ✁
H0 H1 ✂✄✂☎✂ HM ✆ 1 ✝ is the

vector of the channel transfer function coefficients, N �✁
N0 N1 ✂✄✂☎✂ NM ✆ 1 ✝ is AWGN vector, and

B �
✜✢✢✢✣ b0

b1

. . .

bM ✆ 1

✤✦✥✥✥✧ ☛ (10)

Chotikoakamthorn and Suzuki [12] show that the channel

can be estimated from a single received OFDM symbol.

Theorem 1 below provides the underlying basis that makes

it possible to apply the maximum-likelihood principle to only

one OFDM symbol.

Theorem 1 (from [12]): The channel parameters h and the

transmitted symbols b are uniquely identifiable up to a scaling

factor, if

M ★ Q ✌ L ✒ 1 ✍ ✞ (11)

with Q being the number of bi

�
b j with distinct values for

all possible permutations of symbols bi and b j of the symbol

alphabet S .

Theorem 1 implies that there is only one vector b and one

vector h that can yield the received vector r in the noise-

free case. If noise is present, a maximum likelihood estimator

for both b and h can be constructed. If the noise N is white

and Gaussian, the maximum likelihood estimates of b and h

are those vectors that minimize the quadratic error from the

received sequence z:

θ̂ � min
θ ✩ z ✒ BAdh ✩ 2 ✞ θ : � ✁

hT ✞ bT ✝ T ☛ (12)

Defining the diagonal matrix Z with

Z �
✜✢✢✢✣ z0

z1

. . .

zM ✆ 1

✤✦✥✥✥✧ (13)

and by exploiting the constant modulus property of PSK

signals, (12) reduces to (see [12]):

b̂ � max
b

Tr ✪ Z ✫ AdAH
d Zb ✫ bT ✬� max

b
bT Z ✫ AdAH

d Zb ✫ ✞ (14)

with ✫ denoting the complex conjugate. Once the data symbols

bn have been estimated by solving (14), a simple estimate of

the channel transfer function can be obtained by solving

Ĥ � B̂ ✫ z ☛ (15)

In the case of q-PSK, this estimate still contains a phase

ambiguity, since there are q different solutions to (14) that

yield the same maximum value. Also note that the calculations

involve the received symbols of only one OFDM-symbol.

The optimization in equation (14) is a seemingly difficult

task with no obvious solution. A brute force algorithm must
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exhaust all 2 ✚ M ✆ 1 ✛ log2 q possibilities for b (where b0 can be

chosen arbitrarily because of the phase ambiguity). In [12],

a branch-and-bound integer programming strategy1 is applied

for the case of BPSK signals. However, the algorithm still has

high computational complexity, especially for long channel

impulse responses and larger values of M. In the remainder

of this section, two new theorems for the noise-free case are

introduced that allow us to greatly reduce the computational

complexity in solving (14) by reducing the block size M.

Theorem 2: By using knowledge of only the received vector

z, the channel parameters H � ✁
H0 H1 ✝ and the transmitted

symbols b � ✁
b0 b1 ✝ are uniquely identifiable up to a complex

scaling factor if ✌ b0 ✞ H0 ✍ and ✌ b1 ✞ H1 ✍ belong to adjacent

subcarriers and ✠ ε ✠ � ✠ H1 ✒ H0 ✠ is less than half the minimum

Euclidean distance between any two received signal points

zi and z j in the complex plane, where ε � H1 ✒ H0. An

equivalent requirement is that ✠ ε �
H1 ✠✁� dmin

�
2, where dmin

is the minimum Euclidean distance between any two signal

constellation points bi and b j.

Proof: It is sufficient to show that (12) has a unique solution:

θ̂ � min
θ ✩ z ✒ BAdh ✩ 2 ✞ θ : � ✁

hT ✞ bT ✝ T
ψ̂ � min

ψ ✩ z ✒ BH ✩ 2 ✞ ψ : � ✁
HT ✞ bT ✝ T� min

ψ ✩ ✁ z0 ✒ H0b0 ✞ z1 ✒ H1b1 ✝ ✩ 2� min
ψ ✩ ✁ z0 ✒ H0b0 ✞ z1 ✒ ✌ H0 ✓ ε ✍ b1 ✝ ✩ 2� min
ψ ✩ z0 ✒ H0b0 ✩ 2 ✓ ✩ z1 ✒ ✌ H0 ✓ ε ✍ b1 ✩ 2 ☛ (16)

Due to the phase-blindness, b0 can be chosen arbitrarily. The

coefficient H0 can then be calculated as H0 � z0b ✫0. Without

loss of generality, b0 is set to 1, yielding with (12):

b̂1 � min
b1 ✩ z0 ✒ z0b ✫0b0 ✩ 2✂ ✄✆☎ ✝

constant

✓ ✩ z1 ✒ ✌ z0b ✫0 ✓ ε ✍ b1 ✩ 2

� min
b1 ✩ z1 ✒ ✌ z0 ✓ ε ✍ b1 ✩ 2 ☛ (17)

Since ε is not known, it must be dropped from this equation.

The introduced error will not affect the result if ✠ ε ✠ is smaller

than an upper bound εmax, as illustrated in Fig. 1. If ✠ ε ✠ is

smaller than half the Euclidean distance between any two

plausible noiseless received symbol points, then the solution

of (17) for b̂1 remains unchanged. In other words, ✠ ε �
H1 ✠✞�

dmin

�
2. Under this condition, b is uniquely determined up

to a complex scaling factor, and thus H is also known up

to a complex scaling factor, c.f. (15). Theorem 2 is thereby

proved ✟
Theorem 2 basically states that two channel coefficients be-

longing to adjacent subcarriers can be estimated if the channel

transfer function does not vary too fast in frequency. It is well

known that the time-variant channel transfer function H ✌ t ✞ ω ✍
is related to the time-variant impulse response by a Fourier

Transform [14]. On the other hand, the time-variant impulse

response h ✌ t ✞ τ ✍ is directly related to the power delay profile

1The branch-and-bound technique breaks a problem into subproblems until
each subproblem is easy to solve. The solution space is divided in such a way
that a large number of non-optimal solutions can be rejected without the need
for investigating them. See [13] for more details.

εmax

z1 ✠☛✡ z0 ☞ ε ✌ b1 ✠ H1b1

Fig. 1. Derivation of upper bound εmax with QPSK as an example.

such that the shape of ✠ h ✌ t ✞ τ ✍ ✠ plotted over time matches the

shape of the power delay profile [15]. In particular, the longer

the power delay profile, the faster are the variations of H ✌ t ✞ ω ✍
in frequency. The restrictions imposed on H in Theorem 2,

therefore, directly translate to conditions on the channel power

delay profile. Channels having a short delay spread, such as

in rural areas, are likely to fulfill the necessary condition.

Likewise, channels in hilly areas with a long delay spread most

likely will not meet the conditions imposed by Theorem 2.

Appendix A shows how to estimate the maximum feasible

delay spread for the signaling schemes under consideration.

Just like Theorem 1, Theorem 2 holds only in the noise-free

case. A blind channel estimator based on Theorem 2 is more

likely to be foiled by noise than one based on Theorem 1,

since fewer subcarriers are involved. The noise sensitivity

can be improved by using more than two symbols leading

to Theorem 3.

Theorem 3: By knowing only the received vector z, the chan-

nel parameters H � ✁
H0 ✂✄✂☎✂ HM ✆ 1 ✝ and the transmitted symbols

b � ✁
b0 ✂☎✂✄✂ bM ✆ 1 ✝ are uniquely identifiable up to a complex

scaling factor for any M ✍ 2, if ✌ b0 ✞ H0 ✍ ✂✄✂☎✂ ✌ bM ✆ 1 ✞ HM ✆ 1 ✍
belong to consecutive subcarriers and the channel transfer

function coefficients H change slowly in the frequency domain,

i.e. ✠ ε
Hn

✠ � ✠ Hn ✆ Hn ✎ 1

Hn
✠✏� dmin

�
2 ✞ n � 0 ✞ ☛☎☛☎☛ N ✒ 1 ☛

Proof: Theorem 3 can be proved by using Theorem 2 and

induction.

Assumption Step: The channel is assumed to be uniquely

identifiable for M � 2 according to Theorem 2.

Induction Step: Let H � ✁
H0 H1 ✂☎✂☎✂ HM ✆ 1 ✝ and b �✁

b0 b1 ✂☎✂☎✂ bM ✆ 1 ✝ be the vectors fulfilling equation (12). It

is sufficient to show that by adding the elements HM and bM

to both of these vectors the uniqueness of the solution is still

maintained. If HM � HM ✆ 1 ✓ ε, derivations similar to those of

(16) yield from equation (12):

ψ̂ � min
ψ ✩ z ✒ BH ✩ 2� min
ψ ✩ ✁ z0 ✒ H0b0 ✞ z1 ✒ H1b1 ✂☎✂☎✂ zM ✒ HMbM ✝ ✩ 2� min
ψ ✩ z0 ✒ H0b0 ✩ 2 ✓ ✂☎✂✄✂ ✓ ✩ zM ✆ 1 ✒ HM ✆ 1bM ✆ 1 ✩ 2✂ ✄✆☎ ✝

constant ✘ since these terms already deliver the minimum✓ ✩ zM ✒ ✌ HM ✆ 1 ✓ ε ✍ bM ✩ 2 ☛ (18)

Because of the phase-blindness, the vector b can be modified

such that bM ✆ 1 � 1 without loss of generality. Using this fact,

and since HM ✆ 1 � zM ✆ 1b ✫M ✆ 1 and HM � HM ✆ 1 ✓ ε we have

b̂M � min
bM ✩ zM ✒ ✌ zM ✆ 1 ✓ ε ✍ bM ✩ 2 ☛ (19)
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The proof for Theorem 2 establishes a unique solution if✠ ε �
HM ✠ � dmin

�
2. Theorem 3 is thereby proved ✟

III. SUBOPTIMAL APPROACH FOR SOLVING EQ. (14)

The solution of (14) based on Theorem 1 requires high

computational complexity. It is infeasible to compute the

global maximum, especially for large memory sizes M and

large signal constellations q. We first detail how equation (14)

can easily be solved based on Theorems 2 and 3 in the noise-

free case.

Theorem 3 showed that, in the noise-free case, the channel

transfer function can be determined by considering an arbitrary

number of adjacent subcarriers M ✍ 2, if H exhibits certain

features which were detailed in Theorems 2 and 3. In this

case, it is trivial to solve equation (14) for M � 2, since only

very few vectors b exist, namely q2 for q-ary symbols. Once

the solution for M � 2 has been obtained, the solution for

M � 3 can easily be determined, since the first two elements

of the solution vector b are the same as those for M � 2.

Hence, for arbitrary M, only q2 ✓✑✌ M ✒ 2 ✍ q vectors b need

to be investigated to obtain the optimal solution. The optimal

algorithm to solve equation (14), therefore, has complexity

O ✌ q2 ✍ . Note that an algorithm based on Theorem 2 using

exhaustive search has complexity O ✌ q ✚ M ✒ 1 ✍☎✍ .
This algorithm can also be applied to the noisy case.

However, the algorithm will in general no longer determine the

optimal solution vector b, which would be obtained by using

exhaustive search or the already described branch-and-bound

technique. Instead, a sub-optimal solution will be delivered.

Simulation trials have shown that large portions of the vector

b can still be obtained correctly. Of course this depends greatly

on the noise-variance and the properties of the channel transfer

function, in particular the delay spread.

If a-priori knowledge of b is available, then it is desirable

to take advantage of this knowledge for solving equation (14).

Based on the considerations above, we propose a slightly

modified version of the just described algorithm, which can

incorporate a-priori knowledge of b (if available) as outlined

in the following pseudo-code fragment:

Initialize b0 ☛✄☛☎☛ bM ✆ 1

repeat

for i=0 to M-1

modify bi such that

argument in equation (14)
✁

max

end for

while symbols were changed

IV. RESOLVING THE PHASE BLINDNESS

In [12], reference symbols are used to overcome the phase

blindness. A new method is explored in this section that

restores the phase without using reference symbols. Thus our

proposed method is totally blind.

The key concept of the proposed method is that two PSK-

signal constellations of different order be used within the

same OFDM symbol. The two signal constellations are chosen

such that the angles between a selected signal point of one

Subcarrier n-2 Subcarrier n-1 Subcarrier n Subcarrier n+1 Subcarrier n+2

4-QAM3-PSK4-QAM3-PSK4-QAMt

Fig. 2. Modulation schemes on the subcarriers

constellation and any signal point in the other constellation are

unique. For example, QPSK and 3-PSK satisfy this property.

As shown in Fig. 2, QPSK symbols are interleaved with 3-PSK

symbols on alternate OFDM subcarriers. If such a waveform

is used, a blind channel estimator based on equation (14) no

longer suffers from phase blindness, as we now show.

Let b̂ be a vector solution to equation (14). If only QPSK

is used, the vectors e jϕ π
2 b̂ with ϕ � 1 ✞ 2 ✞ 3 are also solutions of

(14). Likewise, if only 3-PSK is used, the vectors e jϕ 2π
3 b̂ with

ϕ � 1 ✞ 2 are also solutions of (14). However, if both signal

constellations are used as described, there is no possibility

of phase ambiguity, since the angles of ambiguity in both

modulation schemes will not match. In other words, once a

vector b̂ solving equation (14) has been found, shifting the

phase by ϕ π
2

would move all ternary symbols away from

their possible signal points, and shifting the phase by ϕ 2π
3

would move all QPSK symbols away from their possible signal

points. Thus, (14) has a unique solution.

Other mixtures of signal constellations will also fulfill the

above requirement. For example, QPSK can be combined

with 5-PSK, and 8-PSK can be combined with 7-PSK or 9-

PSK. However, if a combination of modulation schemes is

used, Theorems 2 and 3 cannot be directly applied. From the

above considerations and from Theorem 3 we can derive the

following Lemma.

Lemma: By knowing only the received vector z, the channel

parameters H � ✁
H0 ✂✄✂☎✂ HM ✆ 1 ✝ and the transmitted symbols

b � ✁
b0 ✂☎✂✄✂ bM ✆ 1 ✝ are uniquely identifiable up to a complex

scaling factor for any M ✍ 2, if ✌ b0 ✞ H0 ✍ ✂✄✂☎✂ ✌ bM ✆ 1 ✞ HM ✆ 1 ✍
belong to consecutive subcarriers and the channel transfer

function coefficients H change slowly in the frequency domain,

i.e. ✠ ε
Hn
✠ � ✠ Hn ✆ Hn ✎ 1

Hn
✠✏� dmin

�
2 ✞ n � 0 ✞ ☛✄☛☎☛ N ✒ 1 ☛ , where dmin �✠ e j 2π

q1 ✒ e
j 2π

q2 ✠ with q1 and q2 denoting the order of the two

applied PSK modulation schemes.

Proof: The Lemma follows directly from Theorem 3 ✟
Returning to the sub-optimal approach for solving Eq. (14)

as it was detailed in the previous section, the combination

of modulation schemes introduces a problem. Consider two

QPSK and 3-PSK symbols received on adjacent subcarriers as

depicted in Fig. 3. The two transmitted symbols have a phase

difference of 15
✂

, and the two estimated symbols have a phase

b) estimated symbolsa) transmitted symbols

Fig. 3. Possible symbol combinations
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difference of 45
✂

. Our algorithm relies on phase differences.

Therefore, the suboptimal algorithm is likely to result in error

in the above example, as the phase difference between these

two possibilities is only 30
✂

. A constellation with such a small

difference will be called an alike looking constellation.

To solve this problem, it is necessary to check if there

are any alike looking vectors b that yield a larger value

when used in (14) after a suboptimum has been computed.

The simplest approach tries all possible combinations of

phase-shifts of the QPSK and 3-PSK symbols:

for i=1 to 4

Phaseshift all QPSK symbols by 90
✂

for k=1 to 3

Phaseshift all 3-PSK symbols by 120
✂

Calculate maximum argument in (14)

end for

end for

Pick b which yields the largest argument

Simulations show that this algorithm almost always catches

the global maximum for a COST207 RA channel [16] in the

absence of noise. The influence of noise can cause the correct

vector b to be missed. In this case, the performance can be

dramatically improved by using a-priori knowledge of the bi.

V. APPLICATION OF THE BLIND CHANNEL ESTIMATOR

AND SIMULATIONS

A. OFDM Transmitter

The blind channel estimator was applied to a modified DVB-

T system [2]. DVB-T is based on OFDM and uses pilot-

based channel estimation for coherent detection of QAM-

encoded data-symbols2. Starting from the 2k-mode with 1705

subcarriers, all pilots were removed, resulting in a system

with only 1512 subcarriers and a carrier spacing of 4464Hz.

The regular QAM-modulation scheme was replaced by the

combined QPSK/3-PSK scheme. We also investigated the

combination of QPSK and 5-PSK. The transmitter of this

system is depicted in Fig. 4.

AWGN

convolutional
encoder

WSSUS
channel

IF
F

Tπ Puncturing
and Mapping

binary
source

Fig. 4. Transmitter

The bits from the binary source are encoded by a rate-

1/2 convolutional coder with generator polynomials 1338 and

1718 and bit-interleaved in block π according to the DVB-

T standard. Code puncturing is used to solve the problem of

mapping bits to the 3-PSK and 5-PSK symbols. Fig. 5 shows

the trellis of the above mentioned convolutional code. The

two coded bits of every second stage in the trellis are left

untouched, while the coded bits of the remaining steps are

directly converted to ternary symbols according to Table I.

2DVB-T specifies 4-, 16- or 64-QAM, and hierarchical 16- and 64-QAM.
Here we compare our results with 4-QAM

000000

000001

000010

000011

µ µ � 1µ ✎ 1

1/11

0/00

1/11

0/00

0/10

1/01 1/01

0/10

...
...

...
...

. . . . . .

Fig. 5. Trellis of the rate 1/2 convolutional code used in DVB-T systems

When considering the code trellis in Fig. 5, there is only one

possible puncturing rule, since the two transitions emerging

from each state must be mapped to different 3-PSK symbols.

In general, the distributions of the real- and imaginary

parts of the resulting ternary symbols have non-zero mean.

Therefore, it is necessary to rotate the above mapping-scheme

by 120
✂

in regular intervals within one OFDM-symbol. This

does not affect performance or any of the algorithms and will

therefore be disregarded.

The resulting stream of bits and ternary symbols is modu-

lated by the IFFT-block. Attention needs to be paid during the

final distribution of the data symbols to the subcarriers, since

the QPSK and 3-PSK symbols must alternate.

The feasibility of 5-PSK instead of 3-PSK was explored.

A rate-1/3 code with generator polynomials 1338, 1458 and

1758 was chosen as basis code. The even-numbered trellis

steps are punctured by simply dropping the parity bit of

the second generator polynomial. The odd-numbered trellis

steps are mapped to 5-PSK symbols according to Table II. In

contrast to the 3-PSK case, the optimal puncturing scheme is

non-obvious. A heuristic approach was taken by mapping any

two transitions emerging from a state to signal points which

are at a maximum distance from each other, e.g., 0 and 2,

similar to mapping by set partitioning. As with 3-PSK, the

mapping scheme needs to be rotated regularly to avoid dc

offsets, this time by 72
✂

.

TABLE I

CONVERSION OF CODED BITS TO 3-PSK SYMBOL. THE NUMBERS 0,1

AND 2 REPRESENT THE DIFFERENT SIGNAL POINTS OF A 3-PSK SYMBOL.

coded bits ternary symbol coded bits ternary symbol

00 0 01 2
11 1 10 1

TABLE II

CONVERSION OF CODED BITS TO 5-PSK SYMBOL. THE NUMBERS 0, 1, 2,

3 AND 4 CORRESPOND TO THE DIFFERENT SIGNAL POINTS OF A 5-PSK

SYMBOL.

coded bits quintary symbol coded bits quintary symbol

000 0 100 0
001 1 101 4
010 2 110 3
011 3 111 2
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B. Soft-values for arbitrary q-PSK symbol constellations

The receiver should be able to soft-decode the received

data stream. When using a Viterbi algorithm [4] or a MAP

algorithm [17] to soft-decode the received data symbols, each

coded bit is assigned a soft-value Lc, and each decoded

information bit is assigned a soft-value Li. Recall the definition

of the channel soft-values Lch for bit c of a received symbol

y (see for example [17]):

Lch ✌ c ✍ � ln
P ✌ c � 1 ✠ y ✍
P ✌ c � 0 ✠ y ✍ � ln

�
P ✌ y ✠ c � 1 ✍
P ✌ y ✠ c � 0 ✍ ✂ P ✌ c � 1 ✍

P ✌ c � 0 ✍✂✁ ☛
(20)

In the pure QPSK-case, the MAP-decoder determines the

likelihood for every state transition in the trellis to produce

the output soft-value sets Lc and Li for the code bits and

information bits, respectively. The likelihood of a state tran-

sition is calculated from the two soft-values Lch belonging to

a particular state transition, and the state probabilities of the

originating and terminating state.

It is well known how to determine the soft-values for

the coded bits of QPSK-symbols (compare [4]). While it is

also possible to extract soft-values for the two or three code

bits which were punctured to form a 3- resp. 5-PSK-symbol,

we will extend the above definition of soft-values to q-ary

symbols. This allows us to directly assign a soft-value to a

transition within the code trellis without first determining the

soft-values for the code bits.

To extend this concept to q-ary symbols, a set of q soft-

values is introduced, each indicating the likelihood that one

of the q signal points was received. That is, for every received

q-ary symbol, q soft-values Lch
s ✌ x ✍ will be calculated, with

s being the different signal points of the q-ary symbol. The

definition of Lch
s ✌ x ✍ is analog to the definition of soft-values

for bits in Eq. (20):

Lch
s ✌ x ✍ � ln

P ✌ x � s ✠ y ✍
P ✌ x ✄� s ✠ y ✍ � ln

�
P ✌ y ✠ x � s ✍
P ✌ y ✠ x ✄� s ✍ ✂ P ✌ x � s ✍

P ✌ x ✄� s ✍ ✁ ✞
s � 0 ☛✄☛☎☛ q ✒ 1 ✞ (21)

with x being the transmitted symbol.

Using this soft-output definition, it is easy to modify a

MAP-algorithm (see for example [17], [18]) to soft-decode

a mixed stream of bits and ternary/quintary symbols. The

likelihood for a state transition will either be influenced by two

soft-values Lch of a state transition associated with a QPSK-

symbol, or by one soft-value from the set Lch
s for any state

transition associated with a 3-PSK/5-PSK-symbol

C. Receiver

The basic structure of the receiver is shown in Fig. 6,

where the discrete time index l is introduced. The core of

the receiver is an OFDM-symbol buffer, which holds the last

nine received OFDM-symbols zl, together with their associated

channel transfer functions Hl and the estimated symbols bl.

The number of stored OFDM-symbols can be varied, but nine

was chosen to match the order of the Wiener Filter in the time

direction of the pilot-based reference system (see section V-E).

The OFDM-symbol buffer allows for signal processing of the

stored vectors Hl. In particular, the Hl can be low-pass filtered

Li

z

H ☎ b
z

r

binary
sink

t

Iteration Block 4

Iteration Block 3

Iteration Block 2

Iteration Block 1OFDM symbol (Hl , zl , bl )

Predictive Block

Wiener-Filter
time-domain

FFT

oldest symbol

OFDM Symbol Bufer

OFDM symbol (Hl ✆ 1 , zl ✆ 1 , bl ✆ 1 )

OFDM symbol (Hl ✆ 2 , zl ✆ 2 , bl ✆ 2 )

OFDM symbol (Hl ✆ 3 , zl ✆ 3 , bl ✆ 3 )

OFDM symbol (Hl ✆ 4 , zl ✆ 4 , bl ✆ 4 )

OFDM symbol (Hl ✆ 5 , zl ✆ 5 , bl ✆ 5 )

OFDM symbol (Hl ✆ 7 , zl ✆ 7 , bl ✆ 7 )

OFDM symbol (Hl ✆ 8 , zl ✆ 8 , bl ✆ 8 )

OFDM symbol (Hl ✆ 6 , zl ✆ 6 , bl ✆ 6 )

Fig. 6. Structure of OFDM symbol buffer

using two Wiener-Filters, one in the time domain and one in

the frequency domain. The filter coefficients are based on the

Wiener design criterion [19], where the filters in the time and

frequency domains were designed for a maximum Doppler

shift of fd ✘ max � 200Hz and a maximum channel delay spread

of τm � 10µs respectively.

A newly received OFDM-symbol is demodulated by the

FFT-block and stored in the OFDM-symbol buffer. The chan-

nel transfer function Hl for this OFDM-symbol is then esti-

mated by Iteration Block 1 having the internal structure shown

in Fig. 7. The suboptimal (blind) channel estimator inside

this block runs the algorithm introduced in Sect. III multiple

times on blocks of M OFDM subcarriers to estimate the

channel transfer function H ✝l of one OFDM-symbol. The vector

bl serves as a-priori knowledge to the blind estimator. The

estimated channel coefficients H ✝l ✘ k and the received symbols

zl ✘ k are fed into the demapper, which provides soft-values on

the coded bits (Lch) and ternary/quintary symbols (Lch
s ). These

soft-values are deinterleaved in block π ✆ 1. The subsequent

inner convolutional decoder utilizes redundancy and improves

estimation results. The decoder outputs soft-values on the

information bits, Li, and code bits, Lc; hard-decisions are

made on the code bits, which are interleaved and mapped to

ternary/quintary symbols.

The estimated transfer function H ✝ ✝l is Wiener filtered to

reduce noise and even out estimation errors. The results of

Iteration Block 1 are stored in the OFDM symbol buffer.

The described process is iterated during the following

OFDM time-steps by multiple instances of the iteration block.

The blind estimator is only active in Iteration Block 1 and

disabled within the other iteration blocks, which has proven

to improve estimation results during our simulation runs.

A-priori knowledge is provided to the blind estimator of

Iteration Block 1 by predicting the transfer function for

the latest OFDM-symbol with a Wiener-Filter. This Wiener-

Hl’’

lb’’

H’

Lc

L i

’’

Iteration Block

’’

Lch Lch
l

zl

lH

bl

(    ) suboptimal
estimator

MAP-
DecoderDemapping

π

π-1

Mapping
Wiener-

Filter .bl,kz l,k

H     =l,k

Fig. 7. Block diagram for one step of the iteration
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Filter is applied in the time-direction and was designed for a

maximum Doppler-Frequency of 200Hz [20]. The predicted

transfer function is fed into an instance of the Iteration Block,

which will be called the Predictive Block. Since the blind

estimator can only utilize the bi as a-priori knowledge, it needs

to be disabled in the Predictive Block. The new bi produced

by the Predictive Block serve as a-priori knowledge to the

blind estimator within Iteration Block 1.

This receiver design delivers good performance and also

allows for an efficient implementation in hardware, since all

iterations on the different OFDM-symbols can be performed

in parallel. However, there are still ways to further increase

performance. One way is to add the soft-values produced by

the inner decoder of the Predictive Block and those produced

by the inner decoder of Iteration Block 1 just before the hard

decision inside Iteration Block 1. This improves performance

since there are some OFDM-symbols for which the blind

estimator produces rather bad or even useless results, e.g.

when the channel is in a fade3. In these cases, good channel

estimation might still be possible with a predictive Wiener-

Filter.

A second possibility is to use the Wiener-Filter in time-

direction to filter the transfer function of each OFDM-symbol

stored in the buffer before each iteration. This improves

the channel estimates for OFDM-symbols received during a

channel fade, when newly received symbols start delivering

good estimation results again.

Decoding multiple OFDM-symbols at the same time also

nicely solves the problem of initializing the values of the

backward recursion in the MAP-algorithm of the inner decoder

[18]. For all but the latest received symbol, the backward-

recursion can be initialized by taking the end-values of the

backward-recursion of the subsequent OFDM-symbol.

D. Channel Model and Simulation Environment

Our simulations used the COST207 RA (Rural Area), TU

(Typical Urban) and BU (Bad Urban) channels having a

maximum delay spread of 0 ☛ 7µs, 7µs and 10µs, respectively

[16]. The usage of these models was motivated by a number of

simulation studies that have been carried out with these models

(e.g. [1], [21]). The guard interval of the OFDM-system was

chosen to be a quarter of an OFDM-symbol length, yielding

an OFDM-symbol duration of 280µs. A shorter guard interval

would be sufficient for any of the investigated channels, but

we chose the guard interval duration to match the pilot-based

reference system (see Sect. V-E).

Simulations were performed at a Doppler frequency of fd �
193Hz, which corresponds to a high vehicular speed of about

200 km/h at a typical carrier frequency of 1 GHz. This shows

the feasibility of the proposed algorithm in a rapidly time-

variant mobile environment.

The WSSUS-channels were simulated according to the

model introduced in [22], which describes the channel’s time-

3Note that interleaving does not help the blind channel estimator since it
needs to consider adjacent subcarriers.

variant impulse response as

h ✌ τ ✞ t ✍ � lim
µ � ∞

1
✁

µ

µ

∑
m ☞ 1

e jθme j2π fDm tδ ✌ τ ✒ τm ✍ ☛ (22)

The Fourier-Transform of equation (22) with respect to τ
yields the channel’s time-variant frequency response:

H ✌ f ✞ t ✍ � lim
µ � ∞

1
✁

µ

µ

∑
m ☞ 1

e jθme j2π fDm te ✆ j2π f τm ☛ (23)

For each of the µ paths, the phase-shift θm, the Doppler-

shift fDm and the delay τm are randomly chosen from the

corresponding probability density function pθ ✌ θ ✍ , p fD ✌ fD ✍
or pτ ✌ τ ✍ of the channel model [22]. For the simulations,

the number of paths was chosen to be µ � 50, which is a

good tradeoff between simulation speed and accuracy. Note

that in this model, the continuous power-delay profiles from

COST207 are approximated with µ rays, in contrast to the also

often used 6- or 12-ray models.

E. Pilot-Based Reference System

The pilot-based DVB-T system with an adaptive receiver

presented in [15] was used as a reference system. The receiver

employs an adaptive Wiener-Filter and achieves good channel

estimates without any iterations. The regular DVB-T pilot

pattern with an overhead of 12.8% was employed, which

accommodates channels with a delay spread of up to 56 µs [2].

F. BER Results

Figs. 8 and 9 show the simulation results for the RA (Rural

Area), TU (Typical Urban) and BU (Bad Urban) channel

models, respectively. The BER of the proposed receiver design

with QPSK/3-PSK and QPSK/5-PSK is plotted along with

BER-curves of the pilot-based DVB-T reference system. For

comparison, the BER-results of the blind channel estimator

with only one iteration and QPSK/5-PSK are plotted for the

RA and TU channels.

Measurements were started after the 20th OFDM-symbol

was received. For most scenarios, these 20 symbols are enough

to achieve convergence, except for some situations with a low

Eb

�
N0. This correspond to a delay of only 5.6 ms, which is

Channel RA

Channel TU

1 ✂ 10 ✆ 5

1 ✂ 10 ✆ 4

1 ✂ 10 ✆ 3

1 ✂ 10 ✆ 2

1 ✂ 10 ✆ 1

1

7 8 9 10 11 12 13 14 15 16 17

Blind Estimation, QPSK/3-PSK, 4 iterations
Blind Estimation, QPSK/5-PSK, 4 iterations
Blind Estimation, QPSK/5-PSK, 1 iteration

Pilotbased Estimation, QPSK

Eb
N0

B
E

R

Fig. 8. BER for RA and TU channels, fD ✄ max ✠ 193Hz, block length M ✠ 10
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1 ✂ 10 ✆ 6

1 ✂ 10 ✆ 5

1 ✂ 10 ✆ 4

1 ✂ 10 ✆ 3

1 ✂ 10 ✆ 2

1 ✂ 10 ✆ 1

1

6 7 8 9 10 11 12

Blind Estimation, QPSK/3-PSK, 4 iterations
Blind Estimation, QPSK/5-PSK, 4 iterations

Pilotbased Estimation, QPSK

B
E

R

Eb
N0

Fig. 9. BER for BU channel, fD ✄ max ✠ 193Hz, block length M ✠ 10

acceptable for a broadcasting system. Delaying the beginning

of the BER measurements by 20 symbols will allow us to

separate BER-performance from convergence behavior, which

is detailed in the next section.

The QPSK/5-PSK scheme provides stronger coding than the

QPSK/3-PSK scheme. On the other hand, it is more difficult

to recover the phase for QPSK/5-PSK, since the angular

difference between signal points is smaller. At a low Eb

�
N0,

the ability of the blind estimator to determine the channel

transfer function has a strong influence on BER performance,

which is why QPSK/3-PSK performs better. For higher Eb

�
N0,

the blind estimation results with QPSK/5-PSK become better

and approach that of QPSK/3-PSK. Hence, the stronger coding

becomes the dominating performance factor. Consequently,

QPSK/3-PSK obtains better BER-performance at low Eb

�
N0,

whereas QPSK/5-PSK performs better at higher Eb

�
N0.

In any case, the achievable BER-performance with both

modulation schemes lies within 2dB of the pilot-based ref-

erence system. At reasonable BER-values of around 10 ✆ 4, the

BER performance of the blind system is comparable to that

of the reference system.

The effect of using one instead of four iteration blocks

is demonstrated for QPSK/3-PSK on RA and TU channels.

As expected, performance improves with more iterations. The

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

M
S

E

MSE of blind estimate within iteration block 1
MSE of estimation result of iteration block 1
MSE of estimation result of iteration block 2
MSE of estimation result of iteration block 3

OFDM-symbol number

Fig. 10. Convergence behavior: RA channel, Eb � N0 ✠ 12 dB, block length
M ✠ 10, QPSK/3-PSK

influence of the block size M within the blind estimator is less

obvious. As mentioned previously, larger values of M alleviate

the effect of noise. On the other hand, a fade within a block

of length M might spoil the blind estimate of that particular

block. Therefore, it is desirable to partition an OFDM-symbol

into as many blocks as possible. For all of our results, we chose

a value of M � 10, which proved to be a good compromise.

The missing pilot symbols of the blind system compared

to the pilot-based reference system directly translates to an

increased spectral efficiency. Even though different modulation

schemes are used, the same number of information bits are

transmitted per OFDM-symbol. Disregarding the necessary

guard bands at both sides of the OFDM signal spectrum, the

number of information bits transmitted per unit bandwidth is

increased by 12 ☛ 8%.

G. Convergence Rate

To investigate the convergence behavior of the algorithm, a

discontinuity in the channel impulse response was introduced

by setting all taps to zero. Figs. 10 through 15 plot the MSE

of the channel estimate as a function of the OFDM-symbol

received after the discontinuity, where the OFDM-symbol

with index 0 is received over the regular mobile channel.

This mobile channel was simulated with the assumption of

an unchanged channel transfer function for the duration of

one OFDM-symbol, i.e., no ICI. This assumption was neces-

sary to provide a unique channel transfer function for each

OFDM-symbol so that the MSE can be computed, while still

maintaining mobility. The maximum Doppler-frequency was

fDmax � 193 Hz. The Eb

�
N0 was 12 dB for the RA channel

and 10 dB for the TU and BU channels.

As expected, the convergence behavior deteriorates as the

delay spread of the channel increases. Observe that the

algorithm converges faster for QPSK/3-PSK as compared

to QPSK/5-PSK, while the BER-performance is better for

QPSK/5-PSK. Note that the BER performance improves dra-

matically with increased iterations, even though there is little

change in the convergence rate. The difference in convergence

rate is minor for the RA and TU channels, but is significant for

the BU channel. The BU channel with QPSK/5-PSK requires

0.001
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0.1

1

0 2 4 6 8 10 12 14 16

MSE of blind estimate within iteration block 1
MSE of estimation result of iteration block 1
MSE of estimation result of iteration block 2
MSE of estimation result of iteration block 3

M
S

E

OFDM-symbol number

Fig. 11. Convergence behavior: RA channel, Eb � N0 ✠ 12 dB, block length
M ✠ 10, QPSK/5-PSK
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Fig. 12. Convergence behavior: TU channel, Eb � N0 ✠ 10 dB, block length
M ✠ 10, QPSK/3-PSK
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Fig. 13. Convergence behavior: TU channel, Eb � N0 ✠ 10 dB, block length
M ✠ 10, QPSK/5-PSK

the longest convergence time. Simulations showed that this

difference becomes larger as Eb

�
N0 decreases. Therefore, the

overall system design involves a tradeoff between convergence

speed and BER performance.

H. Complexity Analysis

Referring to Sect. III, the sub-optimal algorithm for solving

Eq. (14) can be realized with complexity O ✌ q2 ✍ . This is a very

small value and also holds if modulation schemes are com-

bined. In the latter case, the q of the higher order modulation

scheme determines the complexity. Hence, the central part of

the receiver, which is the blind channel estimator itself, con-

sumes a small fraction of the computational resources required

to implement the receiver. The remainder of the receiver is no

more complex than a well-known turbo decoder, which makes

several (de-)interleaving and de/encoding steps. It is obvious

that these turbo-like principles can be easily applied to the

proposed receiver by concentrating the iterations in a turbo

decoder. The complexity of the presented channel estimation

approach is, therefore, quite manageable. We believe that our

blind channel estimator has low complexity when compared

to other blind channel estimation approaches, especially those

based on statistics.
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Fig. 14. Convergence behavior: BU channel, Eb � N0 ✠ 10 dB, block length
M ✠ 10, QPSK/3-PSK
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Fig. 15. Convergence behavior: BU channel, Eb � N0 ✠ 10 dB, block length
M ✠ 10, QPSK/5-PSK

I. Broadcasting Environments and OFDM Bursts

All simulation results were determined in a broadcasting

environment with a continuous stream of OFDM-symbols.

If only data-bursts are transmitted, the receiver needs to be

adapted in order to deliver optimum performance. Depending

on the assumed worst case channel and the tolerable delay

within the receiver, it might be necessary to transmit reference

symbols within the first OFDM-symbol of the burst. This

would allow the receiver to quickly pick up the channel and

might be necessary, especially for the BU channel where slow

convergence is observed.

On the other hand, the fast convergence behavior with the

TU channel, and especially RA channel, makes it possible to

get by without reference symbols for these channels. Since

the MSE of the channel estimate already drops below 10%

after a couple of received symbols, the receiver will be able

to deliver a good estimate of the channel transfer function

for a large portion of the OFDM-burst. The receiver will then

be able to provide a-priori knowledge of the channel transfer

function for the first few OFDM-symbols by Wiener-Filtering

in the time-direction. This in turn will allow blind channel

estimation as we have described.

The MSE-measurements show that this procedure is feasible

with bursts of several OFDM-symbols (e.g. 10-15 OFDM-
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symbols, corresponding to 2.8-4.2 ms duration). A delay of

several milliseconds is comparable to that of state-of-the-art

mobile communication systems (such as UMTS) and is quite

acceptable for real-time data- and voice-applications.

VI. CONCLUSION

A novel blind channel estimation scheme was presented. In

contrast to most other blind channel estimation approaches, it

uses no second or higher order statistics. It features relatively

low complexity and a very fast convergence rate. By applying

a combination of modulation schemes, the absolute phase

of the channel transfer function can be resolved without

the need for reference symbols, making the algorithm, we

believe, to be the first fast converging truly blind channel

estimation algorithm. Compared to a pilot-based system, the

spectral efficiency is significantly increased while maintaining

a competitive BER-performance. Simulations were performed

for a modified DVB-T system. The results clearly indicate

the feasibility of the proposed approach even if data bursts

are transmitted. Finally, the proposed approach maximizes the

spectral efficiency by avoiding any reference symbols or pilots,

while improving the Eb

�
N0 performance by using a coherent

detection rather than differential detection.

APPENDIX

In this Appendix, we estimate the maximum tolerable

channel delay such that Theorems 1 and 2 and the Lemma

are valid.

From the channel model introduced in Sect. V-D, observe

from Eq. (23) that the real and imaginary part of the time-vari-

ant frequency response H ✌ f ✞ t ✍ is a superposition of an infinite

number of phase-shifted and scaled complex oscillations:

H ✌ f ✞ t ✍ � lim
µ � ∞

1
✁

µ

µ

∑
m ☞ 1

e jθme j2π fDmt✂ ✄✆☎ ✝
phaseshift

e ✆ j2π f τm✂ ✄ ☎ ✝
complex oscillation

☛ (24)

We will use the complex oscillation with the largest angular

frequency to estimate the ε from the presented theorems, which

can be tolerated by a particular channel.

From system theory it is well known that the Fourier

transform of a delta function is a complex valued exponential

function. Applied to equations (22) and (23) we get:

δ ✌ τ ✒ τm ✍✁�✄✂ 2πe ✆ j2π f τm ☛ (25)

Hence, the maximum delay of the mobile channel directly

translates to the complex oscillation with the largest angular

frequency within the channel frequency response H ✌ f ✞ t ✍ . To

estimate ε, we will only consider the oscillation term g ✌ f ✍
with the largest angular frequency in H ✌ f ✞ t ✍ :

g ✌ f ✍ � Ke ✆ j2π f τm ✞ (26)

where K is a constant complex scaling factor depending on

the channel gain. Taking into account the carrier spacing

of 4464 Hz (for the DVB-T system) and by utilizing the

subcarrier index k we get:

g ✌ f ✍ � Ke ✆ j2π4464 1
s kτm � Ke ✆ j2π4464 1

s kτm ☎ Ke ✆ j28048 1
s kτm ☛

(27)

✆
ε
✆

dmin
2

for QPSK / 5-PSK

dmin
2

for QPSK / 3-PSK

dmin
2

for pure QPSK
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Fig. 16. Estimate of εmax against the maximum channel delay τm.

Finally, we get the estimate for the maximum value of✠Hk ✒ Hk ✝ 1 ✠ as ✠ ε ✠ � K ✌ 1 ✒ Ke ✆ j28048 1
s τm ✍ ☛ (28)✠ εmax ✠ is plotted against the maximum channel delay τm in

Fig. 16 for K � 1. In addition, the graph contains
dmin

2
accord-

ing to Theorem 2 for the case of QPSK only, and ε according

to the Lemma for the case of combined QPSK/3-PSK and

QPSK/5-PSK. Note that K was chosen to be 1 because this is

the mean value of ✠H ✌ f ✞ t ✍ ✠ .
Observe that the condition

dmin
2 � ✠ ε �

K ✠ resp.
dmin

2 � ✠ ε ✠ as

introduced in Theorem 2 is fulfilled even for large maximum

channel delays τm ★ 20µs. We can conclude that, if only QPSK

is used, blind channel estimation according to Theorems 2

and 3 is possible even for channels having a large maximum

delay, such as COST207 Hilly Terrain (HT) channel [16]. Note

that in the case of pure QPSK the channel estimate exhibits a

phase ambiguity and, therefore, reference symbols are needed

to resolve this ambiguity.

The condition
dmin

2 �✑✠ ε ✠ according to the Lemma is fulfilled

for short to medium maximum channel delays. The COST207

RA channel [16] with τm � 0 ☛ 7µs poses no problem for either

QPSK/3-PSK or QPSK/5-PSK. The COST207 TU channel

[16] with τm � 7µs is more problematic. For QPSK/3-PSK, the

condition is still fulfilled. However, for For QPSK/5-PSK, the

Lemma no longer holds. However, simulations showed that

blind channel estimation is still possible since only a small

portion of the received energy is received with a path delay

of 6µs or more.

The most problematic channel is the COST207 BU channel

[16] with τm � 10µs. For QPSK/3-PSK, the condition is almost

fulfilled, but in the QPSK/5-PSK does not hold. This is

supported by the simulations, which show convergence for the

QPSK/3-PSK-case (Fig. 14), but a problematic convergence

behavior for the QPSK/5-PSK-case (Fig. 15).
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